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Voronoi Cells, Probabilistic Bounds, and Hypothesis
Testing in Mixed Integer Linear Models

Peiliang Xu

Abstract—Although real-valued linear models, whether or not
of full rank, have been thoroughly investigated and are well doc-
umented, very little is known about statistical and probabilistic
aspects of a mixed integer linear model, which arose from space
geodesy and serves as the standard starting model for precise
positioning using the global positioning system (GPS). Voronoi
cells play a fundamental role in the least squares estimation of
the integer unknowns of the model. In this paper, we first develop
a method to construct Voronoi cells and study how to fit figures
of simple shape to a Voronoi cell, both from inside and outside.
We then derive a number of new lower and upper bounds on the
probability that the integers of the model are correctly estimated.
Finally, we discuss the tests of two hypotheses on the integer mean.

Index Terms—Global positioning system (GPS), integer interval
estimation, integer least squares, mixed integer linear models,
nearest lattice point problem, probabilistic bounds, Voronoi cells.

I. INTRODUCTION

CONSIDER the following mixed integer linear model:

(1)

where is an -dimensional vector of observations, and
are and real-valued matrices of full column
rank, respectively, is a real-valued nonstochastic vector, i.e.,

, and is an integer vector, i.e., . Here is
defined as the -dimensional real-valued space and as the

-dimensional integer space. is the error vector of the ob-
servations . In this paper, we assume that the error vector is
normally distributed with mean zero and variance–covariance
matrix , namely, . is a given
positive-definite matrix and is an unknown positive scalar.
Two special cases of (1) are: i) conventional (real-valued) linear
models, if ; and ii) integer linear models, if . If is
supposed to be Boolean, then (1) may also be called mixed –
linear models. For more details about model classification, the
reader is referred to [64] or [70].

The mixed integer linear model (1) was practically moti-
vated directly by space geodetic techniques, or more precisely,
the global positioning system (GPS), and has since become
the standard starting basis for modern precise satellite-based
positioning. More specifically, is a collection of all the
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double-difference carrier phases between GPS receivers and
satellites, is the correction vector of baselines or relative
coordinates, and is the integer vector of double-difference
numbers of full carrier wave cycles between receivers and
satellites. describes the residual observation errors of .

When (1) is referred to raw GPS phase observations between
receivers and satellites, includes many other (real-valued) pa-
rameters of biases such as satellite and receiver clock errors,
ionospheric and tropospheric corrections, and orbit corrections,
in addition to the coordinates to be sought. Given , it is a
three-way classification model with a term of trend [41], [43].
The unwanted real-valued parameters of biases are often first
eliminated by using the double-difference technique, which is
mathematically justified by the equivalence theorem of Schaf-
frin and Grafarend [41] in the case of GPS or of Baksalary [4] in
a general linear model. Since the equivalence theorem of Schaf-
frin and Grafarend [41] or Baksalary [4] holds true only for
real-valued parameters and cannot be used to eliminate the in-
teger parameters, (1) is the most general model one has to deal
with, mathematically and practically, in order to compute the
most precise coordinates from GPS. In fact, GPS has revolu-
tionized almost all the areas of engineering and science that are
related to positioning or positioning information, and certainly
has had already great impact on our daily life. For the theory of
GPS positioning, other satellite-based positioning systems de-
veloped, and/or under development, and some of their scientific
and engineering applications, the reader is referred, for example,
to [6], [24], [30], [32], [40], [44].

By the beginning of the 1990s, the parameter estimation in
the model (1) has been treated as if the parameters were not
integral but real, and then aided by some tools of statistical hy-
pothesis testings for real-valued linear models in order to val-
idate the estimation of [16]. The first attempt to rigorously
estimate mathematically from noisy GPS carrier phase mea-
surements in geodesy was due to Teunissen [50]. He used the
geometric approach of statistical estimation to solve the mixed
integer least squares (LS) problem

(2)

Unlike the geometric approach of Teunissen [50], Xu et al. [68]
provided an alternative two-step approach to solve (2). Since
is not continuous and cannot be differentiated, one cannot di-
rectly differentiate with respect to and , equate the differ-
entials to zero, and then solve for the estimates of and , as
is usually done in (real-valued) linear models. Instead, they first
differentiate with respect to and equate the differential to
zero. Thus, the estimate of can be expressed in terms of the
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estimate of . Then they substitute of (2) with the newly de-
rived relation and derive the following integer LS problem:

(3)

where is the floating solution of and is the (posi-
tive-definite) cofactor matrix of [69], [70]. The floating solu-
tion and its cofactor matrix are obtained by first treating the inte-
gers as real-valued unknowns and then solving the real-valued
version of (2), which results in the following equalities:

(see [69], [70]). The LS estimator of the integer vector can be
represented as follows:

(4)

Here is the LS estimator of the integer vector , and
is the indicator function

if
otherwise

where is the Voronoi cell centered at the point and will
be precisely defined and constructed in Section II. If ,
the corresponding Voronoi cell is denoted by . Actually, the
estimator can be inferred from Hassibi and Boyd [23] and is
explicitly followed by Teunissen [57]–[60].

The integer LS problem (3) has been often encountered in
many areas of science and engineering, for example, integer
programming, the geometry of numbers, communication theory,
and cryptography. Although (3) is called the integer LS problem
here, it is better known as the closest point problem or nearest
lattice point problem and is known to be NP-hard [1], [11], [19].
Efficient algorithms to solve (3) can be found in [1], [42]. Ap-
plications of integer programming to GPS positioning can be
found in [64], [69], [70]. Based on the isotropic probabilistic
models of Xu [66], Xu [65] has shown by simulations that if the
dimension of is not too large, then GPS integer decorrelation
methods (see, e.g., [18], [23], [51]–[53], [61], [65], [67], [69],
[70]) can be used to speed up estimating .

Quality control and hypothesis testing in linear real-valued
models have been well documented [29], [31], [43], [46],
[48]. However, as far as the mixed integer linear model (1) is
concerned, a theory for rigorous quality control and hypothesis
testing is not available and can be very difficult, unless is
diagonal. Unlike real-valued linear models, the extent of ease
(or difficulty) to deal with the cases of known or unknown in
connection with (1) can be substantially different. We assume
that is known and thus can be ignored hereafter.

Even after is assumed to be given, statistical results for
the mixed integer linear model (1) are rather limited and hardly

applicable in practice. Up to the present, the only results have
been concerned with the computation of the probabilities of cor-
rectly estimating the integers , their residuals, and the baseline
vectors [22], [23], [56]–[60]. Unfortunately, the probability of
correctly estimating the integers can hardly be computed pre-
cisely due to the complexity of Voronoi cells, particularly if
the dimension of is sufficiently large, unless is diagonal.
Thus, almost all efforts have been focused on finding the lower
and upper bounds for the probability of error in communication
theory and lattice theory [11], [45], [62] and in GPS applica-
tions [22], [23], [55]–[57], [59]. The best upper probabilistic
bound was given by Shannon [45], while the best lower proba-
bilistic bound can be found in [22], [23], [55], [57], [59], [62].
The latter depends, however, on the solution of the shortest lat-
tice vector problem. In order to avoid solving this new integer
optimization problem, Teunissen [55] also gave some alterna-
tive lower bounds, though worse than the best possible one. Te-
unissen [54]–[56] also discussed the probabilistic bounds for
the simple rounding solution and the integer bootstrapped es-
timator. The probability and accordingly the lower probabilistic
bound of the bootstrapped integer estimator will be shown to be
incorrect, however.

