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Abstract— A framework is developed for analyzing capacity
gains from user cooperation in slow fading wireless networks
when the number of nodes (network size) is large. The framework
is illustrated for the case of a simple multipath-rich Rayleigh
fading channel model. Both unicasting (one source and one des-
tination) and multicasting (one source and several destinations)
scenarios are considered. We introduce a meaningful notion
of Shannon capacity for such systems, evaluate this capacity
as a function of signal-to-noise ratio (SNR), and develop a
simple two-phase cooperative network protocol that achieves
it. We observe that the resulting capacity is the same for
both unicasting and multicasting, but show that the network
size required to achieve any target error probability is smaller
for unicasting than for multicasting. Finally, we introduc e the
notion of a network “scaling exponent” to quantify the rate
of decay of error probability with network size as a function
of the targeted fraction of the capacity. This exponent provides
additional insights to system designers by enabling a finer grain
comparison of candidate cooperative transmission protocols in
even moderately sized networks.

Index Terms— Wireless networking, multicasting, ad-hoc net-
works, sensor networks, cooperative diversity, outage capacity,
scaling laws.

I. I NTRODUCTION

COOPERATIVE diversity has been proposed as an at-
tractive approach to combatting slow fading in wireless

networks [8], [13]. Spatially distributed nodes provide an
opportunity to create a distributed virtual antenna array and
can provide substantial gains in slow fading environments.
There has been a significant interest in studying these gains
recently; see, e.g., [1], [2], [9], [10], [12] and the references
therein.

A convenient channel model for such problems, as has been
widely adopted in the literature, is a quasistatic one in which
the parameters are known to receivers, but not to transmitters.
In such scenarios the classical Shannon capacity is typically
zero due to the positive probability of the channel experiencing
an arbitrarily deep fade, so performance is instead quantified
in terms of outage capacity, which describes the achievable
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rate subject to a constraint on the level of outage probability
that can be tolerated [11].

Outage analysis applies to a host of multiterminal exten-
sions of such basic channel models as well [14], although
the expressions become more cumbersome. To address this,
diversity-multiplexing tradeoff analysis provides a suitably
coarser scale characterization of such systems by focusingon
the high signal-to-noise ratio (SNR) regime and examining
how outage probability scales with SNR in this regime for
different transmission rates [16].

Diversity-multiplexing tradeoff analysis has also proven
useful analyzing a host of simple network problems. For
example, [15] extends the analysis to the multiple-access
channel, while [8] extends the analysis to the cooperative
diversity channel.

While such analysis of cooperative diversity has proven
popular, much of the work has been limited to systems in
which for a given message there is effectively only a single
destination node and a relatively small number of potential
relay nodes to participate in the transmission.

In the present paper, we develop an alternative framework
within which to examine cooperative protocols. First, our
emphasis is on the multicasting scenario in which there is
one message in the network, but generally multiple destination
nodes. We will focus on two extreme special cases of this
scenario. One is whenall nodes in the network are to receive
the message, which for convenience we generically refer to
as multicasting. The other is when exactly one node in the
network is to receive the message, which we refer to as
unicasting.

Second, our framework examines the scenario in which the
number of nodes in the network is large. This will allow
us to examine the associated asymptotic scaling behavior of
cooperative networks. As a by-product, we do not need to
restrict our attention to high SNR analysis. Indeed, we fix
the noise power, normalize the channel statistics, and contrain
the total power transmitted in the network. This allows us to
parameterize our results in terms of the associated SNR.

Within this framework, we analyze the relationship between
transmission rate and the associated error probability. Pro-
vided we use codes of sufficiently long block lengths, outage
probability dominates the error probability. Specifically, the
associated outage event is that notall the intended recipients
are able to decode the message. Not suprisingly, avoiding
outage in multicasting is more difficult than in unicasting.

As our main result, we show that under a multipath-rich
Rayleigh fading network model, a notion of Shannon capacity
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can be developed. Specifically, there exists a nonzero capacity
(dependent on SNR) such that for all rates below capacity,
the error probability can be made arbitrarily small provided
the network is sufficiently large. Conversely, for all rates
above capacity, the error probability is bounded away from
zero regardless of network size. Our achievability result is
based on a simple two-phase cooperative network protocol
we develop. By contrast, when one precludes the possibility
of cooperation, the associated capacity is of course zero.
Interestingly, our analysis also reveals that despite the fact
that multicasting outage behavior is dominated by theworst
node, the multicasting and unicasting capacities thus defined
are identical. Not surprisingly, we also show that for a fixed
number of nodes, the probability of error is still much smaller
in unicasting than in multicasting.

We further show that finer scale characterizations of be-
havior are possible too. In particular, we define a notion
of network scaling exponent that characterizes the rate of
decay of error probability with network size as a function
of the targeted fraction of capacity. Within this analysis,we
see, among other insights, that the exponent of our capacity-
achieving protocol is quite small for rates that exceed halfthe
network capacity.

While our results are specific to our multipath-rich Rayleigh
fading model, we believe that the associated framework is
useful more broadly in the analysis of user cooperation gains in
large networks with more realistic — if more complicated —
models. Indeed, ultimately our results more generally suggest
that just as system analysis asymptotic in block length or SNR
has proven useful, so can one that is asymptotic in network
size.

