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Abstract

We show that in many cases, the automorphism group of a curve
and the permutation automorphism group of a corresponding AG code
are the same. This generalizes a result of Wesemeyer [W] beyond the
case of planar curves.

1 Introduction

The construction of AG codes uses the Riemann-Roch space L(D) associated
to a divisor D of a curve X defined over a finite field [G]. Typically X has
no non-trivial automorphisms, but when it does we may ask how this can be
used to better understand AG codes constructed from X .

Conversely, we may ask how the permutation automorphism group of an
AG code corresponds with the automorphism group of the curve used to
construct the code. In this paper we show that, in many cases, the auto-
morphism group of a curve and the permutation automorphism group of a
corresponding AG code are in fact the same.

Knowledge of which codes have large automorphism group can have ap-
plications to encoding (see [HLS]) and to decoding (indeed, permutation de-
coding has been implemented in version 2.0 of the error-correcting computer
algebra package [GUAVA]).
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2 The Riemann-Roch space L(D) and the as-

sociated AG code.

Let X be a smooth projective curve (scheme of dimension 1) over a finite
field F , and let F (X) denote the field of rational functions on X . If D is any
divisor on X , the Riemann-Roch space L(D) is a finite dimensional F -vector
space given by

L(D) = LX(D) = {f ∈ F (X)× | div(f) +D ≥ 0} ∪ {0},

where div(f) denotes the (principal) divisor of the function f ∈ F (X). If D̄
denotes the corresponding divisor over the algebraic closure F̄ , then L(D̄) =
L(D)⊗ F̄ [Sti], [TV].

Let P1, . . . , Pn ∈ X(F ) be distinct points, and let E = P1 + . . . + Pn be
the associated divisor. Let D be a divisor of positive degree on X such that
D and E have disjoint support. Let C = C(D,E) denote the AG code

C = {(f(P1), . . . , f(Pn)) | f ∈ L(D)}. (1)

This is the image of L(D) under the evaluation map

evalE : L(D) → F n,
f 7−→ (f(P1), . . . , f(Pn)).

(2)

The kernel of the map evalE is contained in L(D − E), which is empty
if n > deg(D). Thus for n > deg(D), evalE defines an isomorphism between
L(D) and the code C(D,E).

3 From curve automorphisms to code auto-

morphisms.

Now let G be a group of automorphisms of the curve X , and assume that D
and E are both stabilized by G. We will say that G ⊆ AutD,E(X). Then G
also acts on the code C, as follows.

The action of Aut(X) on F (X) is defined as:

Aut(X) −→ Aut(F (X)),
T 7−→ (f 7−→ T ∗f)
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where for any P ∈ X , T ∗f(P ) = f(T−1(P )). (We use T−1 rather than T
here, to conform to the convention that the action should be on the left.)

Note that Y = X/G is also smooth and F (X)G = F (Y ).
Of course, Aut(X) also acts on the group Div(X) of divisors of X , de-

noted T (
∑

P dPP ) =
∑

P dPT (P ), for T ∈ Aut(X), P a prime divisor, and
dP ∈ Z. It is easy to see that div(T ∗f) = T−1(div(f)). Because of this,
if div(f) + D ≥ 0 then div(T ∗f) + T−1(D) ≥ 0, for all T ∈ Aut(X). In
particular, if the action of G ⊂ Aut(X) on X leaves D ∈ Div(X) stable
then G also acts on L(D). Assuming that n > degD, the isomorphism
evalE : L(D) → C will send this action to an action of G on C. Specifically,
each T ∈ G acts by

(f(P1), f(P2), . . . , f(Pn)) 7→ (T ∗f(P1), T
∗f(P2), . . . , T

∗f(Pn))

= (f(T−1(P1)), f(T
−1(P2)), . . . , f(T

−1(Pn))).

If we also assume that G leaves E stable, then G acts by permutations on
the set {P1, . . . , Pn}. Thus (T

−1(P1), T
−1(P2), . . . , T

−1(Pn)) is a permutation
of the points (P1, P2, . . . , Pn), and the above action on C simply permutes
the corresponding coordinates.

Definition 1 The permutation automorphism group PermC of the
code C ⊂ F n is the subgroup of Sn (acting on F n by coordinate permuta-
tion) which preserves C.

