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Abstract. We develop a code length principle which is invariant to the
choice of parameterization on the model distributions. An invariant ap-
proximation formula for easy computation of the marginal distribution
is provided for gaussian likelihood models. We provide invariant estima-
tors of the model parameters and formulate conditions under which these
estimators are essentially posteriori unbiased for gaussian models. An
upper bound on the coarseness of discretization on the model parameters
is deduced. We introduce a discrimination measure between probability
distributions and use it to construct probability distributions on model
classes. The total code length is shown to equal the NML code length
of Rissanen to within an additive constant when choosing Jeffreys prior
distribution on the model parameters together with a particular choice
of prior distribution on the model classes. Our model selection principle
is applied to a gaussian estimation problem for data in a wavelet rep-
resentation and its performance is tested and compared to alternative
wavelet-based estimation methods in numerical experiments.

Copyright c© 2004 by Eirik Fossgaard



Contents

Chapter 1. Introduction 5
1. Wavelet-based recovering of data corrupted by noise 5
2. Model selection, code lengths, prior information, invariance 8
3. Connecting code length principles to wavelet-based denoising 11
4. Organization of thesis 13
5. Contact information and documentation 14
6. Acknowledgements 14

Chapter 2. Development of an invariant code length principle 15
1. Definition of problem and data generating model 15
2. Outline of motivation and strategy 17
3. Definition of the model class 18
4. Invariant Laplace-approximation of marginal density 18
5. Generalized Laplace-approximation of marginal density 25
6. Marginal renormalization 27
7. Discriminating between model classes 30
8. Model selection by the INMDL Principle 36
9. The INMDL- versus NML-principle for gaussian likelihood 39
10. The posterior mean of parameters 41
11. Discretization of model parameters 43
12. A formal approximative generalization to non-gaussian models 50

Chapter 3. Applying the INMDL-principle to GGD-modelled data 53
1. Preliminaries 53
2. The marginal normalization Cγd for GGD priors 56
3. The model selection algorithm for GGD distributed parameters 59
4. The approximation errors for the GGD model 60
5. Numerical methods and experiments 63

Chapter 4. The INMDL-principle applied to an inverse problem 77
1. Definition of problem and data generating model 77
2. The model selection algorithm 78
3. Numerical methods and experiments 83

Bibliography 93

Appendix A. Notation and definitions 97

3



4 CONTENTS

Appendix B. The mirror wavelet basis 99

Appendix C. Calculation of Fisher matrix for the likelihood function 109

Appendix D. The Laplace approximation formula for the marginal 113

Appendix E. The marginal normalization Cγd 141

Appendix F. The partial derivatives of Φ̂(x, τ̂ , θ̂) up to order 3 149

Appendix G. Some fourth order partial derivatives of Φ̂(x, τ∗,θ∗) 155

Appendix H. Numerical results 157



CHAPTER 1

Introduction

This thesis describes the development of a codelength and model selec-
tion principle for gaussian likelihood models which is invariant to the choice
of parameterization of the model. We provide an invariant marginal approx-
imation formula and invariant estimators which are shown to be essentially
a posteriori unbiased under ”reasonable” conditions on the signal to noise
ratio and data generating model. An upper bound on the coarseness of
discretization of model parameters is deduced. Also, we introduce the con-
cept of a model class prior distribution, which enables us to discriminate
quantitatively in terms of code lengths between different choices of prior dis-
tributions on the parameters that we want to estimate. The model class
distribution may be interpreted as a quantitive measure of the amount of
trust we have in our prior information of the data generating process. We
show in numerical experiments that the choice of model class prior distri-
bution may be of crucial importance to the performance of estimators when
estimating parameters in additive white gaussian noise. The principle is
compared to the NML-principle of Rissanen in both theory and numerical
experiments.

1. Wavelet-based recovering of data corrupted by noise

We will rely on the properties of discrete orthogonal wavelet bases [Dau92,

Mal98b, Wic94] to provide us with a sparse (most coefficients are ”al-
most” zero) representation of the data sets. Empirical work [ML99] has
shown that the family of Generalized Gaussian distributions (GGD) may be
used to provide reasonable models for natural image data when represented
in the wavelet domain. Wavelets have through the last 15 years been used
extensively in problems of estimating data corrupted by additive noise (de-
noising). The wavelet based methods may all be divided into three main
steps: Given a dataset x ∈ Rn, do

(1) Expand the data x ∈ Rn into an discrete orthogonal wavelet basis

W ∈ Rn×n by computing the linear orthogonal transform w
def
=

W Tx.
(2) Process the transformed data w in the wavelet domain to yield ŵ.
(3) Inverse-transform the processed transformed data ŵ back into the

original space domain to yield the estimate x̂
def
= Wŵ.

5



6 1. INTRODUCTION

Several denoising techniques have been developed for processing in the wavelet
domain, [DJ94, DJ95, ML99, BG95c, Vid98], the differences between
methods depending on the type data and modeling assumptions. Com-
mon to most wavelet-based denoising techniques are shrinkage-estimators
operating in the wavelet domain, and among these, threshold estimators in
particular. The most popular threshold operators take the form:

Hard threshold estimator: h
(hard)
t (x) =

{
0, if |x| < t,
x, if |x| ≥ t.

(1)

Soft threshold estimator: h
(soft)
t (x) =

{
0, if |x| < t,
x− sgn (x)t, if |x| ≥ t.

(2)

Firm threshold estimator: h
(firm)
t1,t2 (x) =





0, if |x| < t1,
sgn (x)t2(|x|−t1)

t2−t1 , if t1 ≤ |x| ≤ t2,

x, if |x| ≥ t2.
(3)

The generic case studied in the litterature referenced above is that of recover-
ing an unknown function g(t) : [0, 1] −→ R at sample points 0 ≤ si ≤ 1, 1 ≤
i ≤ n by providing estimates of the discrete samples θ = {g(si)}ni=1 ∈ Rn

when corrupted by additive white gaussian noise η ∈ Rn. The samples are
all modelled as independently and identically distributed:

xi = g(si) + ηi, 1 ≤ i ≤ n (4)

where

ηi ∼ N (0, σ), 1 ≤ i ≤ n

and g is the underlying unknown function:

g : [0, 1] −→ R.

At the sample points si we define

θi
def
= g(si). (5)

Hard and soft threshold estimators applied in the wavelet domain were stud-
ied in the work of Donoho and Johnstone [DJ94] and results on universal
optimality of the estimators were reported: Let δi ∈ {0, 1} be the ideal
diagonal projection operator defined by

δi = I{|θi|>σ} (6)

where I is the indicator function. Supposing we have an oracle available

providing us with the δi, then the ideal risk R(θ̂(ideal), θ)
def
= Ex‖θ̂(ideal)(x)−

θ‖22 of the ideal oracle estimator θ̂(ideal)

θ̂
(ideal)
i (xi)

def
= δixi (7)
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becomes

R(θ̂(ideal), θ) =
n∑

i=1

min(|θi|, σ)2. (8)

The ideal risk in (8) is in general not attainable by any estimator without
the aid of an oracle δi, but the following result on universal optimality of

the estimator θ̂
(soft)
tn was shown in [DJ94]:

E‖θ̂(soft)tn − θ‖22 ≤ (2 log n+ 1)
(
σ2 +R(θ̂(ideal), θ)

)
(9)

where θ̂
(soft)
tn is the soft threshold estimator (2) with threshold tn = σ

√
2 log n.

Furthermore, the result (9) was shown to be asymptotically sharp in n, and

that no estimator can come closer to the ideal risk R(θ̂(ideal), θ) than this
for all θ ∈ Rn when forced to rely on the data x alone.

These results were extended to the class of firm threshold estimators [BG95c,

BG95b] and estimates on bias and variances of the estimators have also
been provided [BG95a].

However, the universal threshold tn = σ
√
2 log n leads to an aggressive

thresholding scheme on the data x and the resulting estimates θ̂(x) are of-
ten in experiments and applications found to suffer from oversmoothing and
loss of details, effects which are especially prominent in image denoising
applications. Even though the result (9) is universally optimal, in most sit-
uations of practical interest the signal θ to be estimated is known to possess
some degree of smoothness and this knowledge may be exploited to provide
alternative (more sophisticated) wavelet shrinking estimators with better
performance on this particular type of data. The percieved suboptimality
of the universal thresholding scheme of Donoho and Johnstone in particular
cases could be expected, as their result on the universal optimality of the risk
of the estimator was based purely on their new result in univariate normal
decision theory, and did not presuppose anything concerning the wavelet
representation of the data and/or the sparseness thereof. However, several
minimax results on wavelet shrinkage estimators over wide ranges of Besov-
and Triebel-type smoothness constraints were reported in [DJ98]. Donoho
and Johnstone in [DJ95] provided an adaptive hybrid thresholding scheme
called SureShrink in the wavelet domain which was shown to be nearly min-
imax optimal when the underlying function f belongs to a range of Besov
spaces. The class of functions f : [0, 1] → R of total bounded variation ‖f‖tv
where

‖f‖tv def
= sup

{
n∑

i=1

|f(si+1)− f(si)| : 0 ≤ s1 < · · · < sn ≤ 1, n ∈ N

}
(10)
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are found to provide a reasonable class to embed ”most” natural images
in, [KM03]. Functions of total bounded variation belong on the scale of
Besov spaces, [DJ95]. The SureShrink method uses the Stein Unbiased Risk
Estimate (SURE) [Ste81] separately in each wavelet subband to compute
the threshold minimizing the SURE-estimate. Renormalizing the data x by
the noise level σ so that x ∼ N (θ, 1) and letting θ̂(t)(x) denote the soft
thresholding estimator with threshold t > 0, SURE states that

Ex‖θ̂(t)(x)− θ‖22 = Ex SURE(x, t) (11)

where

SURE(x, t)
def
= n− 2

n∑

i=1

I{|xi|<t} +
n∑

i=1

min(|xi|, t)2 (12)

and the SURE threshold tS is defined as

tS
def
= arg min0<t<tnSURE(x, t), where tn

def
=
√

2 log n. (13)

To circumvent issues of poor performance of SURE in cases of extreme
sparsity of the wavelet coefficients, a measure of sparseness of the wavelet
representation of the data is computed in each subband, and if the represen-
tation within the subband is sparse ”enough”, the universal soft threshold

estimator is used, otherwise the threshold t
def
= min (tS , tn) is used, thus

making the method a hybrid between two different thresholding schemes.
This method has a fast O(n log n) implementation. Moulin and Liu [ML99]
found (empirically) the family of Generalized Gaussian Distributions (GGD)
to be able to provide reasonable model distributions for the probability den-
sity distributions (pdf) of wavelet coefficients θi of natural image data, and
estimators for different GGD distributions were investigated. Results from
similar work were reported in [CV00].

2. Model selection, code lengths, prior information, invariance

We briefly outline the connection between model selection, probability
distributions and code length principles, for a thorough presentation on the
theme we refer to [CT91, Ris98]. Let X be a discrete random variable
with range A (finite or countably infinite) and pdf p(x). Let C(x) denote
the codeword used to encode x ∈ A in a binary representation and let L(x)
denote the length (number of binary bits) of the codeword C(x). The ex-

pected length L(C) of the code C(x) is then defined as L(C)
def
= Ep{L(x)} =

∑
x∈A p(x)L(x). Furthermore, let xn

def
= (x1, x2, ..., xn) and define the code-

word C(xn)
def
= C(x1)C(x2) · · ·C(xn) where C(x1)C(x2) · · ·C(xn) denotes

concatenation of codewords. We only want to consider decodeable codes
C, i.e. codes C where xi 6= xj ⇒ C(xi) 6= C(xj). An important class of
such codes are the prefix codes which have the defining property that no
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codeword is a prefix of any other codeword. Any binary prefix code C(x)
with codeword lengths L(x) satifies the Kraft inequality:

∑

x∈A
2−L(x) ≤ 1 (14)

and conversely: For a given set of codeword lengths L(x), x ∈ A satisfying
(14) there exists a prefix code C(x) with codeword lengths L(x), [Ris98].
Then we note that for a given a pdf q(x) on x ∈ A we may define codeword

lengths Lq(x)
def
= − log2 q(x) and we then have

∑

x∈A
2−Lq(x) =

∑

x∈A
2log q(x) =

∑

x∈A
q(x) = 1 (15)

and conversely for given code C ′(x) with codeword lengths L′(x) we may
define a pdf r(x) on x ∈ A by

r(x)
def
=

2−L
′(x)

∑
x∈A 2−L′(x)

. (16)

Let the entropy H(X) of the random variable X with range A and pdf p(x)
be defined by

H(X)
def
= −

∑

x∈A
p(x) log2 p(x) (17)

then the following inequality holds for any prefix code C

L(C) ≥ H(X) (18)

with equality if and only if L(x) = − log2 p(x),∀x ∈ A, [Ris98].

That is, a prefix code C with codeword lengths L(x) = − log2 p(x) is an
optimal code in the sense that it minimizes the expected codeword length
L(C). Assume xn a data set given to us and let the model class M =
{M1,M2, ...} be a set of models used to explain the data set xn. We may
then construct a binary encoding scheme resulting in binary descriptions
of both the model Mi in question and the data xn in view of this model.
In analogy with above notation, we let L(s) denote the length of a binary
description of an object s, we may write

L(xn,Mi)
def
= L(xn|Mi) + L(Mi). (19)

We will use both the terms code length and description length of the data to
mean the length of the encoded binary string representing the description
of the data xn. Because of (15), (16) we may restrict to considering code
lengths and probability distributions rather than (the construction of) codes
themselves. We use the term code length principle to denote the method of
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assigning a code length to a dataset xn and the model Mi used to explain
this dataset. A good model Mi is one that leads to a short total code length
L(xn,Mi). The term minimum description length refers to the principle of

choosing the model M∗ def
= arg minMi∈ML(xn,Mi) as the model to be used

to explain the data, that is the model providing the shortest description of
dataset and model together.

Different code length principles have been proposed in the litterature, we
will here point out two: The Minimum Description Length (MDL) principle
(and in particular: the Normalized Maximum Likelihood (NML)-principle)
of Rissanen [BRY98, Ris98, Ris01] and the Minimum Message Length
(MML) principle of Wallace [WF87, OH94, OB94b]. The two principles
are similar, but distinct, for a discussion of differences see [OB94a, Lan01].
An important difference between these two principles stem from different
views on the role of prior information on parameters. The following two
citations provides some information on the MDL-view as Rissanen sees it:

”(...) the suggestion that the (prior) distribution π(θ) (of parameters θ) cap-
tures prior knowledge in an adequate manner is untenable and even totally
unacceptable to many because of the interpretation difficulty whenever the
parameter appears to be a contstant-albeit unknown. (...)”, [Ris98], page
10.

And furthermore:

”(...) In our view the parameter θ is generated by our selecting the model
class, and it has no other ’inherent’ meaning. (...)”, [Ris98] page 55.

On the other hand the MML-philosophy in the view of Wallace/Freeman
states:

”(...) there can be no substitute for careful specification of whatever prior
knowledge is available (...)”, [WF87].

Our own opinion in this issue on the role of prior information and prior dis-
tributions on parameters is not quite as clear cut as in the statements cited
above, but we may at least say this: On one hand we want to exploit and
make the most of any prior information we have on the distribution of the
noiseless data θ to help in providing a good estimate θ∗, on the other hand
we do not want to state claims on the prior distribution of the parameters
θ which are too far from the ”truth”, whatever that may be. Introducing
parametric prior distributions has a (heavy) price: It leads to the problem of
providing ”sensible” estimates of the parameters of the prior, a very difficult
task in many cases, as indeed we experienced when applying our models and
theory on the real world in the numerical work presented later in this thesis
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(the problem we experienced was basically of the kind of overfitting model
to the data). This experience motivated us to introduce and construct a
prior distribution on model classes: The model class prior distribution en-
ables us to discriminate quantitatively between different choices of prior
distributions on the model parameters θ which parameterize the likelihood
function. It may be used to provide a theoretically well-founded way of
quantitatively penalizing over-optimistic judgements of robustness and/or
”truth” and ”reasonability” of prior knowledge of the data generating pro-
cess as compared to some carefully chosen reference prior distribution. By
careful we here mean that the chosen reference distribution should be not
too informative, and (ideally) not too non-informative either.

Also, we note that once (a prior distribution π(θ) on) parameters θ
are introduced, the question of invariance [Bal96, Bal97] arises: For given
likelihood distribution f(x|θ), define the Fisher information matrix F (θ) by:

F (θ)ij
def
= −Ex

∂

∂θi∂θj
log f(x|θ), (20)

observe that

m(x)
def
=

∫

θ∈Θ
f(x|θ)π(θ) dθ =

∫

θ∈Θ

f(x|θ)π(θ)
|F (θ)|1/2 |F (θ)|1/2 dθ (21)

and define

dV (θ)
def
= |F (θ)|1/2 dθ, Φ(θ) def

= − log

(
f(x|θ)π(θ)
|F (θ)|1/2

)
(22)

then note that the MML estimator θ∗MML is defined [OB94a] by

θ∗MML
def
= arg minθ∈ΘΦ(θ) (23)

and note that the integration measure dV (θ) is the Riemannian volume
element which provides a reparameterization invariant integration measure
on the parameter manifold Θ on which θ lives and furthermore: The choice of
Jeffreys distribution |F (θ)|1/2/

∫
|F (β)|1/2 dβ as the prior π(θ) is equivalent

to assuming equal prior likelihood of all distributions parameterized by θ ∈
Θ as opposed to equal prior likelihood of parameters θ, [Bal96, Bal97].
This choice of a non-informative prior distribution is what we will use when
comparing our code length principle to the NML-principle of Rissanen.

3. Connecting code length principles to wavelet-based denoising

The observed ability of wavelet bases to provide sparse representations
of several types of real world data sets of interest in diverse research fields
(mammography, medical imaging, seismic data analysis) combined with re-
sults from the extensive empirical and theoretical research on properties



12 1. INTRODUCTION

of the wavelet expansions of data belonging to certain smoothness classes
(Besov-scales, bounded total variation classes), provides information which
may be exploited in building models, model selection and code length prin-
ciples, for example in guiding the choice of prior distribution on the wavelet
expansion coefficients of a dataset.

As pointed out in [DJ94], the wavelet thresholding methods described
previously may be viewed as model selection methods which pick a subset
of the wavelet basis vectors and fits a model to the data by optimizing some

given criterion. In the case of the universal thresholding estimators θ
(soft)
tn ,

θ
(hard)
tn the criterion is the least squares method. In [Sai94] a data adap-
tive model selection method for denoising data corrupted by additive white
gaussian noise was developed by using the Minimum Description Length
(MDL) principle of Rissanen [Ris96, Ris98] as the criterion to be opti-
mized. The resulting denoising method consisted of thresholding the data

in the wavelet domain with a hard thresholding estimator h
(hard)
t with a

data driven threshold t. However, the model selection principle presented
in [Sai94] was generally found in numerical experiments to result in large
thresholds yielding very small models but also a large degree of smoothing
in the estimated data. The explanation for this lies in the crudeness of the
coding assumptions made in this work: A constant budget of log2 n (n is
sample size) bits per wavelet coefficient included in the model was allocated
for encoding the location of the coefficient inside the vector of wavelet expan-
sion coefficients of the data, leading to an extra codelength term of d log2 n
for model size d. This encoding of location of coefficients is in our view re-
dundant in this case, as the rule for optimally selecting wavelet coefficients
to include in the model is inherent to the model selection principle by simply
minimizing the codelength for given model size d. In fact, it was shown in
[CRM98] that for given deterministic noise variance σ2 (that is σ is given
prior to the selection of the model), the coding assumptions in [Sai94] leads
to a hard thresholding scheme with threshold t = σ

√
3 log n which is seen to

be larger than the universally optimal thresholds tn = σ
√
2 log n of [DJ94].

In [Ris00] a MDL-based denoising method for data corrupted by additive
white gaussian noise was deduced, resulting in a hard thresholding scheme
with data driven threshold tMDL. Furthermore it was argued that under
reasonable and rather weak assumptions on the asymptotic (in sample size
n) behaviour of the dataset x, the threshold tMDL ∼ σ̂ML

√
log n where

σ̂ML is the Maximum Likelihood estimate of the noise deviance σ. Another
MDL-based (subband-dependent) method for simultaneous denoising and
compression of image data in the wavelet domain was presented in [HY00].

The model selection principle we will develop is based on minimizing the
description length of the model and dataset when encoded in the binary code
induced by our modelled marginal distribution m(x) and a suitable model
class prior distribution defined on the set of model classes in question. We
will approximate the marginal distribution m(x) in (21) as follows:
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(1) Construct a reparameterization θ̂ = ψ−1(θ) with the property that

the reparameterized Fisher information |F̂ (θ̂)| is constant.
(2) Use ψ to reparameterize the marginal integral (21).

(3) Letting Φ̂(θ̂)
def
= Φ(ψ(θ̂)), expand the reparameterized marginal

integral around the MML estimate θ̂∗MML
def
= arg minθ̂∈Θ̂Φ̂(θ̂) by

Taylor-expanding Φ̂(θ̂) around θ̂∗MML.
(4) Truncate the expansion of the integral to second order to yield the

approximated marginal m̃(x).

Note that the approximation m̃(x) of the marginal integral (21) that results
from the method outlined above is invariant, in that it does not depend
on our original more or less arbitrary choice of parameterization θ. This
independency of the approximation m̃(x) of parameterization θ would in
general not be the case (unlesss our original choice of parameterization θ
was lucky enough to yield |F (θ)| = constant) if we simply approximated the
marginal integral directly by expanding f(x|θ)π(θ) around the maximum
posterior estimate θ∗MAP .

Under some ”reasonable conditions” on the data and prior distribution
π(θ) which will be stated precisely later, we will show for gaussian likeli-
hood models that the described second order approximation of the marginal
integral has small error, and that the MML estimate θ∗MML is ”very close”

to the posterior mean θ♯

θ♯
def
=

1

m(x)

∫

θ∈Θ
θf(x|θ)π(θ) dθ (24)

that is θ∗MML is essentially unbiased in a posterior sense. Furthermore, we
will show that, for a gaussian likelihood and choosing Jeffreys distribution
both as the prior distribution on the parameters and as the reference prior
distribution for the model class distribution, the code length of the model
and dataset is to within an additive constant equal to the NML code length
developed in [Ris96].

4. Organization of thesis

In the second chapter (following the current chapter) we define the prob-
lem to be studied, describe the modeling assumptions, provide the necessary
preliminaries on notation and theory and present the main theoretical results
on the formula for the modelled data generating distribution. We present
the development of the model class prior distribution and a result on the
coarsest possible choice of discretization of model parameters in a posterior
perspective. The longest and computationally tedious proofs are put in the
appendices to which we refer when appropriate. In the third chapter we ap-
ply the theory to the practical problem of denoising data in white gaussian
noise and we present the results from our numerical experiments on the per-
formance of our method. In the fourth chapter we extend our method to a
case of non-white noise and present results from our numerical experiments.
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5. Contact information and documentation

I may at the time of this writing be reached on the email addresses:
eirikf@math.uit.no and: efossgaard@gmail.com. The code (Ansi C)
developed to implement the theory in this thesis in the reported numerical
experiments may be downloaded from:
http://www.math.uit.no/users/eirikf/.
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CHAPTER 2

Development of an invariant code length principle

1. Definition of problem and data generating model

Let Rn be euclidean n-dimensional space equipped with the euclidean
inner product 〈·, ·〉 : Rn × Rn −→ R. Given data x = (x1, ..., xn) ∈ Rn

modeled as

x = θ + η, (25)

where θ = (θ1, ..., θn) ∈ Rn is signal and η = (η1, ..., ηn) ∈ Rn is noise,
our goal is to estimate θ. We think of θ as the sampled projection of
some unknown real valued function u : Rp −→ R, u ∈ X, for some func-
tion space X, onto some n-dimensional orthogonal basis W spanning a n-
dimensional subspace V ⊂ X. We will assume X is some ”sufficiently nice”
subspace of L2(Rp) which members possess some degree of smoothness. We
model the noise coefficients {ηi}ni=1 as independently, identically distributed
(IID) with mean zero, variance τ−1 and gaussian density function f . Thus,
the data {xi}ni=1 are independently distributed (ID) with xi ∼ f(xi|θi, τ)
where θ = (θ1, ..., θn)

T are the mean values of the data xi, i = 1, ..., n,
τ−1 is the variance of each xi and f is a gaussian likelihood function. De-

fine f(x|θ, τ) def
= f(x1|θ1, τ) · · · f(xn|θn, τ). Only d < n of the parameters

{θi}ni=1 are considered to be free nonzero parameters which we are able to
estimate ”reasonably” accurate under the modeling assumption (25) and
we will model these d parameters as independently identically distributed
(IID). Thus the set of parameters θ ∈ Rn is a d-dimensional submanifold
Θd of Rn. In coordinates θi this may be expressed by a binary index vector
γd = (γd(1), γd(2), ..., γd(n)) ∈ {0, 1}n where γd has exactly d nonzero ele-
ments. We define θi to be a model parameter if and only if γd(i) = 1. Then
we may write a prior density πλ(θi) on the form

πλ(θi) =

{
hλ(θi), if γd(i) = 1
g(θi), if γd(i) = 0,

(26)

where hλ is some probability distribution parameterized by λ centered in
origo (zero first moment) and λ−1/2 equals the second moment (deviance)
and g is some density. We will restrict πλ to the class of priors which
are everywhere smooth except possibly at the origin. We extend hλ, g to
densities on Rd and Rn−d respectively by assuming independence of the
{θi}ni=1. It is in most cases more difficult to have a clear a priori idea of
what a suitable prior distribution ς(τ) on the parameter τ should be. For

15
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reasons of simplicity in the computations to come, we will restrict the prior
distribution ς(τ) on τ to be the uniform distribution

ς(τ) = |Iτ |−1, ∀ τ ∈ Iτ ⊂ (0,∞) (27)

where Iτ is some bounded interval. We may reorder the index i indexing
θ = (θ1, ..., θn)

T so that γd(i) = 1 if and only if 1 ≤ i ≤ d and zero otherwise.
We reorder the data x = (x1, ..., xn)

T by the same reordering performed

on the parameters {θi}ni=1. We define θ‖
def
= (θ1, ..., θd,0

T
1 ) ∈ Rn, θ⊥

def
=

(0T2 , θd+1, ..., θn) ∈ Rn, x‖
def
= (x1, ..., xd,0

T
1 ) ∈ Rn, x⊥

def
= (0T2 , xd+1, ..., xn),

where 01 is the zero vector in Rn−d and 02 is the zero vector in Rd. We have
then the orthogonal decompositions x = x‖+x⊥, θ = θ‖+ θ⊥ and through
the set of model indices γd and the basis W we get an induced orthogonal
decomposition V = V‖ ⊕ V⊥. We model g = δ, where δ is the Dirac delta
distribution, implying θ⊥ = 0 and thus θ = θ‖ and

πλ(θ) = δ ∗ hλ(θ) = hλ(θ). (28)

To set up the proper definition of the marginal integral, a few words must be
said on the status of the parameters τ , λ, i.e whether we consider them to
be deterministic parameters defined prior to (and independent of) selection
of model γd, or stochastic parameters depending on the model γd. In the lit-
terature on model selection applied to denoising there are examples on both
approaches [HY00], [Ris00]. We will here always consider the parameter τ
stochastic, uniformly distributed over some bounded interval Iτ ⊂ R+, and
its estimator τ∗ to be determined in conjunction with the model γd. As for
the parameter λ we have deduced results on the marginal distribution for
both cases. We will in the experiments section consider λ to be stochastic
and (for reasons of computational simplicity) uniformly distributed on some
bounded interval. The estimator λ∗ will therefore depend on the model γd.
For now, however, we consider λ deterministic.

Given Iτ and λ we define the marginal density mγd(z|Iτ , λ) by

mγd(z|Iτ , λ)
def
=

1

|Iτ |

∫

θ∈Rd,τ∈Iτ
f(z|θ, τ)πλ(θ) dθ dτ. (29)

We note that if λ is considered stochastic, that is we consider it unknown
to us prior to the model selection process, the integral in (29) should also
include an integration over a bounded λ-interval Iλ ⊂ R+. This is discussed
in detail below, see Proposition 5.1 and Corollary 5.1. The subscript γd in
mγd is used to emphasize the dependence of the marginal density on the
selected model indexed by γd. We consider mγd to be the data generating
distribution in our model for the data, though it is not necessarily, and in
most cases not, the true data-generating distribution q, say.
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2. Outline of motivation and strategy

We will exploit the compression abilities of wavelets and wavelet packet
bases on broad classes of natural signals and images to provide a sparse
representation of the data in some (possibly data driven) wavelet domain.
This will allow a smaller data generating model (smaller model size d) and
thus a more compact description of the data itself, parameterized by θ and
τ . This will be essential to our use of the Minimum Desription Length
Principle (MDL Principle) in constructing a posteriori unbiased estimators
θ♯(x), τ ♯(x). The transforms we will consider are orthogonal transforms
of wavelet-type. Let W ∈ Rn×n be some discrete orthogonal basis of Rn

consisting of discrete wavelet packet functions. We will consider the given
data x to be the finest scale wavelet coefficients of the data available to us,
so that W T : Rn −→ Rn is a linear orthogonal operator on Rn. Define

xw
def
= W Tx, θw

def
= W Tθ. For notational simplicity we will drop the

superscripts w, and assume that x and θ are data and signal expanded in
some fixed suitable basis of wavelet type.

As we will se below, for many choices of ”realistic” prior distributions
for the parameters, our models will result in estimators θ∗ belonging to
the class of thresholding estimators as have been described in [DJ94] and
[BG95c]. Threshold estimators are MAP-estimators for the class of GGDν

priors with shape parameter 0 < ν ≤ 1 as demonstrated in [ML99]. It is
known from [DJ94], that the MSE universally ideal (meaning optimal over
all θ ∈ Rn) threshold value tn grows like σ

√
2 log n as n→ ∞ where n is the

sample size and σ the noise deviance. Furthermore, note that the formula
tn ∼ √

2 log n for the MSE ideal threshold value only applies for large n.
For smaller n on the order of a few hundred the MSE optimal threshold
values are significantly smaller than σ

√
2 log n, and this remains true for an

even larger range of sample sizes n for the lower threshold t1 in the firm
threshold estimator (3). The performance of the estimators in (1)-(2) when
using the universal MSE optimal threshold values tn is often found not to
be satisfying on several types of natural data encountered in problems of
applied nature in that it leads to too much smoothing in the estimates.
This lack of performance is mainly due to the fact that the universally
optimal MSE value of the threshold t is too large, in other words t grows
”too fast” with increasing dimension n of the dataset. Several refined/data
adaptive threshold schemes as in [BG95b, DJ95, CV00, ML99] have
been suggested. We will use model selection in a wavelet basis to determine
the relevant dimension d < n of the dataset in this basis and the compute
the resulting data adaptive estimators θ♯ and τ ♯. We will seek to derive a
model selection principle and estimators θ♯, τ ♯ which are invariant to the
choice of parameterization of our models.

The rationale behind the idea of decomposing the data x into x = x‖ +
x⊥ is the observation that the part of data x consisting of signal is efficiently
compressed, meaning it can be accurately represented in the sense of small
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ℓ2 squared loss by a small subset of its expansion coefficients in a wavelet-
type basis W , whereas the noise is essentially not compressible in this type
of basis. Thus, to some extent it is possible to choose the space V‖ so that it
contains most of the signal and therefore the space V⊥ will contain mostly
noise. We will make use of the Minimum Description Length Principle
[Ris98], [BRY98] to determine the ”best” signal subspace V‖ of the space
V where V‖ = Spani:γd(i)=1{wi} and {wi}i:γd(i)=1 is some subset of the

column vectors of the full basis matrix W = {wi}ni=1.

3. Definition of the model class

We need to know how to determine x‖. As mentioned above, the mar-
ginal density mγd is likely not the true data generating distribution q. De-
pending on to which extent mγd is able to approximate q, we can expect
mγd to approximate q more or less closely in the space of probability dis-
tributions by optimizing the choice of the model index vector γd under the
modelled data generating distribution (29). Beyond some subset of param-
eters {θi}i:γd′ (i)=1 of size d′ ≤ n, it may be meaningless to try to estimate
more parameters as these parameters do not capture more of the properties
of the unknown underlying true data generating distribution q. That is,
further adding of parameters to our model will result in overfitting mγd to
the specific dataset x at hand, [Bal96, Bal97].

With this in mind, for given likelihood distribution f(x|θ, τ) and prior
distribution πλ(θ), let Md denote the class of all models with d nonzero
parameters θi as defined by index vectors γd ∈ {0, 1}n. Because each index
vector γd index a different data generating distribution mγd , we will say
that Md is a model class for the modelled data generating distribution mγd .
There are

(n
k

)
ways to pick k elements out of n elements. Therefore the

number of distinct models inside each model class Mk is
(n
k

)
. Letting M def

=⋃n
k=0Mk denote the collection of all model classes under consideration, we

have |M| =∑n
k=0 |Mk|=

∑n
k=0

(n
k

)
= 2n. This yields a total of 2n different

models.

4. Invariant Laplace-approximation of marginal density

We will in this section develop a theory of a parameterization invariant
approximation of the marginal distribution mγd(x) by expanding the defin-
ing integral (29) about certain points θ∗ and τ∗. We will start with the
simplest case where we have complete knowledge of the prior distribution
πλ(θ), that is we know all its parameters. The result is shown in in Theorem
4.1. Then we proceed to the case where an estimate of the parameters of
the prior distribution πλ(θ) has to be estimated from the given data set x.
The result is shown in Corollary 5.1.
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Definition 4.1. The Fisher information matrix F (β) for a likelihood
function f(x|β) parameterized by parameters β = (β1, ..., βk)

T is defined as

F (β)
def
= −Ex

{
∂

∂β
log f(x|β)

(
∂

∂β
log f(x|β)

)T}
. (30)

As explained in [Bal96] the Fisher information matrix induces a metric
on the Riemannian parameter manifold in the space of distributions param-
eterized by β and this metric is invariant to smooth transformations of the
parameter vector β. We have therefore the following result:

Proposition 4.1. The integration measure dV (β) = |F (β)|1/2dβ is a
reparameterization invariant integration measure on the parameter manifold,
where |F | denotes the absolute value of the determinant of the Fisher matrix
F .