The purpose of this paper is threefold: i) we will develop a
method to construct Voronoi cells and systematically study the
fitting of the Voronoi cell from inside and outside. Fitting
from inside is defined as the problem of using a point set with a
simple shape, say , to approximate in a certain sense of op-
timality under the condition . Similarly, fitting from
outside consists of using a point set, again with a simple shape,
say , to best approximate under the condition ;
ii) we provide a number of new lower and upper bounds for the
probability that the integers are correctly estimated; and iii)
we will discuss and apply these bounds to testing hypotheses
on the integers of the model (1). In this paper, we will focus on
the integer LS estimate. Simple rounding and other (suboptimal)
solutions, which can be found in Teunissen [55] or Grafarend
[18], for example, will not be investigated here. The paper is or-
ganized as follows. Section II will discuss how to construct the
Voronoi cell by finding all the vertices of a polytope, which
is the starting point for all the computations of probability. In
Section III, we will discuss the problem of best fitting a Voronoi
cell from inside and outside from the optimization point of view.
Based on the results in Sections II and III, we will then provide
in Section IV some new lower and upper bounds for the proba-
bility of correctly estimating the integers. Finally, in Section V,
we will discuss the issue of testing hypotheses in mixed integer
linear models.

II. CONSTRUCTION OF VORONOI CELLS

A. Defining Voronoi Cells

Although the global optimal integer LS estimate of (3) can
be numerically obtained by using integer programming tech-
niques [19], [38], [49], we must represent , as given by (4), in
terms of Voronoi cells in order to study its statistical and prob-
abilistic aspects [22], [23], [55], [57], [59]. The Voronoi cell of

is defined as the subset of which contains all the
points according to (3) or (4) and results in the same integer
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estimate . In other words, all the points in are closer to
than any different from . For convenience of discussions and
brevity of notations in this and the following sections, we will
rewrite (3) as

(5)

where , , and is positive definite.
By definition, finding the subset is equivalent to finding

all that satisfy

(6)

for all and . The inequality (6) is actually the defi-
nition of the Voronoi cell of the integer lattice [9], [11], [20].
Some basic properties of the Voronoi cell are summarized
as follows: i) it is symmetric with respect to and convex; ii) it is
translation-invariant; iii) given and ( ),
if , then the interiors of and are disjoint;
iv) , ; and v) the volume of the Voronoi
cell is equal to the determinant of the lattice.

We should note: i) that these properties hold for all lattices;
and ii) that Conway and Sloane [11] use the Gram matrix to
define the determinant of a lattice, and as a result, they define
the determinant of a lattice as the square of the volume of the
Voronoi region. For our integer lattice , the volume of is
exactly equal to unity. In the context of GPS applications, Has-
sibi and Boyd [22], [23] decomposed into and focused
on the lattice generated by the matrix . As a consequence, the
corresponding Voronoi cell has the volume of ,
where stands for the determinant of the matrix .
is also called a pull-in region by Teunissen [55]–[57]. In this
paper, we shall call it a Voronoi cell. Since is free, without
loss of generality, we can impose in (6) and obtain the
Voronoi cell as follows:

and (7)

If and in (6) are not lattice points, but belong instead
to a finite set of (arbitrarily) given points, then we have
Voronoi cells. Given distinct points in -dimensional space,
a number of algorithms have been proposed to find the corre-
sponding Voronoi cells [7], [8], [12], [14], [63]. However, when
the number of points tends to infinity so that they form a lat-
tice, finding the Voronoi cell becomes difficult. If has some
special structure, then the Voronoi cell can be computed ana-
lytically [10], [11]. For a general positive-definite matrix ,
Viterbo and Biglieri [62] proposed a diamond-cutting algorithm
to approximate the Voronoi cell at a predetermined accuracy.
They start from a parallelotope, introduce one hyperplane at
each iteration to cut the polytope, and finally terminate the com-
putation when the volume of the most recent polytope is equal to
the determinant of the lattice within the tolerance of a predeter-
mined error. Because of the tolerance error, the number of ver-
tices produced could be different from that of the exact Voronoi
cell. Thus, we will propose an alternative method to compute
the Voronoi cell in the remainder of this section.

B. Finding a Finite Number of Hyperplanes for Constructing
the Voronoi Cell

The Voronoi cell of (7) has been seemingly limited by
an infinite number of hyperplanes. No optimization methods
can deal with an infinite number of constraints. According to
Minkowski, however, can be completely determined by at
most pairs of hyperplanes [9], [20]. If the covering ra-
dius of the Voronoi cell is known, then it is sufficient to use
all the integer points inside the sphere of radius [62]. Unfor-
tunately, finding is known to be NP-hard [11], and it is not
practically feasible to use the covering radius to constrain the
Voronoi cell. As a result, Viterbo and Biglieri [62] suggested a
more or less arbitrary number for . If such a number is found
too small, then it is increased. A safe and easy method is to use
an upper bound of in order to obtain a finite number of po-
tentially constraining hyperplanes. Indeed, although finding
is NP-hard, Babai [3] obtained as an upper bound
of in polynomial time by using the Lenstra–Lenstra–Lovász
(LLL) algorithm of Lenstra et al. [33], where is the length
of the last basis vector of the reduced basis. Since the upper
bound of the covering radius by Babai [3] increases exponen-
tially, and since the knowledge on the Voronoi cell is of basic
importance for quality control and statistical testing on (1), we
will develop an alternative method by combining interval math-
ematics with the active set method of linear programming in
order to first eliminate an infinite number of redundant hyper-
planes, find all the vertices of , and, as a result, solve the
problem of constructing .

As a key step, we will have to first find a finite number of hy-
perplanes. We will then prove that only these hyperplanes may
contribute to the construction of . In other words, the other
(infinitely many) constraints are redundant or automatically sat-
isfied. Since the inequality in (7)

(8)

must hold true for all and , we can substitute
by in (8) and obtain

(9a)

where is the first row vector of and is the first diagonal
element of . As in deriving (9a), we substitute by in
(8) and obtain the second linear inequality constraint

(9b)

The linear constraints (9a) and (9b) can be summarized as

(10a)

Similarly, we can replace in (8) with and to derive the
linear constraints

(10b)
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where all the elements of the vector equal zero except for its
th element being unity, is the th diagonal element of ,

and is the th row vector of .
Collecting all the linear inequalities (10a) and (10b) together

in the notation of interval mathematics, we have

(11)

where

...
...