Thus if n > degD, we have defined a homomorphism from AutD,E(X) to
PermC:

ρ : AutD,E(X) → PermC.

T 7→ evalE ◦ T ∗ ◦ eval−1
E

In the next section, we will construct an inverse for this homomorphism.

4 From code automorphisms to curve auto-

morphisms.

Now we would like to answer the question: when does a group of permutation
automorphisms of the code C induce a group of automorphisms of the curve
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X? We will show that permutation automorphisms of the code C(D,E)
induce curve automorphisms whenever D is very ample and the degree of E is
large enough. Under these conditions, the groups AutD,E(X) and PermC are
isomorphic. In proving these facts, we generalize some results of Wesemeyer
[W], who dealt with the planar case.

Theorem 2 Let X be an algebraic curve, D be a very ample divisor on
X, and P1 . . . Pn be a set of points on X disjoint from the support of D.
Let E = P1 + . . . + Pn be the associated divisor, and C = C(D,E) the
associated AG code. Let G be the group of permutation automorphisms of C.
Then there is an integer r ≥ 1 such that if n > r · deg(D), then G can be
lifted to a group of automorphisms of the curve X itself. This lifting defines
a group homomorphism ψ : PermC → Aut(X). Furthermore, the lifted
automorphisms will preserve D and E, so the image of ψ will be contained
in AutD,E(X).

proof: First, note that since n > degD, evalE : L(D) → C is a vector
space isomorphism. Thus the permutation action of G on C can be pulled
back to a linear action on L(D). Next, we use D to embed X into projective
space P

d, where d = dimL(D)− 1. If we let Y0, . . . , Yd be a basis for L(D),
then the embedding is given explicitly by

φ : X → P
d,

P 7−→ [Y0(P ) : . . . : Yd(P )].

The vector space action of G on L(D) induces an action on the polynomial
ring F [Y0, . . . , Yd] and a projective linear action on P

d. We will show that
under the stated hypotheses, this action preserves the image of X in P

d,
so restricts to an action on X . Furthermore, this action will stabilize the
divisors D and E.

To prove these claims, let us look more carefully at the action of G. Let
τ be an element of G; it acts by a permutation of the coordinates of a point
in C. The pullback of τ to L(D) is the composition eval−1

E ◦ τ ◦ evalE , which
by abuse of notation we denote again by τ . In the middle, τ acts as

(f(P1), . . . , f(Pn)) 7→ (f(Pτ(1)), . . . , f(Pτ(n))) (3)
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where f was a function in L(D). Because the permutation action leaves
the code C invariant, this new point is also in the code. Since evalE is an
isomorphism, there is a function which we will call τ(f) in L(D) such that

(f(Pτ(1)), . . . , f(Pτ(n))) = (τ(f)(P1), . . . , τ(f)(Pn)). (4)

This defines the action of G on L(D). In particular, the action of G on the ba-
sis Y0, . . . , Yd of L(D) defines an action of G on polynomial ring F [Y0, . . . , Yd]:

Y e0
0 . . . Y ed

d 7→ (τY0)
e0 . . . (τYd)

ed. (5)

Then the action on the projective space P
d is as follows: an element τ of G

will act on a point [Y0 : . . . : Yd] in P
d via

τ [Y0 : . . . : Yd] = [τ−1Y0 : . . . : τ−1Yd]. (6)

Now we will consider how this action on the projective space affects the
images of the points P1, . . . , Pn under the embedding φ. For each point Pi,
its image φ(Pi) has projective coordinates [Y0(Pi) : . . . : Yd(Pi)]. Then

τ−1(φ(Pi)) = τ−1[Y0(Pi) : . . . : Yd(Pi)]
= [τY0(Pi) : . . . : τYd(Pi)]
= [Y0(Pτ(i)) : . . . : Yd(Pτ(i))]
= φ(Pτ(i)).

(7)

Thus, a permutation of the code acts by the inverse permutation on the
images of the points of E.

Now we would like to show that the image φ(X) is preserved by the
action (6) of G on P

d. In the case where d = 1, X must have genus 0 and φ
is an isomorphism, so this automatically holds. For d > 1, the coordinates
Yi must satisfy some homogeneous polynomial relations defining φ(X). Let
R1(Y0, . . . , Yd) = 0, . . . , Rk(Y0, . . . , Yd) = 0 denote a set of polynomials of
minimal degree that define the ideal of φ(X) in P

d, so that its projective
coordinate ring is

F [Y0, . . . , Yd]/(R1, . . . , Rk).