Proof. Let β = ψ(β̂) define a reparameterization of β with g(z|β̂) def
=

f(z|ψ(β̂)). The volume element dV̂ (β̂) in the reparameterized system is

dV̂ (β̂) = |Jψ(β̂)T F (ψ(β̂))Jψ(β̂)|1/2dβ̂, where Jψ(β̂)ij def
= ∂βi

∂β̂j
is the jacobi

matrix of the transformation ψ. Then the prior density πλ transforms as

πλ(β)dβ → ρλ̂(β̂)dβ̂ under β → ψ(β̂) where ρλ̂(β̂)
def
= πλ(ψ(β̂))|Jψ(β̂)|.

We have to show that dV̂ (β̂) = |F̂ (β̂)|1/2dβ̂, where F̂ (β̂) is the Fisher
information matrix of the likelihood function g. We observe that

F̂ij(β̂)
def
= −Ez∼g

{
∂2 log g(z|β̂)
∂β̂i∂β̂j

}
= −Ez∼f

{
∂2 log f(z|ψ(β̂))

∂β̂i∂β̂j

}
,

by the chain rule we have

= −Ez∼f




∑

k,l

∂2 log f(z|β)
∂βl∂βk

∂βl

∂β̂i

∂βk

∂β̂j
+
∑

k

∂ log f(z|β)
∂βk

∂2βk

∂β̂i∂β̂j



 , (31)

now it is easily verified that Ez∼f
{
∂ log f(z|β)

∂βk

}
= 0, ∀ k, and what re-

mains is the ij element of the matrix Jψ(β̂)
TF (β)Jψ(β̂), thus we get

dV̂ (β̂) = |Jψ(β̂)TF (β)Jψ(β̂)|1/2 dβ̂ = |F (β)|1/2|Jψ(β̂)| dβ̂ which proves
the invariance of dV (β) to smooth transformations of β. �

Now rewrite the integral in (29) as

mγd(z|Iτ , λ) =
1

|Iτ |

∫

β∈Θ×T
f(z|β)πλ(β) dβ

=
1

|Iτ |

∫

β∈Θ×T
f(z|β) πλ(β)

|F (β)|1/2 · |F (β)|1/2 dβ

=
1

|Iτ |

∫

β∈Θ×T
f(z|β) πλ(β)

|F (β)|1/2 dV (β) (32)
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where dV (β) is the reparametrization invariant integration measure dis-
cussed above. We have the following result

Proposition 4.2. The integrand f(z|β) πλ(β)

|F (β)|1/2 is invariant to repa-

rameterizations β = ψ(β̂).

Proof. To see this, simply observe that

g(z|β̂) ρ(β̂)

|F̂ (β̂)|1/2
= f(z|ψ(β̂)) πλ(ψ(β̂))|Jψ(β̂)|

|Jψ(β̂)TF (β)Jψ(β̂)|1/2

= f(z|β) πλ(β)

|F (β)|1/2 . (33)

�

We note that − log
(
f(z|β)πλ(β)/|F (β)|1/2

)
is, up to terms not depending

on data z or parameters β, the same expression one seeks to minimize in
estimator and model selection by the Minimum Message Length (MML)
principle in [OB94b].

We may now proceed to calculate the integral in (29) by a Laplace
method which is invariant to reparameterizations. The Laplace method
for evaluating marginal densities was investigated in [TKK89], [TK86],
[KTK88] in the univariate case which may be straightforwardly extended
to the the multivariate case of IID variables whereas in our case we face the
problem of evaluating the marginal density in the multivariate case of ID
variables which are not identically distributed, e.g different means (E{zi} =
θi, 1 ≤ i ≤ d). Using the notation and definitions from above, we write

mγd(z|Iτ , λ) =
1

|Iτ |

∫

θ∈Θ,τ∈Iτ
f(z|θ, τ) πλ(θ)

|F (θ, τ)|1/2 dV (θ, τ) (34)

=
1

|Iτ |

∫

θ∈Rd,τ∈Iτ
exp [−Φ(z, τ,θ)] dV (θ, τ) (35)

where −Φ(z, τ,θ)
def
= log

[
f(z|θ, τ) πλ(θ)

|F (θ, τ)|1/2
]

v

(36)

and define the invariant MML-estimators by

θ∗
def
= arg min θ∈Rd Φ(z, τ,θ), τ∗

def
= arg min τ∈Iτ Φ(z, τ,θ), (37)

assuming the existence of extremal points θ∗ and τ∗ where ∂Φ
∂θ (z, τ,θ)

∣∣
θ=θ∗

= 0 and ∂Φ
∂τ (z, τ,θ)

∣∣
τ=τ∗

= 0. It suffices that Φ(z, τ,θ) is a convex function
in each of the parameter arguments τ and θi, i = 1, ..., d. If we knew the
exact form of the integration measure dV (θ, τ), we could approximate the
marginal density mγd(z|Iτ , λ) by expanding the integral (35) around θ∗ and
τ∗ up to some order in θ and τ . However, when doing such an expansion we
want ”low order asymptotic convergence” of the expansion series, to avoid
both complex computations and complex resulting formulas possibly difficult
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to analyse and implement. By ”low order asymptotic convergence” we mean
that second order Taylor approximations of Φ in (35) will be ”accurate
enough” for our purposes in the sense that asymptotically in the sample
size n, our low order expansion of the integral will converge ”sufficiently
fast” to the exact value of the integral. We will define ”accurate enough”
and ”sufficiently fast” later. This ”low order asymptotic convergence” may
be difficult to achieve in arbitrary chosen parameterizations θ, τ . Also, the
result would depend on our more or less arbitrary choice of parameterization
of the distributions f and πλ in the first place. On this background we seek
a reparameterization τ 7→ τ̂ and θi 7→ θ̂i, 1 ≤ i ≤ d yielding dV (θ, τ) →
dV̂ (τ̂ , θ̂) = v0 dθ̂ dτ̂ where [v0]u is some positive real constant number. To
construct such a reparameterization we will limit our investigation to the
case of a gaussian likelihood f . We then write

f(z|θ, τ) =
( τ
2π

)n
2
exp

(
−τ
2
‖z⊥‖2

)
exp

(
−τ
2
‖z‖ − θ‖2

)
. (38)

Let τ̄ be some real positive dimensionless constant number and let τ0 be
some real positive constant with [τ0]u = [τ ]u. We choose

τ = ψ(τ̂), ψ(0) = τ0, θi = φ(θ̂i, τ̂)
def
=
τ̄1/2

τ1/2
θ̂i =

(
τ̄

ψ(τ̂ )

) 1
2

θ̂i, 1 ≤ i ≤ d.

(39)

The Fisher matrix F̂ (θ̂, τ̂) then evaluates to (see appendix)

F̂ij(θ̂, τ̂) =





(
1

ψ(τ̂ )
dψ(τ̂ )
dτ̂

)2 (
n
2 + τ̄

4

∑d
k=1 θ̂

2
k

)
if i = j = 1,

τ̄ , if i = j, 1 < i, j ≤ d,

−1
2 τ̄

1
2 θ̂j

1
ψ(τ̂ )

dψ(τ̂ )
dτ̂ if i = 1, 1 < j ≤ d,

−1
2 τ̄

1
2 θ̂i

1
ψ(τ̂ )

dψ(τ̂ )
dτ̂ if j = 1, 1 < i ≤ d,

0 else.
(40)

As shown in the appendix, the determinant of F̂ (θ̂, τ̂) as given in (40) above
evaluates to

|F̂ (θ̂, τ̂)| = n

2
τ̄d
(

1

ψ(τ̂ )

dψ(τ̂ )

dτ̂

)2

. (41)

Now, our choice of reparameterization in (39) implies θ̂i, 1 ≤ i ≤ d and τ̂

are dimensionless parameters. Therefore we may put |F̂ (θ̂, τ̂ )|1/2 = ¯̄τd/2,
where ¯̄τ is some positive real dimensionless number. This gives us together
with (41) and the initial condition in (39) the equation

dψ(τ̂ )

dτ̂
= ±

(
¯̄τ

τ̄

) d
2
(
2

n

)1/2

ψ(τ̂ ), ψ(0) = τ0. (42)
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We choose the plus-sign in (42). This choice implies no loss of generality, as
it is only a matter of sign convention on the parameter τ̂ . Solving (42) then
gives

ψ(τ̂ ) = τ0 exp

((
¯̄τ

τ̄

) d
2
(
2

n

) 1
2

τ̂

)
(43)

where τ̂ , τ̄ , ¯̄τ are dimensionless numbers and [τ0]u = [τ ]u. For notational
convenience we define

ǫd
def
=

(
¯̄τ

τ̄

) d
2

(44)

and

δn
def
=

(
2

n

) 1
2

. (45)

Define

Φ̂(z, τ̂ , θ̂)
def
= − log

[
g(z|θ̂, τ̂ )ρ(θ̂)
|F̂ (θ̂, τ̂)|1/2

]

v

= − log



f
(
z|φ(θ̂, τ̂), ψ(τ̂ )

)
πλ

(
φ(θ̂, τ̂ )

)
|Jφ,ψ|

|JTφ,ψF (φ(θ̂, τ̂), ψ(τ̂ ))Jφ,ψ|1/2



v

= Φ(z, ψ(τ̂ ),φ(θ̂))

(46)

where we used (33). Furthermore, define

θ̂∗(z)
def
= arg min

θ̂∈Θ̂ Φ̂(z, τ̂ , θ̂), τ̂∗(z)
def
= arg min τ̂∈Îτ̂ Φ̂(z, τ̂ , θ̂) (47)

where we have assumed Φ̂(z, τ̂ , θ̂) is convex in each of its parameter argu-

ments τ̂ and θ̂i, i = 1, ..., d, thus the existence of τ̂∗ and θ̂∗ is guaranteed.
The integral in (35) defining mγd(z|Iτ , λ) may then be rewritten as

mγd(z|Iτ , λ) = ¯̄τ
d
2

1

|Iτ |

∫

θ̂∈Rd,τ̂∈Îτ̂
exp

(
−Φ̂(z, τ̂ , θ̂)

)
dθ̂ dτ̂ . (48)

Now, our constructed reparameterization above will provide us with the
necessary means for approximating the marginal mγd(z|Iτ , λ) to sufficient
accuracy by a second order approximation which is invariant to reparame-
terizations.

Theorem 4.1. (Invariant second order approximation of marginal den-
sity) Let x ∈ Rn be the given data set under the model (25) and an index
vector γd ∈ {0, 1}n of model indices with d nonzero elements, 0 < d < n.
Let θ∗ and τ∗ be the invariant estimators defined in (37). Let Iτ ⊂ (0,∞)
be a bounded closed interval containing the MML-estimate τ∗. Let f(x|θ, τ)
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be a gaussian likelihood function of data x and πλ(θ) a prior density on the
parameters θ ∈ Rd with a given variance λ−1. Let x = x‖ + x⊥ be the
orthogonal decomposition of the data induced by the selected model γd of size
d. Let F (θ, τ) denote the (d + 1) × (d + 1) Fisher matrix of the likelihood
function f(x|θ, τ) with respect to parameters θ, τ . Let H(x,θ, τ) denote

the (d + 1) × (d + 1) Hessian matrix of πλ(θ)f(x|θ, τ) |F (θ, τ)|− 1
2 , let PG

denote the Gaussian distribution function. Then the marginal mγd(x|Iτ , λ)
defined in (29) may be expressed as follows:

mγd(x|Iτ , λ) =
(2π)

d+1
2

|H(x, τ∗,θ∗)| 12
f(x|τ∗,θ∗)πλ(θ∗)|Iτ |−1×

[
d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)}

)]
{1 +O (κ)} {1 + ξ} . (49)

The formula (49) applies under the following sufficient conditions:

(1) (Shape of prior) πλ(θ) = C · λ 1
2 exp(−h(λ 1

2 θ)), some constant C > 0,
λ > 0, where h is an integrable, symmetric function of θ such that

lim
|θ|→∞

h(λ
1
2 θ) = ∞. (50)

(2) (Heaviness of tails, integrability and smoothness on the prior) There
exist constant real numbers 0 < ν < 2, B′

ν ≤ Bν, Cν > 0 so that the
inequalities

B′
ν ≤ h(λ

1
2 θ) ≤ Bν + Cν

∣∣∣λ 1
2 θ
∣∣∣
ν
, ∀ [θ]v ∈ R, 1 ≤ i ≤ d, (51)

and

0 ≤
∣∣∣∣
[
∂k

∂θk
h(λ

1
2 θ)

]

v

∣∣∣∣ ≤ Cν

∣∣∣∣
[
∂k

∂θk

∣∣∣λ 1
2 θ
∣∣∣
ν
]

v

∣∣∣∣ , (52)

hold for ∀ [θ]v ∈ R, and for all 1 ≤ k <∞, 1 ≤ i ≤ d.

(3) (SNR and model size) The number 0 ≤ ζ < 1 is defined by

ζ
def
= sup

1≤i≤d

{
Cνν|ν − 1|

(n
d
Ω(λ, τ∗)

)− ν
2 |(τ∗) 1

2 θ∗i |ν−2

}
< 1 (53)

where Ω(λ, τ) is the signal to noise ratio (SNR)

Ω(λ, τ)
def
=
dλ−1

nτ−1
.
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(4) (The size and location of the interval Iτ ) The interval Iτ satisfies

τ∗ ∈ Iτ ⊂
(
τ∗ exp

[
−
(
log2N(λ, ν, γd)

N(λ, ν, γd)

)1
2

]
, τ∗ exp

[(
2 log2N(λ, ν, γd)

N(λ, ν, γd)

) 1
2

])

(54)

where

N(λ, ν, γd) ∼
{ n−d+2

2 , if 0 < ν ≤ 1
n−d+2

2 − Cνν|ν−1|
4 d, if 1 < ν ≤ 2.

We add that if the conditions (1)-(6) listed above are satisfied, one may then
show the following bounds on κ and ξ:

(5) (The approximation error O (κ) from the Taylor terms above second
order) |κ| may be bounded from above by

|κ| < 4

3
(1 + ζ)

Cνν|ν − 1| · |ν − 2|
(
n
dΩ(τ

∗, λ)
) ν

2

∣∣∣∣∣∣∣

d∑

j=1

∣∣∣(τ∗) 1
2 θ∗j

∣∣∣
ν−1

sgn (θ∗j )
(
1 + 2

τ∗(θ∗j )
2

)

exp
(
1
2τ

∗(θ∗j )
2
)

∣∣∣∣∣∣∣

+
1

N(λ, ν, γd)

d∑

j=1

τ∗(θ∗j )
2

exp
(
1
2τ

∗(θ∗j )
2
)

+

∣∣∣∣∣∣
(2π)−

1
2

N(λ, ν, γd)

d∑

i,j=1

τ∗(x‖(i)− 1
2θ

∗
i )(x‖(j) − 1

2θ
∗
j )

exp
(
1
2τ

∗
[
(θ∗i )

2 + (θ∗j )
2
])

∣∣∣∣∣∣
. (55)

(6) (The contribution ξ from the integral of exp(−Φ) over Rd \ {⋃d
i=1 Si}

where Si is the ”quadrant” of Rd containing θ∗i .) The number ξ may be
bounded from above by

1 < ξ + 1 <

d∏

i=1

{
1 +

[
2PG

(
−τ

1
2
1

∣∣x‖(i)
∣∣
)
sup
t∈R

πλ=1(t)/πλ=1

(
u0

(
τ

1
2
1 x‖(i)

))]
×


1 + erf

(
τ

1
2
1 |x‖(i)|

) inf
t∈
(
0,u0

(
τ
1
2
1 x‖(i)

)) πλ=1(t)

πλ=1

(
u0

(
τ

1
2
1 x‖(i)

))

− 2Cνν

(2π)
1
2

Lν(τ
1
2
1 x‖(i))

sup
t∈
(
u0

(
τ
1
2
1 x‖(i)

)
,∞
) πλ=1(t)

πλ=1

(
u0

(
τ

1
2
1 x‖(i)

))




−1


(56)
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if

πλ=1

(
u0

(
τ

1
2
1 x‖(i)

))

sup
t∈
(
u0
(
τ
1/2
1 x‖(i)

)
,∞
) πλ=1(t)

>
2Cνν

(2π)
1
2

Lν

(
τ

1
2
1 x‖(i)

)
, ∀ i ∈ γd

where τ1 ∈ Iτ , u0(s) =
(
n
dΩ(λ, τ)

)− 1
2 |s| and

Lν

(
τ

1
2x
)

def
=





∣∣∣τ 1
2x
∣∣∣
ν−1 (

n
dΩ(λ, τ)

)− ν
2 if 0 < ν ≤ 1

(
n
dΩ(λ, τ)

)− 1
2

(
1 +

∣∣∣τ 1
2x
∣∣∣
(
n
dΩ(λ, τ)

)− 1
2

)
if 1 < ν ≤ 2.

(57)

Proof. A proof is provided in the appendix. �

The invariant approximation of the marginal density mγd(x|Iτ , λ) in
(49) may now be fed into a code length principle to yield a best model
size estimate d∗ and the best model γ∗d∗ for a given dataset x ∈ Rn. This
will yield a model selection principle invariant to reparameterizations in the
sense explained in above sections.

5. Generalized Laplace-approximation of marginal density

We now proceed to the case where the variance parameter λ−1 of the
prior distribution πλ(θ) is unknown to us. We will then have to estimate
the parameter λ from the given data set. This implies that the density
mγ(x|Iτ , λ) as written in (49) in Theorem 4.1 is not the marginal density
for the data x as it contains the data dependent parameter λ. We must
integrate out the parameter λ ∈ Iλ from the formula in (29), that is the
marginal mγd(x|Iτ , Iλ) now becomes:

mγd(x|Iτ , Iλ)
def
=

1

|Iτ |

∫

θ∈Rd,τ∈Iτ ,λ∈Iλ
f(x|θ, τ)π(θ|λ)l(λ) dθ dτ dλ (58)

where l(λ) is a prior distribution on the parameter λ. Let Iλ ⊂ R+ be a
bounded interval, we model λ as uniformly distributed on Iλ, and identically
zero outside Iλ, that is

l(λ) =

{ 1
|Iλ| , if λ ∈ Iλ
0, otherwise

(59)

Now, by means of Theorem 4.1 we may write:

mγd(x|Iτ , Iλ) =
1

|Iτ |
1

|Iλ|
(2π)

d+1
2 f(x|θ∗, τ∗)

|H(x,θ∗, τ∗)| 12
(1 +O(κ))(1 + ξ)×
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d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)}

)∫

λ∈Iλ
π(θ∗|λ) dλ (60)

where we have ignored any dependency of κ, ξ, θ∗, τ∗ on λ in the integration
interval Iλ. This assumption will hold if we choose the location of the interval
Iλ properly and its width small enough as may be seen by examining the
proof of Theorem 4.1. We will preserve parameter invariance by following
the same procedure of invariant Laplace-expansions as in sections above by
expanding the desired integral in (60) about a certain point λ∗. We need
some definitions. Define

E(λ)
def
= −Eθ

{
∂2

∂λ2
log π(θ|λ)

}
(61)

and define

Ψ(θ, λ)
def
= − log

[
π(θ|λ)
|E(λ)| 12

]
(62)

and define

λ∗
def
= arg infλ>0Ψ(θ, λ). (63)

We have the following result:

Proposition 5.1. Let π(β|λ) =
∏d
i=1 π(βi|λ) be a density on β ∈ Rd

with variance λ−1. Let E(λ)
def
= −Eβ

{
∂2

∂λ2 log π(β|λ)
}
, let Ψ(β, λ)

def
=

− log

[
π(β|λ)
|E(λ)|

1
2

]
and let λ∗

def
= arg infλ>0Ψ(β, λ). Let Iλ ⊂ R+ be a bounded

interval such that λ∗ ∈ Iλ. Then we have:

∫

λ∈Iλ
π(β|λ) dλ =

(2π)
1
2π(β|λ∗)

|Ψλλ(β, λ∗)|
1
2

{1 +O (ω)} . (64)

where

ω
def
=

|Ψλλλ(β, λ
∗)|

|Ψλλ(β, λ∗)|
3
2

= O

(
1√
d

)
. (65)

Furthermore, the formula (64) is invariant to reparameterizations of the
distribution π.

Proof. We define a map χ : λ̂→ λ such that

λ = χ(λ̂), χ(0) = λ0 and Ê(λ̂)
def
= −Eθ

[
∂2

∂λ̂2
log π(θ|χ(λ̂))

]
= λ̄−2 ∈ R+

(66)
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where λ̄ > 0 is some constant number. The result follows by computing the

Taylor-expansion T̂ (λ̂) of Ψ(β, χ(λ̂)) in λ̂ about the point λ̂∗
def
= χ−1(λ∗)

and approximating the integral
∫

λ∈Iλ
exp (−Ψ(β, λ)) |E(λ)|1/2 dλ = λ̄−1

∫

λ̂∈Î
λ̂

exp
(
−Ψ(β, λ̂)

)
dλ̂

= λ̄−1

∫

λ̂∈Î
λ̂

exp
(
−T̂ (λ̂)

)
dλ̂ (67)

to second order in λ̂.

�

Using the result in (64) together with Theorem (4.1) we now have the
following expression for the marginal density mγd(x|Iτ , Iλ):

Corollary 5.1. Given the conditions and notation in Theorem 4.1 and
Proposition 5.1, we may state:

mγd(x|Iτ , Iλ) =
(2π)

d+2
2 f(x|τ∗,θ∗)π(θ∗|λ∗)|Iτ |−1|Iλ|−1

|H(x, τ∗,θ∗)| 12 |Ψλλ(θ∗, λ∗)|
1
2

×
[

d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)}

)]
{1 +O(κ)} {1 + ξ} {1 +O(ω)} . (68)

Proof. This is an immediate concequence of Theorem 4.1 and Propo-
sition 5.1. �

6. Marginal renormalization

As pointed out in [Ris98], using estimated values θ∗(x), τ∗(x), λ∗(θ∗)
for given data x instead of true parameter values θ, τ , λ, does not yield
an optimal code length for the data. That is, there is redundancy in the
resulting code [Ris98], and to remove this redundancy means to renormalize
the marginal m(x) in order to to get a proper density for use with the
(IN)MDL Principle. For given data set x and likelihood function f(x|β),
Rissanen defined in [Ris00] the normalized maximum likelihood (NML)
marginal density mNML(x) by:

mNML(x)
def
=
f (x|β∗ (x))
CNML

where β∗ is the ML estimator and

CNML
def
=

∫

z∈Y
f (z|β∗ (z)) dz. (69)



28 2. DEVELOPMENT OF AN INVARIANT CODE LENGTH PRINCIPLE

The integration region Y in the case of a gaussian likelihood f was chosen
through the ML parameter estimators to be the least possible hyperspheres
containing the data x⊥ and x‖. While the ML esimator τ∗(x⊥) for the
noise naturally imposes a spherical geometry on the part of the data space
containing the noise, the same cannot be said of the ML estimator β∗ for
the parameters β, which is simply: β∗(z‖) = z‖.

It was shown in [Ris01] that the density mNML(x) satisfies:

mNML(x) = arg inf
q∈Q

sup
g∈G

Ex∼g

{
log

f(x|β∗(x))
q(x)

}
(70)

whereG is the class of distributions g(x) satisfying Ex∼g log (g(x)/ f(x|β∗))<
∞, Q is the class of all densities and β∗ is the ML-estimate of the parameters
β. This means that the code length − logmNML(x) induced by the density
q(x) = mNML(x) minimizes the expected difference between the the code
lengths − log f(x|β∗(x)) and − log q(x), where expectation is taken with
respect to the ”worst case” data generating distribution g. To compute
the optimal code length, the domain Y ∋ x on which the marginal density
m(x) is defined, has to be chosen properly, [Ris00]. The expression (75)
shows that the question for us is then for given data set x to choose the
region Θ∗ ∋ θ∗ properly. The choice of Θ∗ may be of importance to our
code length principle. This region should not be chosen too big, neither too
small. How to accomplish this? In [Ris00], the choice of Θ∗ was taken to
be the spherical region

Θ∗
NML =

{
z ∈ Rd : 0 < ‖z‖22 ≤ ‖x‖‖22

}
. (71)

This is perhaps the most ”honest” choice of integration region Θ∗: In the
absence of a prior distribution on the parameters θ ∈ Rd, the choice of a flat
prior distribution on a domain with no preferred direction certainly does not
impose any prior constraints on the parameter θ, except that its expected
norm is ‖x‖‖2. We will use the geometry imposed on the signal space Y‖ by
the prior distribution π(θ|λ) through the invariant ML-estimator λ∗ defined
in (63). That is, for given data set x and model γd, we choose

Θ∗ =
{
θ ∈ Rd : λ∗(θ) ∈ Jλ ∋ λ∗(θ∗(x))

}
(72)

for some chosen interval Jλ ⊂ R+. This choice will ensure that θ∗(x) ∈ Θ∗.

We define the renormalization Cγd for the marginal mγd by:

Cγd
def
=

∫

z∈Y

(2π)
d+2
2 f(z|τ∗,θ∗)π(θ∗|λ∗)|Iτ |−1|Iλ|−1

|H(z, τ∗,θ∗)| 12 |Ψλλ(θ∗, λ∗)|
1
2

×
[

d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)}

)]
dz. (73)
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R

Figure 1. Illustration of different geometries on the region

0 <
∑d

i=1 |θi|ν < Rν for the cases ν = 2 (circle) and ν =
ν0 < 1 (star) and model size d = 2.

We have the following result on the marginal normalization Cγd :

Proposition 6.1. Under the conditions given in Theorem 4.1 and the
following additional condition on the number X(ν, λ, τ) defined below:

X(ν, λ, τ)
def
=

d

n− d+ 2

2C2
νν

2
(
n
dΩ(λ, τ)

)−h(ν)

1− ζ
< 1, (74)

where

h(ν) =

{
ν if 0 < ν ≤ 1
ν/2 if 1 < ν ≤ 2.

We then have

log

(
n− d

n− d+ 2

)
− d

2
ζ − n− d

2

{
dC2

νν
2
(
n
dΩ(λ

∗, τ∗)
)−h(ν)

n− d+ 2

+o



[
dC2

νν
2
(
n
dΩ(λ

∗, τ∗)
)−h(ν)

n− d+ 2

]2



 + d log PG

(
(τ∗)1/2 inf

1≤i≤d
|θ∗i |
)

+
1

2
log (2π) + log

∫

θ∗∈Θ∗,τ∗∈Jτ∗

dθ∗

|Iλ|
dτ∗

|Iτ |
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2
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≤ logCγd

≤ log

(
n− d

n− d+ 2

)
+
d

2
ζ +

1

2
log (2π)

+ log

∫

θ∗∈Θ∗,τ∗∈Jτ∗

dθ∗

|Iλ|
dτ∗

|Iτ |
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

. (75)

We note that

ζ
def
= sup

1≤i≤d
Cνν|ν − 1|

(n
d
Ω(λ∗, τ∗)

)− ν
2 |(τ∗) 1

2 θ∗i |ν−2

and by (442) we have in the case of a prior distribution πλ(θ) flat in θ that

logCγd = log

(
n− d

n− d+ 2

)
+

1

2
log (2π)

+ log

∫

θ∗∈Θ∗,τ∗∈Jτ∗

π(θ∗|λ∗)
|Ψλλ(θ∗, λ∗)|

1
2

dθ∗

|Iλ|
dτ∗

|Iτ |
. (76)

Proof. A proof is given in the appendix. �

6.1. Comments on Proposition 6.1.

(1) We note that using the expression (414) and retracing the steps
leading up to (75), the inequality in (75) may be sharpened by

replacing the term d
2ζ by:

∑d
i=1 µλ∗,ν(τ

∗, θ∗i )

= Cνν|ν − 1|
(
n
dΩ(λ

∗, τ∗)
)−ν/2∑d

i=1 |(τ∗)1/2θ∗i |ν−2.

7. Discriminating between model classes

We now proceed to find the best choice of model for our estimation
problem, where best choice means choosing the set of of model indices γ∗d∗
yielding the shortest desciption in terms of code length in a binary alphabet
of both model and data x when encoded under the modelled data generating
distibution mγd(x)/Cγd , that is

γ∗d∗
def
= arg inf1≤d≤n,γd∈{0,1}n {− log (mγd(x)/Cγd)} . (77)

To find the optimal model, we must express the total code length L(x,Md, γd, d)
needed to encode the data x for given model class Md, model γd and model
size d. In previous work presented in [HY00], the process of encoding the
data x, the model index vector γd and any model hyperparameters α which
are used in defining the model, was decomposed as follows:

L(x, γd,α)
def
= L(x|α, γd) + L(γd|α) + L(α). (78)

[HY00] then proceeded to address the question of how to select a suitable
prior distribution for the model index vector γd. In [HY00] the γd(i) were
modelled as IID bernoulli distributed with parameter p, and a procedure for



7. DISCRIMINATING BETWEEN MODEL CLASSES 31

estimating the hyper-parameter p was provided. However, the authors in
[HY00] noted that the estimation of the hyper-parameter p is non-trivial,
and some care had to be taken to avoid too large models. This is an expe-
rience we share from our own numerical experimental work as well: Simply
using the marginal formulas (49), (68) and optimizing the resulting code
length for the marginal distribution over the model size d, did in our numer-
ical experiments more often than not lead to a code length expression with
no minimum for d < n/2 or an optimal model size d so large (comparable to
n/2) that the stated sufficient conditions under which the asymptotic mar-
ginal expressions (49), (68) are valid, are not satisfied. This suggests to us
that we have been asking for too much in our use of the MDL principle: The
extra degree of freedom introduced by the prior distribution πλ(θ) through
the parameter λ has to be treated with care. However, we do not wish to
introduce additional (hyper)parameters into our model classes Md, as this
will raise the problem of providing reasonable models and estimates for these
parameters, which proved difficult to us: The resulting model selection prin-
ciples and estimators performed poorly in experiments. We will therefore
adopt a different strategy from that in [HY00]. We observe that the model
classes Md depend on the choice of prior distribution π(θ|λ) and that there
is (under the conditions and model given here for the data x) no a priori
reason to believe that all prior distributions are (or should be considered)
equally likely for the given dataset x. Therefore the code length measure
induced by the marginal density mγd defined in (29) on the collection M
of model classes under consideration should be extended to a code length
measure that in some way also quantifies our belief in a particular choice of
prior distribution for given dataset x and model (25). Obviously, we can-
not compare all possible choices of prior distributions. Also, we suspect the
key to solving our problem described above of model overfitting the data,
lies in the parameter λ which is the only parameter discriminating between
different models for given data x, prior distribution p, model index vector
γd, noise level estimate τ∗ and parameter estimates θ∗. Therefore we will
confine ourselves to constructing a measure for comparing our chosen prior
distribution pλp with variance λ−1

p to some chosen reference distribution qλq
with variance λ−1

q . The distribution pλp is taken to be the best choice of
model distribution for the unknown true distribution of θ that we are able
to come up with based on our prior knowledge (or our more or less qualified
guesses) of the data and the data generating process. The distribution qλq is
taken to be some kind of canonical reference prior distribution against which
we will compare our choice pλp . The problem is then to find a reasonable
way to compare pλp and qλq . For this we will make use of the entropy S(p) of
a distribution p, that is the expected (mean) code length for encoding data
using p. Let Pn denote the collection of probability distributions defined on
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Rn, then the entropy S : Pn −→ R is defined as:

S(p)
def
= Eθ {− log p(θ)} = −

∫

θ∈Rn

p(θ) log p(θ) dθ. (79)

Now, we define

α
def
=
λp
λq

(80)

and

D(pλp , qλq )
def
=

exp
(
S(pλp)− S(qλq )

)
∫
α∈Iα exp

(
S(pλp)− S(qλq )

)
dα
. (81)

We will call D(pλp , qλq ) a model class prior distribution. We note that if the
distributions p, q live on the same parameter manifold, it is obvious that
S(pλp)−S(qλq ) is parameterized by α. If p and q live on different parameter
manifolds, we may still parameterize S(pλp) − S(qλq ) by α = λp/λq if we
ensure that p and q are normalized w.r.t an integration measure which is
invariant to reparameterizations e.g the Fisher information measure. Some
care will have to be taken in the choice of normalization interval Iα in (81).
This question will be further adressed below. The density D(p, q) defined
in (81) may then be used to measure our prior belief in the distribution p
relative to the reference distribution q.