By the solutions to the linear interval equations (11), we mean
the point set (see, e.g., [21], [37], [39]).
The tightest bounding box of the solution set is denoted by
and simply given as follows:

(12)

By the solution (12) we mean the point set

(see, e.g., [21], [37], [39]).
We can now use the bounding box of to find the upper

bound of the objective function over , which is denoted
by . Since is a subset of , is also the upper bound
of within . We may use two methods to find . The first
method is to directly substitute the bounding box into
and then use interval mathematics to compute . This method
is easy to implement but would produce a larger upper bound,
unless is diagonal. The second method is to solve the fol-
lowing maximization problem:

(13)

subject to the bounding constraints

It is trivial to prove that the solution to (13) is one of the corner
points of the bounding box , since is quadratically concave
and is convex. Obviously, the optimal value is also the tightest
upper bound of over .

With the upper bound over , we construct the ellipsoid

from which we can further compute the length of the major axis
of the ellipsoid

(14)

where is the minimum eigenvalue of . Since
attains its maximum value at the boundary of the ellipsoid,
then for any satisfying , we must have

(15)

It is trivial to prove that if

(16)

then we always have

for any point inside the hypersphere with radius , namely,
. Using the triangle inequality of vector inner product

we can readily prove

Thus, for any satisfying (16) and any in , we immediately
obtain

(17)

according to (15).
The inequality (17) clearly implies that if satisfies (16),

then (8) is automatically satisfied. In other words, all the in-
teger points satisfying (16) do not constrain at all and can
be eliminated. As a consequence, we successfully eliminate an
infinite number of redundant hyperplanes by using a sphere to
enclose .

Similarly, we can also use an ellipsoid to enclose . In order
to do so, we can first transform , where is the matrix
of eigenvectors of , determine the bounds of , and then
find the new upper bound for as follows:

(18)

where is the set of all the eigenvalues of . and are
the lower and upper bounds of , respectively, and are given by

. Furthermore, given the quadratic constraints

(19a)

(19b)

we can readily prove

(19c)

The inequality (19c) clearly implies that all the integer points
outside the ellipsoid impose no constraints on

and can be automatically eliminated.
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To summarize, we can state the following theorem.

Theorem 1: Given a positive-definite matrix , and the cor-
responding integer least squares problem (5), the Voronoi cell

associated with its solution is defined either by

and (20a)

in the case of spherical enclosure, or alternatively, by

and (20b)

in the case of ellipsoidal enclosure.

C. Constructing the Voronoi Cell

For a general positive-definite matrix , it is unlikely that
all the integer points inside the sphere
or the ellipsoid would actively con-
strain on ; some of these points are redundant and can thus
also be eliminated. In this subsection, we will first discuss the
identification of redundant constraints for and then use the
active set method of linear programming to find all the vertices
of . Therefore, we construct the Voronoi cell .

It is trivial to show that given the two integer vectors and
in , if , then is redundant, where is an in-

teger. Thus, all the integer points inside are
redundant. Similarly, the integer points inside

are also redundant. By inserting each of the integer points in-
side , except for the obviously redundant ones, into the linear
inequality , and then collecting them to-
gether, we have the linear inequality constraints

(21)

where is a real-valued matrix. Still, not every hyper-
plane of (21) constrains on , although (21) uniquely defines
the Voronoi cell.

Constructing the Voronoi cell is now mathematically
equivalent to finding all the vertices of the polytope or poly-
hedron defined by (21), each of which is a solution of a
fundamental subsystem of (21) [5]. Since is symmetric, we
only need to find half the number of vertices on and above a
certain hyperplane . An inequality of (21) is said to be
redundant or irrelevant if it is automatically satisfied or if it
does not contribute one face to the Voronoi cell .

The redundant constraints of (21) always involve extra com-
putational work in enumerating the vertices of . There are two
approaches to dealing with redundant constraints. One approach
is to first find these redundant constraints, discard them, and then
systematically solve for all the fundamental subsystems of (21)
by using techniques of linear programming. To check whether
any constraint of (21) is redundant, we have to solve

(22)

subject to the linear constraints (21), where is the th-row
vector of . If the minimum of is smaller than , then the
th constraint of (21) is redundant [17]. To check through all the

constraints of (21), we have to solve linear programming
problems, due to the symmetry of , which can be computa-
tionally quite prohibitive in its own right. It should be noted that
a constraint found to be nonredundant through (22) may still be
redundant or irrelevant, if it does not contribute a face of dimen-
sion to the polytope .

The second and most often used approach is to directly con-
struct by finding all its vertices, and as a by-product of this
procedure, to identify and eliminate all the redundant constraints
that do not form a face of dimension for from
(21). Most methods of this kind have been based on the sim-
plex method of linear programming [5], [26], [34], [35]. A basic
strategy for the enumeration of vertices of a polytope is thus to
repeatedly perform pivotal operations in a simplex tableau. For
other types of techniques for enumerating the vertices of a poly-
tope, the reader is referred to [28], [71].

In this paper, we will modify the pivoting algorithm of Maňas
and Nedoma [34] to find all the vertices of . For the linear in-
equalities (21) for the construction of , we always have much
more inequalities than variables . From the compu-
tational point of view, the simplex method is less efficient than
the active set method, since the former has to update a matrix of
order at each iteration, while the latter needs only up-
dating a matrix of order [15]. Thus, as a first modifica-
tion, we will implement the active set method in our algorithm
to find all the vertices of the Voronoi cell . The second modi-
fication is to replace the neighboring set of nodes with the set of
edges, and thus avoid repeating the computation of the vertices
found. Because is symmetrical, the computation work can be
halved by only finding the vertices on one side of the hyperplane

.
Before we present the algorithm to enumerate all the vertices

of , we have some notations to explicate. Two vertices of a
polytope are said to have an edge if they have the same
bases. Denote the vertex set of by and the corresponding
edge set by . Then the algorithm can be outlined as follows.

Algorithm for enumerating the vertices of
i) Given an initial vertex of , say , compute the edges

that originate from . takes its
minimum if is not degenerate. Assign to and
all the edges to a temporary working
set of edges, namely, , , and

ii) If is empty, terminate. Take one element from
and use the active set method to find the next vertex . If
the vertex is below a predetermined hyperplane, repeat this
step; or if , store the edge in , eliminate the corre-
sponding edge data from , and then repeat this step;

iii) Add the vertex to and the edge with the two vertices
as its end points to . Compute the new edges of other
than and store them into . Go to Step ii).

After all the vertices and the edges of are found, we can
then construct and visualize in the case of low dimensions.
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Fig. 1. The orientations, shapes and actual sizes of the four Voronoi cells.

TABLE I
THE AZIMUTHS OF THE MAJOR AXES OF THE FOUR ELLIPSES AND THEIR CORRESPONDING CONDITION NUMBERS, WHICH DEFINE THE EIGENVECTORS AND THE

SHAPES OF THE MATRICES, RESPECTIVELY

Thus, all the irrelevant constraints of (21) are automatically
eliminated, and (21) can now be rewritten as follows:

(23)

Here each of the constraints (23) contributes one face of dimen-
sion to .