Since R1, . . . , Rk are polynomials in Y0, . . . , Yd, and Y0, . . . , Yd are in L(D),
the R1, . . . , Rk will be in L(rD) for some r ≥ 1. In particular if we let r
be the largest degree of the Ri’s in the Yj’s, then each Ri will be in L(rD).
(Often this is true for a smaller r, in fact).
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Now let τ ∈ G be an automorphism of the code, and consider the image
τ(φ(X)) of φ(X) under the induced action (6) on P

d. The ideal of τ(φ(X))
is generated by τ(R1), . . . , τ(Rk), by (5). If we can show that these functions
are also in the ideal of φ(X), for any τ ∈ G, then the ideals will be equal
and we will have given an action of G on φ(X), which we then pull back via
φ to an action on X : for P ∈ X ,

τ(P ) = φ−1(τ(φ(P ))). (8)

Let Ri ∈ L(rD) be one of the minimal degree generators of the ideal of
φ(X); Ri is of degree at most r in Y0, . . . Yd. Since the action of G is linear
on L(D), τ(Ri) will also be of degree at most r in Y0, . . . Yd, so τ(Ri) will also
be in L(rD). Since Ri is in the ideal of φ(X), Ri vanishes at every point of
X , including P1, . . . , Pn. Since as we showed above τ acts as a permutation
of the points Pi, τ(Ri) must also vanish on P1, . . . , Pn, so τ(Ri) vanishes on
E. This means that τ(Ri) is in L(rD − E). But if n > r · deg(D), then
rD−E is a divisor of degree < 0 and L(rD−E) is the trivial vector space,
so τ(Ri) must vanish identically on φ(X). Thus τ(Ri) is in the vanishing
ideal associated to φ(X), for each Ri and for every τ ∈ G.

We have shown that the action of G on the code gives an action (6)
on φ(X), which we then pull back via the embedding to an action on X .
At each stage, the action was multiplicative, so we have a homomorphism
ψ : PermC → Aut(X). Using (7) it follows that E is invariant under this
action; we now need to show that the action leaves D invariant. Consider
an element τ of G and its action on D. Because the action (8) of τ on X
was defined via an action (4) on L(D), we know that τ preserves L(D). But
suppose that τ did not preserve D itself, so that τ(D) = D′, D 6= D′, but
L(D) = L(D′). Then there must be a point P in the support of D such
that its coefficient, dP , in D is larger than its coefficient d′P in D′. Now
consider a function f ∈ L(D). Because it is also in L(D′), we must have
div(f) + D′ ≥ 0. Thus the coefficient of div(f) at P must be at most d′P .
Thus div(f) + D − (dP − d′P )P ≥ 0, so in particular f is in L(D − P ).
This is true for any f in L(D), so L(D) = L(D − P ). But we assumed
that D was very ample; in particular L(D) separates points, which means
that dimL(D − P ) = dimL(D) − 1, a contradiction. So the action of G
on X must preserve D. This means that the image of the homomorphism
ψ : PermC → Aut(X) is in AutD,E(X). �
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It should be clear from these constructions that ρ and φ, when they exist,
are inverses of each other, making AutD,E(X) and PermC isomorphic groups.

The result below is actually slightly stronger than the corresponding re-
sult of Wesemeyer (Corollary 4.9 [W]) for elliptic curves and elliptic codes.

Corollary 3 Let X be a smooth projective curve of genus g ≥ 2. Let D be
a divisor on X with degD ≥ 2g + 1 and let E be a collection of at least
(1 + g) degD points on X disjoint from the support of D. Then the group of
permutation automorphisms of the code C = C(D,E) is isomorphic to the
group of automorphisms of X that fix both D and E.