We proceed to compute S(p) for the distributions of interest to us here,
that is the GGD distribution and Jeffreys prior. In the case of a GGD
distribution, we have

pλ(θ) =

(
νη(ν)

2Γ(1/ν)
λ1/2

)d
exp

(
−η(ν)ν

d∑

i=1

|λ1/2θi|ν
)

(82)

S(pλ)
def
= −

∫

θ∈Rd

pλ(θ) log pλ(θ) dθ

a trivial computation yields

S(pλ) = −d log
(

νη(ν)

2Γ(1/ν)
λ1/2

)
+
d

ν
. (83)

Proceeding with Jeffreys prior distribution

qR(θ, τ) =
|F (θ, τ)|1/2∫

τ∈(0,τ∗),‖θ‖2≤R |F (θ, τ)|1/2dθ dτ
τ

(84)
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where F is the Fisher matrix of the likelihood distribution. We note that
the integration measure τ−1dτ in (84) is needed to make the normalization
of qR invariant to reparameterizations. Using the gaussian distribution for
the likelihood, a trivial computation yields

|F (θ, τ)|1/2 =

√
n

2
τd/2−1

and some calculation then yields

S(qR) = −
∫

‖θ‖2<R,τ∈(0,τ∗)

√
n

2
τd/2−1 log

(√
n

2
τd/2−1

)
dθ

dτ

τ

= log

(√
n

2

d− 2

2

πd/2Rd

Γ
(
d
2 + 1

)
)

+ 1−
1
2 log

(
n
2

)
√

n
2

(85)

using Stirling approximation on the Gamma function yields

S(qR) =
1

2
log
(n
2

)
+ log

(
d− 2

2

)
+ 1 +

d

2
log

(
2πeR

d+ 2

)
−

1
2 log

(
n
2

)
√

n
2

+ log

(
e√
π
(d+ 2)−1/2

)
+O(d−1). (86)

We may now compute the measureD(p, q) for the different p and q of interest
to us in the current context. First, we consider the case where the reference
distribution q is taken to be Jeffreys prior distribution. This choice of refer-
ence distribution may be interpreted as a very pessimistic one, in that this
choice of a distribution flat in θ states our complete lack of prior knowledge
of the noiseless data θ, or rather our denial of imposing a more informative
prior distribution on θ, that is a distribution with less entropy as reflected in
(86) where we see that the entropy of the distribution qR is up to an additive

constant very close to the maximum entropy d log
√
2πeλ−1 [CT91] attained

by a d-variate Gaussian distribution with variance λ−1 = R2/(d+2). Choos-
ing a GGD distribution as the candidate for the true prior distribution pλp
and setting

λ−1
q

def
=

1

d+ 2
R2, α

def
=
λp
λq
, Iα

def
= (α0, α1),

expression (81) then becomes

D(pλp , qλq ) =
exp

(
d log

(
2Γ(1/νp) exp(1/νp)

νpη(νp)
√
2πe

)
− d

2 log(λp/λq)
)

∫ α1

α0
exp

(
d log

(
2Γ(1/νp) exp(1/νp)

νpη(νp)
√
2πe

)
− d

2 log(λp/λq)
)
dα

=
α−d/2

∫ α1

α0
α−d/2 dα

=
d− 2

2

(α0

α

) d
2 α−1

0

1−
(
α0
α1

) d
2
−1
. (87)
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We assume that d ≫ 1, and/or α1 ≫ α0. We conclude that D(pλp , qλq )
for all practical purposes only depends on the lower bound α0, and this
dependence is very strong. Therefore, α0 has to be chosen carefully. If
we had a discretization ∆α > 0 of the parameter α, this would suggest a
lower bound on our choice of α0, namely α0 ≥ ∆α. In lack of any prior
information of how to choose α0, we settle for the most conservative choice
α0 = ∆α as this choice of α0 will clearly make the code length contribution
− logD(p, q) largest possible. By definition (80) we may deduce the following
connection between discretizations ∆λp, ∆λq on parameters λp, λq and the
discretization ∆α, respectively:

∆α
def
=

√(
∂α

∂λp
∆λp

)2

+

(
∂α

∂λq
∆λq

)2

=

√(
1

λq
∆λp

)2

+

(
λp
λ2q

∆λq

)2

=
∆λp
λq

√
1 +

λ2p
λ2q

(
∆λq
∆λp

)2

. (88)

Using the result shown in Proposition 11.1 on the posterior coarsest dis-
cretization of parameter λ, together with definitions (61)-(62) we get

∆λp = Cλp
2√

νp(d+ 2)
λ∗p, for p GGD distribution in (82) (89)

∆λq = Cλq

√
2√

d+ 2
λ∗q , for q Jeffreys distribution in (84) (90)

yielding

∆α = Cλp2α
∗

√√√√√1 +
C2

λq

C2
λp

νp
2

νp(d+ 2)
(91)

where

α∗ def
=
λ∗p
λ∗q

and 0 < Cλp , Cλq < 1. (92)

Setting Cλp = Cλq , this leads to

D(pλp , qλq ) =

(
α∗

α

) d
2


4Cλpα

∗

d− 2

(
1 +

νp
2

νp(d+ 2)

) 1
2




−1(
4C2

λp
(1 +

νp
2 )

νp(d+ 2)

) d
4

(93)
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in the case where the true distribution p is taken to be the GGD distribution
in (82) and the reference distribution q is taken to be Jeffreys distribution
in (84). In the case where both p and q are taken to be GGD distributions
with shape parameters νp and νq respectively, using (89) we get

D(pλp , qλq ) =

(
α∗

α

) d
2


4Cλpα

∗

d− 2

(
1 +

νp
νq

νp(d+ 2)

) 1
2




−1(
4C2

λp
(1 +

νp
νq
)

νp(d+ 2)

) d
4

.

(94)

We note that in practice (93) and (94) will be evaluated by plugging in the
estimate α∗ defined in (92) for α, and so we conclude that to leading order
the contribution from the model class prior distribution D(p, q) when the
true prior distribution p and reference distribution q both are taken to be
GGD, will be:

− logD(p, q) ∼ −d
4
log

(
4C2

λp
(1 +

νp
νq
)

νp(d+ 2)

)
(95)

and when the reference distribution q is taken to be Jeffreys distribution,
νq is replaced by νq = 2 in (95) above. That is, the model class prior dis-
tribution D(p, q) does not discriminate between q a gaussian or q a Jeffreys
prior distribution when the likelihood for the data is gaussian. We note that
the number 0 < Cλp < 1 is connected to an estimate of an upper bound
on the relative error of the posterior density through the relation (153) in
Proposition 11.1, and we see from (95) that the code length contribution
from − logD(p, q) will contain an additive term −d

2 logCλp . We then end
up with the following process for encoding the data x for given model class

M
(p)
d , prior distribution p, reference prior distribution q, model size d and

model index vector γd:

L
(
x,M

(p)
d , γd, d

)
= L

(
x|M (p)

d , γd, d
)
+ L

(
M

(p)
d |, γd, d

)
+ L(γd|d) + L(d)

= − log2 (mγd(x)/Cγd)− log2D(p, q) + L(γd|d) + L(d). (96)

If we have no prior information on the optimal index vector γd and model
size d, then L(γd|d) = log2 2

n and L(d) = log2(n) are constants, we will
adopt this view here. The optimal model γ∗d∗ is then found by computing

γ∗d∗
def
= arg inf0<d<n,γd∈{0,1}nL(x,M

(p)
d , γd, d). (97)

7.1. Comments on the term D(p, q).

(1) Using the prior distribution D(p, q) on the model classes and choos-
ing both the prior distribution p and the reference distribution q
to be Jeffreys distributions with λp independent of λq, we will end

up with − logD(p, q) ≈ −d
4 log

(
4C2

λp

d+2

)
to leading order, as can be

verified by following the same steps as we did above for the case p a
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GGD distribution and q a Jeffreys distribution. Since our numeri-
cal simulations reported in the experiments section below show that
the NML code length principle of Rissanen [Ris00] does not work
well at all on datasets with signal to noise ratios below some level,
whereas our INMDL principle in our simulations is seen to work as
well as or better than NML-principle over broad regimes of SNR,
it is tempting to suggest that when applied to denoising problems,
the NML code length should be modified by adding an extra term

of −d
4 log

(
4C2

λp

d+2

)
. We think that more work in this area is needed

as our reported numerical experiments seem to indicate that our
suggested code length term of − logD(p, q) does not yield optimal
model sizes, particularly not for the very small and the very high
SNR values.

(2) We emphazise that in the case where we choose p ≡ q for prior
distribution p and reference distribution q, we have α ≡ 1 and
D(p, q) becomes a constant.

8. Model selection by the INMDL Principle

We must address in detail the question of how to actually find the opti-
mal set γd of model indices when given data x. Equation (97) tells us

γ∗d∗
def
= arg inf0<d<n,γd∈{0,1}nL(x,M

(π)
d , γd, d). (98)

where L(x,M
(π)
d , γd, d) is defined in (96). Using formula (68) together with

(96),(97) we see we have to solve

γ∗d∗ = arg inf0<d<n,γd∈{0,1}nL(x,M
(π)
d , γd, d)

= arg inf0<d<n,γd∈{0,1}n
{
L(M

(π)
d |γd, d)

− log [f(x|τ∗,θ∗)]v − log [π(θ∗|λ∗)]v − log(2π)
d+2
2

+ log
[
|H(x, τ∗,θ∗)| 12

]
v
−

d∑

i=1

log PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)} 1

2

)

+ log
[
|Ψλλ(θ

∗, λ∗)| 12
]
v
+ logCγd + log [|Iτ | · |Iλ|]v

}
. (99)

Inserting the expressions (413), (416) yields the expression

L(x,M
(π)
d γd, d) = − logD(π, q) + logCγd +

n− d+ 2

2
− log [π(θ∗|λ∗)]v

− 3

2
log (2π)− 1

2
log 2− n− d+ 1

2
log

(
n− d+ 2

2π

)
+
d

2
o(ζ)

+ log [|Iτ | · |Iλ|]v +
n− d+ 2

2
log
[
‖x⊥‖22 + ‖x‖ − θ∗‖22

]
v
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+ log
[
|Ψλλ(θ

∗, λ∗)| 12
]
v
−

d∑

i=1

log PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)} 1

2

)

+
1

2
log


1− 2

1 + o(ζ)

{
1 +

‖x⊥‖22
‖x‖ − θ∗‖22

}−1

 . (100)

Using the result in Proposition 6.1 we may write

L(x,M
(π)
d , γd, d) = Q

(
x,M

(π)
d , γd, d

)
+ Z

(
x,M

(π)
d , γd, d

)
(101)

where

Z
(
x,M

(π)
d , γd, d

)
def
= logCγd −

3

2
log (2π) − 1

2
log 2

− log

∫

θ∗∈Θ∗,τ∗∈Jτ∗

π(θ∗|λ∗)
|Ψλλ(θ∗, λ∗)|1/2

dθ∗

|Iλ|
dτ∗

|Iτ |

+
n− d+ 2

2
log

(
1 +

‖x‖ − θ∗‖22
‖x⊥‖22

)
−

d∑

i=1

logPG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)} 1

2

)

+
1

2
log


1− 2

1 + o(ζ)

{
1 +

‖x⊥‖22
‖x‖ − θ∗‖22

}−1

+

d

2
o(ζ) (102)

and

Q
(
x,M

(π)
d , γd, d

)
def
= − logD(π, q) +

n− d+ 2

2
+ log [|Iτ ||Iλ|]v

− n− d+ 1

2
log

(
n− d+ 2

2π

)
+
n− d+ 2

2
log
[
‖x⊥‖22

]
v

− log

[
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

/∫

θ∗∈Θ∗,τ∗∈Jτ∗

π(θ∗|λ∗)
|Ψλλ(θ∗, λ∗)|

1
2

dθ∗

|Iλ|
dτ∗

|Iτ |

]

v

. (103)

We have the following result:

Proposition 8.1. Assume the conditions stated in Theorem 4.1 and let
q denote the chosen reference prior distribution. Then, for given data x

and prior distribution π, the optimal model class M
(π)
d∗ and model γ∗d∗, is

up to a code length precision of size ∆d(x), selected as follows: Let Sd ⊂
An

def
= {1, 2, 3, ..., n − 1, n} be of size d ≤ n and define γd(i) = 1 if i ∈ Sd

and γd(i) = 0 otherwise. The sets Sj
def
= {l} ∪ Sj−1, where l ∈ An \ Sj−1,

are computed iteratively by minimizing the criterion C(x‖(j)|Sj−1) for each
index j : 1 ≤ j ≤ d ≤ n over the set of indices l ∈ An \ Sj−1 by putting



38 2. DEVELOPMENT OF AN INVARIANT CODE LENGTH PRINCIPLE

x‖(j)
def
= x(l) and defining

C(x‖(j)|Sj−1)
def
= −(n− d+ 2)

|x‖(j)|
‖x‖22 − ‖x‖‖22

− ∂

∂|x‖(j)|
log

[
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

/∫

θ∗∈Θ∗,τ∗∈J∗
τ

π(θ∗|λ∗)
|Ψλλ(θ∗, λ∗)|

1
2

dθ∗

|Iλ|
dτ∗

|Iτ |

]

v

,

(104)

where x‖, θ
∗ and λ∗ are given by the model defined by the set Sj

def
=Sj−1∪{l}.

∆d(x)
def
= logCγd − log

∫

θ∗∈Θ∗,τ∗∈Jτ∗

dθ∗

|Iλ|
dτ∗

|Iτ |
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

+
n− d+ 2

2
log

(
1 +

‖x‖ − θ∗‖22
‖x⊥‖22

)
+
d

2
o(ζ)− 3

2
log (2π)− 1

2
log 2

+
1

2
log


1− 2

1 + o(ζ)

{
1 +

‖x⊥‖22
‖x‖ − θ∗‖22

}−1



−
d∑

i=1

log PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)} 1

2

)
(105)

and the value of d∗ is determined by minimizing the code length expression

Q
(
x,M

(π)
d , γd, d

)
def
= − logD(π, q) +

n− d+ 2

2
+ log [|Iτ ||Iλ|]v

− n− d+ 1

2
log

(
n− d+ 2

2π

)
+
n− d+ 2

2
log
[
‖x⊥‖22

]
v

− log

[
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

/∫

θ∗∈Θ∗,τ∗∈J∗
τ

π(θ∗|λ∗)
|Ψλλ(θ∗, λ∗)|

1
2

dθ∗

|Iλ|
dτ∗

|Iτ |

]

v

(106)

with respect to d, and D(π, q) is given by (93) or (94) and the total code

length expression L
(
x,M

(π)
d γd, d

)
is given by

L
(
x,M

(π)
d , γd, d

)
= Q

(
x,M

(π)
d , γd, d

)
+∆d(x).

Proof. Under the given conditions the optimality of the selection al-
gorithm defined by minimizing the criterion C(·) in (104) follows by dif-
ferentiating the expression (103). Then observe that the total code length
expression is given by (101). The result follows by recognizing that ∆d =

Z
(
x,M

(π)
d , γd, d

)
. �
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8.1. Comments on Proposition 8.1.

(1) In the case we will be concentrating on: πλ is a GGD and λ∗ is the
ML estimator the criterion C(·) in (104) becomes

C(x‖(j)|Sj−1)
def
= −(n− d+ 2)

|x‖(j)|
‖x‖22 − ‖x‖‖22

+
d− 2

∑d
i=1 |θ∗i |ν

∂|θ∗j |
∂|x‖(j)|

.

Thus, the model selection process in this case may be implemented
by a quicksort procedure.

(2) Using the bounds in (75), (76) on logCγd we may easily compute
bounds on ∆d.

(3) We note that if
‖x‖−θ∗‖22
‖x⊥‖22

< 1, we have (by using the Taylor expan-

sions centered in y = 0 of log(1± y), 0 ≤ y < 1)

logCγd +
n− d

2

‖x‖ − θ∗‖22
‖x⊥‖22

− d

2
ζ − 3

2
log (2π)− 1

2
log 2

− log

∫

θ∗∈Θ∗,τ∗∈Jτ∗

π(θ∗|λ∗)
|Ψλλ(θ∗, λ∗)|

1
2

dθ∗

|Iλ|
dτ∗

|Iτ |
≤ ∆d

≤ logCγd +
n− d+ 14

2

‖x‖ − θ∗‖22
‖x⊥‖22

+
d

2
ζ

− d log PG

(
τ(x)

1
2 inf
i∈γd

|θ∗i |
)
− 3

2
log (2π) − 1

2
log 2

− log

∫

θ∗∈Θ∗,τ∗∈Jτ∗

π(θ∗|λ∗)
|Ψλλ(θ∗, λ∗)|

1
2

dθ∗

|Iλ|
dτ∗

|Iτ |
. (107)

9. The INMDL- versus NML-principle for gaussian likelihood

It may be of interest to know how the code length-principle we have
developed in the previous sections defers from the code length principle de-
veloped by Rissanen in [Ris98] and [Ris96] in the special case of a gaussian
likelihood function. Starting out from the expression in (49), recalling the
initial definitions of prior distributions on the parameters in (26) and (27)
we define the joint prior distribution πλ(θ)ς(τ) as follows

πλ(θ)ς(τ)
def
=

|F (θ, τ)| 12
∫
θ∈Θ∗,τ∈Iτ |F (θ, τ)| 12 dθ dτ

(108)

Now, it is easy to verify that this choice of Jeffreys prior in (108) as a joint
prior distribution satisfies the conditions on the prior πλ(θ) stated in Theo-
rem 4.1 when the likelihood function f is gaussian. However, the Theorem
4.1 was deduced under a flat prior distribution on the parameter τ . But
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by the proof of Theorem 4.1 we see that the special choice of joint prior
distribution ς(τ)πλ(θ) in (108) transforms under the chosen reparameteri-
zations given in the proof of Theorem 4.1 to a constant and therefore does
only contribute as a constant in any of the integrals discussed in the proof
of Theorem 4.1. Because of this fact, the formula (49) is still valid if we re-
place πλ(θ

∗)|Iτ |−1 in (49) by the expression for πλ(θ
∗)ς(τ∗) given in (108).

We observe that the prior distribution in (108) in the case of a gaussian

likelihood is smooth in θ and therefore the term
∏d
i=1 PG

(
(τ∗)

1
2 θ∗i

)
in (49)

is to be replaced by 1. By Corollary 5.1 the code length defined in (96) now
becomes

L
(
x,M

(π)
d , γd, d

)
= − logD(π, q) + logCγd − log [f(x|θ∗, τ∗)]v

− log (2π)
d+1
2 +

1

2
log

( |H(x, τ∗,θ∗)|
|F (θ∗, τ∗)|

)
+ log

(
|Ψλλ(θ

∗, λ∗)|1/2|Iλ|
)

+ log

(∫

θ∈Θ∗,τ∈Iτ
|F (θ, τ)| 12 dθ dτ

)
. (109)

Now, by the fact that |Ψλλ(θ
∗, λ∗)|1/2 =

√
(d+ 2)/2/λ∗ is a constant (in-

dependent of θ∗ with 1/λ∗ = (d + 2)−1‖x‖‖22) and may therefore be taken
out of the integral in (442) we get

logCγd = log

(
n− d

n− d+ 2

)
+

1

2
log (2π) − log

(
|Ψλλ(θ

∗, λ∗)|1/2|Iλ|
)
.

(110)

Furthermore, in this case we have that π ≡ q = Jeffreys distribution and so
the parameter α defined in (80) is identically 1, i.e deterministic, and there-
fore the discretization ∆α = 0. By (81) we getD(p, q) = exp(0)/

∫ α1

0 exp(0) dα =

α−1
1 which is a constant, and may therefore be omitted from the code length

expression. Letting L′ (x, γd) denote the NML code length as developed in
[Ris96] we have

L′ (x, γd) = − log [f(x|β∗)]v +
d+ 1

2
log
( n
2π

)

+ log

(∫

β∈Θ∗×Iτ
|I(β)| 12 dβ

)
+ o(1) (111)

where

I(β)
def
= −n−1Ex

{
∂2 log f(x|β)

∂βi∂βj

}
, 1 ≤ i, j ≤ n, β

def
= (τ,θT )T ∈ Rd+1

(112)

and thus (111) may be rewritten as

L′(x, γd) = − log [f(x|θ∗, τ∗)]v − log (2π)
d+1
2
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+ log

(∫

θ∈Θ∗,τ∈Iτ
|F (θ, τ)| 12 dθ dτ

)
+ o(1). (113)

By (109), (110) and (113) and observing that H(x, τ∗,θ∗)= F (θ∗, τ∗) we
conclude

L
(
x,M

(π)
d , γd, d

)
− L′ (x, γd) = log

(
n− d

n− d+ 2

)
+ constants + o(1).

(114)

We note that the difference L
(
x,M

(π)
d , γd, d

)
− L′ (x, γd)= ∆d(x) + o(1),

where ∆d(x) is the code length precision in our INMDL model selection
principle as given in Proposition 8.1. Thus, in model selection, we may ex-
pect our INMDL principle to yield results very close to the NML-principle
of Rissanen [Ris96], [Ris00] in the case of a gaussian likelihood function
f(x|θ, τ) and Jeffreys prior (108) as a joint prior distribution πλ(θ)ς(τ). We
summarize our findings:

Corollary 9.1. Assume the conditions given in Theorem 4.1 and Propo-

sition 6.1 and Proposition 8.1. Let L
(
x,M

(π)
d , γd, d

)
denote the code length

as presented in Proposition 8.1 and let L′ (x, γd) denote the NML code length
as developed in [Ris96]. Then

L
(
x,M

(π)
d , γd, d

)
− L′ (x, γd) = log

(
n− d

n− d+ 2

)
+ constants + o(1).

(115)

Proof. See discussion above. �

10. The posterior mean of parameters

Given the model γd we want to compute the posterior means θ♯ and τ ♯

of the parameters θ and τ , that is

θ♯
def
= Eθ,τ {θ} (116)

τ ♯
def
= Eθ,τ {τ} (117)

The posterior pγd(θ, τ |x) is defined by Bayes rule:

pγd(τ,θ|x)
def
=

1

mγd(x)
f(x|τ,θ)πλ(θ). (118)
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Let (τ,θT )T = Υ((τ̂ , θ̂T )T ) denote the reparameterization induced by the

mappings φ : (τ̂ , θ̂) → θ and ψ : τ̂ → τ given in (39) and (43). Let
JΥ be the jacobian of Υ as computed in (294), let ΓΥ be the 3-tensor of

second derivatives of Υ and for notational simplicity define β
def
= (τ,θT )T ,

β̂
def
= (τ̂ , θ̂T )T . Then we may write to leading order

β = Υ(β̂∗) + JΥ(β̂∗)(β̂ − β̂∗) + Γ(β̂∗)(β̂ − β̂∗)(β̂ − β̂∗)T (119)

and thus

β♯ = β∗ + JΥ(β̂∗)
∫

β̂∈Îτ̂×Rd

(β̂ − β̂∗)
exp

(
−Φ̂(x, β̂)

)

mγd(x)
|F̂ (β̂)|1/2 dβ̂

+ ΓΥ(β̂∗)
∫

β̂∈Îτ̂×Rd

(β̂ − β̂∗)(β̂ − β̂∗)T
exp

(
−Φ̂(x, β̂)

)

mγd(x)
|F̂ (β̂)|1/2 dβ̂.

(120)

Proceeding as we did in the proof of Theorem 4.1 by claiming θ̂∗ ∈ Rd+
and splitting up the integrals in (120) into integration over the two disjoint

domains Rd+, R
d
− in the θ̂-variable, the following result is a straightforward

consequence of the proof of Theorem 4.1 together with the observation (con-
sider JΥ in (294)) that the integrated contributions from the ΓΥ-part of the
expansion for this particular Υ does not contribute to leading order and may
be neglected:

Corollary 10.1. (Corollary of the proof of Theorem 4.1). The poste-
rior bias of the estimators θ∗ and τ∗ under the conditions in Theorem 4.1
may be written on the form:

Eθ,τ {θi} = θ∗i + (τ∗)−
1
2
(2π)−

1
2

6

Cνν(ν − 1)(ν − 2)
(
n
dΩ (λ, τ∗)

) ν
2

exp

(
−1

2
τ∗(θ∗i )

2

)

×




sgn (θ∗i ) +

d∑

j=1,j 6=i

∣∣∣(τ∗) 1
2 θ∗j

∣∣∣
ν−1

sgn (θ∗j )

exp
(
1
2τ

∗(θ∗j )
2
)

+O




d∑

j=1

τ∗(θ∗j )
2

n− d
exp

(
−1

2
τ∗(θ∗j )

2

)



 , 1 ≤ i ≤ d. (121)

Eθ,τ {τ} = τ∗ {1+
+O (ν(ν − 1)(ν − 2)

×
∑d

j=1

∣∣∣(τ∗) 1
2 θ∗j

∣∣∣
ν−2 {

sgn (θ∗j ) + (τ∗)
1
2 θ∗j exp

(
−1

2τ
∗(θ∗j )

2
)}

(n− d)
(
n
dΩ (λ, τ∗)

) ν
2







. (122)
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Proof. This result follows directly from the proof of Theorem 4.1, by
equations (336) through (364) and by inspection of the jacobian JΥ which
is evaluated in (294). �

11. Discretization of model parameters

We will in this section investigate how the INMDL-principle may be applied
to deduce an upper bound on the discretization on the model parameters.
We will use the result both to compute a sufficient mesh size on the grid
on which we solve the nonlinear equation which determines the estimator
θ∗ in the experiments section below, and in our deduction of a model class
prior distribution. In the previous sections, by means of Theorem 4.1 and
its proof and Corollary 5.1, we have established the following formula for
the posterior density p̂γd as

p̂γd

(
θ̂, τ̂ , λ̂|x

)
=

|Iτ |−1|Iλ|−1

mγd(x)
ρ(θ̂|λ̂)f

(
x

∣∣∣φ(θ̂, τ̂ ), ψ(τ̂ )
)

=
|Iτ |−1|Iλ|−1

mγd(x)

ρ(θ̂|λ̂)f
(
x

∣∣∣φ(θ̂, τ̂), ψ(τ̂ )
)

|F̂ (θ̂∗, τ̂∗)|1/2
· |F̂ (θ̂∗, τ̂∗)|1/2

≈ |F̂ (θ̂∗, τ̂∗)| 12
mγd(x)

|Iτ |−1|Iλ|−1 exp
(
−Φ̂(x, β̂∗)

)

× exp

(
−1

2
(β̂ − β̂∗)T Ĥ(x, β̂∗)(β̂ − β̂∗)− 1

2
Ψ̂λ̂λ̂(θ̂

∗, λ̂∗)(λ̂− λ̂∗)2
)

=
|F̂ (θ̂∗, τ̂∗)|1/2

|Iτ | · |Iλ|

[
(2π)(d+2)/2(x)|Iτ |−1|Iλ|−1

|H(x,θ∗, τ∗)|1/2|Ψλλ(θ∗, λ∗)|1/2
×

π(θ∗|λ∗)f(x|θ∗, τ∗)
d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i |

)]−1

× exp
(
−Φ̂(x, θ̂∗, τ̂∗)

)
exp

(
−1

2
(β̂ − β̂∗)T Ĥ(x, β̂∗)(β̂ − β̂∗)

)

× exp

(
−1

2
Ψ̂λ̂λ̂(θ̂

∗, λ̂∗)(λ̂− λ̂∗)2
)

= |H(x,θ∗, τ∗)|1/2
|JTφ,ψF (θ∗, τ∗)Jφ,ψ|1/2
π(θ∗|λ∗)f(x|θ∗, τ∗) |Ψ̂λ̂λ̂(θ̂

∗, λ̂∗)|1/2

× (2π)−
d+2
2 exp

(
−Φ̂(x, θ̂∗, τ̂∗)− 1

2
(β̂ − β̂∗)T Ĥ(x, β̂∗)(β̂ − β̂∗)

)

× exp

(
−1

2
Ψ̂λ̂λ̂(θ̂

∗, λ̂∗)(λ̂− λ̂∗)2
)[ d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i |

)]−1
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=

[
d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i |

)]−1

|Ĥ(x, θ̂∗, τ̂∗)|1/2|Ψ̂λ̂λ̂(θ̂
∗, λ̂∗)|1/2

× (2π)−
d+2
2 exp

(
−1

2
(β̂ − β̂∗)T Ĥ(x, β̂∗)(β̂ − β̂∗)

)

× exp

(
−1

2
Ψ̂λ̂λ̂(θ̂

∗, λ̂∗)(λ̂− λ̂∗)2
)

(123)

where β̂
def
= (τ̂ , θ̂T )T with θ̂, τ̂ , θ̂∗, τ̂∗ defined in (39), (37), respectively, and

λ̂, λ̂∗ defined in Proposition 5.1. The ≈-relation between the lefthand side
and righthandside in (123) is due to our omitting terms of order three and

higher in the Taylor expansion of Φ̂ and Ψ̂ used in formula (123). These
terms may be found by going through the proof of Theorem 4.1 and Propo-
sition 5.1, but assuming the conditions in Theorem 4.1 under which the
marginal approximation is valid, they may be omitted here. Now, since we
do not know the exact form of the prior distribution π(θ|λ), we do not know

the exact forms of Ψ(θ∗, λ∗), Ψ̂(θ̂∗, λ̂∗) and the map χ : λ̂ → λ. But we do

know that the transformed Fisher ”matrix” Ê(λ̂) is constant and we may

expect that the transformed Hessian Ψ̂λ̂λ̂(θ̂, λ̂) of − log
(
π(θ̂|λ̂)|Ê(λ̂)|−1/2

)

satisfies

Ψ̂λ̂λ̂(θ̂
∗, λ̂∗) ≈ Ê(λ̂∗) = λ̄ = constant. (124)

By means of (328)-(330) we evaluate the Hessian Ĥ to be

Ĥ(x, θ̂∗, τ̂∗) =




a b1 b2 · · · bd
b1 c1 0 · · · 0
b2 0 c2 · · · 0
...

...
...

. . .
...

bd 0 0 · · · cd




(125)

where

a = ǫ2d

(
n− d+ 2

n
+

1

2n
‖(τ∗) 1

2θ∗‖22 +
2

n

d∑

i=1

τ∗(θ∗i )
2o(µλ,ν(τ

∗, θ∗i ))+

+
2

n

d∑

i=1

τ∗(x‖(i) − θ∗i )θ
∗
i

)
(126)

bi = −ǫd
(
2

n

) 1
2

τ̄
1
2

(
(τ∗)

1
2 (x‖(i)−

1

2
θ∗i )+

+
1

2
o(µλ,ν(τ

∗, θ∗i ))(τ
∗)

1
2 θ∗i

)
, 1 ≤ i ≤ d (127)

ci = τ̄(1 + o(µλ,ν(τ
∗, θ∗i ))), 1 ≤ i ≤ d. (128)
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Using (125)-(128) and the determinant formula (291) we may write

|Ĥ(x, θ̂∗, τ̂∗)| =


a−

d∑

j=1

b2j
cj




d∏

l=1

cl

≈ τ̄d exp

[
o

((n
d
Ω(λ∗, τ∗)

)− ν
2

d∑

i=1

|(τ∗) 1
2 θ∗i |ν−2

)]
×


ǫ2d

(
n− d+ 2

n
+

1

2n
‖(τ∗) 1

2θ∗‖22
)
− ǫ2d

2

n

d∑

i=1

(
1
2 τ̄

1
2 (τ∗)

1
2 θ∗i

)2

τ̄




= ǫ2dτ̄
d exp

[
o

((n
d
Ω(λ∗, τ∗)

)− ν
2

d∑

i=1

|(τ∗) 1
2 θ∗i |ν−2

)]

∼ ¯̄τd = |F̂ (θ̂∗, τ̂∗)|, (129)

where ∼ means asymptotical equality as n → ∞ and d
n → 0. We want to

determine the half-axes of the reduced quadratic form associated with Ĥ .
We proceed with estimating the eigenvalues of Ĥ . Letting Id denote the
identity matrix we have

det
(
κ̂Id− Ĥ

)
= det




κ̂− a −b1 −b2 · · · −bd
−b1 κ̂− c1 0 · · · 0
−b2 0 κ̂− c2 · · · 0
...

...
...

. . .
...

−bd 0 0 · · · κ̂− cd




=


κ̂− a−

d∑

j=1

b2j
κ̂− cj




d∏

l=1

(κ̂− cl) (130)

where we used the determinant formula (291). The first eigenvalue κ̂ = κ̂1
may be found by solving

κ̂1 − a−
d∑

i=1

b2i
κ̂1 − ci

= κ̂1 − a−
d∑

i=1

b2i
κ̂1 − τ̄(1 + o(ζ))

= 0.

We introduce the approximation ci ≈ τ̄ , ∀ i founded on the asssumption
ζ ≪ 1 and get the equation

(κ̂1 − a)(κ̂1 − τ̄) =
d∑

i=1

b2i
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which yields

κ̂1 =
a+ τ̄

2


1±

(
1 + 4

∑d
i=1 b

2
i − aτ̄

(a+ τ̄)2

) 1
2


 .

Using (126), (127) yields

κ̂1 =
a+ τ̄

2


1±


1 + 4

ǫ2dτ̄
(
−1 + 2

n

∑d
i=1 o(µλ,ν(τ

∗, θ∗i ))τ
∗(θ∗i )

2
)

(
ǫ2d

(
1 + (2n)−1‖(τ∗) 1

2θ∗‖22
)
+ τ̄
)2




1/2

 .

(131)

Now, using:

n−1‖(τ∗) 1
2θ∗‖22 ∝

d 1
λ

n 1
τ∗

= Ω(λ, τ∗) (132)

we may write (131) as

κ̂1 =
a+ τ̄

2


1±

(
1 + ǫ−2

d τ̄
−1 + Ω(λ∗, τ∗)o(ζ)
(
1 + 1

2Ω(λ
∗, τ∗) + τ̄

)2

) 1
2


 .

Assuming Ω(λ, τ∗) ≫ 1 or ζ ≪ 1 or alternatively ǫd ≫ 1 we may write

κ̂1 ≈
a+ τ̄

2
(1± 1).

Observing that κ = 0 does not solve (130) we finally get

κ1 ≈ a+ τ̄ = a(1 + a−1τ̄) ≈ a

(
1 +

τ̄
n−d+2
n + (2n)−1‖(τ∗) 1

2θ∗‖22

)

≈ a

(
1 +

τ̄

1 + 1
2Ω(λ

∗, τ∗)

)
≈ a (133)

where the ≈ here is taken to mean ”almost equality” if n is sufficiently large,
d/n sufficiently small, τ̄ ≪ Ω(λ∗, τ∗) and we use (λ∗)−1 ∼ d−1‖θ∗‖22. Now,
we estimate the rest of the eigenvalues κ̂i, 2 ≤ i ≤ d+1. By (129) and (133)
we have that

ǫ2dτ̄
d ≈ |Ĥ | =

d+1∏

i=1

κ̂i ≈ a
d+1∏

i=2

κ̂i ≈ ǫ2d

(
n− d+ 2

n
+

1

2
Ω(λ∗, τ∗)

) d+1∏

i=2

κ̂i.

