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Abstract

We study the problem of simultaneously disseminating multiple messages in a large
network in a decentralized and distributed manner. We consider a network withn nodes
andk (k = O(n)) messages spread throughout the network to start with, but not all nodes
have all the messages. Our communication model is such that the nodes communicate
in discrete-time steps, and in every time-step, each node communicates with arandom
communication partner chosen uniformly from all the nodes (known as therandom phone
call model). The system is bandwidth limited and in each time-step, only one message can
be transmitted. The goal is to disseminate rapidly all the messages among all the nodes.
We study the time required for this dissemination to occurwith high probability, and also
in expectation.

We present a protocol based onrandom linear coding(RLC) that disseminates all the
messages among all the nodes inO(n) time, which is order optimal, if we ignore the
small overhead associated with each transmission. The overhead does not depend on the
size of the messages and is less than 1% fork = 100 and messages of size100 KB. We
also consider astore and forwardmechanism without coding, which is a natural extension
of gossip-baseddissemination with one message in the network. We show that, such an
uncoded scheme can do no better than a sequential approach (instead of doing it simulta-
neously) of disseminating the messages which takesΘ(n ln(n)) time, since disseminating
a single message in agossipnetwork takesΘ(ln(n)) time.

1 Introduction

Of late, design of protocols to rapidly disseminate messages in large networks have gained
a lot of attention. Much of the research on information dissemination started with updating
messages in large distributed computer systems where computers can communicate with each
other. More recently, the emergence of sensor networks has added a new paradigm to the
problems of distributed message dissemination.

The use ofgossip basedprotocols to disseminate message was first proposed in [4]. In
gossipbased protocols, nodes communicate with each other in communication steps called
rounds, and the amount of information exchanged in each round between two communicat-
ing nodes is limited. Further, there is no centralized controller and every node in the network
acts simply based onstate or informationof the node, and not that of the over all network.
Thus,gossipbased protocols are inherently distributed and easily implementable, and provides



powerful alternatives tofloodingandbroadcastbased protocols for dissemination of messages.
There is a wide literature on the practical aspects of gossip-based message dissemination [14].
A detailed analysis of a few gossip-based dissemination schemes were provided in [9]. A com-
mon performance measure in all the previous work is the time required to disseminate a single
message to all the nodes in the network. In recent work, [11, 10] considered the scenario where
there are multiple messages, each with a unique destination. The authors considered what they
call spatial gossipwhere the nodes are embedded in a metric-space with some distance metric
between the nodes. More recently, in [2], the authors have studied gossip-like distributed algo-
rithms for computing averages at the nodes. In this paper, we envisage a different problem, in
which the network seeks to simultaneously disseminate multiple messages to all the nodes in a
distributed and decentralized manner.

As pointed out in [11], we note that, anygossipprotocol has two layers of design aspects.
One is the design ofgossip algorithmby which, in every round, every node decides its com-
munication partner, either in a deterministic, or in a randomized manner. The other important
aspect is the design ofgossip-based protocolby which any node, upon deciding the commu-
nication partner according to thegossipalgorithm, decides the content of the message to send
to the communication partner. The main contribution of our paper lies in proposing agossip
based protocolusing the idea ofrandom linear coding, which has previously been used in the
context of communication theory for various purposes.

In this paper, we consider a scenario where there are multiple nodes in the network and also
multiple messages, but not all messages are with all the nodes to start with. We are interested
in designing mechanisms to ensure that all the nodes receive all the messages very fast. We
restrict ourselves togossip protocols, so that each node acts based onlocal information, with-
out a centralized controller. Moreover, at each communication instant between nodes, only one
message(we comment on this aspect later in the paper) can be transmitted. Thegossip algo-
rithm we consider in this paper is what is popularly known as therandom phone callmodel or
rumor mongeringmodel [4]. In such a model, the system proceeds in rounds. In each round,
every nodeu calls a communicating partnerv chosen uniformly at random from from all the
nodes. We proposegossip-based protocolusing the idea ofrandom network codingintroduced
by Ho et. al. in [6, 7], and compare the protocol with a naive one.