We should note, however, that constructing the lattice Voronoi
cell could not be completed in polynomial time. The computa-
tional complexity can be attributed to two exponential numbers:
i) the Voronoi cell can be actively constrained by, at most, the
exponential number of hyperplanes according to a
theorem of Minkowski [9], [20]. This implies that the active set
method would take exponential time to find the step length along
all the searching directions in order to compute a new vertex of

. Since the system of inequalities (21) was derived by using
an upper bound of , the total number of inequalities in (21)
will generally even be larger than that of the active constraints
of and, as a result, further complicates the computation of the
vertices of ; and ii) as a direct consequence of i), will have
an exponential number of vertices, which demand exponential
time to compute.

D. Examples

In order to demonstrate the method of constructing the
Voronoi cell and have an impression on it, we use isotropic
probabilistic models of Xu [66] and uniform distributions to
generate the eigenvectors and eigenvalues of , respectively.
One may use other distributions to generate the eigenvalues of

[2]. Although our method is applicable to problems of any
dimension, we will limit ourselves to two- and three-dimen-
sional matrices for ease of visualization. Of many randomly
generated examples, we select the following four matrices:

to illustrate the change in the shape of the Voronoi cell with the
orientation and shape of the ellipse defined by .
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Fig. 2. The orientations, shapes, and actual sizes of the two three-dimensional Voronoi cells.

The four Voronoi cells are shown in Fig. 1. To see how the
orientation and shape of are related to the eigenvectors and
eigenvalues of , we also list the azimuths of the major axes of
the four ellipses and the condition numbers of the four matrices
in Table I. By comparing Fig. 1 with Table I, we see that i) the
elongation of is generally in agreement with the condition
number of if the orientations of the ellipse are significantly
different from the original coordinate axes; and ii) the orienta-
tion of is also generally in agreement with one of the eigen-
vectors of . Slight changes in the eigenvectors and/or eigen-
values of can significantly affect the shape of (compare
the Voronoi cells of and in Fig. 1), however. In order to
further demonstrate this last point, we also plot the Voronoi cells
of the following three-dimensional positive-definite matrices:

in Fig. 2, both consisting of 24 vertices and 14 planes. Although
the two matrices and are only slightly different in terms
of the eigendirections, the shapes of their Voronoi cells are sig-
nificantly different. Note, however, that some of the planes are
too small to be visible in Fig. 2.

III. FITTING THE VORONOI CELL

For a general positive definite , in particular, if its dimen-
sion is also high, then the shape of has to be represented by a
very large number of vertices, together with the corresponding
set of faces of . The complexity of will make any fur-
ther mathematical operations on it, for example, probabilistic
computation over , very difficult. Although an upper bound
of the probability of correctly estimating the integers can be
derived based on the well-known results of Shannon [45] in a
Gaussian channel (see also [11], [22], [23], [62]), or more gener-
ally, a channel with a symmetrically elliptical distribution, such
a simple and elegant probabilistic bound is not valid if the prob-
ability distributions of data are asymmetric. Thus, it is highly
desirable to find some lower and upper bounds to approximate

. A lower bound was given by Hassibi and Boyd [22], [23]
in the context of GPS applications, based on the concept of lat-
tice packing [11], [20]. Teunissen [55], [59] also provided lower
and upper bounds for recently. His upper bound is defined
by two parallel hyperplanes and his best possible lower bound
is the same as that of Hassibi and Boyd [23] and depends on the
solution to an integer distance or shortest lattice vector problem
by definition. To avoid this new integer optimization problem,
Teunissen [55] provided some smaller lower bounds as well.

We may note that a rough upper bound of is a rectangular
box and has actually already been given by (12). In this sec-
tion, we will find new bounds that would best approximate
from inside and outside in a certain sense of optimality. More
specifically, we will find rectangles, spheres, and ellipsoids to
best fit . If all the vertices of have been found, then we can
readily use this data set to derive the smallest possible rectangle,
sphere, and ellipsoid that bound from outside. Similarly, we
can find the largest possible rectangle, sphere, and ellipsoid that
bound from inside. Because of the complexity of , it is
also important to find the lower and upper bounds without first
enumerating all the vertices and faces of , which will be in-
vestigated in the following.

A. Lower and Upper Bounds of Rectangular Type for

If is diagonal, then (12) is actually the best possible rec-
tangle to bound from outside. For a general positive-definite
matrix , the lower and upper bounds of rectangular type for

have to be derived based on the inequality constraints (21).
A rectangle symmetric with respect to the origin can always be
represented by

(24)

where is a rotation matrix and .
By using the transformation , we can rewrite (21)

and (24) as follows:

(25a)

(25b)

Finding a minimum rectangular upper bound of is equivalent
to finding the smallest positive vector such that is a subset
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defined by (25b). As a result, we must have .
Given , each is defined by the linear programming
problem:

(26)

subject to the linear constraints (25a), where is the th com-
ponent of . Thus, the minimum upper bound of rectangular
type can be obtained by solving the following optimization
problem:

(27a)

in terms of minimum volume, or alternatively

(27b)

in terms of minimum total length of edges. and/or must
be minimized with respect to the independent elements of the
rotation matrix .

In particular, if no rotation is applied, we only need to solve
the linear programming problem

(28)

subject to the linear constraints (21) for each .
Because (21) defines a bounded polytope, namely, the Voronoi
cell , all the linear programming problems (28) have unique
maximum objective values, say ( ). By the
symmetry of , we know immediately that the least value for
each component of is ( ). Thus, the
smallest rectangle that most tightly bounds from outside in
this special case is given by

...
...

(29)

In a similar manner to (27a), the maximum lower bound of
rectangular type to fit the Voronoi cell from inside can be found
by maximizing

(30)

subject to two conditions of constraints: i) the inequality con-
straints (25a), and ii) that any of the vertices of the rectangle
defined by (25b) must not be outside . In fact, these two con-
ditions are equivalent to requiring that all the vertices of (25b)
satisfy (25a).

If no rotation is applied and if one would use a cube to ap-
proximate from inside by using the criterion of maximum
length of edges, then the fitting model can be simplified as fol-
lows:

(31a)

subject to (21), and

(31b)

(31c)

The constraint (31c) implies that all the vertices of the cube
must not be outside . The solution of (31) can then be directly
determined as follows:

(32)

where are the elements of . In other words, the side of the
cube is equal to the maximum positive number that satisfies all
the inequalities of the kind , where and can
be derived from the inequalities of (21), (31b), and (31c), which
can be shown to be equivalent to the minimum positive number
of (32).

B. Lower Bounds of Ellipsoidal Type for

An arbitrary ellipsoid with its center at the origin of coordi-
nate system can always be represented by

(33)

where is positive definite. By decomposing into and
making the transformation , we can rewrite the ellip-
soid (33) as follows:

(34a)

(34b)

where is lower triangular with all its diagonal elements
being positive. Thus, the best approach to bounding from
inside is to find the largest ellipsoid (33) or (34), in the sense
of maximum volume, such that it is completely inscribed inside

. Since the volume of the ellipsoid (33) is proportional to the
product of the diagonal elements of , we only need to solve the
following optimization problem:

(35a)

subject to

(35b)

the unit constraint (34b), and the positive constraints
( ). In order for the ellipsoid (33) to lie inside

, each inequality constraint of (35b) must be true for all unit
vectors , if and only if for all . Thus,
we can replace (35b) and (34b) by

(36)
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In fact, the optimization model (35a) under the constraints
(36) has been known as the problem of finding the maximal
inscribed ellipsoid for a polytope [27]. Unlike Khachiyan and
Todd [27], we work directly on the lower triangular matrix
such that the positive-definiteness of is automatically satis-
fied. In addition, we implement the hybrid global optimization
algorithm proposed by Xu [68] to ensure finding the global
optimal solution.