(134)



11. DISCRETIZATION OF MODEL PARAMETERS 47

Now, because ci ≈ τ̄ , ∀ i, we conclude that ci ≈ cj, 1 ≤ i, j ≤ d and from
(130) we may then conclude that κ̂i ≈ κ̂j , 2 ≤ i, j ≤ d+ 1. Then by (134)
we may write

κ̂i ≈ τ̄

(
n− d+ 2

n
+

1

2
Ω(λ∗, τ∗)

)− 1
d

≈ τ̄ , 2 ≤ i ≤ d+ 1, (135)

where in the last ≈ above we made the assumption that 0 < log Ω ≪ d.
Letting M̂ denote the orthogonal matrix such that M̂T ĤM̂ = diag(κ̂i)

and define the orthogonal transformation of variables α̂
def
= M̂T β̂. Plugging

this change of variables into (123) we see that α̂ ∼ N (M̂T β̂∗,diag(κ̂i)).
Now comparing the eigenvalues {κ̂i}d+1

i=1 we have estimated above with the

elements of Ĥ , we conclude that M̂T ĤM̂ = diag {κ̂i}d+1
i=1 ≈ diag(Ĥ)

up to our accuarcy of estimation of the κ̂i above. It follows that the half
axes of the reduced quadratic form (hyper-ellipsoid) associated with Ĥ are

approximately given by {κ̂i}d+1
i=1 . Expanding the model parameters λ, τ and

θi, 1 ≤ i ≤ d into their differentials ∆λ, ∆τ , ∆θi we get

∆λ = χ′(λ̂)∆λ̂ (136)

∆τ =
dψ(τ̂ )

dτ̂
∆τ̂ =

∂

∂τ̂
τ0 exp

(
ǫd

(
2

n

) 1
2

τ̂

)
∆τ̂ = ǫd

(
2

n

) 1
2

ψ(τ̂)∆τ̂ (137)

∆θi =
∂φ(θ̂i, τ̂)

∂θ̂i
∆θ̂i +

∂φ(θ̂i, τ̂)

∂τ̂
∆τ̂

= τ̄
1
2ψ− 1

2 (τ̂)∆θ̂i −
1

2
τ̄

1
2ψ− 1

2 (τ̂ )θ̂iǫd

(
2

n

) 1
2

∆τ̂ . (138)

Now, denoting the discretization size of θ̂i by ∆θ̂i, and the discretization
sizes of τ̂ , λ̂ by ∆τ̂ and ∆λ̂, respectively, we may write the relative uncer-
tainty ∆p̂/p̂ of the posterior density p̂(θ̂, τ̂ , λ̂|x) due to the discretizations

∆λ̂,∆τ̂ ,∆θ̂i of parameters λ̂, τ̂ , θ̂i, 1 ≤ i ≤ d respectively, as follows:

∆p̂

p̂

def
=





1

p̂

∂p̂
(
θ̂, λ̂, τ̂ |x

)

∂λ̂
∆λ̂




2

+


1

p̂

∂p̂
(
θ̂, λ̂, τ̂ |x

)

∂τ̂
∆τ̂




2

+

+

d∑

i=1


1

p̂

∂p̂
(
θ̂, λ̂, τ̂ |x

)

∂θ̂i
∆θ̂i




2



1/2

. (139)

We want to bound the relative error defined in (139) over the cell Ĉ
θ̂∗,τ̂∗,λ̂∗

defined by

Ĉ
θ̂∗,τ̂∗,λ̂∗

def
= [θ̂∗1 −∆θ̂1, θ̂

∗
1 +∆θ̂1]× [θ̂∗2 −∆θ̂2, θ̂

∗
2 +∆θ̂2]× · · ·
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× [θ̂∗d −∆θ̂d, θ̂
∗
d +∆θ̂d]× [τ̂∗ −∆τ̂ , τ̂∗ +∆τ̂ ]× [λ̂∗ −∆λ̂, λ̂∗ +∆λ̂]. (140)

When we consider (123) together with (139) we see that ∆λ̂ should not scale
coarser than

∆λ̂ ∼
[
Ψ̂λ̂λ̂(θ̂

∗, λ̂∗)
]−1/2

· cλ̂ ≈ λ̄−1/2 · cλ̂ (141)

where 0 < cλ̂ < 1 is some constant. Considering (123) together with (125),
(139) and the argument of approximating posterior covariances above which

justifies treating Ĥ(x, θ̂∗, τ̂∗) as diagonal matrix , we see that ∆τ̂ should
scale no coarser than

∆τ̂ ∼ a−
1
2 · cτ̂ = ǫ−1

d

(
n− d+ 2

n
+

1

2n
‖(τ∗) 1

2θ∗‖22
)− 1

2

· cτ̂

=Eθ
ǫ−1
d

(
n− d+ 2

n
+

1

2
Ω(λ∗, τ∗)

)− 1
2

· cτ̂

= ǫ−1
d

√
2Ω− 1

2 (λ∗, τ∗)

(
1 + 2

n− d+ 2

nΩ(λ∗, τ∗)

)− 1
2

· cτ̂

≈
√
2ǫ−1
d Ω− 1

2 (λ∗, τ∗) · cτ̂ . (142)

where 0 < cτ̂ < 1 is some constant number. We have omitted terms of
non-leading order in (126) and we assumed Ω(λ∗, τ∗) ≫ 1 when writing the

last ≈ above. Now, choosing the scaling on ∆θ̂ as

∆θ̂i ∼ −sgn (θ̂i) ·
τ̄−

1
2√
d

· cθ̂, (143)

where 0 < cθ̂ < 1 is some constant number (see (123)), and the sign conven-

tion sgn (∆θ̂i) = −sgn (θ̂i) is just a trick to make |∆θi| symmetric w.r.t sign
of θi, see (138). The relations (139)-(143) now yields

sup
θ̂,τ̂ ,λ̂∈Ĉ

θ̂∗,τ̂∗,λ̂∗

∆p̂(θ̂, τ̂ , λ̂|x)
p̂(θ̂, τ̂ , λ̂|x)

≤
(
c2
λ̂
+ c2τ̂ +

d∑

i=1

(
cθ̂√
d

)2
)1/2

=
√
c2
λ̂
+ c2τ̂ + c2

θ̂
(144)

Plugging (141), (142), (143) into (136), (137) and (138) we get

∆τ ∼ τ
2√
n
Ω− 1

2 (λ∗, τ∗) · cτ̂ (145)

∆θi ∼ −sgn (θi)

(
τ−

1
2√
d

· cθ̂ + |θi|
1√
n
Ω− 1

2 (λ∗, τ∗) · cτ̂
)

(146)

∆λ ∼ χ′(λ̂)
[
Ψ̂λ̂λ̂(θ̂

∗, λ̂∗)
]−1/2

· cλ̂. (147)
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We note that (147) may be simplified by observing that

Ψ̂λ̂λ̂(θ̂, λ̂)
def
=

∂2

∂λ̂2
Ψ(θ̂, χ(λ̂)) = χ′′(λ̂)Ψλ(θ, λ) + χ′(λ̂)2Ψλλ(θ, λ) (148)

and noting that Ψλ(θ
∗, λ∗) = 0 by definition of λ∗ we may by means of (148)

write (147) as

∆λ ∼ χ′(λ̂∗)
[
χ′(λ̂)2Ψλλ(θ

∗, λ∗)
]−1/2

· cλ̂ = |Ψλλ(θ
∗, λ∗)|−1/2 · cλ̂. (149)

The expressions (145), (146), (147) may be used to deduce an upper bound
on the discretization to use in encoding the estimated parameters τ∗, θ∗, λ∗

while yielding the posterior distribution to within a prescribed precision. We
note that in [Ris98] it is shown that the MDL-optimal choice of discretiza-

tion of parameters scales like n−1/2 (asymptotically in n). This should not
be confused with the discretization given in (143): We want a discretization
which is fine enough to enable us to evaluate posterior probabilities to within
some specified precision whereas Rissanen want a discretization yielding the
shortest code length [Ris98], [Ris96].

Proposition 11.1. The discretization ∆τ , ∆λ, ∆θi on the parameters
τ , λ, θi, 1 ≤ i ≤ d, respectively, given by

∆τ = τ
2√
n
Ω− 1

2 (λ∗, τ∗) · cτ̂ , 0 < cτ̂ < 1. (150)

∆θi =
τ−

1
2√
d

· cθ̂ ·
(
1 +

(
d

n

τ |θi|2
Ω(λ∗, τ∗)

)1/2
cτ̂
cθ̂

)
, 0 < cθ̂ < 1. (151)

∆λ = χ′(λ̂)
[
Ψ̂λ̂λ̂(θ̂

∗, λ̂∗)
]−1/2

· cλ̂ = |Ψλλ(θ
∗, λ∗)|−1/2 · cλ̂,

0 < cλ̂ < 1. (152)

yields the following precision ∆p̂(θ̂, τ̂ , λ̂|x) on the posterior density p̂γd(θ̂, τ̂ , λ̂|x):

∆p̂(θ̂, τ̂ , λ̂|x)
p̂(θ̂, τ̂ , λ̂|x)

≤
√
c2
θ̂
+ c2

λ̂
+ c2τ̂ . (153)

Proof. See discussion above. �

11.1. Comments on Proposition 11.1.

(1) The discretization scheme given above should not be confused with
the optimal 1/

√
n discretization given in [Ris98], which is optimal

in the sense of minimizing the expected difference w.r.t the worst
data generating distribution g between code lengths using the code
length induced by any distribution q(x) on data and the code length
induced by f(x;β∗(x)), see [Ris01] and (70). The discretization
shown in Proposition 11.1 was developed to be the coarsest possible
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yielding the posterior distribution to within a prescribed precision.

(2) We see that the discretization of θi given above is data driven and
implying a discretization that may well be finer or coarser than the
MDL-optimal discretization of τ−1/2/

√
n, [Ris98]. It will generally

lead to a finer discretization if cθ̂ <
√
d/n and a coarser discretiza-

tion if cθ̂ >
√
d/n. Also, we get coarser discretization for those

indices i where
(
d
n

)1/2 2τ1/2|θi|
Ω1/2(λ∗,τ∗)

· cτ̂c
θ̂
>
√
d/n.

12. A formal approximative generalization to non-gaussian

models

The results we have obtained so far were deduced for models with
IID gaussian likelihood distributions. However, it is possible to general-
ize the results to the case of non-gaussian IID likelihood models under some
(smoothness) conditions on the distribution. The argument goes as follows:
Given a IID non-gaussian likelihood f(x|θ,α) =

∏n
i=1 f(xi|θi,α), where

Exi [xi] = θi, and α = (α1, ..., αs) are parameters of the distribution f , com-

pute the Taylor expansion of Qα(θ|x) def
= − log f(x|θ,α) about θ = θ0 = x:

TQα (θ|x) =
n∑

i=1

Qα(xi|xi) +
n∑

i=1

a(xi|α)(θi − xi)

+
1

2

n∑

i=1

b(xi|α)(θi − xi)
2 +Rα(θ|x)

where

Rα(θ|x) def
=

1

6

n∑

i=1

∫ θi

xi

c(zi|α)(θi − zi)
3 dzi, a(xi|α) def

=
∂Qα(θ|xi)

∂θ

∣∣∣∣
θ=xi

,

b(xi|α) def
=

∂2Qα(θ|xi)
∂θ2

∣∣∣∣
θi=xi

, c(xi|α) def
=

∂3Qα(θ|xi)
∂θ3

∣∣∣∣
θ=xi

. (154)

Truncating the expansion TQα (θ|x) to second order in θ will yield an ap-
proximation g(x|θ,α), which is a gaussian function of θ, to the likelihood
model f(x|θ,α) and we may write

f(x|θ,α) = g(x|θ,α)Zα(θ|x)
where

g(x|θ,α) def
= exp

(
−

n∑

i=1

Qα(xi|xi) +
n∑

i=1

a(xi|α)2
2b(xi|α)

)

× exp

(
−1

2

n∑

i=1

b(xi|α)
(
θi − xi +

a(xi|α)
b(xi|α)

)2
)

(155)
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and

Zα(θ|x) def
= exp (−Rα(θ|x)) . (156)

Although the second order approximation g(x|θ,α) in general will be a
poor pointwise approximation to the density f(x|θ,α), it may locally in a
vicinity of θ = x be sufficiently accurate to be used to compute the marginal
integral

∫
f(x|θ,α)πλ(θ)ρ(λ)ζ(α) dθ dα dλ to within the desired accuracy.

An analysis of the remainder term Zα(θ|x) will have to be carried out for
the given likelihood f to decide if this is the case. If so, we may define an
approximative Fisher matrix F to the likelihood f(x|θ,α) by

Fij(β)
def
= −Ex

[
∂2

∂βi∂βj
log g(x|β)

]
, where β

def
= (αT ,θT )T . (157)

Then we may proceed similar to the steps taken in (39)-(43) to find the

reparameterizations φ : θ̂ → θ, ψ : α̂→ α which makes the reparameterized
Fisher information |F̂ (θ̂, α̂)| a constant. In at least some cases of interest
the reparameterizations defined in (39)-(43) should still apply with minor
modifications and so would the (proof of) result in Theorem 4.1.





CHAPTER 3

Applying the INMDL-principle to GGD-modelled

data

1. Preliminaries

We will investigate the performance of the INMDL-principle as devel-
oped in previous sections when applied to GGD-modelled data. The GGD-
model is frequently used when representing natural images in wavelet bases
[ML99]. Having found the invariant noise estimator τ∗ in (413), we need to
compute the invariant estimator θ∗ defined in (37) under the GGD-model.
The GGD family of distributions is a two-parameter family governed by the
variance-parameter 1

λ > 0 and a shape parameter ν > 0 and has the form
[ML99]

πλ,ν(θ) =
νη(ν)

2Γ(1/ν)
λ

1
2 exp

(
−
[
η(ν)λ

1
2 |θ|
]ν)

,

where

η(ν)
def
=

(
Γ(3/ν)

Γ(1/ν)

)1
2

. (158)

Under the assumption of IID additive white gaussian noise (WGN) the prob-
lem to solve is

θ∗ = arg min[θ]v∈R
{τ
2
(x− θ)2 − log πλ,ν(θ)

}

= arg min[θ]v∈R
{τ
2
(x− θ)2 +

[
η(ν)λ

1
2 |θ|
]ν}

= arg min[θ]v∈R

{
[x− θ]2v + 2η(ν)ν

[λ]
ν
2
v

[τ ]v
|[θ]v|ν

}
. (159)

We will in the following consider the case 0 < ν < 2. We define

Λ(ν, λ, τ)
def
= 2η(ν)ν

[λ]
ν
2
v

[τ ]v
(160)

θ
def
= Λ

1
2−ν (ν, λ, τ)θ̄ (161)

x
def
= Λ

1
2−ν (ν, λ, τ)x̄. (162)
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We see that the problem to solve may be written

θ̄∗ = arg min[θ̄]v∈R
{
[x̄− θ̄]2v + |[θ̄]v|ν

}
(163)

The equation (163) may be solved numerically by means of standard numer-
ical software or simply by linear interpolation as follows. Define

R(θ̄)
def
= [x̄− θ̄]2v + |[θ̄]v|ν (164)

assuming θ̄ 6= 0 we may then write

dR(θ̄)

dθ̄
= −2[x̄− θ̄]v + ν · sgn ([θ̄]v)|[θ̄]v|ν−1, [θ̄]v 6= 0. (165)

We observe by (164) that R(θ̄) is a convex function of θ̄ for 1 ≤ ν < 2 and

therefore θ̄∗ is given by dR(θ̄)
dθ̄

= 0. It was shown in [ML99] that in the case

0 < ν ≤ 1 there exists a threshold tν > 0 such that |x| < tν ⇔ θ∗ = 0 with

tν
def
= Dν ·

[λ]
ν/2
2−ν
v

[τ ]
1

2−ν
v

, 0 < ν ≤ 1 (166)

where

Dν
def
= (2− ν)(2− 2ν)−

1−ν
2−ν η(ν)

ν
2−ν . (167)

This yields

[θ̄∗]v = 0 ⇔ |[x̄]v| < t̄ν
def
= Λ− 1

2−ν tν = 2−
1

2−ν (2− ν)(2− 2ν)−
1−ν
2−ν . (168)

We note that one may show that 0 < ν ≤ 1 ⇒ 0 < t̄ν < 1. We observe that

0 =
dR(θ̄)

dθ̄

∣∣∣∣
θ̄=θ̄∗

⇒ [x̄]v = [θ̄∗]v +
ν

2
sgn ([θ̄∗]v)|[θ̄∗]v |ν−1, [θ̄∗]v 6= 0. (169)

The expression (169) applies to |[x̄]v | ≥ t̄ν if 0 < ν ≤ 1 and (169) applies to
all [x̄]v if 1 < ν < 2. We further observe that the GGD-MAP estimator θ∗(x)
and θ̄∗(x̄) exhibit step discontinuities at x = ±tν , x̄ = ±t̄ν , respectively,
when 0 < ν < 1: By (169) we see that

t̄ν = lim
x̄→t̄+ν

[x̄]v = lim
x̄→t̄+ν

{
[θ̄∗(x̄)]v +

ν

2
sgn ([θ̄∗(x̄)]v)|[θ̄∗(x̄)]v|ν−1

}
(170)

and while the lefthand side of (170) is finite, the righthand side increases to
+∞ as θ̄∗ → 0+, if 0 < ν < 1. Therefore, if 0 < ν < 1, there must exist a
number s̄ν > 0 depending on ν such that |x̄| > t̄ν ⇒ |θ̄∗(x)| ≥ s̄ν > 0. The
size s̄ν of the step discontinuity may be computed (numerically) for given
0 < ν < 1 by solving

t̄ν = s̄ν +
ν

2
s̄ν−1
ν . (171)
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We note that by (171), (168) we have s̄ν → t̄ν → 1 as ν → 0+ and s̄ν →
(t̄ν − 1/2) → 0 as ν → 1−.

One can compile lookup tables of pairs of corresponding values (x̄,θ̄∗) to the
equation (163) by discretizing θ̄∗ to some specific precision ∆θ̄∗ and then
use equations (169), (168) to compute corresponding pairs of values (x̄, θ̄∗).
Since we ultimately want the estimated value θ∗ to some precision ∆θ∗, we
have to ensure that the lookup table of pairs of values (x̄,θ̄∗) is computed
on a sufficiently fine grid with stepsize ∆θ̄∗ yielding a sufficient precision

∆θ∗ = Λ
1

2−ν (ν, λ, τ)∆θ̄∗ when transforming by the formula (161). Letting
δ > 0 denote the desired precision on the parameters θ∗, then it suffices to
demand

δ ≥ Λ
1

2−ν (ν, λ, τ)∆θ̄∗. (172)

Rissanen in [Ris98] computed the asymptotically MDL-optimal discretiza-
tion δ∗ on the parameters which parameterize a n-variate distribution. In
Proposition 11.1 in a previous section we presented a result on the posterior
optimal discretization of parameters which deviates from the MDL-optimal
δ∗ in that it suggests a data-driven, possibly coarser discretization of the
parameters. However, Proposition 11.1 shows that MDL-optimal discretiza-
tion δ∗ is a lower bound on the posterior optimal discretization δ (since
Eθ[λθ

2] = 1 and d/n < 1), and so in the n-variate IID case of a gaussian
likelihood with deviation σ we will use

δ∗ =
σ√
n

(173)

and by (172) we then find an upper bound for ∆θ̄∗ to be

∆θ̄∗ ≤ τ−
1
2√
n

· Λ− 1
2−ν (ν, λ, τ) =

τ−
1
2√
n

·
(
2η(ν)ν

[λ]
ν
2
v

[τ ]v

)− 1
2−ν

=
1√
n
·
(
2η(ν)ν

[λ]
ν
2
v

[τ ]
ν
2
v

)− 1
2−ν

=
1√
n
·
(
n
dΩ(λ, τ)

2
2
ν η(ν)2

) ν/2
2−ν

. (174)

For most datasets of interest we may bound Ω(λ, τ) from below by 1 (which
means that we exclude data models where the noise in the data has greater
power than the signal part of the data). We define

∆x̄
def
=

dx̄

dθ̄∗
∆θ̄∗ (175)

then by differentiating (169) we get

∆x̄ =

(
1 +

ν(ν − 1)

2

∣∣[θ̄∗]v
∣∣ν−2

)
∆θ̄∗, [θ̄∗]v 6= 0 (176)
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which corresponds to

∆x =

(
1 +

ν(ν − 1)

2
Λ(ν, λ, τ) |[θ∗]v|ν−2

)
∆θ∗, [θ∗]v 6= 0 (177)

Given a data value ˆ̄x, gridpoint pairs (x̄i, θ̄
∗
i ) and (x̄i+1, θ̄

∗
i+1) with x̄i ≤ ˆ̄x ≤

x̄i+1, we define the estimated parameter value ˆ̄θ∗(ˆ̄x) by the linear interpo-
lation

ˆ̄θ∗
def
= θ̄∗i + (ˆ̄x− x̄i) ·

θ̄∗i+1 − θ̄∗i
x̄i+1 − x̄i

(178)

Expression (176) can be used to compute a bound on the interpolation error

for ˆ̄θ∗ for given gridsize ∆θ̄∗. The interpolation error ∆ˆ̄θ∗ in the linear

interpolation estimate ˆ̄θ∗(ˆ̄x) may by equation (176) be bounded as follows

|∆ˆ̄θ∗| ≤ min
(∣∣ˆ̄x− x̄i

∣∣ ,
∣∣ˆ̄x− x̄i+1

∣∣) sup
θ̄∗∈(θ̄∗i ,θ̄∗i+1)

∣∣∣∣1 +
ν(ν − 1)

2

∣∣[θ̄∗]v
∣∣ν−2

∣∣∣∣
−1

.

(179)

2. The marginal normalization Cγd for GGD priors

We need to calulate the Fisher matrix E(λ) defined in (61) and Ψ(θ, λ)
defined in (62) and the invariant estimator λ∗ defined in (63) to be able to
compute Ψλλ(θ

∗, λ∗) which is part of the formula for the marginal distribu-
tion given in Corollary 5.1. Plugging the definition (158) into the defining
formulas we get

E(λ)
def
= −Eθ

∂2 log π(θ|λ)
∂λ2

= −Eθ
{
−d/2
λ2

− ν

2

(ν
2
− 1
)
η(ν)νλν/2−2

d∑

i=1

|θi|ν
}

Now, a straightforward calculation yields:

Eθ{|θ|ν} =
Γ
(
1
ν + 1

)

Γ
(
1
ν

)
η(ν)ν

λ−ν/2 (180)

and we may then write

E(λ) =
d/2

λ2
+
ν

2

(ν
2
− 1
)
η(ν)νλν/2−2

d∑

i=1

Γ
(
1
ν + 1

)

Γ
(
1
ν

)
η(ν)ν

λ−ν/2 =
νd/4

λ2
.

(181)
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We may then calculate Ψ(θ, λ) as

Ψ(θ, λ)
def
= − log

[
π(θ|λ)

|E(λ)|1/2
]

v

=
1

2
log

(
νd

4

)
− log[λ]v − log [π(θ|λ)]v

(182)

and λ∗ then becomes

λ∗
def
= arg infλ>0Ψ(θ, λ) =

(d+ 2)2/ν

ν2/νη(ν)2
(∑d

i=1 |θi|ν
)2/ν . (183)

For notational convenience, we define

Rνν(θ)
def
=

d∑

i=1

|θi|ν . (184)

We may now proceed to calculate

Ψλλ(θ, λ) =
∂2

∂λ2

(
−d+ 2

2
log[λ]v + η(ν)ν [λ]ν/2v Rνν(θ)

)

=
d+ 2

2
λ−2

(
1 +

ν

d+ 2

(ν
2
− 1
) [
η(ν)λ1/2Rν(θ)

]ν)
(185)

and we may now by means of (183) evaluate

|Ψλλ(θ, λ
∗)|1/2 =

1

λ∗

(
ν(d+ 2)

4

)1/2

(186)

We may now calculate the quantization induced by the mapping χ(λ̂) on
the parameter λ as described in Proposition 11.1. We have

∆λ = χ′(λ̂)|Ψ̂(θ̂∗, λ̂∗)|−1/2 · cλ̂ = |Ψλλ(θ, λ
∗)|−1/2 · cλ̂

=
2√

ν(d+ 2)
· λ∗ · cλ̂. (187)

We may now calculate the map χ : λ̂ → λ which defines the invariant

parameterization λ̂. Define the log likelihood L̂ by

L̂(θ̂)
def
= − log

[
π
(
θ | χ(λ̂)

)]
v

=
d

2
log
[
χ(λ̂)

]
v
+ d log

(
νη(ν)

2Γ
(
1
ν

)
)

− χν/2(λ̂)η(ν)ν
d∑

i=1

|θi|ν (188)
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Now, the Fisher matrix Ê(θ̂) in the invariant parameterization λ̂ is defined
by

Ê(λ̂)
def
= −Eθ̂

{
∂2

∂λ̂2
L̂(θ̂)

}
(189)

To make the parameterization λ̂ invariant, we have to demand

|Ê(λ̂)| = λ̄−2 (190)

where λ̄ > 0 is some constant number. This yields the equation

− Eθ̂

{
L̂(θ̂)

}
= r(λ̂)

def
= ĉ0 + ĉ1λ̂+

1

2
λ̄−2λ̂2 (191)

for some real constants ĉ0, ĉ1. Plugging in the expression L̂(θ̂) from (188)
into (191) yields

r(λ̂) = −d
2
log
[
χ(λ̂)

]
v
− d log

(
νη(ν)

2Γ
(
1
ν

)
)

+ χν/2(λ̂)η(ν)ν
d∑

i=1

Eθ̂ {|θi|ν}

= −d
2
log
[
χ(λ̂)

]
v
− d log

(
νη(ν)

2Γ
(
1
ν

)
)

+ d · χ
ν/2(λ̂)η(ν)νΓ

(
1
ν + 1

)

Γ
(
1
ν

)
η(ν)ν

χ−ν/2(λ̂).

Now, solving for χ(λ̂) yields

χ(λ̂) =

(
νη(ν)

2Γ
(
1
ν

)
)−2

exp (2/ν) exp


−

(
λ̂+ ĉ1λ̄

2
)2

dλ̄2
− 2ĉ0 − ĉ21λ̄

2

d


 .

Specifying the initial condition χ(0) = λ0, we get

χ(λ̂) = λ0 exp


−

(
λ̂+ ĉ1λ̄

2
)2

dλ̄2
+
ĉ21λ̄

2

d


 . (192)

Using (183) we now evaluate the integral

∫

θ∈Θ

π(θ|λ∗)
|Ψλλ(θ, λ∗)|1/2

dθ =

(
ν(d+ 2)

4

)−1/2( νη(ν)

2Γ(1/ν)

)d

×
∫

θ∈Θ
(λ∗)

d+2
2 exp

(
−η(ν)ν(λ∗)ν/2

d∑

i=1

|θi|ν
)
dθ

=

(
ν(d+ 2)

4

)−1/2( νη(ν)

2Γ(1/ν)

)d
exp

(
−d+ 2

ν

)(
(d+ 2)

2
ν

ν
2
ν η(ν)2

) d+2
2
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×
∫

θ∈Θ

(
d∑

i=1

|θi|ν
)− d+2

ν

dθ. (193)

Now, using

Θ =

{
θ ∈ Rd | 0 < (rν)

ν <
d∑

i=1

|θi|ν <
d∑

i=1

|θ∗i |ν
def
= (Rν)

ν

}
(194)

and performing a suitable change of coordinates (see [GR00], page 610) the
integral (193) evaluates to

∫

θ∈Θ

π(θ|λ∗)
|Ψλλ(θ, λ∗)|1/2

dθ

=

(
ν(d+ 2)

4

)−1/2( νη(ν)

2Γ (1/ν)

)d
exp

(
−d+ 2

ν

)(
(d+ 2)

2
ν

ν
2
ν η(ν)2

)d+2
2

× 2d
Γ
(
1
ν

)d

νdΓ
(
d
ν

)
(
r−2
ν

∫ ∞

1
x−

2
ν
−1 dx−R−2

ν

∫ ∞

1
x−

2
ν
−1 dx

)

= (2π)−1/2(d+ 2)
2
ν
− 1

2d
1
2 η(ν)−1ν−

2
ν r−2
ν

(
1−

(
rν
Rν

)2
)
. (195)

This result may be plugged into Proposition 6.1 to yield the precise code-
length contribution from the term logCγd . We observe that it will only
contribute constant terms plus a (2/ν) log d term.

3. The model selection algorithm for GGD distributed

parameters

By Proposition 8.1 we see that we will have to investigate the behaviour
of − log π(θ∗|λ∗). Choosing the ML estimator (183) for λ∗, we get

C(x‖(i)|Si−1)
def
= −(n− d+ 2)

|x‖(i)|
‖x‖22 − ‖x‖‖22

− ∂

∂|x‖(i)|
log

(
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

)

= −(n− d+ 2)
|x‖(i)|

‖x‖22 − ‖x‖‖22

+ (d+ 2)
|θ∗i |ν−1

∑d
j=1 |θ∗j |ν

∂|θ∗i (x‖(i))|
∂|x‖(i)|

, 1 ≤ i ≤ d (196)
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It is easy to see that with a possible exception for the derivative term, all
terms in (196) are decreasing functions of |x‖(i)|. As for the derivative term,
we see from (169) that this term is positive and bounded by 1 for 0 < ν ≤ 2
for |x‖(i)| sufficiently large and so we may conclude that C(x‖(i)|Si−1) is a
decreasing function of |x‖(i)|. Therefore, the d nonzero elements of x‖ ∈ Rn

are the d largest |x(i)| in the dataset x ∈ Rn.

4. The approximation errors for the GGD model

We need to control the approximation error terms κ and ξ as defined in
the proof of Theorem 4.1. An easily computable upper bound for the error
term κ is given in Theorem 4.1. The upper bound for the error term ξ as
shown in Theorem 4.1 may be considerably simplified in the case of a GGD
prior distribution on the noiseless data. We have the following result:

Proposition 4.1. One may verify that the GGD distributions satisfy the
conditions in Theorem 4.1. Using the notation from Theorem 4.1 we may
state the following upper bound on the number ξ for GGD prior distributions

ξ + 1 ≤ exp exp

{
d

(
1

2
+ log 2

)
− 1

2
τ1‖x‖‖22 −

d∑

i=1

log

∣∣∣∣τ
1
2
1 x‖(i)

∣∣∣∣

+
d∑

i=1

[
η(ν)2

τ1x
2
‖(i)

n
dΩ(λ, τ1)

] ν
2

+
2η(ν)νν

(2π)
1
2

d∑

i=1

Lν

(
τ

1
2
1 x‖(i)

)
 (197)

where

τ∗ exp

[
−
(
log2N(λ, ν, γd)

N(λ, ν, γd)

)1/2
]

≤ τ1 ≤ exp

[(
log2N(λ, ν, γd)

N(λ, ν, γd)

)1/2
]
,

Lν

(
τ

1
2x
)
=





∣∣∣τ 1
2x
∣∣∣
ν−1 (

n
dΩ(λ, τ)

)− ν
2 if 0 < ν ≤ 1

(
n
dΩ(λ, τ)

)− 1
2

(
1 +

∣∣∣τ 1
2x
∣∣∣
(
n
dΩ(λ, τ)

)− 1
2

)
if 1 < ν < 2.

Proof. First, by (56) and the fact that πλ(x) is a monotone decreasing
function of |x|, we observe that

ξ + 1 ≤
d∏

i=1




1 +

2PG

(
−τ

1
2
1

∣∣x‖(i)
∣∣
)
πλ=1(0)/πλ=1

([
τ1x2

‖
(i)

n
d
Ω(λ,τ1)

] 1
2

)

1 + erf (τ
1
2
1 |x‖(i)|) − 2Cνν

(2π)
1
2
Lν

(
τ

1
2
1 x‖(i)

)




.