The remainder of the paper is organized as follows. Sec-
tion II introduces the network model of interest. The capacity
result is stated in Section III. It is established by providing a
converse in Section IV and an achievability argument in Sec-
tion V. The scaling of the outage probability with the number
of nodes is discussed in Section VI, and the network scaling
exponent is introduced in Section VII. Finally, Section VIII
contains some concluding remarks and directions for future
work.

II. SYSTEM MODEL

We consider a system withK receiving nodes and one
source node. For convenience, we label the source node as
node 0, and the receiving nodes as{1, 2, . . . ,K}. Of course,
in practice, different nodes in the network can act as source
nodes over orthogonal time or frequency bands as discussed
in [8]. However, for analysis, it suffices to focus on a single
configuration.

We assume a narrowband, slow fading channel passband
channel model corresponding to a multipath-rich propagation
environment. In particular, the channel gainshjk between arbi-
trary distinct pairs of nodes(j, k) are independent identically
distributed (i.i.d.) random variables from a zero-mean, unit-
variance circularly symmetric complex Gaussian distribution.
In turn, the signal received at nodek at time i is given by

yk(i) =
∑

j∈T(i)

hjk xj(i),+zk(i), (1)

whereT(i) is the set of nodes transmitting at timei, where
xj(i) is the symbol transmitted by nodej at timei, and where
zk(i) denotes circularly symmetric complex i.i.d. Gaussian
noise of powerN0. Furthermore, the noises among the dif-
ferent receivers are mutually independent.

In our model, nodes are subject to a half-duplex constraint,
i.e., a node cannot transmit and receive simultaneously. Thus,
associated with every valid protocol is a set of binary variables
of the formDk(i) that specifies at timei whether nodek is
transmitting (Dk(i) = 1) or receiving (Dk(i) = 0).

The source sends one ofM possible messages to the
destination node(s) overn channel uses (i.e,i = 1, 2, . . . , n).
The channel gains between all pairs of nodes remains fixed
over this duration. In our model, the channel gainhjk is known
to the receiving nodek but not to the transmitting nodej.

We further restrict our attention to protocols in which
relay nodes cannot revert to receive mode once they begin
transmitting, i.e., ifDk(i) = 1 for some nodek and i < n
thenDk(j) = 1 for all i ≤ j ≤ n. This restriction precludes
protocols in which transmitting nodes effectively learn and
exploit the network channel gains in their encodings.

Finally, for simplicity, we adopt a long-term sum power
constraint across the nodes in our model. In particular, with
Xj(i) for j ∈ T(i) denoting the (complex-valued) symbol
being transmitted by nodej at timei, we impose an expected
sum power constraint of the form

E





1

n

n
∑

i=1

∑

k∈T(i)

|Xk(i)|2


 ≤ P, (2)

where the expectation is taken over the ensemble of channel
realizations and the setT(i), as well as any other randomized
aspects of the protocol. Indeed, one will want to consider
protocols in which the setT(i) depends on the realized channel
gains.

The power constraint (2) is a rather natural one for sys-
tems in which there are ergodic channel variations but a
stringent delay constraint that requires transmission of any
particular message within a single coherence interval. Indeed,
although we do not satisfy the sum power constraint during
the transmission of an individual message, the expectation
in (2) ensures that it will be satisfied with high probability
over a sufficiently long sequence of messages. Nevertheless,
we remark in advance that the results of the paper do not
change when the we require the sum power constraint to be
met with high probability in every coherence interval, and
our capacity-achieving protocol can be readily extended to
this case. Ultimately, the expected power constraint merely
simplifies the exposition.

The preceding discussion characterizes an admissible pro-
tocol for our analysis, which we formalize in the following
definition.

Definition 1: An admissible protocolπK consists of a set
of indicator functions{Dk(i)} ∈ {0, 1}, which determines
whether nodek is transmitting or receiving at timei; a
set of encoding functions{φk(i)} ∈ C, which determines
the symbol produced by nodek at time i; and a set of
decoding functions{ψk} ∈ {1, 2, . . . ,M}, which determines
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the message decisions produced by nodek at timen. These
functions are further constrained by their usage as described
below.

During the initialization phase of the protocol, the source
node 0 selects messageW ∈ {1, 2, . . . ,M} for transmis-
sion. The protocol choosesa priori the sequenceD0(i) for
i = 1, 2, . . . , n. Without loss of generality,D0(1) = 1 and
Dk(1) = 0 for k = 1, 2, . . . ,K. Moreover, the collections of
observationsYk at each nodek are initialized:Yk = ∅.

At time i, for 1 ≤ i < n, if D0(i) = 1, then source node
0 uses encoding functionφ0(i) to mapW into a transmitted
complex-valued symbolx0(i).

If node k ∈ {1, 2, . . . ,K} is in transmit mode at that time
(i.e., Dk(i) = 1), the encoding functionφk(i) at nodek
mapsYk and the complex-valued channel gains{hjk, j =
0, 1, . . . ,K} into a transmitted complex-valued symbolxk(i),
which is transmitted over the channel.