In particular, if the shape of the ellipsoid is predetermined on
the basis of , the problem can be mathematically simplified
as follows:

(37a)

subject to

(37b)

and

(37c)

The constraint (37c) is important in that it imposes all the points
on the found ellipsoid to lie inside . Therefore, the solution
to (37) is exactly the maximum ellipsoid which is completely
inscribed in and is the best lower bound of ellipsoidal type
as defined in the sense of (37a).

Obviously, (37) is a convex programming problem, and thus
the maximum objective value must be unique. The solutions will
not be unique, however, since is symmetrically constructed
by a number of hyperplanes. This nonuniqueness of solutions
does not disturb us at all, since all that we need is the equation
of the ellipsoid that best approximates from inside.

It can be proved that (37) is mathematically equivalent to
finding such that

(38a)

where is the minimum objective value of the following
optimization problem:

(38b)

subject to

(38c)

for each , is the th element of .
In fact, the equivalence between (37) and (38) can be estab-

lished as follows. Denote the minimum objective value of (38)
by . Then, the corresponding solution(s) will automatically
satisfy (37b). As a consequence, the ellipsoid

(39)

is completely inscribed inside the region defined by (37b),
namely, . Thus, (37c) is satisfied. For any , part

of the ellipsoid will go beyond, at least, one
constraint , and thus violates the constraint (37c).

Since the number of optimization problems (38b) and (38c)
is finite and since all of these optimization problems are convex
and constrained on one hyperplane, the solution to each of (38b)
and (38c) can be readily written as follows:

from which we can easily obtain of (39). Therefore, the
largest possible ellipsoid that best fits from inside is repre-
sented in this case by

(40)

Substituting and into (40), we have

which is equivalent to:

(41)

Here is a solution of minimizing for all
and . Equation (41) has shown that the lower bound of
the ellipsoidal type for can be obtained either by computing
a number of or by solving an integer distance
problem.

Similarly, one can find the largest possible sphere to best fit
from inside, which is simply given as follows:

(42)

C. Upper Bounds of Ellipsoidal Type for

Bounding from outside can be solved, whenever the shape
of an ellipsoid is fixed. As in the determination of lower bounds
of ellipsoidal type, one can use both the representation (33) and

to find the upper bounds of ellipsoidal type. Since the math-
ematical principle of determining the upper bound is identical,
we will focus on , which can be formulated as the following
optimization model:

subject to (21). Equivalently, we have the complete model

(43a)

subject to (21), or

(43b)
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The Kuhn–Tucker first-order conditions for (43) are

(44a)

(44b)

(44c)

where is the vector of Lagrange multipliers.
From (44a), we have

(45)

Denote

Then the Kuhn-Tucker conditions (44) are equivalent to

(46a)

(46b)

The conditions (46) are a standard linear complementarity
problem. Since is semi-positive definite, the solution
to (46) exists. After is obtained, we can then compute
through (45), and further the minimum value of in (43a).
We should note that because is only semi-positive
definite, there may exist a number of solutions . Although

is likely not unique and would produce different , the
minimum value of (43a) remains unchanged. In fact, since (43)
is a convex programming problem, the optimal value of the
objective function is mathematically unique, though may
not be unique. Geometrically, these nonunique , due to the
symmetry of , correspond to some vertices of .

Now denote the minimum value of by , where
. Then we obtain the ellipsoid

(47)

which is the minimum ellipsoid that completely encloses .
Thus, (47) is the minimum upper ellipsoid bounding . By
using exactly the same approach, we can also obtain the ellip-
soid of type (47) by replacing with . It is omitted here,
however.

Alternatively, one may seek a sphere to bound from out-
side. In this case, one can simply replace the matrix from
(43) to (46) with the identity matrix. Without loss of generality,
denote the corresponding minimum objective value by ,
where . Then the minimum sphere that completely
encloses is given as follows:

(48)

The radius of the sphere is the squared root of .

Fig. 3. Fitting the Voronoi cell V by using the different types of figures:
A—rectangular type; B—first ellipsoidal type with maximum volume;
C—spherical type; and D—second ellipsoidal type with the shapes fixed by the
matrix PPP . The Voronoi cell V is shown in these fittings in solid line. Thick
dashed and thick solid lines show the upper and lower bounds of the Voronoi
cell V for each type of fitting, respectively. Thick dotted line in subplot D
shows the ellipse with the same area as that of the Voronoi cell.

Before finishing this section, we have to note that finding the
lower and upper bounds for can also be computationally very
difficult, since the total number of active constraints of can
be exponential, again according to a theorem of Minkowski [9],
[20]. However, it is less complex than constructing the Voronoi
cell, since the second exponential number mentioned in Sec-
tion II is of no concern at all here. In order to demonstrate the
fittings of by the methods presented in this section, we im-
plement the hybrid global optimization method proposed by Xu
[68] to guarantee the global optimal solutions and show the
lower and upper bounds of each type of fitting in Fig. 3 with
the first example in Section II-D. The lower and upper bounds
of rectangular type are obtained by solving the maximization
problem (30) and the minimization problem (27a), respectively.
For convenience of discussions, we will refer to the ellipsoidal
type of fitting with maximum volume and the same type of fit-
ting with the predetermined shape by using as the first and
second ellipsoidal types of fitting, respectively.

It is clear from Fig. 3 that the rectangles and ellipses of max-
imum area fit very well. The spherical type of fitting performs
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TABLE II
THE LOWER AND UPPER BOUNDS OF AREA AND PROBABILITY FOR EACH TYPE OF FITTING: RECT—RECTANGULAR TYPE; MAXE —FIRST ELLIPSOIDAL TYPE

WITH MAXIMUM VOLUME; SPHERE —SPHERICAL TYPE; AND FIXEDE—SECOND ELLIPSOIDAL TYPE WITH THE PREDETERMINED SHAPES BY PPP . ALSO LISTED

ARE THE AREAS OF V AND THE SHANNON’S TYPE OF ELLIPSE, AND THEIR CORRESPONDING PROBABILITIES. LOWERB AND UPPERB STAND FOR LOWER AND

UPPER BOUNDS, RESPECTIVELY

TABLE III
. THE LOWER AND UPPER BOUNDS OF AREA AND PROBABILITY FOR EACH TYPE OF FITTING: RECT —RECTANGULAR TYPE; MAXE— FIRST ELLIPSOIDAL TYPE

WITH MAXIMUM VOLUME; SPHERE—SPHERICAL TYPE; AND FIXEDE —SECOND ELLIPSOIDAL TYPE WITH THE PREDETERMINED SHAPES BY PPP . ALSO LISTED