(198)
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Plugging (158) into (198) we get

ξ + 1 ≤
d∏

i=1




1 +

2PG

(
−τ

1
2
1

∣∣x‖(i)
∣∣
)
exp

(
η(ν)ν

[
τ1x2

‖
(i)

n
d
Ω(λ,τ1)

] ν
2

)

1 + erf (τ
1
2
1 |x‖(i)|) − 2η(ν)νν

(2π)
1
2
Lν

(
τ

1
2
1 x‖(i)

)




. (199)

Using the bound PG(−t) ≤ t−1 1√
2π

exp
(
−1

2t
2
)
, ∀ t 6= 0, we may write

ξ + 1 ≤
d∏

i=1




1 +

2 exp

(
−1

2τ1x
2
‖(i) − log

∣∣∣∣τ
1
2
1 x‖(i)

∣∣∣∣ +
[
η(ν)2

τ1x2
‖
(i)

n
d
Ω(λ,τ1)

] ν
2

)

1 + erf (τ
1
2
1 |x‖(i)|) − 2η(ν)νν

(2π)
1
2
Lν

(
τ

1
2
1 x‖(i)

)





≤ exp




d∑

i=1





2 exp

(
−1

2τ1x
2
‖(i)− log

∣∣∣∣τ
1
2
1 x‖(i)

∣∣∣∣ +
[
η(ν)2

τ1x2
‖
(i)

n
d
Ω(λ,τ1)

] ν
2

)

1 + erf (τ
1
2
1 |x‖(i)|) − 2η(ν)νν

(2π)
1
2
Lν

(
τ

1
2
1 x‖(i)

)








(200)

where

Lν

(
τ

1
2x
)

def
=





(
τ

1
2 |x|

)ν−1 (
n
dΩ(λ, τ)

)− ν
2 if 0 < ν ≤ 1

(
n
dΩ(λ, τ)

)− 1
2 if 1 < ν < 2

(201)

and

τ1 ∈ Iτ =

(
τ∗ exp

[
−
(
2 logN(λ, ν, γd)

N(λ, ν, γd)

) 1
2

]
,

τ∗ exp

[(
2 logN(λ, ν, γd)

N(λ, ν, γd)

)1
2

])
. (202)

We see that the righthandside of (200) makes no sense when ν → 0+ because
limν→0+ η(ν)

ν = +∞ and also the validity of expression (200) depends on

2η(ν)νν

(2π)
1
2

Lν

(
τ

1
2
1 x‖(i)

)
≤ 1, ∀ i ∈ γd. (203)

This lack of generality is due to our choice of technique for estimating ξ in
the proof of Theorem 4.1 where we implicitely assumed

πλ=1

((n
d
Ω(λ, τ)

)− 1
2
τ

1
2x

)
/(sup
t∈R

πλ=1(t)) > 2η(ν)νν(2π)−
1
2Lν(τ

1
2x‖(i)),
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∀ i ∈ γd, ∀τ ∈ Iτ , (204)

and is therefore not due to an intrinsic property of the model. Now, because
of (203) we have

− 1 < −2η(ν)νν(2π)−
1
2Lν(τ

1
2
1 x‖) + erf

(
τ

1
2
1 |x‖(i)|

)
< 1 (205)

and by the inequality log(1 + x) > x− 1
2x

2, ∀ |x| < 1 we then have

log

(
1− 2η(ν)νν(2π)−

1
2Lν(τ

1
2
1 x‖) + erf

(
τ

1
2
1 |x‖(i)|

))

> 2η(ν)νν(2π)−
1
2Lν

(
τ

1
2
1 x‖(i)

)
+ erf

(
τ

1
2
1 |x‖(i)|

)

− 1

2

(
−2η(ν)νν(2π)−

1
2Lν

(
τ

1
2
1 x‖(i)

)
+ erf

(
τ

1
2
1 |x‖(i)|

))2

. (206)

Using (206) on the expression (200) enables us to write

ξ + 1 ≤ exp exp



−1

2
τ1‖x‖‖22 −

d∑

i=1

log

∣∣∣∣τ
1
2
1 x‖(i)

∣∣∣∣ +
d∑

i=1

[
η(ν)2

τ1x
2
‖(i)

n
dΩ(λ, τ1)

] ν
2

+d log 2 + 2η(ν)νν(2π)−
1
2

d∑

i=1

Lν

(
τ

1
2
1 x‖(i)

)
−

d∑

i=1

erf

(
τ

1
2
1 |x‖(i)|

)

+
1

2

d∑

i=1

[
−2η(ν)νν(2π)−

1
2

d∑

i=1

Lν

(
τ

1
2
1 x‖(i)

)
+

d∑

i=1

erf

(
τ

1
2
1 |x‖(i)|

)]2
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≤ exp exp

{
d

(
1

2
+ log 2

)
− 1

2
τ1‖x‖‖22 −

d∑

i=1

log

∣∣∣∣τ
1
2
1 x‖(i)

∣∣∣∣

+

d∑

i=1

[
η(ν)2

τ1x
2
‖(i)

n
dΩ(λ, τ1)

] ν
2

+ 2η(ν)νν(2π)−
1
2

d∑

i=1

Lν

(
τ

1
2
1 x‖(i)

)
 (208)

and we may easily evaluate an upper bound on the righthandside of (208)
by evaluation with

τ1 = τ∗ exp

[
−
(
log2N(λ, ν, γd)

N(λ, ν, γd)

)1/2
]
,

and

τ1 = τ∗ exp

[(
log2N(λ, ν, γd)

N(λ, ν, γd)

)1/2
]
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with N(λ, ν, γd) as given in Theorem 4.1.

�

5. Numerical methods and experiments

In this section we show the performance of our INMDL-algorithm when
applied to the problem of estimating various kinds of 1-dimensional data
(signals) and 2-dimensional data (images) embedded in IID gaussian noise
(the ”denoising”-problem) and we will compare the performance of INMDL-
principle developed in the previous sections to various other kinds of denois-
ing algorithms. Detailed numerical results are shown in the appendix while
a graphical overview of estimator performance is shown in Figures 4-7. We
will here focus on the NML-principle of Rissanen as presented in [Ris00],
the RiskShrink-thresholding algorithms as presented in [DJ94], [BG95a],
[BG95b], (that is the universial hard thresholding scheme with threshold
σ
√
2 logN where σ2 is the noise variance),the SureShrink-thresholding algo-

rithm given in [DJ95] and the MAP-estimator deduced from an IID GGD
model applied to the full data set [ML99], that is

x = θ + η, θ,η,x ∈ RN (209)

and

θi ∼ πλ,ν(θi), 1 ≤ i ≤ N, ηi ∼ N (0, τ−1/2), 1 ≤ i ≤ N. (210)

where πλ,ν is a GGD distribution with mean zero, second moment λ−1/2 and
shape parameter ν. Note the difference from the model defined in (25)-(26)
from which we deduced our INMDL principle. This MAP estimator equals
the estimator called TMAP defined in [HY00], except that we use the exact
MAP estimator (up to interpolation errors in the numerical approximation of
this estimator, see expressions (174)-(179)) for general values on the shape
parameter ν, whereas in [HY00] they use the MAP estimator for ν = 1
which is the soft thresholding operator (2). We adopt similar notation for

this estimator: We write T
(ν)
MAP where ν signifies the shape parameter in

the GGD distribution. To make the conditions under which our reported
numerical experiments were conducted, as clear as possible, we list some
remarks:

(1) The image data used in our experiments were mostly collected from
the USC-SIPI Image database at
http://sipi.usc.edu/services/database/Database.html,
see Figure 1 and Figure 2. The one dimensional signals used here
are the standard examples used and defined in [DJ95], see Figure
3.
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(2) All images used in experiments are bitdepth 8 gray level images of
size N = n× n = 512 × 512 unless otherwise is specified. The one
dimensional test signals are of length N = 1024 unless otherwise is
specified.

(3) In the tables shown in the appendix, results obtained from datasets
x ∈ RN with computer generated noise are shown. The definition
of signal to noise ratio (SNR) of the dataset x = θ + η used for
signal θ ∈ RN and noise η ∈ RN when generating datasets x with
different SNR values is:

SNR = 10 log10

( ‖θ‖22
Eη‖η‖22

)
. (211)

where f signifies the gaussian likelihood distribution.
(4) The SNR measure used when reporting signal to noise ratios in the

estimated signals θ∗ in the tables in appendix is:

ŜNR = 10 log10

( ‖θ∗‖22
‖θ − θ∗‖22

)
. (212)

(5) The error measure used in tables below will be a scaled version of
the root mean square error (RMSE) defined by

RMSE =

√
1

N
‖θ − θ∗‖22 · τ (213)

where θ is the estimate of the signal θ and τ−1 is the variance of
the noise η.

(6) For the RiskShrink, SureShrink and TMAP algorithms the noise
variance τ−1 was estimated from the highpass band using the me-
dian estimator, see [DJ95]. Also for the TMAP algorithm we esti-
mated the signal variance λ−1 by the moment estimator λ∗ defined
by:

1

λ∗
def
= max

(
0,

(
1

N

N∑

i=1

x(i)2

)
− τ−1

)
(214)

(7) The INMDL principle was implemented by an iterative scheme
in our numerical experiments as follows: The NML principle of
[Ris00] is used to provide an initial estimate of the best model
γ∗d∗ from which we compute initial estimates τ∗, λ∗ of variance pa-
rameters τ and λ and then an initial estimate θ∗ of the wavelet
coefficients θ of the data is computed. These parameter estimates
are then fed into the model selection principle as defined in Propo-
sition 8.1 and a new estimate of the best model γ∗d∗ may then be
computed and the iteration process continues with new updated
estimates τ∗, λ∗, θ∗ and so on. The GGD shape parameter ν is
also estimated in each iteration step using the estimate θ∗ and the
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estimator ν∗ provided in [DV02]. This whole model selection it-
eration procedure continues until changes in the estimates of the
optimal model size d∗ between two iterations falls within 5%. We
also note that the number Cλp in the model class prior distribution
D(p, q) in (93), (94) was set to Cλp = 1.0 in all our experiments
reported below.

(8) For image experiments, we show results from the GGD MAP es-

timator T
(ν)
MAP for values ν = 1.0 and ν = 0.7 on the GGD shape

parameter. The reason for our choice of these values, are that ex-
tensive empirical investigation [ML99] show that a GGD model
with ν ∈ (0.5, 1.0) provides a reasonable prior model for many if
not ”most” natural images. Also, the choice of ν = 1 yields the
Laplace distribution which is very often used as a model distribu-
tion in the image denoising community because one then can obtain
closed form analytical solutions to estimator and risk equations in
the case of gaussian noise.

(9) For the experiments with 1-dimensional signals, we show results

from the GGD MAP estimator T
(ν)
MAP for values ν = 0.5 and

ν = 1.0. Unlike the case of image data, we have in this case no
prior knowledge which supports a choice of a GGD model for the
data. However, the wavelet basis is known to yield sparse represen-
tations of piecewise smooth signals [DJ94], so a GGD distribution
with ν ≤ 1 could be worth a try. The choice ν = 2 yields a gaussian
model distribution, which maximizes the entropy for a given vari-
ance, but this choice turned out to yield a very poorly performing

estimator T
(2.0)
MAP , so we omit it.

(10) The ordinary full depth periodic wavelet basis with a symmlet of
filter length 16 (Symmlet 16) was used as the wavelet basis in all
the image experiments.

(11) All numerical experiments reported in this thesis were carried out
on a 2.0 GHz Pentium4-Mobile PC with 768 MB RAM running
FreeBSD-4.9 as operating system. The experiments were all imple-
mented in the C programming language except a few cases were
we have been using the NAG Fortran Library Mark 16 for some
standard mathematical functions and random number generators.
The C compiler used was Intel C++ compiler version 7.1 (build
20030922Z).

(12) We note that even though our implemented version of the INMDL
procedure is quite computing intensive, it runs in O(N logN) time,
and typically on our 2.0 GHz Pentium4 PC with image data with
N = n×n = 512×512, the run time is about 50-90 seconds when the
source code is compiled with full optimization. The computational
bottleneck by far is the computation of the GGD-MAP estimate θ∗

by linear interpolations. However, we have not gone to any effort
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in optimizing our implementation for speed. Considerable speed
improvements may be possible.

(13) The same noise realization was of course used when comparing
the different algorithms shown in tables below. We only report
results obtained from a single realization of the noise because we
found that the both SNR and RMSE results for all the denoising
algorithms in the tables deviated by less than 1% over 3 different
noise realizations when used on test image ”Barbara”.

(14) In the experiments on images below, we checked the validity of our
asymptotic marginal formula in Theorem 4.1, Corollary 5.1 and the
marginal renormalization constant in Proposition 6.1, by checking
(the upper bounds of) the numbers κ < Tκ, ξ < Tξ, ζ, ω < Tω, X.
These were found to vary as: 1.0E−3 < Tκ < 9.0E−2, 1.0E2 ≤
Tξ ≤ 4.5E9, 1.0E−3 ≤ log2 (1 + Tξ)/d ≤ 4.0E − 2, 1.0E−2 <
Tω < 9.0E−2, 1.0E−3 < X < 1.0E−2, 1.0E−3 < ζ < 3.0E−2.
Furthermore we observed that 2.4 < inf1≤i≤d |

√
τ∗θ∗i | < 4.0 always

for the test images used. The posterior biases shown in Corollary
10.1 were found to be of insignificant size: ¡ 0.01% of the estimator
values θ∗i , 1 ≤ i ≤ d and τ∗, for all of the test images. We emphasize
that although the numerical values of ξ were found to be large, the
contribution from the term (1 + ξ) to the codelength is given by:
− log2(1 + ξ)/d per model sample in the mean, and this is found
to be of the same order per model sample as the uncertainty ±0.5ζ
in the codelength contribution from the marginal normalization
− log2 Cγd (see Proposition 6.1) which we have explicitely neglected.

(15) For the experiments on 1-dimensional data below, we checked the
validity of our asymptotic marginal formula in Theorem 4.1, Corol-
lary 5.1 and the marginal renormalization constant in Proposi-
tion 6.1, by checking (the upper bounds of) the numbers κ < Tκ,
ξ < Tξ, ζ, ω < Tω, X. These were found to vary as: 1.0E−3 <
Tκ < 5.0E−2, 1.0E0 ≤ Tξ ≤ 4.0E0, 3.0E−3 ≤ log2 (1 + Tξ)/d ≤
2.0E−2, 1.0E−2 < Tω < 5.0E−1, 1.0E−3 < X < 2.0E−2, 1.0E−3 ≤
ζ ≤ 5.0E−2. Furthermore we observed that 1.96 < inf1≤i≤d |

√
τ∗θ∗i | <

3.7 always for the test signals used. The posterior biases: Eθ,τ (θ
∗
i −

θi) and:Eθ,τ (τ
∗ − τ) shown in Corollary 10.1 were found to be of

insignificant size: ¡ 0.001% of the estimator values θ∗i , 1 ≤ i ≤ d
and τ∗, for all of the test signals.
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5.1. Discussion of experimental results. When applied to image
data, the SureShrink method [DJ95] clearly outperforms all of the tested
estimators over the whole range of tested SNR values as seen from Figure
4. The SureShrink method is a hybrid method between a soft universial
thresholding scheme as given in [DJ94] and an adaptive thresholding scheme
given by adapting the thresholds to minimize a risk estimate using Steins
unbiased risk estimate (SURE) given in [Ste81]. The hybrid scheme of
SureShrink decides in each wavelet subband whether the signal is sparsely
represented in the subband. In sparse situations the universial thresholding
scheme is used, otherwise the SURE method is used to provide risk estimates
in each wavelet subband. Thus, different adaptive thresholds are used in
each subband by the SureShrink, whereas the other methods use a global
(identical in all subbands), although data adaptive, thresholding scheme.

Comparing the NML and INMDL-principle we note that the NML-
principle does not have a robust performance for the datasets tested here, it
fails badly compared to all the other methods as the SNR falls below 10 on
the dB scale as may be seen from Figure 4 and Figure 5. The performance of
the INMDL-principle in the region of low SNR is the second worst method
measured in RMSE for SNR < 5 dB , but it does not fail as bad as the
NML-principle. Coupling these observations to the information in Figure 7
and Figure 6, we conclude that the main explanation for the observed weak
performance of NML and INMDL in the low SNR region, is that the sizes of
the optimal models as predicted by these model selection principles are too
large, this behaviour is especially clear for the NML-principle. The Figure
4 shows that the INMDL-based estimator has second best performance of
the tested estimators for image datasets in the SNR range 10 dB < SNR
< 15 dB. For image data in the high SNR region we see that performances
of both NML and INMDL weakens as the SNR increases when compared to
the GGD-MAP estimators and the SureShrink principle. Figure 6 explains
why: The predicted optimal model sizes are too small in this SNR region
for image data. However, for the 1-dimensional test data the situation is
reversed: As the SNR increases the performance of NML and INMDL based
estimators improves and outperform the SureShrink and the GGD-MAP es-
timators. The Figure 6 explains why: The SureShrink and the GGD-MAP
estimators keeps too many wavelet coefficients for this type of data whereas
the model sizes as predicted by the NML and the INMDL principles yields a
smaller number of nonzero wavelet coefficient estimates which closely match
the RiskShrink estimator both in performance and sparseness of the wavelet

coefficient estimates. We note that the RiskShrink estimator θ
(RS)
i is known

to be universally near-optimal in the sense that to within a logarithmic fac-
tor it achives the ideal risk obtained with an oracle estimator [DJ94], that
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is

Ex‖θ(RS)(x)− θ‖22 ≤ (2 logN + 1)

(
σ2 +

N∑

i=1

min(θ2i , σ
2)

)
,∀ θ ∈ RN

(215)

and no estimator can come closer to the ideal risk than θ(RS) for all θ ∈ RN

without relying on an oracle.
Figure 4 and Figure 5 indicates that the tested estimators perform quite

differently relative to each other for a given SNR level, depending on whether
the data belongs to the 2-dimensional test datasets or 1-dimensional test
data in our experiments. The explanation may depend on several factors:
The sample size N which in the experiments here defer by two orders of mag-
nitude between the two-dimensional and one-dimensional datasets. How-
ever, we verified (see remarks above) that the parameters controlling the
error on our marginal approximation formula are well inside the required
intervals for both sample sizes N = 218 and N = 210 in all our experiments.
Therefore we do not believe the observed differences in performance are pri-
marily due to differences in sample size here. The ability of the wavelet
basis to sparsely represent the data in the wavelet domain (”few” large and
many ”small” wavelet expansion coefficients) is important. In this respect
we note that wavelet bases are known to optimally (in a certain strictly
defined sense) [Mal98a] represent data inside a ”ball” of bounded total
variation functions and a large class of ”natural” images belong to this class
of functions [DJ95], [KM03].
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Figure 1. Test images.
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Figure 2. Test images.
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Figure 3. Test signals.
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CHAPTER 4

The INMDL-principle applied to an inverse

problem

1. Definition of problem and data generating model

We will investigate the performance of the INMDL-principle when ap-
plied to the problem of estimating signals or images θ which have gone
through a degradation process modelled as

y = u ∗ θ + η (216)

where u is a known lowpass filter and η is IID gaussian noise and ∗ de-
notes the convolution operator. We will rely on and use as reference work
presented in [KMR03] and [KM03], in particular we will use the mirror
wavelet basis constructed in the cited papers, see appendix. The motivation
behind our investigation into applying the INMDL-principle to the deconvo-
lution problem (216) is our experience from numerical simulations concern-
ing the denoising problem in the previous section that the INMDL-principle
as developed in previous sections seem to be very robust against high noise,
and so one could expect that the INMDL-principle would eliminate the
need for ”hard” regularization techniques like the cutoff-frequencies kc in
the Fourier domain introduced in [KM03] or the modified threshold estima-
tors in [KMR03] demanding the a priori knowledge of the numbers sB[m]

which are sB[m]
def
= supf∈Θ |〈f, bm〉| where bm are elements in an orthogonal

basis B and f belongs to a predefined set of signals (datasets) Θ. Also the

INMDL principle does not need to know the noise level τ−1 def
= E(η2) before-

hand. In addition, the use of a prior distribution π in the INMDL-principle
allow for a more sophisticated modeling of the wavelet coefficients than in
the papers [KMR03] and [KM03], this may enable a better reconstruction
of the degraded data. Formally deconvolving the data x in expression (216)
yields

x
def
= u−1 ∗ y = θ + u−1 ∗ η (217)

where the inverse u−1 is defined by

u−1 def
= F−1

(
1

û(ω)

)
(218)

where

û(ω)
def
= F(u)(ω) (219)

77
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and F denotes the Fourier transform. When the Fourier transform of
the inverse filter 1/û(ω) is not bounded in the high frequencies, the noise

Z
def
= u−1 ∗ η resulting from the deconvolution of data y in (217) is amplified

by a factor that tends to infinity. Therefore, in general the deconvolution
problem (216) is an ill-posed inverse problem, and solutions to this type of
problem must include some kind of regularization procedure for removing
the worst part of the deconvolved noise Z. The INMDL-principle natu-
rally provides a regularization through a model selection process and we
will now investigate how the INMDL principle may be adapted to decon-
volution problems. Assuming the convolution is circular, we may write the
discretization of (216) on the form

y = Uθ + η (220)

where U ∈ Rn×n is the matrix representation of the smoothing operation
by convolution by the lowpass filter u. We define

x
def
= U−1y = θ +U−1η (221)

Z
def
= U−1η (222)

K
def
= E[ZZT ] = τ−1U−1U−T (223)

The mirror wavelet basis W̃ ∈ Rn×n [KM03], see appendix, approximately
diagonalizes the covariance K of the deconvolved noise Z, that is for w̃k ∈
W̃ , 1 ≤ k ≤ n we have

K̃
def
= W̃ TKW̃ ∼ diag

(
W̃ TKW̃

)
∼ diag (〈Kw̃k, w̃k〉)1≤k≤n

= diag
(〈
K̂ ̂̃wk, ̂̃wk

〉)
1≤k≤n

= diag


τ−1

n∑

i=1

∣∣∣ ̂̃wk[i]
∣∣∣
2

|û[i]|2




1≤k≤n

def
= K̃D (224)

where ̂̃wk
def
= W T

F w̃k is the discrete Fourier transform of w̃k and K̂
def
=

τ−1W T
F U

−1U−TWF and WF ∈ Cn×n is the discrete Fourier basis on Cn.

2. The model selection algorithm

We would like to be able to use our previous results to compute an
approximation to the marginal density of the deconvolved data x. However,

in the current case of a non-constant diagonal covariance matrix K̃D defined
above, it is non-trivial to find suitable parameter transformations θi 7→ θ̂i,

τ 7→ τ̂ which makes the transformed Fisher information |F̂ (θ̂, τ̂ )| a constant.
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This can be seen by retracing the steps in the computation of |F̂ (θ̂, τ̂)| shown
in the appendix. We present a workaround on this problem below. Define

t̃2k
def
=

N∑

i=1

̂̃|wk[i]|2
|û[i]|2 , 1 ≤ k ≤ n (225)

and the change of variables

x̃
def
= W̃ Tx, θ̃

def
= W̃ Tθ,

˜̃x def
= (τK̃D)

−1/2x̃ = diag(t̃−1
i )1≤i≤d x̃,

˜̃
θ

def
= (τK̃D)

−1/2θ̃ = diag(t̃−1
i )1≤i≤d θ̃ (226)

We may now use our previous results Theorem 4.1, Corollary 5.1 to compute
an approximation to the marginal distribution mγd(x) of the deconvolved
data x in (221). It is easy to verify by inspection of the proof of Theorem
4.1 that the approximation result for the marginal density provided in The-

orem 4.1 applies to the transformed data ˜̃x and parameters
˜̃
θ with minor

adjustments. However, there are some important remarks to be made here:

(1) As before, the parameters θ̃i, 1 ≤ i ≤ d are modelled as identi-
cally and independently GGD distributed parameters with density

πλ(θ̃i). We note that the empirical research on the modeling of
image wavelet coefficients in the litterature [ML99] concerns pure
wavelet bases, not mirror wavelet bases as in the current context,
but we will here use the GGD model also for the case of mirror
wavelet bases.

(2) The transformed parameters
˜̃
θi, 1 ≤ i ≤ d are independently dis-

tributed, but not identically distributed. By the coordinate trans-
formations defined in (226) we see that

θ̃i ∼ πλ

(
θ̃i

)
=⇒ ˜̃

θi ∼ π
λ̃i

(
˜̃
θi

)
, 1 ≤ i ≤ d, (227)

where

λ̃i
def
= λt̃2i (228)

with t̃i as defined in (225). Furthermore, we note that

λ̃
1/2
i
˜̃
θi = λ1/2θ̃i. (229)

(3) The proper definition on the SNR Ω̃
(
{λ̃i}di=1, τ

)
in the current

case of transformed data ˜̃x and parameters
˜̃
θ is

Ω̃
(
{λ̃i}di=1, τ

)
def
=

∑d
i=1

1

λ̃i

n 1
τ

=

∑d
i=1 t̃

−2
i

1
λ

n 1
τ
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=

∑d
i=1 t̃

−2
i

d
Ω(λ, τ), where Ω(λ, τ)

def
=

dλ−1

nτ−1
. (230)

By applying the same mappings ψ(τ̂ ) and φ(θ̂i, τ̂ ) defined in (39) to the

current choice of coordinates ˜̃x, ˜̃θ and going through the proof of Theorem

4.1 provided in the appendix, replacing xi by ˜̃xi and θi by ˜̃θi, we see that
our previous results generalize straightforwardly to the current case of non-
white gaussian noise through the whitening transformation defined in (226).
Because the MAP-estimator θ∗ defined in (159) is nonlinear, some care has
to be taken to estimate the parameter λ which is needed to estimate the

λ̃i and the
˜̃
θi, 1 ≤ i ≤ d: Given an initial model index vector γ

(0)
d we may

define x̃‖ and thus initial estimates λ∗0, τ
∗
0 and θ̃∗0. We define λ̃∗i

def
= λ∗t̃2i

and this may be used to compute the MAP estimates
˜̃
θ∗i. Applying the

model selection principle given in Proposition 8.1 to the whitened data ˜̃x
and their corresponding parameter estimates

˜̃
θi

∗
will provide us with an up-

dated model index vector γd. Then the same iterative procedure applied
previously in the case of white gaussian noise may be used to compute suc-

cessive estimates λ∗, τ∗, θ̃∗ and through these we compute new estimates

λ̃∗i and
˜̃
θ∗.

The prior distribution π
λ̃i
(
˜̃
θ) in the current case of independently dis-

tributed
˜̃
θi, 1 ≤ i ≤ d where πλ(θi) is given in (158), becomes

π
λ̃i

(
˜̃
θ

)
def
=

d∏

i=1

π
λ̃i

(
˜̃
θi

)

=

d∏

i=1

(
νη(ν)λ̃

1/2
i

2Γ(1/ν)

)
exp

(
−η(ν)ν

d∑

i=1

∣∣∣∣λ̃
1/2
i
˜̃
θi

∣∣∣∣
ν
)

=

d∏

i=1

(
νη(ν)(t̃2i λ)

1/2

2Γ(1/ν)

)
exp

(
−η(ν)ν

d∑

i=1

∣∣∣∣(t̃2i λ)1/2
˜̃
θi

∣∣∣∣
ν
)

=

(
d∏

i=1

t̃i

)(
νη(ν)λ1/2

2Γ(1/ν)

)d
exp

(
−η(ν)ν

d∑

i=1

t̃νi

∣∣∣∣λ1/2
˜̃
θi

∣∣∣∣
ν
)

(231)

We note that the factor
∏d
i=1 t̃i vanishes in the formula (49) for the marginal

density mγd(x) because this factor is also included in the normalization
factor Cγd(x). To evaluate the model selection criterion C() defined in (104)

in the current case of non-IID parameters
˜̃
θi, we will use the MAP-estimator
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λ∗ in (183):

λ∗ =
(d+ 2)2/ν

ν2/νη(ν)2
(∑d

i=1 |t̃i
˜̃
θi|ν
)2/ν

(232)

and we then get

C
(
˜̃x‖(i)|Si−1

)
def
= −(n− d+ 2)

|˜̃x‖(i)|
‖˜̃x‖22 − ‖˜̃x‖‖22

− ∂

∂|˜̃x‖(i)|
log




π
λ̃i

(
˜̃
θ∗|λ̃∗i

)

|Ψλλ

(
˜̃
θ∗, λ∗

)
| 12




= −(n− d+ 2)
|˜̃x‖(i)|

‖˜̃x‖22 − ‖˜̃x‖‖22

+ (d+ 2)
t̃i|t̃i ˜̃θ∗i|ν−1

∑d
j=1 |t̃j

˜̃
θ∗j |ν

∂| ˜̃θ∗i(˜̃x‖(i))|
∂|˜̃x‖(i)|

, 1 ≤ i ≤ d. (233)

The current criterion C(·) in (233) is not as easy to minimize over the data
˜̃x as in the previous case of IID parameters in (196). The explanation for

this is as follows: Suppose 0 < ν ≤ 1, then even if |˜̃x‖(i)| is large, it may

still happen that
˜̃
θ∗i(˜̃x(i)) = 0 yielding C

(
˜̃x‖(i)|Si−1

)
= ∞, because the

MAP estimator
˜̃
θ∗i is a threshold estimator with a threshold which grows

with λ̃i
def
= λt̃2i as may be seen from (166). We have observed that this

effect is a real problem in our numerical experiments. As shown in the
proof of Theorem 4.1, our marginal approximation formula is not valid for
small parameter estimates θ∗i , and so we cannot allow the selection of model

indices i with
˜̃
θ∗i = 0. To overcome this problem, we will adopt a possibly

suboptimal model selection algorithm which we believe/hope is not far from
the model selection procedure which minimizes C(·) in (233): We will simply

select the indices i with the largest estimates | ˜̃θ∗i|. Now, we will skip the
details on going through the proof of the Theorem 4.1 and making the

necessary adaptations to the current case of non-identically distributed
˜̃
θi,

1 ≤ i ≤ d. However, the changes are straightforward and we list below the
ones concerning the sufficient conditions on the numbers ζ, κ, ξ, X under
which the Theorem 4.1 on the marginal approximation and the Proposition
6.1 concerning the marginal normalization constant, still both apply to the

current model for the data ˜̃x and parameters
˜̃
θ defined above. We need

upper bounds on the numbers ζ, κ, ξ, X in order to check the validity of
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the marginal approximation and the resulting codelength principle in our

numerical work. Renaming ζ → ζ̃, κ→ κ̃, ξ → ξ̃, X → X̃ under the current
model we have

ζ̃
def
= sup

1≤i≤d

{
t̃
ν/2
i Cνν|ν − 1|

(n
d
Ω(λ∗, τ∗)

)− ν
2 |(τ∗) 1

2
˜̃
θ∗i|ν−2

}
< 1 (234)

where Ω(λ, τ) is a signal to noise ratio (SNR) defined as

Ω(λ, τ)
def
=

dλ−1

nτ−1
(235)

X̃
def
=

S̃ν
n− d+ 2

2C2
νν

2
(
n
dΩ(λ

∗, τ∗)
)−h(ν)

1− ζ̃
< 1, (236)

where

h(ν) =

{
ν if 0 < ν ≤ 1
ν/2 if 1 < ν < 2.

and

S̃ν =

{ ∑d
i=1 t̃

ν/2
i if 0 < ν ≤ 1∑d

i=1 t̃
ν
i if 1 < ν < 2.

Then under the claims (234) and (236) we have the following bounds on the
normalization constant Cγd(x) and the upper bounds on the error terms κ̃

and ξ̃ for the marginal expression mγd(
˜̃z) in Theorem 4.1:

|κ̃| < 4

3
(1 + ζ̃)

Cνν|ν − 1| · |ν − 2|
(
n
dΩ(λ

∗, τ∗)
) ν

2

×

∣∣∣∣∣∣∣∣

d∑

j=1

t̃
ν/2
j

∣∣∣(τ∗) 1
2 θ∗j

∣∣∣
ν−1

sgn (
˜̃
θ∗j)

(
1 + 2

τ∗(
˜̃
θ∗j)2

)

exp

(
1
2τ

∗(
˜̃
θ∗j)2

)

∣∣∣∣∣∣∣∣

+
1

N(λ∗, ν, γd)

d∑

j=1

τ∗(
˜̃
θ∗j)2

exp

(
1
2τ

∗(
˜̃
θ∗j)2

)

+

∣∣∣∣∣∣∣∣

(2π)−
1
2

N(λ∗, ν, γd)

d∑

i,j=1

τ∗(˜̃x‖(i)− 1
2θ

∗
i )(
˜̃x‖(j)− 1

2
˜̃
θ∗j)

exp

(
1
2τ

∗
[
(
˜̃
θ∗i)2 + (

˜̃
θ∗j)2

])

∣∣∣∣∣∣∣∣
. (237)

where

N(λ∗, ν, γd) ∼
{ n−d+2

2 , if 0 < ν ≤ 1
n−d+2

2 − Cνν|ν−1|
4 d, if 1 < ν < 2.
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1 ≤ ξ̃ + 1 <

d∏

i=1

{
1 +

[
2PG

(
−τ

1
2
1

∣∣∣˜̃x‖(i)
∣∣∣
)
sup
t∈R

πλ=1(t)/πλ=1

(
u0,i

(
τ

1
2
1
˜̃x‖(i)

))]
×


1 + erf

(
τ

1
2
2 |˜̃x‖(i)|

) inf
t∈
(
0,u0,i

(
τ
1
2
2
˜̃x‖(i)

)) πλ=1(t)

πλ=1

(
u0,i

(
τ

1
2
2
˜̃x‖(i)

))

− 2Cνν

(2π)
1
2

L̃ν,i(τ
1
2
2
˜̃x‖(i))

sup
t∈
(
u0,i

(
τ
1
2
2
˜̃x‖(i)

)
,∞
) πλ=1(t)

πλ=1

(
u0,i

(
τ

1
2
2
˜̃x‖(i)

))




−1


(238)

if

πλ=1

(
u0,i

(
τ

1
2
2
˜̃x‖(i)

))

sup
t∈
(
u0,i

(
τ
1/2
2

˜̃x‖(i)
)
,∞
) πλ=1(t)

>
2Cνν

(2π)
1
2

L̃ν,i

(
τ

1
2
2
˜̃x‖(i)

)
, ∀ i ∈ γd

where τ1, τ2 ∈ Iτ , u0,i(s) =
(
t̃2i
n
dΩ(λ

∗, τ∗)
)− 1

2 |s| and

L̃ν,i

(
τ

1
2x
)

def
=





∣∣∣τ 1
2x
∣∣∣
ν−1 (

t̃2i
n
dΩ(λ, τ)

)− ν
2 if 0 < ν ≤ 1

(
t̃2i
n
dΩ(λ, τ)

)− 1
2

(
1 +

∣∣∣τ 1
2x
∣∣∣
(
t̃2i
n
dΩ(λ, τ)

)− 1
2

)
if 1 < ν < 2.

(239)

We also note that the INMDL-optimal quantization principle given in Propo-

sition 11.1 only applies to the transformed parameters
˜̃
θ and not θ̃ be-

cause the Laplace approximation used to estimate the marginal distribution
mγd(x) in Theorem 4.1 was deduced under the assumption of IID gaussian
noise.