If, instead, the node is in receive mode (i.e.,Dk(i) = 0),
then it collects the complex-valued measurementyk(i) and
updates its set of received symbols viaYk := Yk ∪{yk(i)}. If
i = n, the decoding functionψk at nodek mapsYk and the
complex-valued channel gains{hjk, j = 0, 1, . . . ,K} into a
decisionŴk. Note that without loss of generality,Dk(n) = 0
for at least one value ofk. If i < n, the node makes a decision
whether to switch to transmit mode for the remaining duration.
If it decides to switch, it setsDk(j) = 1 for i + 1 ≤ j ≤ n;
otherwise, it setsDk(i+ 1) = 0.

A cooperation-free protocol is a special case of the above
definition:

Definition 2: A cooperation-freeadmissible protocol is one
for which only the source node transmits, i.e.,Dk(i) = 0 for
1 ≤ k ≤ K and1 ≤ i ≤ n.

III. C ODING THEOREMS

We now develop the relationship between transmission rate
and error probability for such protocols, in the limit of large
network sizes.

We begin with a meaningful definition of capacity.
Definition 3: A rate R is achievable for the unicasting

(respectively, multicasting) system if for every network size
K, there exists an admissible protocolπK with nK channel
uses andMK = 2nKR messages such that the probability that
the destination node (respectively, any node) fails to decode
the message approaches zero asK → ∞. The (unicasting or
multicasting)capacityC is the supremum of all achievable
rates.

With this definition, we have the following coding theorem,
which is our main result.

Theorem 1:The unicasting and multicasting capacities are
identical and given by1

C = log

(

1 +
P

N0

)

, (3)

whereP is as defined in (2) andN0 is the noise power as
defined via (1).

1Unless otherwise indicated, all logarithms are base 2.

Before presenting our proof of this result, we note that to
achieve capacity — indeed any nonzero rate — requires the
use of cooperation. Formally, we have the following result.

Theorem 2:The capacity of cooperation-free admissible
protocols for both unicasting and multicasting is

Cnc = 0 (4)

wheneverP in (2) is finite andN0 in (1) is nonzero.
Proof: From Definition 2, a destination node must decode

directly from the source transmission. Since the channel is
a Rayleigh fading channel withP/N0 < ∞, there exists a
strictly positive probability of outage — and hence probability
of error — for every positive transmission rateR. Since these
probabilities are independent ofK, (4) follows.

We now proceed to the proof of Theorem 1. Since we
consider large block lengths, error probability is dominated
by outage probability. Specifically, we consider blocks long
enough that the probability of error when there is no outage
is negligible compared to the outage probability. Thus, in the
error analysis in our proof, we restrict our attention to outage
probability.

IV. PROOF OFCONVERSEPART

We develop a converse via a simple upper bound on the
achievable rateR of Definition 3. In particular, suppose a
genie conveys the messageW to nodes 1, 2, . . . ,K − 1
and only destination nodeK remains to be served. Thus,
nodes0, 1, . . . ,K − 1 can coordinate to send the message to
destination nodeK. This is clearly a multiple-input single-
output (MISO) antenna system withK antenna elements and
channel knowledge only at the receiver. Thus, for a given rate
R, a lower bound on the outage probability for the MISO
channel is a lower bound on that for both unicasting and
multicasting systems. We letEMISO

K denote the MISO channel
outage event.

To develop such a bound, we first note that it suffices to
restrict the input distribution to Gaussian.

Lemma 1 (Teletar [14]):The outage capacity of the slow-
fading MISO channel with K transmit antennas in
i.i.d. Rayleigh fading with total power constraintP is
achieved by an input distribution with a covariance matrix
diag(P1, P2, . . . , PK), where

∑K
j=1 Pj = P .

We now establish the following lemma:
Lemma 2:Let ǫ > 0 be arbitrary, and let

R = log

(

1 +
P

N0

)

+ ǫ

for a K-antenna MISO channel. Then the outage probability
Pr{EMISO

K } is bounded away from zero, i.e.,

inf
K

Pr{EMISO
K } > 0. (5)

Proof:
Let P ∗

1 , P
∗
2 , . . . P

∗
K be the power allocations that minimize

the outage event for the selected rate. The corresponding
mutual information is given by

I = log

(

1 +
1

N0

K
∑

i=1

P ∗
i |hiK |2

)

(6)
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Fig. 1. The two-phase cooperative multicasting protocol. In phase 1 (left),
the source node (square) broadcasts at a high rate and only a small fraction
(solid) of the many destination nodes (discs) are able to decode. In phase
2 (right), these nodes cooperatively broadcast the messageto the remaining
nodes using a suitable space-time code.

The outage eventEMISO
K = {R > I} is bounded as follows:

Pr{EMISO
K } = 1− Pr(I ≥ R)

≥ 1−
E
{

log
(

1 + 1
N0

∑K
i=1 P

∗
i |hiK |2

)}

R
(7)

≥ 1−
log
(

1 + 1
N0

∑K
i=1E[|hiK |2]P ∗

i

)

R
(8)

= 1−
log
(

1 + 1
N0

∑K
i=1 P

∗
i

)

R
(9)

= 1−
log
(

1 + P
N0

)

R
=

ε

R
> 0.

In the above derivation (7) follows from the Markov in-
equality, (8) is a consequence of Jensen’s inequality and (9)
follows from the Rayleigh modelE[|hiK |2] = 1, ∀i. Since the
above result holds for allK, (5) follows.