proof: Since degD ≥ 2g + 1, D is very ample, so we use Theorem 2; we
want to estimate r. Suppose that the image of the embedding |D| : X →֒ P

d

defined over F is defined by multivariate polynomial relations R1 = 0, . . . ,
Rk = 0 over F of minimal degree. As noted in the proof of Theorem 2, we
can take r to be the maximal degree of the polynomials R1, . . . , Rk. Let D̄
be the associated divisor over the algebraic closure F̄ . By “base-change”,
we see that the image of the associated embedding |D̄| : X →֒ P

d defined
over F̄ is defined by the same multivariate polynomial relations R1 = 0, ...,
Rk = 0 over F (and hence over F̄ ). Note that since Y0, . . . , Yd form a basis
of L(D), they are linearly independent, so 2 ≤ r and X cannot be contained
in a hyperplane in P

d.
If d ≥ 3, Gruson, Lazarsfeld, and Peskine [GLP] (since F̄ is algebraically

closed) give the maximum degree of the R′

is as degD + 1− d in most cases,
or degD + 2 − d if X has genus zero and its image is smooth and has a
degD + 2 − d-secant line. In our case, d = dimL(D) − 1 and D is non-
special, so d = degD − g. Therefore if g ≥ 2, we will have d ≥ 3 and from
[GLP], r ≤ 1 + g. �

There a few special cases to consider that fall outside of Corollary 3. If
X is rational, and d = 1, then the embedding is an isomorphism and the
automorphism groups are the same. If d = 2, then the embedding is as a
plane conic, so r = 2. For larger d, the theorem of [GLP] holds and shows
that r = 2 (and that X always has a 2-secant line, which is not surprising).
In both of these cases, the groups are isomorphic if degE ≥ 2 degD. If
X has genus 1 and is embedded smoothly in P

2, it must be as a cubic so
r = degD = 3; the groups will be isomorphic if degE ≥ 3 degD = 9. Again,
for larger d [GLP] holds and shows that r = 2, so the groups are isomorphic
if degE ≥ 2 degD.
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Remark 1 Under the hypotheses of Corollary 3, the length of C is n =
degE, dimension is k = degD + 1− g, and minimum distance d ≥ degE −
degD (see for example Corollary II.2.3 [Sti]).

Example 4 Let F = GF (49) and let X denote the curve defined by

y2 = x7 − x.

This has genus 3. The automorphism group AutF (X) is a central 2-fold cover
of PGL2(F ): we have a short exact sequence,

1 → H → AutF (X) → PGL2(7) → 1,

where H denotes the subgroup of AutF (X) generated by the hyperelliptic in-
volution (which happens to also be the center of AutF (X)). For details, see
[G], Theorem 1.

Next, we recall some consequences of §3.2 in [JT]. There are |X(F )| =
2 · 72 − 7 + 1 = 92 F -rational points1:

X(F ) = {P1 = [1 : 0 : 1], P2 = [0 : 0 : 1], . . .}.

The automorphism group does not act transitively on X(F ) but has 2 orbits:
the orbit C1 of P1 and the orbit C2 = X(F )−C1. We have |C1| = 7+ 1 = 8
and |C2| = 2 · 7 · (7− 1) = 84.

Let D = mP1, E = X(F )− C1 = {Q1, . . . , Q84}, and let

C = C(D,E) = {(f(Q1), . . . , f(Q84)) | f ∈ L(D)}.

This is an [n, k, d] code over F , where n = deg(E) = 84, k ≤ dim(L(D)).
Let G = Stab(P1, AutF (X)) denote the stabilizer of P1. Since E is an

orbit of the full automorphism group, it will also be stabilized by G, so G =
AutD,E(X). The group G is a non-abelian group of order 2 · 7 · (7− 1) = 84.

According to Corollary 3, PermC(D,E) will be isomorphic to G if we
choose m so that degD is at least 2g + 1 = 7 and degE = 84 to be at least
(g + 1) degD = 4degD. Since degD = m, this means that 7 ≤ m ≤ 21.

Assuming we choose m > 2g− 2 = 4, the Riemann-Roch theorem implies
dim(L(D)) = m − 2, so C is an [84, m − 2,≥ 84 − m]-code over GF (49).
Since G fixes D and preserves E, it acts on C via

1MAGMA views the curve as embedded in a weighted projective space, with weights
1, 4, and 1, in which the point at infinity is nonsingular.
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g : (f(Q1), . . . , f(Q84)) 7−→ (f(g−1Q1), . . . , f(g
−1Q84)),

for g ∈ G.

Remark 2 More generally, for p > 3 and p ≡ 3 (mod 4), the curve X
defined2 by y2 = xp − x over F = GF (p2) is associated to an [n, k, d] code C
over F , where n = 2p(p−1), k = m− p−3

2
, d ≥ 2p2−2p−m, provided m > p.