3. Numerical methods and experiments

We applied the INMDL-principle to the deconvolution problem defined
above for some test images and compared the results to the thresholding
algorithm proposed in [KM03]. We define the total variation measure ‖·‖tv

‖θ‖tv def
=

N−1∑

m,n=0

[
(θ[m,n+ 1]− θ[m,n])2 + (θ[m+ 1, n]− θ[m,n])2

]1/2

(240)

for data θ ∈ RN×N . It may be used to compare the smoothness of the
original, degraded and estimated datasets.
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(1) The noise variance τ−1 is set to τ−1 = 1 in all the experiments
on graylevel images below, with the graylevel values ranging in the
integer range [0, 255].

(2) The definition of the SNR is the same is in the previous experimen-
tal section on estimating in white gaussian noise.

(3) The method of thresholding in a mirror wavelet basis [KM03],
[KMR03] is denoted MWT below. We note that the MWT imple-
mented here does not include a shift-invariant estimation as used
in the works cited above. This is due to lack of time to implement
the required numerical wavelet-routines.

(4) We note that a Fourier cutoff frequency kc with kc =
N
2 −8 was used

to cut the the deconvolved data in the Fourier domain because it
was needed in the MWT algorithm to stabilize the algorithm. We
note that the INMDL algorithm was found to yield the same results
with no Fourier cutoff.

(5) The wavelet used was the Symmlet of filter length 20 in all exper-
iments in this section. We note that in all the image experiments

below, the numbers: κ̃, ξ̃, ζ̃, ω̃, X̃ , inf1≤i≤d |
√
τ∗θ∗i | defined above

on which bounds are needed to ensure the validity of our asymptotic
marginal formula in Theorem 4.1, Corollary 5.1 and the marginal
renormalization constant in Proposition 6.1, were found to range
in intervals approximately as stated in the previous experiments
section.

We wanted to investigate the performance of the INMDL-algorithm us-
ing a harder blurring operator, for example operators given by box car con-
volution filters. Since the frequency response of such a filter is a sinc-function
with multiple zeros in the frequency domain, the MWT-algorithm is not ap-
plicable in this case. We have implemented a INMDL-based method which
uses an adapted wavelet packet basis B where the basis is adapted to both
the degraded input data y in (216) and the deconvolution filter u−1 in (218).
The only difference to the INMDL-based deconvolution algorithm defined
above for the hyperbolic filters, is that the mirror wavelet basis is exchanged
for a specially chosen wavelet packet basis B∗. We briefly outline below the
main ingredients in the process of selecting a suitable basis B∗ and refer to
[Wic94] and [Mal98b] for details on wavelet packet bases.

(1) A wavelet is chosen (Symmlet 20 in our case) and the degraded data
y is expanded into some (not full) constrained anisotropic wavelet
packet analysis on Rn×n, see [Wic94]. An additive cost measure
[CW92] is specified, we used here the entropy-measure Se.

Se(y)
def
= −

n∑

i=1

y2i log y
2
i . (241)

Then Se
(
BT
i y
)
is evaluated for all the allowed discrete wavelet

packet bases Bi on Rn×n for the given wavelet (S20) using the fast
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”best basis algorithm” of [CW92]. We note that the total number

of different wavelet packet bases exceeds 2N/2, [CW92] where N =
n×n for image data. However, the ”best basis algorithm” ensures
that the unique basis minimizing the additive cost measure is found
in O(N log2N) operations.

(2) A constraint is imposed on the search for the optimal wavelet packet
basis: Wavelet packet subspaces W spanning a Fourier frequency

rectangle R
def
= [k

(1)
x , k

(2)
x ]× [k

(1)
y , k

(2)
y ] where the deconvolution filter

û−1(kx, ky) ”varies too much” are marked as not selectable. We
used here the restriction

sup(kx,ky)∈R û
−1(kx, ky)

inf(kx,ky)∈R û
−1(kx, ky)

≤ Q (242)

with Q = 16, this value on Q corresponds to the variation factor
of the kernel cos2(kxπ/

√
N) cos2(kyπ/

√
N) (used in [KMR03]) in-

side the different subspaces of the mirror wavelet basis. It is easy
to realize that there exists wavelet packet bases B of which the
subspaces W satisfies the constraint (242) because each wavelet
packet basis element has an essential frequency support inside a

frequency box Rjx,mx ×Rjy,my ⊂ I
def
= [−π, π]× [−π, π] with

Rjx,mx

def
= [−π2jx(mx + 1),−π2jxmx] ∪ [π2jxmx, π2

jx(mx + 1)],

− log2n ≤ jx, jy < 0, 0 ≤ mx < 2−jx , 0 ≤ my < 2−jy (243)

and there exists an injection from the collection of different tilings
of the frequency square I by elements Rjx,mx ×Rjy,my into the col-
lection of different discrete wavelet packet bases on Rn×n, [Wic94],
[Mal98b].

(3) A diagonal estimate K∗ of the covariance matrix of the decon-
volved noise represented in the selected wavelet packet basis B∗ is
computed similarly to the case of the mirror wavelet basis shown
above. We note that since the blurring kernels used in the model
of the degradation process are separable, the required numbers

〈K̂ŵk, ŵk〉, where K̂ is the discrete Fourier representation of the
covarianceK of the deconvolved noise and ŵk is the discrete Fourier
transform of a wavelet packet basis element wk, may be computed
fast with O(

√
N) operations for each k.

We compared the INMDL-deconvolution in the adapted basis defined
above to the performance of the Wiener filter Rα(kx, ky)

Rα(kx, ky)
def
=

1

1 + α
σ2|Ux(kx)|−2|Uy(ky)|−2

|Pθ(kx,ky)|
(244)

where Ux and Uy denote the Fourier transforms of the convolution filters
ux and uy applied along rows and colums of the image, respectively in the
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degradation process (216), Pθ denotes the power spectrum of the unknown
signal θ in (216) and 0 < α <∞ is a regularization parameter. We applied
the iterative algorithm given in [CH91] to estimate Pθ. The results on test
images are shown in Figure 3 and Figure 4. We also tried the INMDL-
deconvolution algorithm on a high resolution optical gray level image taken
by satellite Ikonos, this is shown in the test image Lillesand in Figure 4.
The bitdepth of the image is 11, and the pixel resolution is 1 meter.

3.1. Discussion of experimental results. The results shown in Fig-
ure 1 and Figure 2 show that the INMDL-based restoration algorithm per-
forms slightly better than the MWT-method. However, the blurring of

the images imposed by the kernels cospx
(
kxπ/

√
N
)
cospy

(
kyπ/

√
N
)
is not

very hard as may be seen from the Figure 1 and Figure 2. Also, much
better restoration results using a MWT-method are reported in [KM03],
[KMR03], but this difference from our reported results is likely due to a
post-processing of the MWT-estimates by the ”spin-cycling”-method [CD95]
yielding a shift-invariant estimate. Unfortunately, we have not had the time
to implement this important stage of the estimation process, but we have
no reason to believe that the INMDL-based estimates would not benefit as
much from this kind of posterior regularization techniques as is shown to
be the case for the MWT-method in [KM03]. Therefore, the experimental
results obtained here for the INMDL and MWT estimators, although not
impressive in performance, we believe they may be used to compare the (po-
tential) performance of the MWT and the INMDL-based estimators. Our
conclusion is then that the INMDL principle offers an alternative deconvo-
lution technique which compares favourably to the MWT method.

In the case of using the INMDL-principle to restore images degraded
by a box car filter, we had to use a basis which approximately diagonal-
izes the covariance matrix K of the deconvolved noise. For this purpose
we used a certain type of anisotropic discrete wavelet packet analysis for
Rn×n [Wic94], [Mal98b] together with the best basis algorithm [CW92]
and some constraints on selectable wavelet packet bases as explained above.
Figure 3 shows that both the Wiener and the INMDL-estimate visually suf-
fers from the same kind of global ripple artifacts. The explanation for this
in the case of the Wiener filter is of course that the each Fourier basis el-
ement has a support equal the entire spatial (pixel) domain. In the case
of the INMDL-estimate the explanation is that the method outlined above
of not allowing wavelet packet bases with elements possessing a Fourier fre-
quency support over which the deconvolution filters U−1

x (kx) or U−1
y (ky)

are not ”approximately constant”, favours the selection of wavelet packet
bases with (at least some) basis elements of high frequency resolution (small
frequency support) and thus these basis elements must have a large spatial
support.
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Finally, we note that [BCN99] has reported results obtained with a
hybrid method where one first preprocess the deconvolved data with a col-
lection of adaptive Wiener filters {Rαj}j∈J , 0 < αj < 1 in the Fourier
domain, and then one estimates the signal in the wavelet domain from the
Fourier-regularized data by the universial thresholding scheme [DJ94]. The
constructed hybrid estimator is shown in the cited paper to outperform the
ordinary Wiener filter Rα in experiments. Thus, one possible approach to
improving the performance of the INMDL-deconvolution principle as de-
fined and tested above, would be to apply some kind of regularization in
the Fourier domain (or possibly in a suitable wavelet packet domain) to
the deconvolved data, and then denoise the deconvolved data in a suitable
wavelet/wavelet packet basis. To incorporate such a regularization in a
codelength principle is a topic for future research.
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Figure 1. Comparison of estimator performance for IN-
MDL and the MWT algorithms on 8-bit grayscale test im-
age barbara with N = 512 × 512. The noise variance is
τ−1 = 1.0 and the lowpass filter used to degrade the image

was: cospx
(
kxπ/

√
N
)
cospy

(
kyπ/

√
N
)

in the Fourier do-

main with px = py = 3.0. TV denotes the total variation
(240) and R is the fraction of nonzero wavelet coefficients in
the estimate. The GGD shape parameter was estimated by
the INMDL-algorithm to: ν = 0.606.
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(a) Original cameraman, TV = 9.34×104
(b) Degraded cameraman,
 TV = 5.00×104, SNR = 21.0 dB

(c) INMDL−estimated cameraman,
 TV = 7.47×104, SNR = 22.8 dB, R = 11.1%

(d) MWT−estimated cameraman,
 TV = 6.53×104, SNR = 22.0 dB, R = 15.6%

Figure 2. Comparison of estimator performance for IN-
MDL and the MWT algorithms on 8-bit grayscale test im-
age cameraman with N = 256 × 256. The noise variance
is τ−1 = 1.0 and the lowpass filter used to degrade the im-

age was: cospx
(
kxπ/

√
N
)
cospy

(
kyπ/

√
N
)

in the Fourier

domain with px = py = 3.0. TV denotes the total variation
(240) and R is the fraction of nonzero wavelet coefficients in
the estimate. The GGD shape parameter was estimated by
the INMDL-algorithm to: ν = 0.556.
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(a) Original cameraman, TV = 9.34×104
(b) Degraded cameraman, TV = 2.90×104

 SNR = 15.2 dB

(c) Wiener−estimated cameraman,
 TV = 9.33×104, SNR = 19.3 dB

(d) INMDL−estimated cameraman,
 TV = 7.42×104, SNR = 18.2 dB, R = 4.8%

Figure 3. Comparison of estimator performance for IN-
MDL and the Wiener filter algorithms on 8-bit grayscale test
image cameraman with N = 256 × 256. The noise variance
is τ−1 = 1.0 and the lowpass filter used to degrade the image
was a 9 × 9 box car filter. TV denotes the total variation
(240) and R is the fraction of nonzero wavelet coefficients
in the estimate. The GGD shape parameter was estimated
by the INMDL-algorithm to: ν = 0.667. The Wiener filter
regularization parameter used was α = 1.0.
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Figure 4. Comparison of estimator performance for IN-
MDL and the Wiener filter algorithms on 8-bit grayscale test
image Lillesand with N = 512 × 512. The noise variance is
τ−1 = 1.0 and the lowpass filter used to degrade the image
was a 9 × 9 box car filter. TV denotes the total variation
(240) and R is the fraction of nonzero wavelet coefficients
in the estimate. The GGD shape parameter was estimated
by the INMDL-algorithm to: ν = 0.679. The Wiener fil-
ter regularization parameter used was α = 1.0. This image
dataset was provided to us by the Earth Observation Group
at NORUT Information Technology Ltd, Troms.
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APPENDIX A

Notation and definitions

(1) Let A be a set, then An denotes the collection of all strings with n
elements taken from A.

(2) [x]u is the physical dimension unit of the real variable x, that is:
[2 meter]u = meter .

(3) [x]v is the number of the real variable x, that is: [2 meter]v = 2.
(4) log x is the natural logarithm of x, that is: x = exp (log x) , ∀x ∈

R+.
(5) loga x is the logarithm of x in base a, that is: x = a(loga x), ∀x ∈ R+,

a > 1.

(6) For x ∈ CN and 1 ≤ p < ∞, define the norm ‖x‖p by: ‖x‖p def
=(∑N

i=1 |xi|p
)1/p

.

(7) For countable sequences {ak}∞k=−∞ of real or complex numbers,

define: ‖ak‖p def
=
(∑∞

k=−∞ |ak|p
)1/p

.
(8) For functions f : Rn −→ C and 1 ≤ p < ∞ define the norm ‖f‖p

by: ‖f‖p def
=
(∫
x∈Rn |f(x)|p dx

)1/p
.

(9) Define ℓp
def
=
{
{ak}∞k=−∞ : ‖ak‖p <∞

}
.

(10) Define Lp(Rn)
def
= {f : Rn −→ C : ‖f‖p <∞}.

(11) Let Ck(Rn) denote the space under addition of functions f(x) :
Rn −→ C with k continuous derivatives.

(12) For functions f : Rn −→ C such that f ∈ L1(Rn) define the

Fourier transform F : L1(Rn) −→ C(Rn) by: f̂(ξ)
def
= F(f)(ξ)

def
=

(2π)−1/2
∫
x∈Rn f(x) exp(−ix · ξ) dx, ξ ∈ Rn.

(13) For x ∈ CN define the discrete Fourier transform F({xm}Nm=1)

by: x̂[k]
def
= F({xm}Nm=1)[k]

def
= N−1/2

∑N
m=1 xm exp(−2πimk/N),

−N/2 ≤ k < N/2. This definition is extended to countable se-

quences {am} ∈ ℓ1 by: â(ω)
def
= F({am}∞m=−∞)(ω)

def
= (2π)−1/2

∑∞
m=−∞ am exp(−imω), ω ∈ [−π, π).

(14) For functions f : Rn −→ C such that f ∈ L1(Rn) define the

Fourier transform F : L1(Rn) −→ C(Rn) by: f̂(ξ)
def
= F(f)(ξ)

def
=

(2π)−1/2
∫
x∈Rn f(x) exp(−ix · ξ) dx, ξ ∈ Rn.
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(15) For column vectors x,y ∈ CN , define the inner product 〈·, ·〉 :

CN × CN −→ C by: 〈x,y〉 def
= yTx =

∑N
k=1 xkyk.

(16) For sequences {ak}, {bk} ∈ ℓ2 define the inner product 〈·, ·〉 : ℓ2 ×
ℓ2 −→ C by: 〈ak, bk〉 def

=
∑∞

n=−∞ anbn.

(17) For functions f, g ∈ L2(Rn) define the inner product 〈·, ·〉 : L2(Rn)×
L2(Rn) −→ C by: 〈f, g〉 def

=
∫
x∈Rn f(x)g(x) dx.

(18) For sequences {ak}, {bk} ∈ ℓ1 define the convolution operator ∗ :

ℓ1 × ℓ1 −→ ℓ1 by: (a ∗ b)k def
=
∑∞

n=−∞ anbk−n.
(19) For functions f, g ∈ L1(Rn) define the convolution operator ∗ :

L1(Rn)×L1(Rn) −→ L1(Rn) by: f ∗g(x) def
=
∫
y∈Rn f(y)g(x−y) dy.

(20) an = O(bn) implies the existence of a constant A > 0 such that
an
bn

≤ A,∀ n ≥ 1.

(21) an = o(bn) implies that limn→∞
an
bn

= 0.

(22) PG is the gaussian distribution function:

PG(x)
def
= 1√

2π

∫ x
−∞ exp

(
−1

2x
2
)
dx.

(23) erf is the normal error function: erf (x)
def
= 1√

2π

∫ x
−x exp

(
−1

2x
2
)
dx.

(24) Γ(x)
def
=
∫∞
0 tx−1 exp(−t) dt, x > 0, is the gamma-function.

(25) On is the set of all orthogonal real n× n matrices.

(26) log∗ n
def
= log c + log n + log log n + log log log n + · · · for n ∈ N

where the sum includes all positive iterates and c ≈ 2.865 is a
normalization constant.

(27) Let I ⊂ R denote an interval, then Id
def
= {x = (x1, x2, ..., xd)

T ∈
Rd : xi ∈ I}.



APPENDIX B

The mirror wavelet basis

The degradation process of data θ is modelled as

y = u ∗ θ + η (245)

where u is a known lowpass filter and η is IID gaussian noise and ∗ denotes
the convolution operator. Let U ∈ RN×N denote the discretized circular
convolution operator representing the smoothing degrading on the data θ
by the lowpass filter u

y = Uθ + η (246)

where U is the smoothing matrix representing the smoothing operation per-
formed by lowpass filter u, θ is the parameters we want to estimate and η
is white gaussian noise. After deconvolving with inverse operator U−1 we
have

x
def
= U−1y = θ +U−1η (247)

Now, the noise Z
def
= U−1η is non-white gaussian with covariance K

K
def
= σ2U−1U−T . (248)

Circular convolution operators U are diagonal in the discrete Fourier basis
WF = [bk]

N−1
k=0 where bk are column vectors with

bk[n]
def
=

1√
N

exp

(
i
2πkn

N

)
, 0 ≤ n < N (249)

It follows from this fact and (248) that the eigenvalues σ2k of K are given by

σ2k
def
= 〈Kbk, bk〉 =

〈
W T

FKWFW
T
F bk,W

T
F bk

〉

=
〈
W T

F σ
2U−1U−TWFW

T
F bk,W

T
F bk

〉

= σ2
〈
W T

F U
−1WFW

T
F U

−TWFW
T
F bk,W

T
F bk

〉

= σ2
〈(
W T

F UWF

)−1 (
W T

F UWF

)−T
W T

F bk,W
T
F bk

〉

=
σ2

|û[k]|2 . (250)

Now, (249) shows that the Fourier basis elements have full support in the
space domain and therefore this basis, while providing a domain where the
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noise Z ∼ N
(
0,diag

(
|û[k]|2
σ2 Id

))
is IID, is not suitable for estimating θ

in (216). The main idea in [KMR03], [KM03] is to construct a wavelet

packet basis W̃ = [ψl]
N−1
l=0 of RN , where ψl[n] are supported in the space

domain 0 ≤ n ≤ N − 1, which approximately diagonalizes the covariance K.
Assuming the sample space dimension N is a power of 2, we define
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Figure 1. Illustration copied from [KM03] of the mirror
wavelet decomposition algorithm and the Fourier support of
the mirror wavelet basis. Each branch in the decomposition
tree represents a convolution with a filter h̄ or ḡ followed by
decimation by 2. The fourier frequency index k is plotted on
the first axis. The curved fat line growing from left to right
shows the diagonal covariance matrix σ2k of the noise in the
Fourier domain plotted as a function of the fourier frequency.
The noise variance σ2k varies by a bounded factor which do
not grow with N , on the frequency support of each mirror

wavelet ψ̃j,k. There is a critical frequency kc above which the
noise variance σ2k is too high for reconstruction to be possible.

L
def
= − log2N. (251)
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Given a conjugate pair of mirror filters h, g, N -periodic discrete mirror

wavelets ψ̃j,k[n] are defined from orignal N -periodic discrete wavelets ψj,k[n]
by

ψ̃j,k[n]
def
= (−1)n−1ψj,k[1− n] (252)

where

ψ̂j [n]
def
= ĝ[2j−L−1n]φ̂j−1[n] and φ̂j[n]

def
=

j−L−1∏

l=0

ĥ[2ln], L < j < 1 (253)

and φ̂L[n] ≡ N−1/2, ∀n ∈ 0, 1, 2, ..., N − 1, and

ψj,k[n]
def
= ψj [n−N2jk], 0 ≤ k < 2−j (254)

and we also define

ψ1,0[n] = ψ̃1,0[n] ≡ N−1/2, ∀n ∈ 0, 1, 2, ..., N − 1. (255)

We note that the Fourier support, supp ψ̂j [n], satisfies

supp ψ̂j ≈ [2−j−1, 2−j ]. (256)

The Fourier transform of the mirror wavelets by definition satisfies

|̂̃ψj,k[n]| = |ψ̂j,k[N/2− n]| (257)

and by (256) we have

supp
̂̃
ψj ≈ [N/2 − 2−j , N/2 − 2−j−1]. (258)

The mirror wavelet coefficients 〈f, ψ̃j,k〉, 1 > j > L+ 1 are calculated from
the finest scale wavelet coefficients 〈f, ψL+1,k〉 by a cascade of convolutions
and decimations by 2 with the pair of conjugate filters h, g as illustrated in
Figure 1. (see appendix). Defining the discrete N -periodic mirror wavelet

basis W̃ by

W̃
def
=
[
[ψj,k]0≤k<2−j ,L+1<j≤1, [ψ̃j,k]0≤k<2−j ,L+1<j≤1

]
(259)

where

ψj,k[n]
def
= ψj,k[n], ψ̃j,k[n]

def
= ψ̃j,k[n]. (260)

we have by general properties of wavelet packets [Mal98b] that W̃ is an
orthonormal basis for RN . Furthermore, it is proved in [KM03] that the
covariance matrix K of the noise defined in (248) is nearly diagonalized in

the mirror wavelet basis W̃ for all N if the wavelet ψ has q > p vanishing
moments where p is the order of the zero of the lowpass smoothing filter û[k]
at the highest Fourier frequency k = ±N/2. In [KMR03] one considers
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smoothing filters u which have a Fourier transform û with a zero of order
p ≥ 1 at highest Fourier frequency k = ±N/2, that is

û[k] ∼
∣∣∣∣
2|k|
N

− 1

∣∣∣∣
p

, p ≥ 1 (261)

we will here use the smoothing filter

û[k] = cosp
(
πk

N

)
, p ≥ 1 (262)

which have the type of smoothing behaviour that the mirror wavelet basis
is designed to work with. We define the pseudo-inverse smoothing filter u−1

by

û−1[k]
def
=

{ 1
û[k] , if û[k] 6= 0

0, if û[k] = 0
(263)

Define

x
(W̃ )
j [k]

def
= 〈x,ψj,k〉, θ

(W̃ )
j [k]

def
= 〈θ,ψj,k〉 (264)

x̃
(W̃ )
j [k]

def
= 〈x, ψ̃j [k]〉, θ̃

(W̃ )
j [k]

def
= 〈θ, ψ̃j [k]〉 (265)

and observe by (247) and (248) that the data xW̃j [k], x̃W̃j [k], 0 ≤ k <

2−j, L + 2 ≤ j < 1 are gaussian random variables with means θ
(W̃)
j [k],

θ̃
(W̃)
j [k] and variances σ2j,k

def
= 〈Kψj,k,ψj,k〉 and σ̃2j,k

def
= 〈Kψ̃j,k, ψ̃j,k〉, re-

spectively. We then have by (250), (256) and (261)

σ2j
def
= 〈Kψj,k,ψj,k〉 = 〈K̂ψ̂j,k, ψ̂j,k〉 = σ2

N/2−1∑

n=−N/2

|ψ̂j [n]|2
|û[n]|2 ∼ σ2. (266)

Furthermore by (258), (261) we have

σ̃2j
def
= 〈Kψ̃j,k, ψ̃j,k〉 = 〈K̂ ̂̃

ψj,k,
̂̃
ψj,k〉 = σ2

N/2−1∑

n=−N/2

| ̂̃ψj [n]|2
|û[n]|2 ∼ σ222p(j−L).

(267)

We note that the noise variances σ2j,k, σ̃
2
j,k do not depend on the translation

index k of the wavelets ψj,k, ψ̃j,k. Using thresholding estimators as described

in [DJ94], [BG95b] the estimators θ̂
(W̃)
j [k], ˆ̃

θ
(W̃)
j [k], 0 ≤ k < 2−j are

given by a thresholding scheme on the wavelet expansions x
(W̃ )
j , x̃

(W̃ )
j of

the deconvolved data x. The thresholds T , T̃j used in [KM03] on x
(W̃ )
j [k],

x̃
(W̃ )
j [k], respectively, are the ideal thresholds described in [DJ94]

T
def
= σ

√
2 loge (N/2) (268)
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T̃j
def
=

{
σ̃j
√

2 loge (2
−j), if σ̃j

√
2 loge(2

−j) < s̃j
def
= supf∈Θ |〈f, ψ̃j,k〉|

∞, otherwise.

(269)

that is the same constant threshold T defined above is used on all of the

N/2 low frequency wavelet coefficients x
(W̃ )
j [k], 0 ≤ k < 2−j , L+2 ≤ j < 1,

and the threshold T̃j is used on the high frequency mirror wavelet coef-

ficients x̃
(W̃ )
j [k], 0 ≤ k < 2−j , L + 2 ≤ j < 1, where the noise variance

E

(
x̃
(W̃ )
j [k]− θ̃(W̃ )

j [k]

)2

may be approximated by σ̃2j defined in (267) on

each subband: span0≤k<2−j ψ̃j,k. We note that the hard thresholding func-

tion is the MAP-estimator for GGDν -distributed θ
(W̃) with ν = 1, i.e

Laplace-distributed.

There are some remarks which should be made on the mirror wavelet
deconvolution algorithm as presented above. The set Θ over which the
numbers s̃j defined in (269) are computed, is in [KM03] taken to be the set
Θtv of bounded discrete total variation:

Θtv
def
=

{
θ : ‖θ‖tv def

=
N−1∑

n=0

||θ[n]− θ[n− 1]| ≤ C

}
(270)

where C > 0 is some universial constant. Then it is shown in [KM03] that

s̃j ∼ C2(L−j)/2 (271)

The critical scale 2c is defined as the smallest scale such that T̃j = ∞ for all

scales 2j with 2j > 2c. The mirror wavelets ψ̃c,k on the critical scale have

a Fourier transform
̂̃
ψc,k whose support is essentially at Fourier frequencies

|k| > kc
def
= N/2 − 2−c, this is illustrated in Figure 1. This implies the

existence of a cutoff Fourier frequency kc for thresholding estimators and
so we can replace the pseudo inverse smoothing filter u−1 in (263) by a
truncated pseudo inverse ũ−1 defined by

̂̃u−1 def
=

{ 1
û[k] , if |k| < kc
0, otherwise

(272)

Also, in the numerical experiments in [KMR03], [KM03] one uses the
translation invariant thresholding algorithm [CD95], however we have not
had the time to implement this algorithm, and so we stick to the ordinary
thresholding algorithm in our numerical experiments in this thesis.

The restoration algorithm may then be summed up as follows:

(1) Estimate the variance E(η2) of the white gaussian noise η in (216).
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(2) Decide on the order p of the smoothing filter û[k] = cosp(πk/N)

in (216) and on the numbers s̃j
def
= supf∈Θ |〈f, ψ̃j,k〉|, alternatively

decide on a critical frequency kc.
(3) Expand the given data y into the Fourier basis and deconvolve

the transformed data ŷ in the Fourier domain by computing x̂
def
=

ŷ[k] · ̂̃u−1[k], 0 ≤ k < N where ũ−1 is the truncated pseudo in-
verse smoothing filter defined in (272) and apply the inverse Fourier

transform on the result to yield x
def
= F−1(x̂).

(4) Calculate the variances σ2j , σ̃
2
j , L+2 ≤ j < 1 of the mirror wavelet

basis expansion coefficients W̃ TZ of the deconvolved noise Z
def
=

u−1 ∗ η, or their approximations in (266), (267).

(5) Expand the deconvolved data x into the mirror wavelet basis W̃ and

apply the thresholding operation T with thresholds T , T̃j in (268),

(269) on the transformed data x(W̃ ) def
= W̃ Tx in the mirror wavelet

domain and apply the inverse mirror wavelet transformation W̃ on

the thresholded transformed data T (W̃ Tx) to find the parameter

estimate: θ̂ = W̃T (W̃ Tx).

The deconvolution estimator described above for signals have a separable
extension to image data. The smoothing filter u in (216) is here a separable
lowpass filter

u[n1, n2] = u1[n1]u2[n2], 0 ≤ n1 < N, 0 ≤ n2 < N (273)

with Fourier transforms û1[k1] and û2[k2] as in (261). The deconvolved
noise has a covariance K which is diagonalized in a two-dimesional discrete
Fourier basis WF⊗F = [bk1,k2 ]0≤k1,k2<N and it follows as in (250) that the
eigenvalues σ2k1,k2 of K are

σ2k1,k2
def
= 〈Kbk1,k2 , bk1,k2〉 =

σ2

|û1[k1]|2|û2[k2]|2

∼ σ2
∣∣∣∣
2|k1|
N

− 1

∣∣∣∣
−2p1

∣∣∣∣
2|k2|
N

− 1

∣∣∣∣
−2p2

. (274)

A separable discrete mirror wavelet basis of RN×N is constructed from the
one-dimesional discrete wavelets ψj and scaling functions φj , L < j < 1, 0 ≤
k < 2−j by

ψ
(1)
j [n1, n2]

def
= φj [n1]ψj [n2], ψ

(2)
j [n1, n2]

def
= ψj [n1]φj [n2],

ψ
(3)
j [n1, n2]

def
= ψj [n1]ψj [n2], ψ

(0)
1 [n1, n2] = N−1. (275)

Defining the translates

ψ
(α)
j,m1,m2

[n1, n2]
def
= ψ

(α)
j [n1 − 2j−Lm1, n2 − 2j−Lm2], α = 1, 2, 3, (276)
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then the family

B def
=
{
ψ
(0)
1 , ψ

(1)
j,m1,m2

, ψ
(3)
j,m1,m2

}
L<j<1,0≤m1,m2<2−j

(277)

is an orthonormal basis of RN×N . It follows from the definition (275) that
the family B0 of lower frequency wavelets

B0
def
=
{
ψ
(0)
1 , ψ

(1)
j,m1,m2

, ψ
(1)
j,m1,m2

, ψ
(3)
j,m1,m2

}
L+1<j<1,0≤m1,m2<2−j

(278)

have Fourier transforms which are essentially supported in the low frequency
square [−N/4, N/4]2 where the eigenvalues σ2k1,k2 ofK are constant to within
a universial constant factor, and therefore the elements of B are approximate
eigenvectors of K, whereas the family B1 of higher frequency wavelets

B1
def
= B \ B0 =

{
ψ
(1)
L+1,m1,m2

, ψ
(2)
L+1,m1,m2

, ψ(3)
m1,m2

}
0≤m1,m2<N/2

(279)

are not approximate eigenvectors ofK and these are replaced by the familiy

B̃1 of separable mirror wavelets defined by

B̃1
def
=
{
ψ̃j1,m1 [n1]ψ̃j2,m2 [n2]

}
L < j1, j2 < 1, (j1, j2) 6= (L+ 1, L+ 1),
0 ≤ m1 < 2−j1 , 0 ≤ m2 < 2−j2

(280)

with ψ̃j as defined in (252). It follows that the family

B̃ def
= B0 ∪ B̃1 (281)

is a discrete separable anisotropic wavelet packet basis for RN×N of approx-
imate eigenvectors of K. The tiling of the Fourier frequency plane that

results from the separable mirror wavelet basis B̃ defined in (281) is illus-
trated in Figure 2. Like in (266), (267) one has

σ2j,α
def
=
〈
Kψ

(α)
j,m1,m2

, ψ
(α)
j,m1,m2

〉
=

〈
K̂

̂
ψ
(α)
j,m1,m2

,
̂
ψ
(α)
j,m1,m2

〉

= σ2
N/2−1∑

n1,n2=−N/2

|ψ̂(α)
j [n1, n2]|2

|û1[n1]|2|û2[n2]|2
∼ σ2, α = 1, 2, 3. (282)

σ̃2j1,j2
def
= 〈Kψ̃j1,m1ψ̃j2,m2 , ψ̃j1,m1ψ̃j2,m2〉 = 〈K̂̂̃

ψj1,m1

̂̃
ψj2,m2 ,

̂̃
ψj1,m1

̂̃
ψj2,m2〉

= σ2
N/2−1∑

n1,n2=−N/2

|̂̃ψj1 [n1]|2|
̂̃
ψj2 [n2]|2

|û1[n1]|2|û2[n2]|2
∼ σ222p1(j1−L)22p2(j2−L). (283)
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ψ
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k

Figure 2. Illustration copied from [KM03] of the separa-
ble mirror wavelet basis for functions of two variables and its
Fourier support properties. Note that the mirror wavelet ba-
sis segments the frequency plane (k1, k2) into rectangles over
which the noise variance σ2k1,k1 = σ2k1σ

2
k2

varies by a bounded
factor which do not grow with N . The gray rectangles cor-
respond to the critical scales beyond which the thresholding
sets all coefficients to zero.

Using the same ideal thresholds as in (268), (269), we define the thresholds

T (2), T̃
(2)
j1,j2

by

T (2) def
= σ

√
2 loge (N

2/4) (284)

T̃j1,j2
def
=

{
σ̃j1,j2

√
2 loge (2

−j1−j2), if σ̃j1,j2
√

2 loge(2
−j1−j2) < s̃j1,j2

∞, otherwise.
(285)



B. THE MIRROR WAVELET BASIS 107

where

s̃j1,j2
def
= sup

f∈Θ

∣∣∣
〈
f, ψ̃j1,m1ψ̃j2,m2

〉∣∣∣ . (286)

Critical scales 2c1 , 2c2 are defined by: For each scale j1, define 2c2 as the

smallest scale such that 2j2 > 2c2 implies T̃j1,j2 = ∞, and for each scale j2
define 2c1 as the smallest scale such that 2j1 > 2c1 implies T̃j1,j2 = ∞. These
critical scales are illustrated in Figure 2. Critical frequencies kc1 , kc2 may
then be deduced as in the one-dimensional case by kci = N/2−2−ci , i = 1, 2
and so may truncated smoothing filters ũ1, ũ2.