As we show in the paper, information dissemination schemes based on the concepts of
network coding, instead of a naivestore and forwardmechanisms, can provide substantial
benefits in distributed environments at the cost of a small overhead (if the message sizes are
reasonably large) associated with each packet. In networks with fixed communicating graphs,
network codingcan be viewed as a vast generalization of routing where each packet is treated
as an algebraic entity that can be operated upon instead of simply storing and forwarding.
Essentially, each node in the network sends to each output link any linear function of the
data received at the input links. It was shown in [13] that, linear network coding can achieve
the min-cut bound in networks with multicast flows. There is a significant recent work on
network coding [8], especially on the algorithmic aspects of construction of linear network
codes [1, 12]. In [6, 7], the authors proposed the novel idea ofrandom network coding. Our
protocol for message dissemination is inspired by this.

We present agossip based protocolbased onrandom network codingthat can simulta-
neously disseminatek = O(n) messages (where each message is initially distributed among
O(1) nodes) amongn nodes inO(n) time. This is clearly the optimal time to disseminate the
messages, in an order sense. The key feature in our protocol which helps to attain this bound
is an “algebraic mixing” of the messages usingrandom linear coding. This is done by viewing
each message as an element in a vector space with the scalars in a finite field of appropriate



size. We have also shown that a naive uncodedstore and forwardapproach of disseminating
the messages takesΩ(n ln(n)) time. It is worth noting that, a sequential approach of dissem-
inating the messages one after the other would take a sum-total ofΘ(n ln(n)) time, since the
time to propagate a single message isΘ(ln(n)) [9].

We simply provide the key intuition behind the power of a coding based approach in the
following. Suppose there arek distinct elements in a finite field of sizeq. Consider two ap-
proaches to store the elements in a database withk slots. Suppose each slot chooses an element
at random without the knowledge of what the other slots are choosing. Then, the probability
that all the elements are there in the database is very small. Now, consider a second approach
in which each slot in the database stores a random linear combination of the messages. All
the messages can be recovered from the database, only if the linear combination chosen by the
slots are linearly independent. Now, there are((qk − 1)(qk − q)(qk − q2) . . . (qk − qk−1)) ways
of choosingk linearly independent combination of thek elements in a finite field of sizeq.
Thus, the probability that the elements can be recovered from the database is much higher in
the latter scenario. This is the key idea which is at the heart of therandom linear codingbased
protocol we present in this paper.

In Section 2, the model and the protocols considered are described along with a few prelim-
inaries. We describe our main results in Section 3 and also provide heuristic arguments behind
the results. We skip the detailed proof the results. Please refer to [3] for the detailed proofs.
We conclude in Section 4.

2 Model, Protocols, and Preliminaries

2.1 Model and Protocols

Suppose there aren nodes andk (k(n) to be more precise) messages. Initially, each node
has one of thek messages indexed by the elements in the setM = {m1, m2, . . . mk}. The
nodes are indexed by elements of the set[n]. Let Vm be the set of nodes that start out with the
messagem ∈ M . We also assume|Vm| = α, ∀m ∈ M , i.e., each message is equally spread
in the network to start with. We are interested in obtaining the time required to disseminate
all the messages to all the nodes using a rumor mongering approach in the asymptote of large
n such thatn/k is kept fixed atα ≥ 1. We comment that the results and the derivations in
this paper can be extended for the case when some nodes have more than one message and
some have none, or when all the messages are there with one particular node to start with. The
protocols described later may require minor modifications depending on the initial distribution
of the messages.

Gossip Algorithms:

The system advances inroundsindexed byt ∈ Z+. The communication graph in roundt, Gt,
is obtained in a randomized manner as follows. In the beginning of each round, each node
u ∈ [n] calls a communication partnerv chosen uniformly from[n]. We consider two variants
of this rumor mongeringmodel for message exchange as proposed in [4].

Pull: In this model, a message is transmitted from acallednode to thecaller node according
to a suitable protocol we describe later. Thus, the communication process is initiated by
the receiving node.



Push: Here, the message is transmitted from acaller node to thecalled node. Thus, the
communication process is initiated by the transmitting node.

There can be other variants, for instance, by combiningpushandpull as considered in [9].