ARE THE AREAS OF V AND THE SHANNON’S TYPE OF ELLIPSE, AND THEIR CORRESPONDING PROBABILITIES. LOWERB AND UPPERB STAND FOR LOWER AND

UPPER BOUNDS, RESPECTIVELY

poorly, as can be seen in subplot C of Fig. 3. Unlike the first
ellipsoidal type of fitting, the second ellipsoidal type of fitting
results in rather poor lower and upper bounds (compare sub-
plot D of Fig. 3). For the second ellipsoidal type of fitting, if
the new condition that the area enclosed by the ellipse is equal
to that of is imposed, the fitting does not perform well ei-
ther, although the resulted upper bound, together with the lower
bound of the second ellipsoidal type, has been often used in
the literature [23], [57]–[59], [62]. The areas of all the lower
and upper bounds, together with the corresponding lower and
upper probabilistic bounds, are listed in Table II. It can be seen
from this table, in terms of fitted areas, that the first ellipsoidal
and rectangular types provide the best fitting performance from
inside and outside, respectively. The spherical and second el-
lipsoidal types of fitting are worse than the first ellipsoidal and
rectangular types of fitting by a maximum factor of in lower
bounds and by a maximum factor of almost in upper bounds.
In the case of the second example in Section II-D, except for the
second ellipsoidal type of fitting, all the other three types of fit-
ting produce rather satisfactory results (compare with Table III).
In particular, the rectangular type of fitting produces the tightest
lower and upper bounds, and outperforms all the other three
types of fitting significantly, in both lower and upper bounds.
The second example also demonstrates that the spherical type
of fitting can work well in some cases.

IV. LOWER AND UPPER PROBABILISTIC BOUNDS

For statistical inference and quality control on the estimated
integers from the observations , we often have to compute
the probability that is correctly estimated. This probability
is denoted by . In general, we can assume a probability
density function for the real-valued random vector of
(3) and then compute . Since has been assumed to be
normally distributed with zero mean and variance ,
is also normally distributed with mean and variance ,
namely, , where has been assumed to be
known.

The probability can now be computed as follows:

(49)

where . If is assumed to be equal to the
unknown true integer vector , then (49) becomes

(50)

which is independent of the integer LS estimate and was given
by Hassibi and Boyd [22], [23], and Teunissen [55]. However,
the interpretations of (49) and (50) are different. The equality
(49) describes the probability for any given or known event,
since the elements of are integer random variables. The
equality (50) calculates the probability for the unknown event
that the integer LS estimate is equal to its true integer vector.
Neither of these two interpretations could be practically satis-
factory. We will re-interpret (49) in terms of integer interval
estimation at the end of this section.

Since can be very complex for a general positive-def-
inite matrix , precise computation of can be very
difficult, though not impossible. Finding lower and upper
bounds for could thus become even more important than
directly computing it. Given a set of codewords of finite length,
Shannon [45] studied the probability of error of decoding in a
white Gaussian channel and obtained an elegant, well-known
formula to compute a lower bound of probability of error.
It can be directly applied to derive the corresponding lower
bound of probability of error in the most general context of
the Voronoi cell of a lattice [62]. Upper bounds of probability
of error can be derived either by using Boole’s inequality of
probability or the packing radius of a lattice [11], [62]. In the
case of GPS applications, one is more interested in computing
the probability of correctly estimating the integers of the
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model than the probability of error . Thus, the lower
bound of is equivalent to the upper bound of ,
which is given as follows:

(51)

where

and the positive constant satisfies the condition that the de-
fined ellipsoid is of unit volume. The probabilistic inequality
(51) was first given by Hassibi and Boyd [22], [23] for GPS
applications, though, in a different form. It will be referred to
as the upper probabilistic bound of Shannon’s type in the re-
mainder of this paper. The most attractive features of (51) are
twofold: i) that it does not require an upper bound of and is
easy to compute; and ii) it will become clear later that it is the
best upper probabilistic bound of ellipsoidal type if the shape of
the ellipsoid is predetermined by using . However, we have
to note that it is not valid any more if the probability distribu-
tions of data are not symmetrical.

In this paper, we will derive other lower and upper proba-
bilistic bounds for by finding lower and upper bounds of
the Voronoi cell , which are denoted by and , respec-
tively. Then we have

(52)

where and are the lower and upper probabilistic
bounds, respectively, and

(53a)

and

(53b)

The first results on lower and upper bounds for were
given by Hassibi and Boyd [22], [23] and Viterbo and Biglieri
[62]. Since their upper probabilistic bound for is essen-
tially derived on the basis of Shannon [45], it is the best pos-
sible so far if the probability distributions of data are elliptically
symmetric. The lower bound was also rederived by Teunissen
[55], [59]. In terms of and , the best possible values are
reproduced as follows:

(54a)

(54b)

(54c)

The lower bound of (54a) can be found in [22], [23], [55],
[59], and the upper bound of (54b) in [59]. Here and

are a solution to the shortest lattice vector problem

(54d)

for all and . Solving (54d) is conjectured to be
NP-hard, though not completely proved yet [11], [19]. If solving
(54d) is not desirable, one can find alternative lower bounds in
[55], though they are worse than (54a).

We have investigated the construction of the Voronoi cell in
Section II and in Section III developed the methods to find the
lower and upper bounds of by systematically recasting the
problems of bounding as optimization models. Based on
these bounding results, which can be straightforwardly avail-
able by replacing with , we can readily obtain the cor-
responding lower and upper probabilistic bounds of .

Comparing our results with those of Hassibi and Boyd [22],
[23], Viterbo and Biglieri [62] and Teunissen [55], [59], we can
see that their lower probabilistic bound corresponds exactly to
our of second ellipsoidal type given by (40), although the
derivations are different. It is the largest possible lower bound
of ellipsoidal type if is used to define the ellipsoid. In prac-
tice, if all these lower and upper bounds are computed, then the
best lower and upper probabilistic bounds are the largest lower
bound and the smallest upper bound among the rectangular,
ellipsoidal, and spherical types of bounds, respectively. Since
these three types of bounds are mathematically very simple, one
can then use approximation techniques of multiple integrals [47]
to compute the probabilistic bounds.

Taking the first two Voronoi cells in Section II as examples,
we knew, in terms of areas, that the lower and upper bounds of
rectangular and first ellipsoidal types (with maximum volume)
fit tightly, and that the second ellipsoidal type (with a prede-
termined shape) performed the worst, although it is most often
used in the literature [23], [57]–[59], [62]. Here we will con-
tinue our discussion of these two examples in terms of lower
and upper probabilistic bounds. To start our discussion, we as-
sume that has the Gaussian distribution such that the thick
dotted ellipse in subplot D of Fig. 3 corresponds to a probability
of , which is the upper probabilistic bound of Shannon’s
type and is actually equivalent to two times standard deviation.
Accordingly, we computed the lower and upper probabilistic
bounds of each type of fitting and listed the results in Tables II
and III.