This code is the one-point AG code constructed from the divisor D = mP1,
where P1 = [1 : 0 : 1], and E is the sum of the points in the orbit X(GF (p2))−
X(GF (p)) (see Proposition 3 of [J]). When m = p2, the parameters of this

code beat the Gilbert-Varshamov bound [TV]. When p < m < 4p(p−1)
p+1

, using
the above corollary, it can be shown that the permutation automorphism group
P of C is isomorphic to the stabilizer of P1 in the automorphism group of X,
which is of size 2p(p−1). In this case, P acts on C as a subrepresentation of
the regular representation. It would be interesting to know the decomposition
of this representation.

In [J], it is conjectured that C has a permutation decoding algorithm of
complexity O(n). For a related discussion (for an AG code constructed from
a different curve), see [L].

In some interesting cases, there are not enough rational points on the
curve to apply Theorem 2.

Example 5 Again, let X denote the genus 3 curve defined by

y2 = x7 − x,

but this time over F = GF (7). The automorphism group AutF (X) is now a
central 2-fold cover of PSL2(F ): we have a short exact sequence,

1 → H → AutF (X) → PSL2(7) → 1,

where as before H denotes the subgroup of AutF (X) generated by the hyper-
elliptic involution (which happens to also be the center of AutF (X)). The

2This curve is embedded into weighted projective space, where x and z have weight 1
and y has weight p+1

2
.
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following transformations are generating elements of G:

γ1 =

{

x 7−→ x,
y 7−→ −y,

, γ2 = γ2(a) =

{

x 7−→ a2x,
y 7−→ ay,

γ3 =

{

x 7−→ x+ 1,
y 7−→ y,

, γ4 =

{

x 7−→ −1/x,
y 7−→ y/x4,

(9)

where a ∈ F× is a primitive 6− th root of unity.
On this curve there are only 8 F -rational points:

X(F ) = {P1 = [1 : 0 : 0], P2 = [0 : 0 : 1], P3 = [1 : 0 : 1], . . . , P8 = [6 : 0 : 1]}.

Thus it is impossible to choose D and E so that degD ≥ 7 and E consists
of at least 4 degD distinct rational points. Let us instead choose D = mP1

and E to be all of the other rational points as before, and compare PermC
and AutD,E(X).

The automorphism group acts transitively on X(F ); as in the previous
example let G = AutD,E(X) = Stab(P1, AutF (X)), the stabilizer of the point
at infinity in X(F ). (All of the stabilizers Stab(Pi, AutF (X)) are conjugate
to each other in AutF (X), 1 ≤ i ≤ 8). The group G is a non-abelian group
of order 42 (In fact, the group G/Z(G) is the non-abelian group of order
21, where Z(G) denotes the center of G.) Take the automorphisms γ1, γ2
with a = 2 and γ3 as generators of G. If we identify S = {P2, . . . , P8} with
{1, 2, . . . , 7} then

γ1 ↔ (2, 7)(3, 6)(4, 5) = g1,

γ2 ↔ (2, 5, 3)(4, 6, 7) = g2,

γ3 ↔ (1, 2, . . . 7) = g3.

Let D = 5P1, S = C(F )− {P1}, and let

C(D,E) = {(f(P2), . . . , f(P8)) | f ∈ L(D)}.

This is a [7, 3, 5] code over F . In fact, dim(L(D)) = 3, so the evaluation
map f 7−→ (f(P2), . . . , f(P8)), f ∈ L(D), is injective. Since G fixes D and
preserves E, it acts on C via

g : (f(P2), . . . , f(P8)) 7−→ (f(g−1P2), . . . , f(g
−1P8)),
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for g ∈ G.
Let P denote the permutation group of this code. It a group of order

42. However, it is not isomorphic to G! In fact, P has trivial center. The
(permutation) action of G on this code implies that there is a homomorphism

ρ : G→ P.

What is the kernel of this map? There are two possibilities: either a subgroup
of order 6 or a subgroup of order 21 (this is obtained using [GAP] by matching
possible orders of quotients G/N with possible orders of subgroups of P ).
Indeed, the kernel ker(φ) = N = 〈g2, g3〉 is a non-abelian normal subgroup
of G = 〈g1, g2, g3〉 of order 21.
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