V. PROOF OFFORWARD PART

A simple two-phase cooperative protocol can achieve any
rate below the capacity (3), as we now develop.

A. A Two-Phase Cooperative Protocol

The protocol of interest is depicted in Fig. 1. Specifically,
in phase 1, the source node broadcasts the message overn1

channel uses at a rateR1 and all nodes attempt to decode the
message. Then, in phase 2, the nodes that are successful in
decoding the message act as relays and form a virtual antenna
array, transmitting over the remainingn2 = n − n1 channel
uses at a rateR2. At this point the intended destination(s)
attempt(s) to decode the message and an outage is declared if
any of the intended destinations fail.

Codebook Generation:Suppose that the source generates
M codewords i.i.d.CN(0, P1) for someP1 > 0, each of length
n1, and all other nodes each generateM codewords i.i.d.
CN(0, P2) for someP2 > 0, each of lengthn2. We describe
the main steps of the protocol for the case of multicasting,
but indicate the straightforward modifications for the caseof
unicasting.

Phase 1:The source transmits the codeword correspond-
ing to the intended message from its codebook overn1 channel
uses. We choose the rate in this phase to be (strictly less than,
but arbitrarily close to2)

R1(α) = log2

(

1 +G(α)
P

N0

)

, (10)

where
G(α) = F−1(1− α), (11)

and F (·) denotes the cumulative distribution function of an
arbitrary channel gain|hij |2, and where we have made the
dependency ofR1 on α explicit.

All nodes attempt to decode the transmission. A node is
successful in decoding the message if it finds a codeword in
the source codebook that is jointly typical with the received
sequence. LetK1 be the number of nodes that are successful
in decoding the message from the source. We label these nodes
as1, 2, . . . ,K1. These nodes participate in phase 2.

Phase 2: Each of theK1 nodes successful in decoding
the phase 1 transmission next transmits the corresponding
codeword from its codebook overn2 channel uses. The rate
in this phase is set to (strictly less than, but arbitrarily close
to)

R2(β) = log

(

1 +
P

N0
(1 − β)

)

, (12)

where0 < β < 1 is design parameter, the dependence ofR2

on which we have made explicit.
Each of the remainingK2 = K − K1 nodes attempts

to decode the message at the end of the second phase.
Nodek, upon receiving is observations3 yn2

k finds a message
ŵk and a subset of nodesSk = {k1, k2, . . . , k|Sk|} ⊆
{1, 2, . . . ,K} \ {k} such that the corresponding set of code-
words {xn2

k1
(ŵk), x

n2

k2
(ŵk), . . . , x

n2

k|S
k
|
(ŵk)} is jointly typical

with yn2

k . It declares the messagêwk to be the transmitted
message if a unique pair(ŵk, Sk) exists and declares a failure
otherwise.

In the case of unicasting, if the destination node is suc-
cessful in decoding the message in phase 1 then it does not
participate in phase 2. Otherwise it continues to listen to the
transmissions and attempts to decode the phase 2 transmission.
An error occurs if the destination fails to decode the phase 2
transmission.

B. Protocol Analysis

First, we analyze code rate. To begin, it is straightforwardto
verify thatn1 andn2 are completely determined by the choice
of rates. In particular, let the overall rate of our protocolbe
R, so that there areM = 2nR possible messages to send over
n channel uses in the system. Then it follows that

n1R1 = n2R2 = logM. (13)

2This technicality ensures that the probability of error when not in outage
will approach zero uniformly over all channel realizations. A similar techni-
cality applies to the rate in phase 2.

3We use the superscriptn2 to denote the vector formed from then2

variables corresponding to time instantsn1 + 1, n1 + 2, . . . , n, i.e., phase 2
of the protocol.
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From (13) it is straightforward to calculate the overall
effective rateR of the system. In particular, sincelogM = nR
and sincen1 + n2 = n, (13) implies thatR satisfies

1

R
=

1

R1(α)
+

1

R2(β)
. (14)

Second, we analyze the power constraint (2). In phase 1,
the transmitted power isP1, so providedP1 ≤ P , our power
constraint is met in this phase. To analyze the power used
in phase 2, we begin by noting that on average a fractionα
of the nodes are able to decode the message after phase 1.
Specifically, the number of nodesK1 successful in phase 1
has mean

E[K1] = αK (15)

sinceK1 is a binomial random variable, viz., (cf. (10))

K1 =
K
∑

i=1

1{|h0i|2>G(α)}, (16)

where 1{·} is an indicator function, which equals 1 if its
subscript is true and 0 otherwise, and where we have set
P1 = P . Hence,

E





K1
∑

j=1

|Xj |2


 = P2E[K1] = P2αK,

from which we see that the power constraint is satisfied in
phase 2 providedP2 ≤ P/αK.