APPENDIX C

Calculation of Fisher matrix for the likelihood

function

We have from (38) and (39) the definitions

f(x|θ, τ) =
( τ
2π

)n
2
exp

(
−τ
2
‖x⊥‖2

)
exp

(
−τ
2
‖x‖ − θ‖2

)
.

τ = ψ(τ̂ ), ψ(0) = τ0, θi = φ(θ̂i, τ̂)
def
=
τ̄1/2

τ1/2
θ̂i =

(
τ̄

ψ(τ̂ )

)1
2

θ̂i, 1 ≤ i ≤ d.

Define the reparameterized log-likelihood function L̂ as

L̂(x, τ̂ , θ̂)
def
= log f(x|ψ(τ̂ ),φ(θ̂))

=
n

2
logψ(τ̂ )− 1

2
ψ(τ̂ )‖x⊥‖2 −

1

2
ψ(τ̂ )

∥∥∥x‖ − τ̄
1
2ψ(τ̂ )−1/2θ̂

∥∥∥
2
.

We compute the required partial derivatives of L̂ and get

∂L̂(τ̂ , θ̂)

∂θ̂k
= ψ(τ̂ )

(
x‖(k)− τ̄

1
2ψ(τ̂ )−1/2θ̂(k)

)
τ̄

1
2ψ(τ̂ )−1/2

∂2L̂(τ̂ , θ̂)

∂θ̂2k
= −τ̄

∂2L̂(τ̂ , θ̂)

∂θ̂k∂τ̂
=

1

2
τ̄

1
2ψ(τ̂)−1/2 ∂ψ(τ̂ )

∂τ̂
x‖(k)

∂L̂(τ̂ , θ̂)

∂τ̂
=

n/2

ψ(τ̂ )

∂ψ(τ̂ )

∂τ̂
− 1

2

∂ψ(τ̂ )

∂τ̂
‖x⊥‖2 −

1

2

∂ψ(τ̂ )

∂τ̂

∥∥∥x‖ − τ̄
1
2ψ(τ̂)−1/2θ̂

∥∥∥
2

− 1

2
ψ(τ̂ )

d∑

i=1

(
x‖(i)− τ̄

1
2ψ(τ̂ )−1/2θ̂(i)

)(
τ̄

1
2ψ(τ̂ )−3/2θ̂(i)

∂ψ(τ̂ )

∂τ̂

)

∂2L̂(τ̂ , θ̂)

∂τ̂2
= − n/2

ψ(τ̂)2

(
∂ψ(τ̂ )

∂τ̂

)2

+
n/2

ψ(τ̂ )

∂2ψ(τ̂ )

∂τ̂2
− 1

2

∂2ψ(τ̂ )

∂τ̂2
‖x⊥‖2

− 1

2

∂2ψ(τ̂ )

∂τ̂2

∥∥∥x‖ − τ̄
1
2ψ(τ̂ )−1/2θ̂

∥∥∥
2

− 1

2

∂ψ(τ̂ )

∂τ̂

d∑

i=1

(
x‖(i)− τ̄

1
2ψ(τ̂)−1/2θ̂(i)

)(
τ̄

1
2ψ(τ̂)−3/2θ̂(i)

∂ψ(τ̂ )

∂τ̂

)
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− 1

2
ψ(τ̂ )

d∑

i=1

(
τ̄

1
2
1

2
ψ(τ̂ )−

3
2 θ̂(i)

∂ψ(τ̂ )

∂τ̂

)(
τ̄

1
2ψ(τ̂)−

3
2 θ̂(i)

∂ψ(τ̂ )

∂τ̂

)

− 1

2
ψ(τ̂ )

d∑

i=1

(
x‖(i)− τ̄

1
2ψ(τ̂ )−

1
2 θ̂(i)

)(
−3

2
τ̄

1
2ψ(τ̂ )−

5
2 θ̂(i)

(
∂ψ(τ̂ )

∂τ̂

)2

+τ̄
1
2ψ(τ̂ )−

3
2 θ̂(i)

∂2ψ(τ̂ )

∂τ̂2

)
.

We take the negative expectation −Ex of the data x = x⊥+x‖ with respect

to the likelihood f . Using Ex[x‖ − τ̄1/2ψ(τ̂ )−1/2θ̂] = 0 and Ex‖x⊥‖2 =

(n− d)ψ(τ̂ )−1 and Ex‖x‖ − τ̄1/2ψ(τ̂)−1/2θ̂‖2 = dψ(τ̂ )−1 we get

c
def
= −Ex

[
∂2L̂(τ̂ , θ̂)

∂θ̂2k

]
= τ̄ . (287)

bk
def
= −Ex

[
∂2L̂(τ̂ , θ̂)

∂θ̂k∂τ̂

]
= −1

2
τ̄ψ(τ̂)−1 ∂ψ(τ̂ )

∂τ̂
θ̂k, 1 ≤ k ≤ d. (288)

a
def
= −Ex

[
∂2L̂(τ̂ , θ̂)

∂τ̂2

]
=

n/2

ψ(τ̂ )2

(
∂ψ(τ̂ )

∂τ̂

)2

+
1

4
τ̄ψ(τ̂ )−2

(
∂ψ(τ̂ )

∂τ̂

)2 d∑

i=1

θ̂2i . (289)

We may now write the Fisher matrix F̂ (θ̂, τ̂) of the reparameterized likeli-

hood f(x|ψ(τ̂ ),φ(θ̂, τ̂ )) as the (d+ 1)× (d+ 1) matrix

F̂ =




a b1 b2 · · · bd
b1 c1 0 · · · 0
b2 0 c2 · · · 0
...

...
...

. . .
...

bd 0 0 · · · cd




(290)

where the only nonzero elements of F̂ are located on the first row and the
first column and the diagonal. The determinant of the matrix in (290) is
easily verified to be

det F̂ =

(
d∏

i=1

ci

)
a−

d∑

j=1

b2j
cj


 (291)

and since in this case ci = c, 1 ≤ i ≤ d, we get

det F̂ = acd − cd−1
d∑

i=1

b2i . (292)
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Plugging in (287), (288), (289) into (292) we get

|F̂ (θ̂, τ̂ )| = τ̄d

(
n/2

ψ(τ̂ )2

(
∂ψ(τ̂ )

∂τ̂

)2

+
1

4
τ̄ψ(τ̂ )−2

(
∂ψ(τ̂ )

∂τ̂

)2 d∑

i=1

θ̂2i

)

− τ̄d−1
d∑

i=1

(
−1

2
τ̄

1

ψ(τ̂ )

∂ψ(τ̂ )

∂τ̂
θ̂i

)2

= τ̄d
n/2

ψ(τ̂)2

(
∂ψ(τ̂ )

∂τ̂

)2

. (293)

We finally verify that our calculated reparameterized Fisher matrix F̂ sat-
isfies the relation |F̂ (θ̂, τ̂ )| = |JTF (θ, τ)J | where J is the jacobi matrix

induced by the transformations θ̂i 7→ φ(θ̂i, τ̂), 1 ≤ i ≤ d and τ̂ 7→ ψ(τ̂ ). The
jacobian is

J =




∂ψ(τ̂ )
∂τ̂

∂ψ(τ̂ )

∂θ̂1

∂ψ(τ̂ )

∂θ̂2
· · · ∂ψ(τ̂ )

∂θ̂d
∂φ(θ̂1,τ̂)
∂τ̂

∂φ(θ̂1,τ̂)

∂θ̂1

∂φ(θ̂1,τ̂)

∂θ̂2
· · · ∂φ(θ̂1,τ̂)

∂θ̂d
∂φ(θ̂2,τ̂)
∂τ̂

∂φ(θ̂2,τ̂)

∂θ̂1

∂φ(θ̂2,τ̂)

∂θ̂2
· · · ∂φ(θ̂2,τ̂)

∂θ̂d
...

...
...

. . .
...

∂φ(θ̂d,τ̂)
∂τ̂

∂φ(θ̂d,τ̂)

∂θ̂1

∂φ(θ̂d,τ̂)

∂θ̂2
· · · ∂φ(θ̂d,τ̂)

∂θ̂d




=




ψ′(τ̂) 0 0 · · · 0
t1 s 0 · · · 0
t2 0 s · · · 0
...

...
...

. . .
...

td 0 0 · · · s




(294)

where ti = −1
2 τ̄

1
2 δnǫdψ(τ̂ )

−1/2θ̂i, 1 ≤ i ≤ d and s = τ̄
1
2ψ(τ̂ )−

1
2 . Since J

is triangular matrix we have |J | = ψ′(τ̂)sd. Now (38) yields after a trivial
computation

|F (θ, τ)| = n

2
τd−2. (295)

Thus we have

|JTF (θ, τ)J | =
(
∂ψ(τ̂ )

∂τ̂

)2

s2d
n

2
ψ(τ̂)d−2

=

(
∂ψ(τ̂ )

∂τ̂

)2

τ̄dψ(τ̂ )−d
n

2
ψ(τ̂ )d−2 =

(
∂ψ(τ̂ )

∂τ̂

)2

τ̄dψ(τ̂ )−2n

2
. (296)

Comparing (296) and (293) we see that |F̂ (θ̂, τ̂)| = |JTF (θ, τ)J | is satisfied.





APPENDIX D

The Laplace approximation formula for the

marginal

Let T̂
(τ̂∗,θ̂∗)
m (x, τ̂ , θ̂) denote the m’th degree Taylor polynomial expansion of

Φ̂ as a function of θ̂i, i = 1, ..., d about the points θ̂∗ and τ̂∗. Since the prior
πλ(θ) may not be smooth at θ = 0 we will have to claim that θ̂∗ is nonzero.

The θ̂ integration in (48) will have to be split up into the 2d integration
areas consisting of Rd+ and the remaining 2d − 1 ”quadrants” which union

is Rd \ Rd+. We assume that θ̂∗ ∈ Rd+, and as will become clear below, this

assumption implies no loss of generality. Let Φ̂α1,...αs(x, τ̂ , θ̂) denote the s’th

order partial derivative of Φ̂ with respect to the ordered list of parameters

α = α1, ..., αs. We write out the terms of T̂
(τ̂∗,θ̂∗)
2 (x, τ̂ , θ̂) explicitely below.

Define

T̂
(τ̂∗,θ̂∗)
K (x, τ̂ , θ̂)

def
=

d∑

i=1

j+k≤K∑

j,k=1

1

j!k!

∂j+kΦ̂(x, τ̂∗, θ̂∗)

∂τ̂ j∂θ̂ki
(τ̂ − τ̂∗)j(θ̂i − θ̂∗i )

k

R̂
(τ̂∗,θ̂∗)
K (x, τ̂ , θ̂) =

d∑

i=1

∞∑

j+k≥K

1

j!k!

∂j+kΦ̂(x, τ̂ , θ̂∗)

∂τ̂ j∂θ̂ki
(τ̂ − τ̂∗)j(θ̂i − θ̂∗i )

k

we may then write

Φ̂(x, τ̂ , θ̂) = T̂ ∗
2 (x, τ̂

∗, θ̂∗) + R̂
(τ̂∗,θ̂∗)
3 (x, τ̂ , θ̂)

where

T̂
(τ̂∗,θ̂∗)
2 (x, τ̂ , θ̂) = Φ̂(x, τ̂∗, θ̂∗) + Φ̂τ̂ (x, τ̂

∗, θ̂∗)(τ̂ − τ̂∗)

+

d∑

i=1

Φ̂θ̂i(x, τ̂
∗, θ̂∗)(θ̂i − θ̂∗i ) +

1

2
Φ̂τ̂ ,τ̂ (x, τ̂

∗, θ̂∗)(τ̂ − τ̂∗)2

+
1

2

d∑

i=1

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)(θ̂i − θ̂∗i )

2 +

d∑

i=1

Φ̂τ̂ ,θ̂i(x, τ̂
∗, θ̂∗)(τ̂ − τ̂∗)(θ̂i − θ̂∗i )

(297)

where we can safely omit cross derivative terms of type Φ̂θ̂i,θ̂j , i 6= j be-

cause of our IID modeling assumptions on the θi and the functional relation

θi = φ(θ̂i, τ̂). We note that the pure first order terms in θ̂i and τ̂ will vanish
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because Φ̂θ̂i(x, τ̂
∗, θ̂∗) = 0, 1 ≤ i ≤ d, and Φ̂τ̂ (x, τ̂

∗, θ̂∗) = 0 by definition

of τ̂∗ and θ̂∗. We will approximate the innermost integral in (48) by com-

pleting the squares in the parameters θ̂i in T̂
(τ̂∗,θ̂∗)
2 (x, τ̂∗, θ̂∗) and integrate

the resulting shifted quadratic exponential against a remainder polynomial
P̂ (τ̂ , θ̂) over the parameter manifold Θ̂d. To prove that this method is sound,

we have to show that the error due to the terms in R̂
(τ̂∗,θ̂∗)
3 (x, τ̂ , θ̂) not in-

cluded in the remainder polynomial P̂ (τ̂ , θ̂) can be made small enough. To
do this we will have to analyse the relative magnitudes of the coefficients of

R̂
(τ̂∗,θ̂∗)
3 to find the leading order terms. In order to explicitely express the

dependency of terms of T̂
(τ̂∗,θ̂∗)
2 on τ̄ and ¯̄τ we use equation (46) and the

chain rule to rewrite partial derivatives of Φ̂ with respect to the parameters
θ̂i and τ̂ as combinations of partial derivatives of Φ. By completing squares
in τ̂ and θ̂i, 1 ≤ i ≤ d and omitting the zero first order terms we may rewrite

T̂
(τ̂∗,θ̂∗)
2 as

T̂
(τ̂∗,θ̂∗)
2 (x, τ̂ , θ̂) = Φ̂(x, τ̂∗, θ̂∗) +

1

2
Φ̂τ̂ ,τ̂ (x, τ̂

∗, θ̂∗) (τ̂ − τ̂∗)2

+
d∑

i=1

{
1

2

[
Φ̂θ̂i,θ̂i(x, τ̂

∗, θ̂∗)
]
×

(
θ̂i − θ̂∗i +

Φ̂τ̂ ,θ̂i(x, τ̂
∗, θ̂∗)(τ̂ − τ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

)2

− 1

2

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)(τ̂ − τ̂∗)2

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)





Now we may write (48) on the form

mγd(x) = I1 + I2 (298)

where

I1
def
= ¯̄τ

d
2 exp

(
−Φ̂(x, τ̂∗, θ̂∗)

)
×

∫

τ̂∈Îτ̂
dτ̂ exp


−1

2


Φ̂τ̂ ,τ̂ (x, τ̂∗, θ̂∗)−

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)


 (τ̂ − τ̂∗)2


×

∫

θ̂∈Rd
+

exp

(
−1

2

d∑

i=1

[
Φ̂θ̂i,θ̂i(x, τ̂

∗, θ̂∗)
]
×

(
θ̂i − θ̂∗i +

Φ̂τ̂ ,θ̂i(x, τ̂
∗, θ̂∗)(τ̂ − τ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

)2

 exp

(
−R̂(τ̂∗,θ̂∗)

3 (x, τ̂ , θ̂)
)
dθ̂.

(299)

I2
def
= ¯̄τ

d
2

∫

τ̂∈Îτ̂
dτ̂

∫

θ̂∈Rd\Rd
+

exp
(
−Φ̂(x, τ̂ , θ̂)

)
dθ̂. (300)
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We begin with the calculation of the θ̂-part of the integral I1. We will first
introduce som notation and some claims. Define

Υλ(θ)
def
= − log[πλ(θ)]v = − log

[
Cλ

1
2 exp

(
−f(λ 1

2 θ)
)]

v
(301)

where C > 0 is a normalization constant independent of λ. We claim that
f(θ) is an integrable, symmetric, function of θ, such that

lim
|θ|→∞

f(λ
1
2 θ) = ∞, (302)

and such that there exist numbers 0 < ν < 2, B′
ν ≤ Bν ∈ R, Cν > 0 with

the properties

B′
ν ≤ f(λ

1
2 θ) ≤ Bν + Cν |λ

1
2 θ|ν ,∀ [θ]v ∈ R, (303)

and
∣∣∣∣
[
∂k

∂θk
f(λ

1
2 θ)

]

v

∣∣∣∣ ≤ Cν

∣∣∣∣
[
∂k

∂θk
|λ 1

2 θ|ν
]

v

∣∣∣∣ , 1 ≤ k <∞. (304)

Because of (304) we have
∣∣∣∣
[
∂2

∂θ2
Υλ(θ)

]

v

∣∣∣∣ ≤
∣∣∣
[
Cνν(ν − 1)λ|λ 1

2 θ|v−2
]
v

∣∣∣ , ∀ [θ]v ∈ R. (305)

Define the signal to noise ratio (SNR) Ω by the power ratio in the data
model (25)

Ω(λ, τ)
def
=

d 1
λ

n 1
τ

(signal to noise ratio) (306)

we may deduce from (305), (306) and the fact that the likelihood is gaussian,
the inequalities

[τ∗]v ≤ Φθi,θi(x, τ
∗,θ∗)

≤ [τ∗]v

(
1 +

d

n
Ω−1(λ, τ∗)|λ 1

2 θ∗i |ν−2Cνν(ν − 1)

)
, if 1 ≤ ν < 2 (307)

and

[τ∗]v ≥ Φθi,θi(x, τ
∗,θ∗)

≥ [τ∗]v

(
1 +

d

n
Ω−1(λ, τ∗)|λ 1

2 θ∗i |ν−2Cνν(ν − 1)

)
, if 0 < ν < 1. (308)

We define

µλ,ν(τ, θi)
def
=

d

n
Ω−1(λ, τ)|λ 1

2 θi|ν−2Cνν(ν − 1) (309)

=
(n
d
Ω(λ, τ)

)− ν
2 |τ 1

2 θi|ν−2Cνν(ν − 1) (310)
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and we claim there exists a number 0 < ζµλ,ν < 1 such that

|µλ,ν(τ∗, θ∗i )| ≤ ζµλ,ν < 1, 1 ≤ i ≤ d. (311)

We will investigate this claim further below. By (307) and (308) we see that
if the SNR-value Ω(λ, τ) is high enough and the relative model size d

n small
enough, then the value of Φθi,θi(x, τ

∗,θ∗) may be approximated by [τ∗]v
for all practical purposes for the actual value of ν under consideration and

”reasonable” |λ 1
2 θ∗i |. We will discuss this question at the end of the proof.

Proceeding analogously to the steps above, one may show

Φθi,θi,θi(x, τ
∗,θ∗) = [τ∗]

3
2
v σλ,ν(τ

∗, θ∗i ) (312)

where

σλ,ν(τ, θi)
def
=

(
d

n

) 3
2

Ω− 3
2 (λ, τ∗)|λ 1

2 θi|ν−3Cνν(ν − 1)(ν − 2)sgn (θi) (313)

=
(n
d
Ω(λ, τ)

)− ν
2 |τ 1

2 θi|ν−3Cνν(ν − 1)(ν − 2)sgn (θi) (314)

and

Φθi,θi,θi,θi(x, τ
∗,θ∗) = [τ∗]2vκλ,ν(τ

∗, θ∗i ) (315)

where

κλ,ν(τ, θi)
def
=

(
d

n

)2

Ω−2(λ, τ)|λ 1
2 θi|ν−4Cνν(ν − 1)(ν − 2)(ν − 3) (316)

=
(n
d
Ω(λ, τ)

)− ν
2 |τ 1

2 θi|ν−4Cνν(ν − 1)(ν − 2)(ν − 3). (317)

We define

∆λ(θ
∗
i )

def
=

∂2

∂θ2i
Υλ(θ) (318)

and thus

Φθi,θi(x, τ
∗,θ∗) = τ∗ +

∂2

∂θ2i
Υλ(θ)

∣∣∣∣
θ=θ∗

= τ∗ +∆λ(θ
∗
i ). (319)

By (304) we deduce

|∆λ(θ
∗
i )| ≤ τ∗ |µλ,ν(τ∗, θ∗i )| . (320)

We now continue with the calculation of the integral in (299).

exp
(
−R̂(τ̂∗,θ̂∗)

3 (x, τ̂ , θ̂)
)
= P̂ (τ̂ , θ̂) + Ê(τ̂ , θ̂)

where

P̂ (τ̂ , θ̂)
def
= 1. (321)
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Ê(τ̂ , θ̂)
def
=

∞∑

k=1

(−1)k

k!

(
R̂

(τ̂∗,θ̂∗)
3 (x, τ̂ , θ̂)

)k
. (322)

Define

PG(x)
def
=

1√
2π

∫ x

−∞
exp

(
−1

2
t2
)
dt. (323)

We may then proceed to write

I1 = Û
(
x, τ̂∗, θ̂∗

)
+ Ŵ

(
x, τ̂∗, θ̂

)

where

Û
(
x, τ̂∗, θ̂∗

)
def
= ¯̄τ

d
2 exp

(
−Φ̂(x, τ̂∗, θ̂∗)

) (2π)
d
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

×

∫

τ̂∈Îτ̂
dτ̂ exp


−1

2


Φ̂τ̂ ,τ̂ (x, τ̂∗, θ̂∗)−

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)


 (τ̂ − τ̂∗)2


×

d∏

i=1

PG

(
Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

(
θ̂∗i −

Φ̂τ̂ ,θ̂i(x, τ̂
∗, θ̂∗)(τ̂ − τ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

))
(324)

and

Ŵ
(
x, τ̂∗, θ̂∗

)
def
= ¯̄τ

d
2 exp

(
−Φ̂(x, τ̂∗, θ̂∗)

)
×

∫

τ̂∈Îτ̂
dτ̂ exp


−1

2


Φ̂τ̂ ,τ̂ (x, τ̂∗, θ̂∗)−

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)


 (τ̂ − τ̂∗)2


×

∫

θ̂∈Rd
+

exp

(
−1

2

d∑

i=1

[
Φ̂θ̂i,θ̂i(x, τ̂

∗, θ̂∗)
]
×

(
θ̂i − θ̂∗i +

Φ̂τ̂ ,θ̂i(x, τ̂
∗, θ̂∗)(τ̂ − τ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

)2

 Ê(τ̂ , θ̂) dθ̂. (325)

We first investigate the term Ŵ
(
x, τ̂∗, θ̂

)
. The lowest order term of Ê(τ̂ , θ̂)

in (322) is R̂
(τ̂∗,θ̂∗)
3 (x, τ̂ , θ̂), and is given by

R̂
(τ̂∗,θ̂∗)
3 (x, τ̂ , θ̂) =

1

6
Φτ̂ ,τ̂ ,τ̂ (x, τ̂

∗, θ̂∗)(τ̂ − τ̂∗)3+

+
1

2

d∑

i=1

Φ̂τ̂ ,τ̂ ,θ̂i(x, τ̂
∗, θ̂∗)(τ̂ − τ̂∗)2(θ̂i − θ̂∗i )
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+
1

2

d∑

i=1

Φ̂τ̂ ,θ̂i,θ̂i(x, τ̂
∗, θ̂∗)(τ̂ − τ̂∗)(θ̂i − θ̂∗i )

2

+
1

6

d∑

i=1

Φ̂θ̂i,θ̂i,θ̂i(x, τ̂
∗, θ̂∗)(θ̂i − θ̂∗i )

3 + higher order . (326)

We will now make a few observations and claims which together will imply
that it suffices to consider the part of Ê(τ̂ , θ̂) given by the third order terms

listed in (326) to compute Ŵ (x, τ̂∗, θ̂∗) to leading order. As will become

clear from considerations below, the interval Îτ̂ will have to include the point
τ̂∗ in order to get convergence of the τ̂−integration step. Furthermore, it
will become clear that τ̂ − τ̂∗ must be bounded below. In fact we will see
below that we must have

Îτ̂ =
[
τ̂∗ − aτ̂δ

−1
n ǫ−1

d , τ̂∗ + bτ̂δ
−1
n ǫ−1

d

]
, 0 < aτ̂ ≪ 1, aτ̂ ≤ bτ̂ <∞. (327)

where aτ̂ and bτ̂ are to be chosen large enough to make the integral of

exp
(
−T̂2(x, τ̂ , θ̂)

)
converge with respect to the integration in τ̂ . Further-

more, we will see below that we may choose aτ̂ = bτ̂ , thus making the interval
Îτ̂ symmetric about τ̂∗. This fact will be used to simplify the computations
below. Next, we observe

Φ̂θ̂i,τ̂ (x, τ̂
∗, θ̂∗) = τ̄

1
2 δnǫd

(
−(x‖(i)− θ∗i )(τ

∗)
1
2

−1

2
(τ∗ +∆λ(θ

∗
i ))(τ

∗)−
1
2 θ∗i

)

∈
[(

−
x‖(i)

θ∗i
+ 1− 1

2
(1 + µλ,ν(τ

∗, θ∗i ))

)
τ̄

1
2 δnǫd(τ

∗)
1
2 θ∗i ,

(
−1

2
(1− µλ,ν(τ

∗, θ∗i ))

)
τ̄

1
2 δnǫd(τ

∗)
1
2 θ∗i

]
⊂ R−

by (470), (320), (311). (328)

Φ̂τ̂ ,τ̂ (x, τ̂
∗, θ̂∗) = δ2nǫ

2
d

(
n− d+ 2

2
+

1

4
‖(τ∗) 1

2θ∗‖22+

+
d∑

i=1

τ∗(θ∗i )
2µλ,ν(τ

∗, θ∗i ) +
d∑

i=1

τ∗(x‖(i)− θ∗i )θ
∗
i

)
by (468). (329)

Φ̂θ̂j ,θ̂j(x, τ̂
∗, θ̂∗) = Φθi,θi(x, τ

∗,θ∗)τ̄(τ∗)−1

= (1 + o (µλ,ν(τ
∗, θ∗i ))) τ̄ by (469), (319), (320). (330)

Φ̂θ̂i,θ̂i,θ̂i(x, τ̂
∗, θ̂∗) = Φθi,θi,θi(x, τ

∗,θ∗)τ̄
3
2 (τ∗)−

3
2

= τ̄
3
2σλ,ν(τ

∗, θ∗i ) by (473) and (312). (331)

Φ̂τ̂ ,τ̂ ,τ̂ (x, τ̂
∗, θ̂∗) = δ3nǫ

3
d

(
n− d+ 2

2
+

3

8
‖(τ∗) 1

2θ∗‖22+
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+
1

8
Cνν(ν − 1)(ν − 2)

d∑

i=1

|λ 1
2 θ∗i |ν

)

+ δ3nǫ
3
do
(
‖(τ∗) 1

2θ∗‖22
)

by (474), (312)-(313). (332)

Φ̂τ̂ ,τ̂ ,θ̂i(x, τ̂
∗, θ̂∗) = δ2nǫ

2
dτ̄

1
2 (τ∗)

1
2 θ∗i

{
−1

4
+

3

4
o (µλ,ν(τ

∗, θ∗i ))

+
1

4
σλ,ν(τ

∗, θ∗i )(τ
∗)

1
2 θ∗i

}
by (472), (312). (333)

Φ̂τ̂ ,θ̂i,θ̂i(x, τ̂
∗, θ̂∗) = −1

2
δnǫdτ̄(τ

∗)−1Φθi,θi,θi(x, τ
∗,θ∗)θ∗i

= −1

2
δnǫdτ̄σλ,ν(τ

∗, θ∗i )(τ
∗)

1
2 θ∗i by (471), (312). (334)

Φ̂τ̂ ,τ̂ ,θ̂i,θ̂i(x, τ̂
∗, θ̂∗) = δ2nǫ

2
dτ̄µλ,ν(τ

∗, θ∗i )

+ δ2nǫ
2
dτ̄σλ,ν(τ

∗, θ∗i )(τ
∗)

1
2 θ∗i + δ2nǫ

2
dτ̄

1

4
κλ,ν(τ

∗, θ∗i )τ
∗(θ∗i )

2

by (478), (312)-(319). (335)

Φ̂θ̂i,θ̂i,θ̂i,θ̂i(x, τ̂
∗, θ̂∗) = Φθi,θi,θi,θi(x, τ

∗,θ∗)τ̄2(τ∗)−2

= τ̄2κλ,ν(τ
∗, θ∗i ) by (476) and (316).

We will begin with considering the terms in Ê(τ̂ , θ̂) that are

Φ̂θ̂i,θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

(
θ̂i − θ̂∗i

)3
. We define

Lj(τ̂)
def
=

∫

θ̂∈Rd
+

exp

(
−1

2

d∑

i=1

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

(
θ̂i − θ̂∗i+

+
Φ̂θ̂i,τ̂ (x, τ̂

∗, θ̂∗)(τ̂ − τ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

)2

 1

6
Φ̂θ̂j ,θ̂j ,θ̂j(x, τ̂

∗, θ̂∗)
(
θ̂j − θ̂∗j

)3
dθ̂. (336)

Let

ẑi
def
= Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

(
θ̂i − θ̂∗i +

Φ̂θ̂i,τ̂ (x, τ̂
∗, θ̂∗)(τ̂ − τ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

)

r̂i(τ̂
∗, θ̂∗i )

def
=

Φ̂θ̂i,τ̂ (x, τ̂
∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

(337)

and observe that by (327), (328) and (411) we have

τ̄−
1
2 (τ∗)

1
2 θ∗j + τ̄−

1
2 (τ∗)

1
2

(
x‖(j)−

1− ζ

2
θ∗j

)
aτ̂ (1 + ζ)

> θ̂∗j − r̂j(τ̂ − τ̂∗)
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≥ τ̄−
1
2 θ∗j (τ

∗)
1
2 + τ̄−

1
2 (τ∗)

1
2 θ∗j δnǫd

1

2
(1− ζ)(τ̂ − τ̂∗)

≥ τ̄−
1
2 θ∗j (τ

∗)
1
2

(
1− 1

2
(1− ζ)aτ̂

)
, 0 < aτ̂ ≪ 1, 0 ≤ ζ < 1. (338)

We write

Lj(τ̂) =
(2π)

d
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

1

6
Φ̂θ̂j ,θ̂j ,θ̂j(x, τ̂

∗, θ̂∗)×

(2π)−
d
2

∫ ∞

Φ̂
− 1

2
θ̂i,θ̂i

(x,τ̂∗,θ̂∗)ẑi=−θ̂∗i +r̂i(τ̂∗,θ̂∗i )(τ̂−τ̂∗)
dẑ exp

(
−1

2

d∑

i=1

ẑ2i

)
×

(
Φ̂
− 1

2

θ̂j ,θ̂j
(x, τ̂∗, θ̂∗)ẑj − r̂j(τ̂

∗, θ̂∗j )(τ̂ − τ̂∗)

)3

. (339)

By (331) and (338) we may write

Lj(τ̂) =
(2π)

d
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

1

6
τ̄

3
2σλ,ν(τ

∗, θ∗j )×

d∏

i=1,i 6=j
PG


(τ∗)

1
2 θ∗i (1 + ζ)


1 + aτ̂ (1 + ζ)

(τ∗)
1
2

(
x‖(j)− 1−ζ

2 θ∗j

)

(τ∗)
1
2 θ∗j




×

(2π)−
1
2

∫ ∞

Φ̂
− 1

2
θ̂j ,θ̂j

(x,τ̂∗,θ̂∗)ẑj=−θ̂∗j+r̂j(τ̂∗,θ̂∗j )(τ̂−τ̂∗)
dẑj exp

(
−1

2
ẑ2j

)
×

(
Φ̂
− 3

2

θ̂j ,θ̂j
(x, τ̂∗, θ̂∗)ẑ3j − 3Φ̂−1

θ̂j ,θ̂j
(x, τ̂∗, θ̂∗)ẑ2j r̂j(τ̂

∗, θ̂∗j )(τ̂ − τ̂∗)

+3Φ̂
− 1

2

θ̂j ,θ̂j
(x, τ̂∗, θ̂∗)ẑj r̂

2
j (τ̂

∗, θ̂∗j )(τ̂ − τ̂∗)2 − r̂3j (τ̂
∗, θ̂j

∗
)(τ̂ − τ̂∗)3

)
(340)

=
(2π)

d
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

1

6
τ̄

3
2σλ,ν(τ

∗, θ∗j )×





d∏

i=1,i 6=j
PG


(τ∗)

1
2 θ∗i (1 + ζ)


1 + aτ̂ (1 + ζ)

(τ∗)
1
2

(
x‖(j)− 1−ζ

2 θ∗j

)

(τ∗)
1
2 θ∗j







×

(2π)−
1
2

{
Φ̂
− 3

2

θ̂j ,θ̂j
(x, τ̂∗, θ̂∗)

(
C2
j (τ̂ − τ̂∗) + 2

)
exp

(
−1

2
C2
j (τ̂ − τ̂∗)

)

−3Φ̂−1

θ̂j ,θ̂j
(x, τ̂∗, θ̂∗)

(
Cj(τ̂ − τ̂∗) exp

(
−1

2
C2
j (τ̂ − τ̂∗)

)

+PG (−Cj(τ̂ − τ̂∗))) r̂j(τ̂
∗, θ̂∗j )(τ̂ − τ̂∗)
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+3Φ̂
− 1

2

θ̂j ,θ̂j
(x, τ̂∗, θ̂∗) exp

(
−1

2
C2
j (τ̂ − τ̂∗)

)
r̂2j (τ̂

∗, θ̂∗j )(τ̂ − τ̂∗)2

−PG (−Cj(τ̂ − τ̂∗)) r̂3j (τ̂
∗, θ̂j

∗
)(τ̂ − τ̂∗)3

}
(341)

where

Cj(τ̂ − τ̂∗)
def
= Φ̂

1
2

θ̂j ,θ̂j
(x, τ̂∗, θ̂∗)