As can be clearly seen from these two tables, the rectangular
type of fitting produces the tightest lower and upper probabilistic
bounds, and almost reproduces the exact probability over
under the assumption. The first ellipsoidal type of bounds of

results in a rather fine lower bound of probability, but its
upper probabilistic bound is overestimated by 33.8% in the first
example and 32.4% in the second example, respectively. Even
though the lower bound of first ellipsoidal type of fitting was
shown to perform better than that of rectangular type of fit-
ting in terms of area in the first example of Section III-C, the
lower probabilistic bound of rectangular type is better in terms
of probability. This is not surprising, since, in the first example,
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Fig. 4. Illustrated domain of integration used for computing the probability that the integer bootstrapped estimator correctly produces the integer vector zzz of the
model.

the lower-bounded region of rectangular type is not completely
covered by that of first ellipsoidal type, and since this uncovered
region has much more weight than the lower-bounded region of
first ellipsoidal type not covered by its rectangular counterpart.
The lower and upper probabilistic bounds of second ellipsoidal
type perform poorly in both examples, if the shapes of the el-
lipsoids are fixed by using . They are significantly different
from the exact probability of correctly estimating the integers
computed inside the Voronoi cell. Although the upper proba-
bilistic bound of Shannon’s type has been known to be the best,
it is not comparable with that of either rectangular or first ellip-
soidal type in both examples, and overestimates the probability
by 101.8% in the first example and 87.2% in the second ex-
ample, respectively. The probabilistic bounds of spherical type
perform poorly in the first example but are reasonably good in
the second example.

In addition to the integer LS estimate of , the so-called in-
teger bootstrapped estimator has been substantially investigated
by Teunissen [55]–[59]. The probability and its corresponding
lower bound of correctly estimating the integers, given in [55],
[56], [59], for example, are incorrect. Let us first remember that
they are derived by simply multiplying the probability of each
transformed new random variable over the interval
due to the diagonal nature of the conditional variance–covari-
ance matrix. Now assume a two-dimensional positive-definite
matrix of (5), whose corresponding domain of integration
for the integer bootstrapped estimator is shown in Fig. 4. It is
very clear that there can be, in general, many integer points in-
side the shaded area, which is the domain of integration. In other
words, the probability and its lower bound for the integer boot-

strapped estimator to correctly estimate the integer vector , as
described above, correspond to all these integer points but cer-
tainly not just only one integer point. Since all the probabilistic
results reported in [55]–[59] for the integer bootstrapped esti-
mator are based on the claimed assumption that there is one
and only one integer point inside the domain of integration, the
counterexample illustrated here has clearly invalidated the as-
sumption and, as a result, also the corresponding reported prob-
abilistic results.

A few more words may be appropriate before finishing this
section. Since the mean is unknown, Hassibi and Boyd [22],
[23] and Teunissen [55], [59] simply substituted the mean or
unknown true integer vector in (49) with the integer esti-
mate to compute as if were the unknown true integer
vector . Without this presumed substitution, we could not com-
pute . To statistically justify the substitution, the hypothesis
that the LS estimate of is equal to the unknown true integer
vector has to be tested first. If it is accepted with a sufficiently
large confidence level, then we could accept (50) as the prob-
ability that is correctly estimated. From this point of view,
the corresponding probability should be more properly inter-
preted as a pre-test probability. As a consequence, we always
obtain a largest possible probability for . Since fixing GPS
integer ambiguities incorrectly is practically disastrous for pre-
cise positioning, too optimistic an estimate for is highly
undesirable. In fact, if is sufficiently large, the integer
points in the neighborhood of may all likely be an esti-
mate of . To reflect this situation, we may substitute with its
real-valued estimate . The corresponding probabilistic results
could then be interpreted in terms of integer interval estimation.
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For real-valued linear models, the interval estimate of the model
parameters can have an arbitrarily given probability to cover the
true (unknown) values, depending on the estimate of the param-
eters. In the case of mixed integer linear models, the size and
shape of the Voronoi cell have been fixed. Accordingly, po-
sition, size, and shape for integer interval estimation have been
fixed, and instead, the probability for the Voronoi cell to cover
the true integer point cannot be predetermined.

V. STATISTICAL HYPOTHESIS TESTING

Given a probability distribution for the observations , hy-
pothesis testing has been well developed and documented in
the literature of real-valued linear models [29], [31], [43], or
equivalently the model (1) without the second term . In con-
trast with real-valued linear models, we know almost nothing
about hypothesis testing in the mixed integer linear model (1),
unless the unknown integer vector is treated as if it were real-
valued [13]. Since is discrete, the sum of squared residuals
and the generalized likelihood-ratio statistic are not chi-square
distributed nor -distributed, respectively.

In a real-valued linear model, it always makes sense to test hy-
potheses of types . For the mixed integer linear model
(1), can be incorrect in the first instance and no statis-
tical testing is needed. For instance, given a (real-valued) non-
singular matrix and a (real-valued) vector , if
is not integral, then we can immediately conclude that
is wrongly formulated, since must be integral. For an arbi-
trary set of and with , proving that the corre-
sponding hypothesis is incorrectly formulated can be very diffi-
cult or even more difficult than testing the hypothesis itself. In
the following discussions, we assume that and make sense
to construct hypotheses. We will formulate the equivalent hy-
potheses in terms of Voronoi cells. In the two-dimensional case,
for example, testing is equivalent to testing whether

is in the set with an infinitely
countable number of elements, and as a result, is dependent on
the probability of error computed over the Voronoi cells of these
integer lattice points.

Since the error vector of (1) is assumed to be normally dis-
tributed, namely, , and is known or given,
the floating solution of is also normally distributed with
variance–covariance matrix . We now discuss, in connec-
tion with precise GPS positioning, testing two hypotheses on the
integers in the mixed integer linear model (1): i) with

given; and ii) with being a given subset of .

A. Testing the Hypothesis of Specified Values for the Integers

The first hypothesis to be investigated is written as follows:

versus (55)

where and are the null and alternative hypotheses, re-
spectively, and is a given integer vector. Unlike real-valued
linear models, since in (1) is discrete, it does make sense to
test (55). From the point of view of maximum likelihood, if the
null hypothesis is true, then it must be most helpful to pro-
duce the measurements . Because the distribution of has been
specified and assumed known, the distribution of has been

completely determined under the null hypothesis . If the in-
teger estimate is exactly equal to , we can compute the prob-
ability for being true as follows:

(56)

The error of first kind or significance level is then computed by
. Unlike tests on the mean in real-valued

linear models, we cannot first specify a number for the signif-
icance level to test (55). On the other hand, the complexity of
the Voronoi cell would make the precise computation of (56)
very difficult and impractical. Thus, we would rather compute
the lower and upper bounds for by using the re-
sults of Sections III and IV. The corresponding tests of (55) may
be said to be conservative and optimistic, respectively.

A test of significance is almost always in favor of null hy-
potheses. An established theory or law (null hypothesis) will
not be abandoned, unless data provide strong evidence against
it. This behavior of statistical testing in favor of the null hypoth-
esis has been well enunciated in terms of prior probability or
simplicity postulate by Jeffreys [25]. However, when GPS ap-
plications are concerned, the null hypothesis of (55) should
be rejected, so far as the evidence of data casts doubt on it. The
reason is obvious: if GPS integer ambiguities are incorrectly
fixed, no precise positioning can be obtained. Thus, the conser-
vative test with the lower probability bound should be recom-
mended in practice.