Finally, we analyze the outage probility, i.e., the probability
of outage of a node that is unable to decode at the end of the
protocol. For convenience, let us exploit symmetry and label
this nodeK, while the nodes that are successful in phase 1 we
label1, 2, . . .K1. From straightforward MISO system analysis,
nodeK will fail to decode the message wheneverK1 < K
and

R2(β) ≥ log

(

1 +GK(K1)
P

N0

)

, (17)

where

Gk(k1)
∆
=

1

αK

k1
∑

j=1

|hjk|2 (18)

is the effective MISO channel gain of nodek, and where we
have setP2 = P/(αK). But sinceR2 was chosen according
to (12) in phase 2, (17) implies that outage will occur when
GK(K1) ≤ 1−β. Accordingly, the outage eventsEuc

α,β,K and
Emc
α,β,K for unicasting and multicasting, respectively, take the

form

Euc
α,β,K =

K−1
⋃

k1=0

Auc
k1

Emc
α,β,K =

K−1
⋃

k1=0

Amc
k1

where, fork1 ∈ {1, 2, . . . ,K},

Auc
k1

= {K1 = k1, GK(k1) ≤ 1− β}

Amc
k1

=

{

K1 = k1, min
k:k1≤k≤K

Gk(k1) ≤ 1− β

}

The following lemma provides bound on the conditional
outage probability that will be useful in the sequel.

Lemma 3:Supposek1 ≥ αK(1−β) nodes are successful at
the end of phase 1. Then the conditional probability of outage
is given by

Pr{Euc
α,β,K | K1 = k1} ≤

(

αK(1 − β)e

k1

)k1

e−αK(1−β).

(19)
Proof: To obtain (19), it suffices to bound

Pr{GK(K1) ≤ 1 − β | K1 = k1} since Pr{Euc
α,β,K |

K1 = k1} = Pr{GK(K1) ≤ 1 − β | K1 = k1}. This can be
accomplished by the Chernoff bound, sinceGK(k1) in (18)
can be written as

GK(k1) =

k1
∑

j=1

gj (20)

where the

gj =
1

αK
|hjK |2. (21)

are i.i.d. random variables. Specifically, we obtain, for any
s > 0,

Pr{GK(K1) ≤ 1− β | K1 = k1} (22)

= Pr

{

e−sGK(K1) ≥ e−s(1−β)

∣

∣

∣

∣

K1 = k1

}

(23)

≤ es(1−β)E
[

e−sGK(K1) | K1 = k1

]

(24)

= es(1−β)
(

E[e−sgi ]
)k1 (25)

=
es(1−β)

(1 + s/(αK))
k1

, (26)

where (24) follows from the Markov inequality, (25) follows
by from (20), and (26) follows from evaluating the character-
istic function of the exponential random variables (21).

In turn, since (26) holds for alls > 0, we can choose the
particular value

s =
k1

1− β
− αK. (27)

Substituting (27) into (26) yields (19) as desired.
We now show that the probability of outage can be made

arbitrarily small by selectingαK appropriately.
Proposition 1: The probability of outage in unicasting de-

creases exponentially withαK for everyβ > 0. Specifically,
for every0 < ǫ < β,

Pr{Euc
α,β,K} = E

[

Pr{Euc
α,β,K |K1}

]

≤ exp(−αKǫ2/4) + exp {αKγ(β, ǫ)} , (28)

where

γ(β, ǫ)
∆
= β − ǫ+ (1 − ǫ) ln

(

1− β

1− ǫ

)

< 0. (29)
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Proof: To obtain (28) we observe that, for someǫ ∈
(0, β),

Pr{Euc
α,β,K}

=
∑

k1:k1<αK(1−ǫ)

Pr{Euc
α,β,K | K1 = k1}Pr{K1 = k1}

+
∑

k1:k1≥αK(1−ǫ)

Pr{Euc
α,β,K | K1 = k1}Pr{K1 = k1}

(30)

≤ Pr{K1 < αK(1− ǫ)}+ max
k1:

k1≥αK(1−ǫ)

Pr{Euc
α,β,K | K1 = k1}

= Pr{K1 < αK(1− ǫ)}+ Pr{Euc
α,β,K | K1 = αK(1− ǫ)},

(31)

where (31) exploits that outage probability is a decreasing
function of k1. Finally, using the binomial Chernoff bound
(see, e.g., [4])

Pr{K1 < αK(1− ǫ)} ≤ e−αKǫ2/4,

for the first term in (31), and applying Lemma 3 to the second
term, yields (28) as desired.

In turn, Proposition 1 can be used to bound the correspond-
ing probability of outage in multicasting.

Proposition 2: The probability of outage in multicasting
decays asymptotically withαK. Specifically,

Pr{Emc
α,β,K} = E

[

Pr{Emc
α,β,K |K1}

]

≤ K Pr{Euc
α,β,K}. (32)

Proof: First, we bound the conditional outage probability
according to

Pr{Emc
α,β,K |K1 = k1} (33)

= Pr{ min
k:k1≤k≤K

Gk(K1) < 1− β|K1 = k1}

= Pr

{

K
⋃

i=K1+1

{Gi(K1) ≤ 1− β}
∣

∣

∣

∣

∣

K1 = k1

}

≤ (K − k1) Pr{Euc
α,β,K |K1 = k1} (34)

≤ K Pr{Euc
α,β,K |K1 = k1}. (35)

where (34) is a simple application of the union bound. Taking
the expectation of both sides of (35) with respect toK1,
we obtain (32). Finally, since Proposition 1 establishes that
the unicasting outage probability decays exponentially, (35)
implies that the multicasting outage probability does as well.