Gossip-Based Protocols:

Having described the model for communication graph in each round, we now describe two
protocols or strategies for transmitting a message. The protocols will be adopted by thecaller
node in thepushmodel and thecallednode in thepull model. Below we describe two protocols
for message transmission we consider in this paper.

Random Message Selection (RMS):This is a naive strategy, where the transmitting node
simply looks at the messages it has received and picks any of the messages with equal
probability to transmit to the receiving node. Thus, ifMv are the set of messages with
nodev, thenv transmits a “random” messagee to its communicating partner, where

Pr(e = m) =
Im∈Mv

|Mv|
.

Random Linear Coding (RLC): Suppose the messages are vectors over the finite field,Fq of
sizeq ≥ k. If the message size ism bits, this can be done by viewing each message as a
r = dm/ log2(q)e dimensional vector overFq (instead of viewing each message as am
dimensional vector over the binary field). To this end, letmi ∈ Fr

q (mi, i = 1, 2, . . . k,
are the messages) for some integerr. Thus the messages are over a vector space with
the scalars inFq. All the additions and the multiplications in the following description
are assumed to be overFq. In the RLC protocol, the nodes start collecting several linear
combinations of the messages inM . Once there arek independent linear combinations
with a node, it can recover all the messages successfully. LetSv denote the set of all the
coded messages (each coded message is a linear combination of the messages inM ) with
nodev at the beginning of a round. More precisely, iffl ∈ Sv, wherel = 1, 2 . . . |Sv|,
thenfl ∈ Fr

q has the form

fl =
k∑

i=1

alimi, ali ∈ Fq,

and further the protocol ensures thatali’s are known tov. This can be done with a
minimal overhead with each packet in a manner described soon.

Now, if the nodev has to transmit a message tou, thenv transmits a “random” coded
message with contente ∈ Fr

q to u, where

e =
∑
fl∈Sv

βlfl, βl ∈ Fq (1)

and

Pr(βl = β) =
1

q
, ∀β ∈ Fq . (2)

For decoding purposes, the transmitting nodes also send the “random coding vectors”
as overhead with each packet. This can be achieved by padding an additionalk log2 q
bits with each message. To see the precise structure of the overhead associated with a



packet, note that the payload part of the transmitted messagee in (1) can be represented
as follows:

e =
∑
fl∈Sv

βlfl

=
∑
fl∈Sv

βl

k∑
i=1

alimi (where ali ∈ Fq)

=
k∑

i=1

θimi (where, θi =
∑
fl∈Sv

βlali ∈ Fq)

It is theθi’s that are sent as overhead with the transmitted messages. Thus, once theβl’s
are decided in randomized manner according to (2), the transmitting nodes can precisely
obtain the values ofθi’s (i = 1, 2 . . . k) and send as overhead. This overhead would
clearly require additionalk log2(q) bits. We also call the overhead(θ1, θ2, . . . , θk) ∈
Fk

q , the transmitted “code-vector.” We simply comment that, if the message sizem >>
k log2(q), then the overhead required with the protocol is minimal. Note that the overload
scales with the number of messages being disseminated simultaneously. However, in the
set-up we consider in this paper,k = O(n) andq ≈ k, and thus the size of the overhead
is aroundn log2(n).

The decoding of the messages is not hard to see. In RLC approach, the nodes start col-
lecting the “code vectors” as the system progresses. Once the dimension of the subspace
spanned by the received “code vectors” with a node becomesk, then the node can recover
all the messages.

We are interested in the finding the expected time (rounds) required for all the nodes to
receive (decode) all the messages, and also the time required to receive all the messages with
high probability for four cases: RLC withpull, RLC with push, RMS with pull, RMS with
push.

We comment that the underlying probability space has a probability measure determined
by the random communication graphs in each round and the random transmitted messages.
By a natural abuse of terminology, in our analysis and discussion of the RLC protocol, we
also refer to “dimension of the subspace spanned by the code-vectors received by the node”
as “dimension of a node.” Throughout this paper, we also use the terms “round” and “time”
interchangeably.

2.1.1 A useful result on the RLC protocol

We now state (see [3] for proof) a useful, but simple and intuitive result which is key to demon-
strating the benefits of the RLC protocol. In the following, we assume that a coded message is
transmitted from nodev to nodeu. It is implicit that, with a “pull” mechanismu is the caller
node, and with a “push” mechanismv is the caller node.