Up to the present, we have assumed that the observations
contain no biases. Practically, residual biases may remain in ,
which will then deviate systematically from the true GPS
ambiguity unknowns. If happens to be inside the Voronoi cell
of , and if is sufficiently small, then the lower bound
of may approach unity. In this case, we would
almost certainly accept the null hypothesis . However, if we
conduct the chi-square test of

(57)

under a certain small significance level as if (1) were a real-
valued linear model, then (57) is expected to be rejected almost
certainly. In other words, if the null hypothesis (57) cannot be
accepted, this should mean that there exist residual biases in the
observations . The data have cast doubt on the null hypothesis

of (55). As a result of this extra test, one has to make sure that
the residual biases are almost impossible to force out of the
Voronoi cell of , before can be accepted. In practice, one
has to collect more GPS data, either to support the acceptance
of or to reject it, although was almost equal
to unity.

B. Testing a Composite Hypothesis on the Integers

The second hypothesis to be discussed is formulated as
follows:

versus (58)

where is a subset of given integer points, namely, .
and are the null and alternative hypotheses, respec-

tively. If the generalized likelihood ratio statistic is applied to
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test hypotheses of type (58), the integer point in that max-
imizes the likelihood is chosen to construct the test statistic.
In the case of GPS applications, the most conservative practice
should be preferred, since fixing the ambiguities to an incorrect
integer point means that precise positioning is impossible. Thus,
the optimistic likelihood practice of tests should not be suitable
in GPS applications. One might suggest that a least favorable
point in is chosen to construct a test statistic. This proposal
cannot be accepted either, because, in the case of testing
with an infinitely countable number of Voronoi cells, the null
hypothesis will almost always be rejected.

Except for the difficulty mentioned above, if we follow the
practice of testing to test , we may encounter a logical
difficulty from the frequentist point of view, since the true GPS
ambiguity vector is unique, though unknown. Two methods
may be used to circumvent this logical difficulty: i) testing (58)
from the Bayesian point of view; or ii) testing (58) by treating

as a problem of integer interval estimation. To apply the
first method, we have to assume or assign a prior probability
to each integer point in . The Bayesian approach enables to
completely get rid of the logical difficulty elegantly, since we
can naturally assign prior information on each integer point
in . However, the difficulty in practical application of this
strategy is how to generate such prior information reasonably.
A second difficulty inherent in mixed integer linear models is
how to generate prior Voronoi cells for the integer points. If
the prior Voronoi cell is different from that determined from
the data, what is the posterior Voronoi cell while keeping the
posterior estimate as integers? These questions have to be
properly addressed and solved before Bayesian test for mixed
integer linear models can be practically applicable. We will
not follow this line, but further research should certainly be
conducted in the future.

We will use the second approach to test . First, we com-
pute the probability that the Voronoi cells of may contain ,
which is denoted by and is given as follows:

(59)

If is sufficiently close to one, and if , we
believe that contains the true GPS ambiguity vector, and
is accepted with the probability . Accordingly, the
error of the first kind is computed by . As in (56),
it is more feasible to compute the lower bound for and
then use it to decide whether or not to accept conservatively
for GPS applications.

VI. CONCLUDING REMARKS

Estimation and hypothesis testing in real-valued linear
models have been almost thoroughly investigated and are well
documented in standard literature of statistics [29], [31], [36],
[43]. In contrast, very little is known about statistical and proba-
bilistic aspects in a mixed integer linear model, which first arose
from space geodesy and has since become the standard starting
model for GPS precise positioning. Although the integer LS
problem (3) has been well known as the nearest or closest point

problem in many areas of science/engineering and solved by
using integer programming, Teunissen [50] was the first to try
to rigorously address the estimation of integer unknowns in the
context of GPS applications or the mixed integer linear model
(1). Xu et al. [68] gave an alternative two-step procedure to
estimate the integer unknowns of (1). Integer decorrelation
techniques have been studied substantially (see, e.g., [18], [22],
[23], [51], [52], [61]) but were shown by simulations to speed
up the estimation procedure only if the dimension of the integer
vector is not too large [65].

Compared with significant advance in numerical solutions of
and , very limited results have been obtained in statistical and

probabilistic aspects on the estimated integers. First results on
probabilistic bounds for a lattice point were given by Hassibi
and Boyd [22], [23] and Viterbo and Biglieri [62]. The upper
bound is derived by using the results of Shannon [45] and per-
forms better than the corresponding upper bound of second el-
lipsoidal type with its region defined by (47). We should note,
however, that the results of Shannon’s type are valid only if
the probability distributions of data are elliptically symmetric,
while our upper bounds of ellipsoidal types are generally ap-
plicable. Teunissen [55], [59] also gave some lower and upper
probabilistic bounds for . His best possible lower bound
is the same as that given by Hassibi and Boyd [22], [23], and
is the largest possible of second ellipsoidal type if the shape of
the ellipsoid is predetermined by using . We have shown
that the second ellipsoidal and Shannon’s types of probabilistic
bounds perform poorly, although they have been most often used
in the literature [23], [57]–[59], [62]. As a result, we have in-
vestigated the lower and upper probabilistic bounds of rectan-
gular and first ellipsoidal types with maximum volume, which
are much better than those used in the literature. In particular,
the rectangular type of fitting results in the tightest lower and
upper probabilistic bounds. They almost reproduce the proba-
bility over itself in both examples if the region covered
by Shannon’s type of fitting is supposed to be equivalent to two
times standard deviation. Even though the first ellipsoidal type
of fitting with maximum volume is better than the rectangular
type in one of the examples in terms of areas of lower bounds,
the rectangular type is still better in providing a tighter lower
probabilistic bound.

By using interval arithmetic mathematics, we are able to elim-
inate an infinite number of redundant hyperplanes and thus only
retain a finite number of constraints to construct the Voronoi
cell . We have then proposed applying the active set method
to enumerate all the vertices of the Voronoi cell. As a result,

has been completely constructed. Due to the complexity of
for a general positive-definite matrix, we have developed

methods to bound by recasting the problems of bounding as
optimization models. Thus, we have derived systematically the
tightest bounds of rectangular, ellipsoidal, and spherical types
for the Voronoi cell from inside and outside. Accordingly,
we also have obtained the lower and upper probabilistic bounds
for .

We have discussed the tests of two hypotheses on the inte-
gers in the mixed integer linear model (1). These tests are called
conservative and optimistic, respectively, depending on whether
lower or upper probabilistic bounds are used. From the point of
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view of practical GPS applications, conservative tests should be
exercised, since fixing GPS ambiguities to an incorrect integer
point is a complete failure to precise GPS positioning. On the
other hand, unlike hypothesis tests in real-valued linear models,
significance levels cannot be predetermined but have to be com-
puted in statistical testing on the integers in the mixed integer
linear model (1). Finally, we shall have to note that Section V is
just a starting point toward hypothesis testing in mixed integer
linear models, and much work remains to be done, for example,
to test a more general hypothesis with real-valued and integer
unknowns, and with or without prior information or random
effect.
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