Propositions 1 and 2 can be used to establish the forward
part of the coding theorem for both unicasting and multicast-
ing.

Proof of Theorem 1:To show that our two-phase protocol
can approach the capacity (3) we show that the outage proba-
bility can be made arbitrarily small while operating arbitrarily
close to the capacity. Suppose thatα > 0 and β > 0 are
arbitrary. Since the outage probability decreases exponentially
in K, we can choose aK large enough to make the outage
probability sufficiently small. Next, note that by choosingα
andβ sufficiently small, we can makeR1(α) sufficiently large
andR2(β) sufficiently close toC. As particular examples, it
suffices to takeα ∼ 1/ logK andβ ∼ 1/K so thatα, β → 0

but αK → ∞. Thus, we can have the effective rate (14) be
arbitrarily close toC, while keeping the outage probability
sufficiently small.

An intuition behind the achievability result is that in the
limit of a large number of nodes, we can find sufficiently many
nodes (albeit a small fraction of the population) with very large
channel gains and they can be served over a small number
of channel uses in the first phase (i.e.,n1 is a negligible
fraction of n2). These nodes then simultaneously cooperate
to serve the remaining nodes. Since sufficiently many nodes
are transmitting in the second phase, we have enough diversity
in the system to drive the outage probability to zero.

C. Multiple Antenna Generalization

It is possible to generalize our results to the case where
the at least some of the nodes in the network have multiple
antennas. In particular suppose that the nodei hasTi antennas.
In the case of unicasting, our two-phase protocol can be
straightforwardly extended to obtain the following:

C = TK log

(

1 +
P

N0

)

. (36)

In the bound (36) the key quantity of interest isTK , the
number of antennas at the destination node; the number of
antennas at the source and relay nodes do not impact capacity.
Note that, in the first phase of the protocol, we can still
communicate to a large number of relay nodes, regardless
of the number of antennas at each relay. These nodes then
form a virtual antenna to communicate to the destination in
phase 2. This reduces to the case of a multiple-input multiple-
output (MIMO) system when the number of transmit antennas
is much larger than the receive antennas. Using the channel
hardening result for such systems — see, e.g., [7] — one
can establish that rateRuc

ma is achievable. The converse is
analogous to the single antenna case in Section IV.

An analogous argument for multicasting can also be devel-
oped, from which we have the following:

C = min{T1, T2, . . . , TK} · log
(

1 +
P

N0

)

. (37)

Evidently, (37) can be much smaller than (36) — the lower
bound system rate is limited governed by the node with the
fewest antennas in multicasting rather than the destination
node.

VI. OUTAGE SCALING BEHAVIOR

Our capacity result determines the rates for which outage
probability goes to zero with increasing network size for multi-
casting and unicasting. Often, a finer grain analysis is required
by system designers. In this section, we develop the manner in
which outage probability goes to zero with increasing network
size for the two-phase protocol of Section V, which provides
several additional insights. For example, while we have shown
that multicasting and unicasting share the same capacity, here
we show how their respective outage probability curves differ.
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A. Outage Probability Approximations

While (28) and (32) bound the outage probabilities of
interest, these bounds are not tight. Nevertheless, good ap-
proximations to the actual outage are readily obtained, as we
now develop.

The outage probability of a unicasting system under the
two-phase protocol can be approximated by

Pr{Euc
α,β,K} ≈ 1√

K
exp {−αK(1− β)} ×

exp

{

−KD(γ‖α) + γK ln

(

α(1 − β)e

γ

)}

,

(38)
where

γ =

√
1 + 4µ− 1

2µ
(39)

with

µ =
α2(1− β)

1− α
. (40)

In turn, the outage probability of the multicasting system
can be approximated in terms of this unicasting approximation
according to

Pr{Emc
α,β,K} = 1− (1− Pr{Euc

α,β,K})K ≈ K Pr{Euc
α,β,K}.

(41)
A derivation of the approximation (38) is provided in the

Appendix.

B. Accuracy of Outage Probability Approximations

In this section, we compare our outage probability bounds
(28) and (32); and our approximations (38) and (41), to the
actual probabilities via Monte Carlo simulations. In particular,
we choose a target rate below capacity and evaluate the outage
probability as a function of the network sizeK. We evaluate
the expectations overK1 in the bounds (28) and (32) by
numerical integration.

For our comparison, we set a rate of

R =
1

2
log

(

1 +
P

2N0

)

,

which is 1/2 of capacity in the high SNR regime and1/4 of
capacity in the low SNR regime. This rate point is realized
by the parameter settingsG(α) = 1/2 and β = 1/2 in our
two-phase protocol, soR1(α) = R2(β)) in (10) and (12),
respectively.

Fig. 2 depicts the results. Several observations are worth
emphasizing.

Remarks:

1) First, the outage curves for both unicasting and mul-
ticasting approach zero with our cooperative protocol,
which is a consequence of the transmission rate being
below capacity. Note that, by contrast, for cooperation-
free admissible protocols, the outage curves will not
decay with network size.