Lemma 2.1. Suppose nodev transmits a coded message to nodeu in a particular round using
the RLC protocol. LetS−u andS−v denote the subspaces spanned by the code-vectors withu
and v respectively at the beginning of the round. LetS+

u denote the subspace spanned byu
at the end of the round, i.e., after receiving a coded message fromv according to the scheme
described by the RLC protocol. Then,

Pr(dim(S+
u ) > dim(S−u )|S−v * S−u ) ≥ 1− 1

q
,



whereq is the size of the field.

3 Main Results and Discussion

We now describe the main results of the paper. Our first result is on the performance of RLC
with pull mechanism.

Theorem 3.1. Let T
pull

RLC be the random variable denoting the time required by all the nodes
to get all the messages using an RLC approach with pull mechanism. Then,

T
pull

RLC = O(n), w.p. 1−O( 1
n
)

Further, if T pull
RLC is the time required for a particular node to get all the messages, then

E[T pull
RLC ] = O(n) .

We also have a similar result with apushbased mechanism.

Theorem 3.2. Let T
push

RLC be the random variable denoting the time required for all the nodes
to get all the messages using an RLC protocol with push mechanism. Then,

T
push

RLC = O(n), w.p. 1−O( 1
n
)

If T push
RLC is the time required for a particular node to get all the messages with RLC based push,

then
E[T push

RLC ] = O(n) ,

Remark: The following extensions of the results are routine.

1. If there is only one copy of each of thek messages withk different nodes initially, so that
there are some nodes with no messages, then Theorem 3.1 and 3.2 easily go through.

2. Suppose initially there arek different messages at a single node. Then, the result in The-
orem 3.1 and 3.2 again go through with minor additional considerations in the analysis
provided later.

3. A more careful look at our derivation later in the paper suggests that, the size of the finite
field could be restricted to roughly

√
k and the results in Theorem 3.1 and Theorem 3.2

would go through. This suggests that the overhead with each packet can be reduced to
0.5k log2 k instead.

The power of a coding based approach comes from the fact that packets are treated as
algebraic entities which can be operated upon. The next natural question is, what if the nodes
do not manipulate the packets and simplystoreandforward the packets? We show that, in one
such protocol as we have described in the paper, which we call RMS or “Random Message
Selection,” one can do no better than the case when the messages are disseminated in the
network sequentially one after the other.

Theorem 3.3. Let TRMSpull
k be the time required for all the nodes to get all thek messages

using an RMS protocol with pull mechanism. Then, we have

ETRMSpull
k = Ω(n ln n)

and
lim
k→∞

Pr
(
TRMSpull

k = Ω(k ln(k))
)

= 1



We also have a very similar result for RMS with apushbased mechanism.

Theorem 3.4. Let TRMSpush
k be the time required for all the nodes to get all thek messages

using an RMS protocol with pull mechanism. Then, we have

ETRMSpush
k = Ω(n ln n)

and
lim
k→∞

Pr
(
TRMSpush

k = Ω(k ln(k))
)

= 1

Remark: We comment the following based on the results described.

1. If no overheads are allowed, i.e., if the size of the transmission between any two com-
municating nodes is strictly limited tom (m is the size of a message), then clearly, it will
take at leastO(n) rounds for complete dissemination to occur whenk = O(n). Any pro-
tocol which achieves this dissemination time is clearly order optimal. The RLC protocol
achieves this optimal dissemination time at the cost of a small overhead for reasonably
large message sizes. Since, an implementation of RLC mechanism needs a padding of
additionalk log2(k) bits with each coded message that is transmitted. If the size of each
message,m, is such thatm >> k log2(k) then, with a minimal overload with each trans-
mission, the RLC protocol can overcome the lack of knowledge that a transmitting node
has about the contents of the receiving node. For example, withk = 100, the overhead
is 1% form = 100 KB and it is 0.1% form = 1 MB. We simply note that the overhead
does not grow with the size of the messages or available bandwidth and simply depends
on the number of messages that are to be disseminated simultaneously.