2) Multicasting incurs significant penalty over unicasting
in terms of outage probability for a fixed network size
K. In particular, Fig. 2 confirms that the multicasting
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Fig. 2. Outage probability for unicasting and multicastingvia our two-
phase protocol as a function of network size. The solid curves correspond
to our Monte Carlo simulations, the dashed-dotted curves toour analytical
approximations, and the dashed curves to our bounds. The topset of curves is
for multicasting; the bottom set for unicasting. In the protocol we setβ = 0.5
andR1(α) = R, so that the rate isR = (1/2) log(1 + P/(2N0)) < C.

outage probability is indeed roughly a factorK larger
than the unicasting outage probability.

3) The slopes of the outage log-probability curves are
asymptotically constant, and the bounds are good pre-
dictors of the asymptotic slopes. This is perhaps not
surprising since we used Chernoff techniques to derive
the bounds. Indeed, in many communication problems
the Chernoff exponent is close to the correct exponent.
However, the bounds are not particularly close to the the
correct outage curves.

4) The analytical outage probability approximations are
asymptotically quite close to the true curves, converging
to within a factor of roughly 3 in probability for large
network sizes. In addition, these approximations appear
to be actual upper bounds at least in case study depicted,
though this is conjecture.

5) The asymptotic slopes of the outage log-probability
curves for both unicasting and multicasting are identical.
In the next section, we will develop this slope as the
network scaling exponent of the protocol, which we
denote usingE−

ns. For a target outage level, this slope
can be used to quantify the asymptotic network size
gap between unicasting and multicasting. In particular,
suppose that for a fixed choice ofα andβ in the pro-
tocol,Kuc(ǫ) nodes are required to achieve some target
outage probabilityǫ in unicasting. Then the number of
nodes required to achieve the same outage probability
in multicasting is, asymptotically,

Kmc(ǫ) = Kuc(ǫ) +
1

E−
ns

logKuc(ǫ). (42)

To verify (42), it suffices to recognize that the vertical
distance between the unicasting and multicasting outage
probabilities is, in accordance with (41), asymptotically,
logKuc(ǫ).
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VII. N ETWORK SCALING EXPONENT

In this section, we explore, in more detail, the asymp-
totic rate of decay of the outage probability with network
size, which we have termed the network scaling exponent.
This exponent captures meaningful information for system
designers. For example, at the transmission rates to which
Fig. 2 corresponds, outage probabilities for our two-phase
protocol decay reasonably quickly in a practical sense — i.e.,
the network scaling exponent is reasonably large. However,
as we will see, at rates close to capacity, it turns out that
outage probabilities decay very slowly as a function of network
size, corresponding to a small network scaling exponent. This
implies that very large network sizes may be needed to achieve
practical target error rates.

Before beginning our development, note that the network
scaling exponent is the natural counterpart to the classical
error exponent for traditional channel codes. In particular, the
classical error exponent captures the exponential rate of decay
of error probability with block length as a function of the
the targeted fraction of capacity; see, e.g., [6]. Analogously,
the network error exponent captures the exponential rate of
decay of error probability in unicasting and multicasting with
network size as a function of the targeted fraction of capacity.

Formal definitions follow.
Definition 4: The network reliability functionwith respect

to a sequence of admissible protocolsπK in Definition 1 is
given by

E−
ns({πK}) = − lim

K→∞

ln Pr{EπK
}

K
, (43)

where EπK
denotes the outage event for a system withK

nodes under the protocolπK .
Definition 5: The network scaling exponentis the supre-

mum of the network reliability functions of all sequences of
admissible protocols with a rate that is at least a fractionr of
the capacity at a given SNR, i.e.,

Ens(r, SNR) = sup
{πK}∈P(r,SNR)

E−
ns({πK}), (44)

whereP(r, SNR) is a set of sequences of admissible protocols
with a rate that is a fractionr of the capacity.

The following establishes that, as with capacity, unicasting
and multicasting are not distinguished by their network scaling
exponents.

Proposition 3: The network scaling exponent is the same
for both unicasting and multicasting.

Proof: First, for any sequence of admissible protocols,

Pr{Emc
πK

} ≥ Pr{Euc
πK

},

so that

Emc
ns (r, SNR) ≤ Euc

ns (r, SNR). (45)

Furthermore, if{π∗
K} achieves the supremum for the uni-

casting system, then from a simple application of the union
bound it follows that, for eachK,

Pr{Emc
π∗
K

} ≤ K Pr{Euc
π∗
K

},
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Fig. 3. The upper envelope of the plotted points indicates the network scaling
exponent for the two-phase cooperative protocol as a function of the targetted
fraction of capacityr. Each point corresponds to a particular value ofα and
β. In this example,SNR = 0 dB.

and hence

Emc
ns (r, SNR) ≥ E−,mc

ns ({π∗
K}) = Euc

ns (r, SNR). (46)

Combining (45) and (46) we obtainEmc
ns (r, SNR) =

Euc
ns (r, SNR) as desired.
In the remainder of this section, we analyze a lower bound

on the network scaling exponent by optimizing over the class
of the two-phase protocols described in Section V. For a fixed
choice ofα andβ, we can express the fraction of the capacity
achieved by the protocol as

r(α, β, SNR) =
R(α, β, SNR)

C(SNR)
, (47)

where we have made the dependency of bothR andC in (14)
and (3), on the parameters of interest explicit. We define the
network reliability function of the user cooperation protocol
in Section V as

E−
ns(r, SNR) = sup

α,β:r(α,β,SNR)≤r

{

− lim
K→∞

ln Pr{Eα,β,K}
K

}

,

(48)
which constitutes a lower bound onEns(r, SNR) in (44). Note
that in the above definition, we have constrainedα andβ to
be constants independent ofK.

The upper envelope of the points in Fig. 3 indicates a lower
bound on the network reliability function of our two-phase
protocol. Each point in the plot corresponds to a particular
choice of α and β in the protocol, for which we have
numerically evaluatedE−

ns in (48) for different values ofr
at SNR = 0 dB.

Perhaps the most striking observation from Fig. 3 is that the
error exponent for the two-phase protocol is quite small when
aiming for rates that are more than about half of capacity.
This implies that while the protocol is capacity achieving,
it may require a prohibitively large number of nodes to
achieve rates anywhere close to this capacity. It remains tobe
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determined whether there exist more sophisticated protocols
with substantially higher exponents in this regime.

As a final comment, it should also be noted that Fig. 3
effectively characterizes the efficient operating frontier for the
protocol. In particular, given a network withK nodes and an
allowable outage probabilityǫ, one can approximate the scal-
ing exponent by− ln ǫ/K and determine the corresponding
value ofr, which is an estimate of how close one can expect
to get to capacity in the system.

VIII. C ONCLUDING REMARKS

Perhaps the main contribution of this paper is a framework
for analyzing user cooperation protocols in the limit of large
network size (number of nodes), which we have illustrated
in the case of a multipath-rich Rayleigh fading environment.
Within this framework, we have introduced a meaningful
notion of Shannon capacity for this regime and presented a
simple two-phase protocol that can achieve rates arbitrarily
close to capacity. A finer grain analysis of this two-phase
protocol in terms of its network scaling exponent, which
characterizes the rate of decay of error probabilty with network
size, shows that it may require prohibitively large number of
nodes to achieve rates close to the capacity with this protocol.

One important direction of future work is to study more
sophisticated models beyond the Rayleigh fading model within
our framework. One could for example incorporate the effects
of network geometry and shadowing into the model. More
generally, it would be of interest to study a class of channel
models for which user cooperation plays a fundamental role in
enabling reliable communication in multicasting. The Rayleigh
fading model considered here clearly belongs to this class,but
we believe the class may be quite rich and may include many
other models of practical importance.

Another important direction is to investigate how system
performance changes when the sum power constraint is re-
placed with individual power constraints. With individual
power constraints, the system capacity will increase with the
number of nodes — in fact, the MISO upper bound increases
according toΘ(logK). It remains to be determined whether
there exist cooperative multicasting protocols that approach
this upper bound or whether one can develop tighter upper
bounds for this scenario.

Finally, as noted in Section VII, the two-phase protocol
may require prohibitively large number of nodes to achieve
rates close to the capacity. It remains to investigate whether
more sophisticated protocols can improve the network scaling
exponent substantially in this regime.

APPENDIX

DERIVATION OF OUTAGE APPROXIMATION (38)

First, we writePr{Euc
α,β,K} in the form

Pr{Euc
α,β,K} = E

[

Pr{Euc
α,β,K |K1}

]

=

K
∑

k1=1

Pr{K1 = k1} Pr{Euc
α,β,K | K1 = k1}

≈
K
∑

k1=α(1−β)K

Pr{K1 = k1} Pr{Euc
α,β,K | K1 = k1}.

(49)

Note that we have dropped the contribution of terms withk1 ≤
α(1−β)K in the summation, since we expect their aggregate
sum to be small as they deviate significantly from the mean
E[K1] = αK.

We now approximate each of the two factors in (49). The
right factor we approximate by the upper bound (19). The
left factor we replace with via Stirling’s approximation for
binomial distributions [5, p. 284], yielding

Pr{K1 = k1} =

(

K

k1

)

αk1 (1− α)(K−k1)

≈ 1√
K

exp

{

−KD
(

k1
K

∥

∥

∥

∥

α

)}

, (50)

whereD(·‖·) denotes the binary relative entropy function, i.e.,
for any 0 < p, q < 1,

D(p‖q) ∆
= p ln

p

q
+ (1− p) ln

1− p

1− q
, (51)

and whereα is the parameter ofK1 (cf. (16)).
Thus, substituting (19) and (50) into (49) yields

Pr{Euc
α,β,K}

≈
K
∑

k1=α(1−β)K

1√
K

exp

{

−KD
(

k1
K

∥

∥

∥

∥

α

)}

×

(

αK(1− β)e

k1

)k1

exp {−αK(1− β)}. (52)

Finally, we approximate (52) by an approximation to the
largest single term in the summation, viz.,

Pr{Euc
α,β,K} ≈ 1√

K
exp {−αK(1− β)} ×

max
γ∈(α(1−β),1)

exp

{

−KD(γ‖α) + γK ln

(

α(1− β)e

γ

)}

.

(53)

Since the term in the exponent being minimized in (53) is
differentiable and convex inγ, the optimizingγ is the value
at which the associated derivative is zero, i.e.,

γ2

1− γ
= µ (54)

whereµ is as given in (40). Finally it is straightforward to
verify that (54) has a solution in(α(1− β), 1) and it may be
solved explicitly, yielding (39).
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