2. The inherent advantage of RLC comes from “coding.” The RMS scheme cannot do as
well even if packets were chopped up into multiple parts, or multiple packets were com-
bined into large packets. To see this, suppose each packet of sizem is chopped into
r mini-packets of sizem/r each. There arekr packets in the system. Suppose, there
arer mini-rounds within each round for the transmission of these min-packets. The new
RMS scheme will takeΩ(kr ln(kr)) mini-rounds or equivalently time worthΩ(k ln(kr))
rounds in the original scheme. Also, a very similar modification for RMS scheme can be
done with combining a fixed number of packets. Hence, splitting or combining packets
cannot help the non-coding nature of RMS scheme to achieve the optimal order attained
by a coding based scheme.

3. In gossip based communication with one message, it takesΘ(ln(n)) time for the com-
plete dissemination to occur with high probability. Thus, if thek messages are dissemi-
nated sequentially one after the other, it will takeΘ(n ln(n)) time to disseminate all the
messages whenk = O(n). The result in Theorem 3.4 shows that the uncoded RMS
protocol can do no better than when the messages are disseminated one after the other.

4. Note that, if there is no bandwidth constraint (i.e., if a transmitting node can transmit
its entire database) between two communicating nodes, the dissemination time is simply
O(ln(n)) for anyk. This is since the system behaves as if there is only one message for
which the dissemination time isO(ln(n)) [9].

5. An interesting quantity is the total amount of information that is exchanged. If each
message is of sizem, the total amount of information exchanged in the RLC protocol
is O(n2(m + k log2(k)). In the case of RMS, this quantity is at leastΩ(n2 ln(n)(m +
log2(k))) (additionallog2(k) bits for identifying each message). Further, any protocol
will require at leastΩ(n2m) bits of transmission.



3.1 Key idea behind the results using a mean-field approach

In the rest of this section, we provide an intuition behind our results, and also comment on
the analysis approach of the protocols. The argument in this subsection is not rigorous and
far from formal, and is only to provide a heuristic behind the optimal order attained by RLC
mechanism. For formal and detailed proofs of the results, please refer to [3].

First consider the RMS protocol and let us concentrate on any particular node,u. Since
u starts with one message at round zero, in the initial rounds, any communication from some
other node is very likely to provideu with a new message. However, asu gathers more and
more messages, any new message is more and more likely to be somethingu already has (recall
the famouscoupon collectorproblem [5]). Indeed, our proof of the result with RMS protocol
shows that, the system takesΩ(n ln(n)) rounds just to receive the lastk/2 messages. Thus, the
performance of the RMS protocol deteriorates once a node already has roughly half the total
messages.

Now consider the RLC protocol withpushmechanism (a similar intuition can be given for
the pull model). As before concentrate on a particular nodeu. The nodeu keeps receiving
code vectorsand decodes all the messages once the dimension of nodeu is k. Suppose the
dimension of nodeu is i. We are interested in finding an expression for the number of rounds
for which u has dimensioni. First, lets classify the nodes as “helpful” and “unhelpful” as
follows. We call a node “helpful” tou, if the subspace spanned by itscode vectorsdo not lie
in that ofu. Otherwise, a node is “unhelpful” tou. The first point to note is that, ifu is pushed
by a helpful node, the conditional probability of nodeu increasing its dimension toi + 1 is
at least1 − 1/q by Lemma 2.1. This is true for any unhelpful node as well, i.e., if any node
that is unhelpful tou is pushed by a node that is helpful tou, the unhelpful node increases its
dimension (and thus becomes a helpful node, providedu is yet to increase its dimension) with
probability at least1− 1/q. LetF be the fraction of helpful nodes when nodeu has dimension
i for the first time. It is not hard to argue thatF ≥ (k − i)/k, with equality corresponding to
the case when nodeu has recoveredi messages. This is because, ifu has recoveredi messages,
even then there are(k − i)/k fraction of nodes that started with the remainingk − i messages.
Now, consider a worst case scenario. Suppose,u just refrains from any communication and
observes tillF becomes at least1/2, after whichu participates in the process again. Now, the
number of unhelpful nodes pushed by a helpful node is roughly proportional to the number
of helpful nodes, which isnF to start with (i.e., first timeu has dimensioni). We will take
the proportionality factor as one (it will “mostly” be less than one since multiple helpful nodes
may push to the same unhelpful node) simply for the ease of heuristic computation we intend
to show here. Thus on an average, roughlynF (1 − 1/q) unhelpful nodes become helpful
nodes after one more round of message exchange. Thus, we have after one additional round of
message exchange

F ← F + F (1− 1/q) = F (2− 1/q) .

It follows that, the updated value ofF after an additional round of message exchange satis-
fiesF ≥ k−i

k
(2 − 1

q
). Thus, afterr rounds of message exchangesF becomes at least((k −

i)/k)(2− 1/q)r. A simple calculation shows that, after roughlyln(k/(2(k − i))/ ln(2− 1/q)
rounds, the fraction of helpful node becomes at least1/2. At this point, nodeu is interested
in communication again. However, any helpful node can increase the dimension ofu with
probability at least(1/n)(1 − 1/q), since any helpful node communicates withu with prob-
ability 1/n and increases the dimension with probability1 − 1/q at least. Since there are at
leastn/2 helpful nodes now, the probability thatu does not increase its dimension is at most

(1− 1
n
(1− 1

q
))

n
2 ≈ 1√

e
(for largen). Thus, once there are at leastn/2 helpful nodes, the mean



time for u to increase its dimension is1/(1 − 1/
√

e). Thus, on an average, the total timeTi

thatu spends while it has dimensioni is no more than the sum of, the time it takes till there
n/2 helpful nodes, and1/(1− 1/

√
e). Thus,

Ti ≤ ln(k/(2(k−i))
ln(2−1/q)

+ 1
(1−1/

√
e)

which implies

k−1∑
i=1

Ti ≤
k−1∑
i=1

ln(k/(2(k−i))
ln(2−1/q)

+ (k − 1)
√

e√
e−1

= ln(kk−1/(2k−1(k−1)!)
ln(2−1/q)

+ (k − 1)
√

e√
e−1

= O(k)

Thus, it is believable that RLC withpushattains the optimal order.
An almost similar heuristic can be provided forpull. The only difference is that, here we

keep track of the unhelpful nodes. More precisely, starting with the fraction of unhelpful nodes
(1− F ), after one more round of message exchange, the fraction of unhelpful nodes becomes
at most(1−F )2 +(1−F )F (1/q). The first term accounts for the event that an unhelpful node
stays so if it pulls from another unhelpful node, and the second term accounts for the event that
even if an unhelpful node pulls from a helpful node, with probability at most1/q (Lemma 2.1)
it may not increase its dimension. Using this, we can find the time after which there are at most
n/2 unhelpful nodes.

We end this section with a few words on the proofs. Intuitively, for the firstk/2 dimensions
(or k/2 messages with RMS) any communication is likely to be helpful in any case, with or
without coding. However, we show that, the benefits of a coding based approach remains
till the dimension is almostk, more precisely, till the dimension isk −

√
k ln(k) usingpush,

andk − Θ(
√

k ln(k)) usingpush. We show that it takesO(n) time for the dimension of a
node to reach,k −

√
k ln(k)) using push, andk − Θ(

√
k ln(k)) using push. In fact, this

is the regime where we make the heuristic mean-field approach precise by studying suitable
random variables that can account for the mean-field approach formally. Finally, in the regime
k ≥ k −

√
k ln(k), the time to increase the dimension by one cannot be worse than the time to

receive a message with a single message based dissemination which takesln(n) rounds. Thus,
increasing the dimension fromk−Θ(

√
k ln(k)) to k will take O(

√
n(ln(n)2) time in the worst

case. Thus its takesO(n) time to decode all the messages.
The details of the analysis with the all the protocols are provided in [3].

4 Concluding Remarks

We considered the problem of disseminating multiple messages simultaneously in a large net-
work usinggossip-baseddissemination mechanisms. We have presented a protocol based on
random linear codingthat disseminates the messages in optimal time in an order sense. The
RLC protocol is quite general and does not depend on the underlying communication model.
However, we have demonstrated the benefits of the protocol over agossip-basedcommunica-
tion model and in a worst case demand scenario when all the nodes want everything. Demon-
strating the advantages of such a coding based approach in a more generic setting, and with a
fixed communication graph is a topic of further work.
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