(
−θ̂∗j + r̂j(τ̂

∗, θ̂∗j )(τ̂ − τ̂∗)
)
. (342)

We define

N(λ, ν, γd)
def
= δ−2

n ǫ−2
d


Φ̂τ̂ ,τ̂ (x, τ̂∗, θ̂∗)−

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)


 ,

bτ̂ = aτ̂
def
=

(
kτ̂ logN(λ, ν, γd)

N(λ, ν, γd)

) 1
2

, 0 < kτ̂ < logN(ν, λ, γd) (343)

and we observe

Îτ̂ =

[
τ̂∗ −

(
kτ̂ logN(λ, ν, γd)

N(λ, ν, γd)

) 1
2

δ−1
n ǫ−1

d ,

τ̂∗ +

(
kτ̂ logN(λ, ν, γd)

N(λ, ν, γd)

) 1
2

δ−1
n ǫ−1

d

]
(344)

implying

Iτ ⊂
(
τ∗ exp

[
−
(
log2N(λ, ν, γd)

N(λ, ν, γd)

) 1
2

]
,

τ∗ exp

[(
log2N(λ, ν, γd)

N(λ, ν, γd)

) 1
2

])
. (345)

Now we need to evaluate the integral of Lj(τ̂ ) exp(−1
2δ

2
nǫ

2
dN(λ, ν, γd)(τ̂ −

τ̂∗)2) over the interval Îτ̂ . We claim that the PG(·)-term in (340) above may

be sufficiently accurately approximated by the constant PG((τ
∗)

1
2 θ∗j ) over

the interval Îτ̂ if N(λ, ν, γd) is sufficiently large. We proceed to verify this

claim by evaluating the term Û(x, τ̂∗, θ̂∗) in (324). By (328), (330), (39),
(320) we have

Φ̂
1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

(
θ̂∗i −

Φ̂τ̂ ,θ̂i(x, τ̂
∗, θ̂∗)(τ̂ − τ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

)

= (1 + o (µλ,ν(τ
∗, θ∗i )))

1
2

{
(τ∗)

1
2 θ∗i+
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+δnǫd
(x‖(i)− θ∗i )(τ

∗)
1
2 + 1

2(τ
∗ +∆λ(θ

∗
i ))(τ

∗)−
1
2 θ∗i

1 + o (µλ,ν(τ∗, θ∗i ))
(τ̂ − τ̂∗)

}

= (1 + o (µλ,ν(τ
∗, θ∗i )))

1
2

{
(τ∗)

1
2 θ∗i

{
1 +

δnǫd(τ̂ − τ̂∗)
1 + o (µλ,ν(τ∗, θ∗i ))

{

x‖(i)

θ∗i
− 1 +

1

2
+ ∆λ(θ

∗
i )(τ

∗)−1

}}}

= (τ∗)
1
2 θ∗i (1 + o (µλ,ν(τ

∗, θ∗i )))
1
2

{
1 +

δnǫd(τ̂ − τ̂∗)
1 + o (µλ,ν(τ∗, θ∗i ))

{

x‖(i)

θ∗i
− 1

2
+ o (µλ,ν(τ

∗, θ∗i ))

}}

= (τ∗)
1
2 θ∗i (1 + o (µλ,ν(τ

∗, θ∗i )))
1
2




1 +

o

((
kτ̂ logN(λ,ν,γd)

N(λ,ν,γd)

) 1
2

)

1 + o (µλ,ν(τ∗, θ∗i ))
{

x‖(i)

θ∗i
− 1

2
+ o (µλ,ν(τ

∗, θ∗i ))

}}
. (346)

We define

gi(δnǫd(τ̂ − τ̂∗))
def
= PG

(
(τ∗)

1
2 θ∗i (1 + o (µλ,ν(τ

∗, θ∗i )))
1
2 {1+

δnǫd(τ̂ − τ̂∗)
1 + o (µλ,ν(τ∗, θ∗i ))

{
x‖(i)

θ∗i
− 1

2
+ o (µλ,ν(τ

∗, θ∗i ))

}})
(347)

Introducing the change of integration variable

t
def
= δnǫdN

1
2 (λ, ν, γd)(τ̂ − τ̂∗) (348)

we may write the integral (324) as

Û
(
x, τ̂∗, θ̂∗

)



¯̄τ

d
2 exp

(
−Φ̂(x, τ̂∗, θ̂∗)

) (2π)
d
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)





−1

×

δnǫdN
1
2 (λ, ν, γd)

=

∫ N
1
2 (λ,ν,γd)aτ̂

−N
1
2 (λ,ν,γd)aτ̂

dt exp

(
−1

2
t2
) d∏

i=1

gi

(
t

N
1
2 (λ, ν, γd)

)

taylor-expanding gi to second order around t = 0 yields

=

∫ N
1
2 (λ,ν,γd)aτ̂

−N
1
2 (λ,ν,γd)aτ̂

dt exp

(
−1

2
t2
)
×
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d∏

i=1




gi(0) +

g′i(0)

N
1
2 (λ, ν, γd)

t+
1

2

g′′i

(
ξt

N
1
2 (λ,ν,γd)

)

N(λ, ν, γd)
t2





where: −N 1
2 (λ, ν, γd)aτ̂ ≤ ξt ≤ N

1
2 (λ, ν, γd)aτ̂

=

(
d∏

i=1

gi(0)

)∫ N
1
2 (λ,ν,γd)aτ̂

−N
1
2 (λ,ν,γd)aτ̂

dt exp

(
−1

2
t2
)
×

d∏

i=1




1 +

g′i(0)

gi(0)N
1
2 (λ, ν, γd)

t+
1

2

g′′i

(
ξt

N
1
2 (λ,ν,γd)

)

gi(0)N(λ, ν, γd)
t2





rewriting using the chain-rule and the fundamental theorem of calculus we
get

=

{
d∏

i=1

PG

(
(τ∗)

1
2 θ∗i (1 + o (µλ,ν(τ

∗, θ∗i )))
)}∫ N

1
2 (λ,ν,γd)aτ̂

−N 1
2 (λ,ν,γd)aτ̂

dt exp

(
−1

2
t2
)
×

d∏

i=1



1 +

(
(τ∗)

1
2 (x‖(i)− 1

2θ
∗
i )
)

N
1
2 (λ, ν, γd)

exp

[
−1

2
τ∗(θ∗i )

2 (1 + o (µλ,ν(τ
∗, θ∗i )))

]
t+

−

(
(τ∗)

1
2 (x‖(i)− 1

2θ
∗
i )
)2

2N(λ, ν, γd)
×

exp


−

1

2
τ∗(θ∗i )

2 (1 + o (µλ,ν(τ
∗, θ∗i )))


1 +

ξt

N
1
2 (λ,ν,γd)

(
x‖(i)

θ∗i
− 1

2

)

1 + o (µλ,ν(τ∗, θ∗i ))




2

 t

2




.

(349)

It is now easy to see from (349) that the first order terms in t and all terms
of odd order in t will vanish in the integration. Using the choice of aτ̂ in
(343) and collecting second order terms we may finally write

Û
(
x, τ̂∗, θ̂∗

)
= ¯̄τ

d
2 exp

(
−Φ̂(x, τ̂∗, θ̂∗)

) (2π)
d
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

×


Φ̂τ̂ ,τ̂ (x, τ̂∗, θ̂∗)−

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)



− 1

2

×
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{
√
2π

d∏

i=1

PG

(
(τ∗)

1
2 θ∗i (1 + o (µλ,ν(τ

∗, θ∗i )))
)}

×
{
erf
(√

kτ̂ logN(λ, ν, γd)
)
− (2π)−

1
2

(
kτ̂ logN(λ, ν, γd)

Nkτ̂ (λ, ν, γd)

) 1
2

− (2π)−
1
2

N(λ, ν, γd)

d∑

i,j=1

τ∗(x‖(i) − 1
2θ

∗
i )(x‖(j)− 1

2θ
∗
j )

exp
(
1
2τ

∗
[
(θ∗i )

2 + (θ∗j )
2
])

+O
(
dN− 3

2 (λ, ν, γd)
)}

, 1 ≤ kτ̂ < logN(λ, ν, γd). (350)

When evaluating the integral

∫

τ̂∈Îτ̂
Lj(τ̂ ) exp

(
−1

2
δ2nǫ

2
dN(λ, ν, γd)(τ̂ − τ̂∗)2

)
(351)

the integrand will include terms that are

exp

(
−1

2
δ2nǫ

2
dN(λ, ν, γd)(τ̂ − τ̂∗)2 − 1

2
C2
j (τ̂ − τ̂∗)

)
(352)

which map to

7→ exp

(
−1

2
t2
)
· exp

(
−1

2
C2
j

(
δ−1
n ǫ−1

d

t√
N(λ, ν, γd)

))
(353)

when changing variables t
def
= δnǫdN

1
2 (λ, ν, γd)(τ̂ − τ̂∗). By means of (342)

and (338) we have the inequalities

exp

(
−1

2
t2
)
×

exp


−1

2
(1− ζ)2τ∗(θ∗j )

2


1 + aτ̂ (1 + ζ)

(τ∗)
1
2

(
x‖(j) − 1−ζ

2 θ∗j

)

(τ∗)
1
2 θ∗j




2



≤ exp

(
−1

2
t2
)
exp

(
−1

2
C2
j

(
δ−1
n ǫ−1

d

t√
N(λ, ν, γd)

))

≤ exp

(
−1

2
t2
)
×

exp

[
−1

2
(1 + ζ)2τ∗(θ∗j )

2

(
1− aτ̂

1− ζ

2

)2
]
,

∀ t ∈
[
−aτ̂

√
N(λ, ν, γd), aτ̂

√
N(λ, ν, γd)

]
. (354)



D. THE LAPLACE APPROXIMATION FORMULA FOR THE MARGINAL 125

We observe by (343) that aτ̂ =
√
kτ̂ logN(λ, ν, γd)/N(λ, ν, γd). Therefore,

if N(λ, ν, γd) is ”large enough” and ζ ”near enough” zero, we may write

exp

(
−1

2
t2
)
· exp

(
−1

2
C2
j

(
δ−1
n ǫ−1

d

t√
N(λ, ν, γd)

))

≈ exp

(
−1

2
t2
)
exp

(
−1

2
τ∗(θ∗j )

2

)
,

∀ t ∈
[
−aτ̂

√
N(λ, ν, γd), aτ̂

√
N(λ, ν, γd)

]
(355)

where the ≈ means ”accurate enough” to leading order terms. Using the
approximation (355) on (351) together with (341) we may get rid of the
terms of odd order in (τ̂ − τ̂∗) by writing

Lj(τ̂) =
(2π)

d
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

1

6
σλ,ν(τ

∗, θ∗j )×





d∏

i=1,i 6=j
PG


(τ∗)

1
2 θ∗i (1 + ζ)


1 + aτ̂ (1 + ζ)

(τ∗)
1
2

(
x‖(j)− 1−ζ

2 θ∗j

)

(τ∗)
1
2 θ∗j







×

[
(2π)−

1
2 exp

(
−1

2
τ∗(θ∗j )

2

)
×

(1 + o(ζ))
{
2 + τ∗(θ∗j )

2 +A2
jδ

2
nǫ

2
d(τ̂ − τ̂∗)2 + odd powers of (τ̂ − τ̂∗)

}

+3AjPG

(
(1 + o(ζ))((τ∗)

1
2 θ∗j −Ajδnǫd(τ̂ − τ̂∗))

)
(τ̂ − τ̂∗)

]
(356)

where

Aj
def
= (τ∗)

1
2 θ∗j + aτ̂ (τ

∗)
1
2

(
x‖(j)−

1− ζ

2
θ∗j

)
(1 + ζ). (357)

By proceeding similarly to the steps taken in (347)-(349) we may conclude

that the integral over Îτ̂ of PG(·)(τ̂ − τ̂∗) in (356) may for all practical

purposes be bounded by N−1(λ, ν, γd)(τ
∗)

1
2 (x‖(j) − 1

2θ
∗
j )exp(−1

2τ
∗(θ∗j )

2).

Now, continuing from (341) and repeating the steps (351)-(355) we get

∫

τ̂∈Îτ̂
Lj(τ̂ ) exp

(
−1

2
δ2nǫ

2
dN(λ, ν, γd)(τ̂ − τ̂∗)2

)
dτ̂

=
(2π)

d+1
2 σλ,ν(τ

∗, θ∗j )
∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)


Φ̂τ̂ ,τ̂ (x, τ̂∗, θ̂∗)−

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)



− 1

2

×





d∏

i=1,i 6=j
PG

(
(τ∗)

1
2 θ∗i (1 + ζ)

)




1

6
(2π)−

1
2 exp

(
−1

2
τ∗(θ∗j )

2

)
×
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(1 + o(ζ))

{
2

(
kτ̂ logN(λ, ν, γd)

Nkτ̂ (λ, ν, γd)

) 1
2

+

(
2 + τ∗(θ∗j )

2 +
A2
j + τ∗(θ∗j )

2

N(λ, ν, γd)

)
×

(2π)
1
2 erf

(√
kτ̂ logN(λ, ν, γd)

)}
. (358)

Because of the symmetry of Îτ̂ the odd powers of (τ̂ − τ̂∗) integrate to zero.

We proceed with the Φ̂τ̂ ,τ̂ ,θ̂i(x, τ̂
∗, θ̂∗)-terms in (326) using the notation and

results from the calculations (336)-(358) we write

Kj(τ̂ )
def
=

∫

θ̂∈Rd
+

dθ̂ exp

(
−1

2

d∑

i=1

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

(
θ̂i − θ̂∗i+

+
Φ̂θ̂i,τ̂ (x, τ̂

∗, θ̂∗)(τ̂ − τ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

)2

 1

2
Φ̂τ̂ ,τ̂ ,θ̂j(x, τ̂

∗, θ̂∗)
(
θ̂j − θ̂∗j

)
(τ̂ − τ̂∗)2

(359)

=
(2π)

d
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

1

2
Φ̂τ̂ ,τ̂ ,θ̂j(x, τ̂

∗, θ̂∗)×

(2π)−
d
2

∫ ∞

Φ̂
− 1

2
θ̂j ,θ̂j

(x,τ∗,θ∗)ẑi=−θ̂∗i +r̂i(τ̂∗,θ̂∗i )(τ̂−τ̂∗)
dẑ exp

(
−1

2

d∑

i=1

ẑ2i

)
×

(
Φ̂
− 1

2

θ̂j ,θ̂j
(x, τ̂∗, θ̂∗)ẑj − r̂j(τ̂

∗, θ̂∗j )(τ̂ − τ̂∗)

)
(τ̂ − τ̂∗)2. (360)

By the previous calculations leading up to (358) together with (333) we
conclude

∫

τ̂∈Îτ̂
Kj(τ̂) exp

[
−1

2
N(λ, ν, γd)δ

2
nǫ

2
d(τ̂ − τ̂∗)2

]
dτ̂

=
(2π)

d+1
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)


Φ̂τ̂ ,τ̂ (x, τ̂∗, θ̂∗)−

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)



− 1

2

×





d∏

i=1,i 6=j
PG

(
(τ∗)

1
2 θ∗i (1 + ζ)

)




1

2
(2π)−

1
2 exp

(
−1

2
τ∗(θ∗j )

2

)
×

(1 + o(ζ))
τ∗(θ∗j )

2

N(λ, ν, γd)

(
−1

4
+

3

4
o(ζ) +

1

4
σλ,ν(τ

∗, θ∗j )(τ
∗)

1
2 θ∗j

)
×

((
kτ̂ logN(λ, ν, γd)

Nkτ̂ (λ, ν, γd)

) 1
2

+ (2π)
1
2 erf

(√
kτ̂ logN(λ, ν, γd)

))
. (361)
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We proceed with the Φ̂τ̂ ,θ̂j ,θ̂j(x, τ̂
∗, θ̂∗)-terms and write

Mj(τ̂ )
def
=

∫

θ̂∈Rd
+

dθ̂ exp

(
−1

2

d∑

i=1

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

(
θ̂i − θ̂∗i+

+
Φ̂θ̂i,τ̂ (x, τ̂

∗, θ̂∗)(τ̂ − τ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

)2

 1

2
Φ̂τ̂ ,θ̂j ,θ̂j(x, τ̂

∗, θ̂∗)
(
θ̂j − θ̂∗j

)2
(τ̂ − τ̂∗)

(362)

=
(2π)

d
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)

1

2
Φ̂τ̂ ,θ̂j ,θ̂j(x, τ̂

∗, θ̂∗)×

(2π)−
d
2

∫ ∞

Φ̂
− 1

2
θ̂j ,θ̂j

(x,τ̂∗,θ̂∗)ẑi=−θ̂∗i +r̂i(τ̂∗,θ̂∗i )(τ̂−τ̂∗)
dẑ exp

(
−1

2

d∑

i=1

ẑ2i

)
×

(
Φ̂
− 1

2

θ̂j ,θ̂j
(x, τ̂∗, θ̂∗)ẑj − r̂j(τ̂

∗, θ̂∗j )(τ̂ − τ̂∗)

)2

(τ̂ − τ̂∗). (363)

By (334) and the previous calculations (336)-(361) we conclude

∫

τ̂∈Îτ̂
Mj(τ̂) exp

[
−1

2
N(λ, ν, γd)δ

2
nǫ

2
d(τ̂ − τ̂∗)2

]
dτ̂

≤ (2π)
d+1
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)


Φ̂τ̂ ,τ̂ (x, τ̂∗, θ̂∗)−

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)



− 1

2

×





d∏

i=1,i 6=j
PG

(
(τ∗)

1
2 θ∗i (1 + ζ)

)




1

2
(2π)−

1
2 exp

(
−1

2
τ∗(θ∗j )

2

)
×

(1 + ζ)
−(τ∗)

1
2 (x‖(i) − 1−ζ

2 θ∗i ) + τ∗(θ∗j )
2

N(λ, ν, γd)
σλ,ν(τ

∗, θ∗i )(τ
∗)

1
2 θ∗j×

((
kτ̂ logN(λ, ν, γd)

Nkτ̂ (λ, ν, γd)

) 1
2

+ (2π)
1
2 erf

(√
kτ̂ logN(λ, ν, γd)

))
,

0 < kτ̂ < logN(λ, ν, γd) (364)
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where we again approximated a PG(·)-term like the one in (340) by the

constant PG((τ
∗)

1
2 θ∗j ) over the the interval Îτ̂ . We then observe that the

integrated contribution from the Φ̂τ̂ ,τ̂ ,τ̂ (x, θ̂
∗, τ̂∗)-term will be zero because

Îτ̂ is symmetric. Comparing the estimated integrated contributions from
the third order terms in (358), (361), (364) we find that the expression in
(358) has the leading order except for the contribution of terms of type
τ∗(θ∗i )

2

N(λ,ν,γd)
exp(−1

2τ
∗(θ∗i )

2) from (361). Adding these terms to the expression

(358) and summing the result up over all indices 1 ≤ j ≤ d using the claim

(411) we may now bound the total integrated error Ŵ (x, τ∗, θ̂∗) with

Ŵ (τ̂∗, θ̂∗)





(2π)
d+1
2 ¯̄τ

d
2

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)


Φ̂τ̂ ,τ̂ (x, τ̂∗, θ̂∗)−

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)



− 1

2

×
d∏

i=1

PG

(
(τ∗)

1
2 θ∗i (1 + ζ)

)}−1

≤
d∑

j=1

τ∗(θ∗j )
2

2N(λ, ν, γd)

exp
(
−1

2τ
∗(θ∗j )

2
)

PG

(
(τ∗)

1
2 θ∗j (1 + ζ)

)

+
(2π)−

1
2

6
Cνν|ν − 1| · |ν − 2|

(n
d
Ω(τ∗, λ∗)

)− ν
2 ×

d∑

j=1





∣∣∣(τ∗) 1
2 θ∗j

∣∣∣
ν−3

sgn (θ∗j ) (1 + o(ζ))

PG

(
(τ∗)

1
2 θ∗j (1 + ζ)

) exp

(
−1

2
τ∗(θ∗j )

2

)
×

[
2

(
kτ̂ logN(λ, ν, γd)

Nkτ̂ (λ, ν, γd)

) 1
2

+

(
2 + τ∗(θ∗j )

2 +
A2
j + τ∗(θ∗j )

2

N(λ, ν, γd)

)
×

(2π)
1
2 erf

(√
kτ̂ logN(λ, ν, γd)

)]}
(365)

now assuming N(λ, ν, γd) is large enough to make aτ̂
def
=
√
kτ̂ logN/N ≪ 1

and erf (kτ̂ logN) ≈ 1 we may write

≤
d∑

j=1

τ∗(θ∗j )
2

N(λ, ν, γd)
exp

(
−1

2
τ∗(θ∗j )

2

)

+
4

3
Cνν|ν − 1| · |ν − 2|

(n
d
Ω(τ∗, λ∗)

)− ν
2
(1 + ζ)×

d∑

j=1





∣∣∣(τ∗) 1
2 θ∗j

∣∣∣
ν−1

sgn (θ∗j )
(
1 + 2

τ∗(θ∗j )
2

)
+O

([
kτ̂ logN(λ,ν,γd)

Nkτ̂ (λ,ν,γd)

] 1
2

)

exp
(
1
2τ

∗(θ∗j )
2
)





(366)
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We may now express (299) on the form

I1 = Ŵ (τ̂∗, θ̂∗) + Û(τ̂∗, θ̂∗)

=
¯̄τ

d
2 (2π)

d
2 exp

(
−Φ̂(x, τ̂∗, θ̂∗)

)

∏d
i=1 Φ̂

1
2

θ̂i,θ̂i
(x, τ̂∗, θ̂∗)


Φ̂τ̂ ,τ̂ (x, τ̂∗, θ̂∗)−

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)



− 1

2

×
d∏

i=1

PG

(
(τ∗)

1
2 θ∗i (1 + ζ)

)
×



1 +

d∑

j=1

τ∗(θ∗j )
2

N(λ, ν, γd)
exp

(
−1

2
τ∗(θ∗j )

2

)
+

4

3
(1 + ζ)

Cνν|ν − 1| · |ν − 2|
(
n
dΩ(τ

∗, λ∗)
) ν

2

×

d∑

j=1




∣∣∣(τ∗) 1
2 θ∗j

∣∣∣
ν−1

sgn (θ∗j )
(
1 + 2

τ∗(θ∗j )
2

)
+O

([
kτ̂ logN(λ,ν,γd)

Nkτ̂ (λ,ν,γd)

]1
2

)

exp
(
1
2τ

∗(θ∗j )
2
)




− (2π)−
1
2

N(λ, ν, γd)

d∑

i,j=1

τ∗(x‖(i)− 1
2θ

∗
i )(x‖(j)− 1

2θ
∗
j )

exp
(
1
2τ

∗
[
(θ∗i )

2 + (θ∗j )
2
])

+O


 1

N(λ, ν, γd)

d∑

j=1

τ∗(θ∗j )
2

exp
(
1
2τ

∗(θ∗j )
2
)





 . (367)

Now, utilizing (290), (292) we recognize the determinant of the Hessian

Ĥ(x, τ̂∗, θ̂∗) of Φ̂(x, τ̂∗, θ̂∗) with respect to parameters τ̂ ,θ̂ inside expression
(367). Assuming N(λ, ν, γd) is large we may write

I1 = ¯̄τ
d
2 exp

(
−Φ̂(x, τ̂∗, θ̂∗)

) (2π)
d+1
2

|Ĥ(x, τ̂∗, θ̂∗)| 12

d∏

i=1

PG

(
(τ∗)

1
2 θ∗i (1 + ζ)

)

×



1 +

d∑

j=1

τ∗(θ∗j )
2

N(λ, ν, γd)
exp

(
−1

2
τ∗(θ∗j )

2

)

+
4

3
(1 + ζ)

Cνν|ν − 1| · |ν − 2|
(
n
dΩ(τ

∗, λ∗)
) ν

2

d∑

j=1

∣∣∣(τ∗) 1
2 θ∗j

∣∣∣
ν−1

sgn (θ∗j )
(
1 + 2

τ∗(θ∗j )
2

)

exp
(
1
2τ

∗(θ∗j )
2
)

− (2π)−
1
2

N(λ, ν, γd)

d∑

i,j=1

τ∗(x‖(i)− 1
2θ

∗
i )(x‖(j)− 1

2θ
∗
j )

exp
(
1
2τ

∗
[
(θ∗i )

2 + (θ∗j )
2
])



 . (368)
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Using (46), and the relations |JTψ,φHJψ,φ| = |Ĥ | and |JTψ,φFJψ,φ| = |F̂ | =
¯̄τd, where Jψ,φ is the jacobi matrix of the transformations ψ(τ̂ ), φ(θi), 1 ≤
i ≤ d, and H(x, τ,θ) is the Hessian of Φ(x, τ,θ), we finally get

I1 =
(2π)

d+1
2

|H(x, τ∗,θ∗)| 12
f(x|τ∗,θ∗)πλ(θ∗)

d∏

i=1

PG

(
(τ∗)

1
2 θ∗i (1 + ζ)

)
×



1 +

d∑

j=1

τ∗(θ∗j )
2

N(λ, ν, γd)
exp

(
−1

2
τ∗(θ∗j )

2

)

+
4

3
(1 + ζ)

Cνν|ν − 1| · |ν − 2|
(
n
dΩ(τ

∗, λ∗)
) ν

2

d∑

j=1

∣∣∣(τ∗) 1
2 θ∗j

∣∣∣
ν−1

sgn (θ∗j )
(
1 + 2

τ∗(θ∗j )
2

)

exp
(
1
2τ

∗(θ∗j )
2
)

− (2π)−
1
2

N(λ, ν, γd)

d∑

i,j=1

τ∗(x‖(i)− 1
2θ

∗
i )(x‖(j)− 1

2θ
∗
j )

exp
(
1
2τ

∗
[
(θ∗i )

2 + (θ∗j )
2
])



 . (369)

There are some observations to be remarked upon in connection with the
result (369).

(1) aτ̂ and bτ̂ has to be chosen large enough to make the τ̂ -integrals∫
Îτ̂
(·) dτ̂ in (324) and (325) converge, that is

∫
Îτ̂
(·) dτ̂ ≈

∫∞
−∞(·) dτ̂ .

(2) We note that if θ∗ is the hard threshold estimator used by Donoho

and Johnstone in [DJ94], we have for all nonzero θ̂∗ that (τ∗)
1
2 θ∗ ≥√

2 log n and so: 1 ≥∏d
i=1 PG

(
(τ∗)

1
2 θ∗i

)
≥ P dG

(√
2 log n

)
.

(3) We note that the result in [Ris00] concerning IID signal in ad-
ditive white gaussian noise, which in our setting coincides with a
prior density equal the Fisher information, (which for IID gaussian
likelihood is the uniform density in θi, 1 ≤ i ≤ d), yields asymp-

totically for large n that inf1≤i≤d(τ∗)
1
2 |x‖(i)| =

√
log n+ o(log n).

We proceed to estimate the size of N(λ, ν, γd). By equation (468), (36), (45)
and the fact that the likelihood f is gaussian we have

δ−2
n ǫ−2

d Φ̂τ̂ ,τ̂ (x, τ̂
∗, θ̂∗) =

1

2
(n− d+ 2) +

d∑

i=1

(
x‖(i)− θ∗i

)
θ∗i τ

∗

+
1

4

d∑

i=1

(τ∗ +∆λ(θ
∗
i )) (θ

∗
i )

2. (370)
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By (328), (330) we have

δ−2
n ǫ−2

d

d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)

=

d∑

i=1

(1 + o (µλ,ν(τ
∗, θ∗i )))×

(
(x‖(i) − θ∗i )(τ

∗)
1
2 − 1

2
(τ∗ +∆λ(θ

∗
i )(τ

∗)−
1
2 θ∗i

)2

. (371)

Combining (370) and (371) we get

N(λ, ν, γd)
def
= δ−2

n ǫ−2
d



Φ̂τ̂ ,τ̂ (x, τ̂

∗, θ̂∗)−
d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)



 (372)

=
1

2
(n− d+ 2) +

d∑

i=1

(
x‖(i)− θ∗i

)
θ∗i τ

∗ −
d∑

i=1

(
x‖(i) − θ∗i

)2
τ∗+

+

d∑

i=1

{
∆λ(θ

∗
i )(τ

∗)−
1
2 θ∗i −

1

4
(θ∗i )

2∆λ(θ
∗
i )−

1

4
∆2
λ(θ

∗
i )(τ

∗)−1(θ∗i )
2

}

−
d∑

i=1

o (µλ,ν(τ
∗, θ∗i ))

(
(x‖(i)− θ∗i )(τ

∗)
1
2 − 1

2
(τ∗ +∆λ(θ

∗
i ))(τ

∗)−
1
2 θ∗i

)2

using (320) and rewriting a bit we get

N(λ, ν, γd) =
1

2
(n− d+ 2) +

d∑

i=1

τ∗
(
x‖(i) − θ∗i

) (
2θ∗i − x‖(i)

)
+

+

d∑

i=1

{
µλ,ν(τ

∗, θ∗i )(τ
∗)

1
2 θ∗i −

1

4
µλ,ν(τ

∗, θ∗i )τ
∗(θ∗i )

2+

−1

4
µ2λ,ν(τ

∗, θ∗i )τ
∗(θ∗i )

2

}

−
d∑

i=1

o (µλ,ν(τ
∗, θ∗i ))

(
(x‖(i)− θ∗i )(τ

∗)
1
2 − 1

2
(τ∗ +∆λ(θ

∗
i ))(τ

∗)−
1
2 θ∗i

)2

(373)

rewriting µλ,ν(τ
∗, θ∗i ) we get

N(λ, ν, γd) =
1

2
(n− d+ 2) +

d∑

i=1

τ∗
(
x‖(i) − θ∗i

) (
2θ∗i − x‖(i)

)
+

+

d∑

i=1

Cνν(ν − 1)

[(n
d
Ω(τ∗, λ∗)

)− ν
2
∣∣∣(τ∗) 1

2 θ∗i

∣∣∣
ν−1

sgn (θ∗i )−
1

4

∣∣∣λ 1
2 θ∗i

∣∣∣
ν
]
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− 1

4

d∑

i=1

µ2λ,ν(τ
∗, θ∗i )τ

∗(θ∗i )
2

−
d∑

i=1

o (µλ,ν(τ
∗, θ∗i ))

(
(x‖(i)− θ∗i )(τ

∗)
1
2 − 1

2
(τ∗ +∆λ(θ

∗
i ))(τ

∗)−
1
2 θ∗i

)2

(374)

Now, it is reasonable to claim that the sum
∑d

i=1 τ
∗ (x‖(i)− θ∗i

)
×
(
2θ∗i − x‖(i)

)

is either positive, or failing that, very small in absolute value compared to
1
2(n−d+2). By (309) we see that µλ,1(τ

∗, θ∗i ) ≡ 0 and µλ,ν(τ
∗, θ∗i ) < 0, when

0 < ν < 1. By (410) we have |µλ,ν(τ∗, θi)| < ζµλ,ν < 1, when 0 < ν < 2,
therefore to leading order it suffices to consider the terms linear in µλ,ν(τ

∗, θi)

in the expression (373). In the case 0 < ν ≤ 1 we note that the |λ 1
2 θ∗i |-terms

contribute positively to the right hand side of expression (373) and because of

the claim (410) the
(
n
dΩ(τ

∗, λ∗)
)− ν

2

∣∣∣(τ∗) 1
2 θ∗i

∣∣∣
ν−1

sgn (θ∗i )-terms are bounded

in absolute value by ζ|(τ∗) 1
2 θ∗i | for some positive number ζ < 1, and since

the θi are modelled as zero mean parameters, we may expect a cancellation
effect to make the number value of the sum of d such terms small compared

to d. Alternatively: τ∗(θ∗i )
2 ≥ 1 and

(
n
dΩ(λ

∗, τ∗)
)− ν

2 ≪ 1. In the case
1 < ν < 2 we observe that

‖z‖ν ≤ K(d, ν)‖z‖2, ∀z ∈ Rd, ν ≥ 1 (375)

where

K(d, ν)
def
= sup

‖z‖2=1

‖z‖ν
‖z‖2

= max
(
1, d

1
ν
− 1

2

)
, ν ≥ 1. (376)

Then, using the estimator λ∗ for λ given in (401) we may write

d∑

i=1

∣∣∣(λ∗) 1
2 θ∗i

∣∣∣
ν
= d

ν
2 ‖θ∗‖−ν2 ‖θ‖νν ≤ d

ν
2 ‖θ∗‖−ν2

(
d

1
ν
− 1

2‖θ‖2
)ν

≤ d, ∀ ν ∈ (1, 2) . (377)

Inserting our results from the discussion above in (374) we may write

N(λ∗, ν, γd) = δ−2
n ǫ−2

d



Φ̂τ̂ ,τ̂ (x, τ̂

∗, θ̂∗)−
d∑

i=1

Φ̂2
τ̂ ,θ̂i

(x, τ̂∗, θ̂∗)

Φ̂θ̂i,θ̂i(x, τ̂
∗, θ̂∗)





≥ 1

2
(n− d+ 2)− 1

4
Cνν|ν − 1|d+

d∑

i=1

τ∗
(
x‖(i)− θ∗i

) (
2θ∗i − x‖(i)

)

− o

(
d∑

i=1

µ2λ,ν(τ
∗, θ∗i )τ

∗(θ∗i )
2

)
, when 1 < ν < 2, (378)
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and

N(λ∗, ν, γd) =
1

2
(n− d+ 2) +

d∑

i=1

τ∗
(
x‖(i)− θ∗i

) (
2θ∗i − x‖(i)

)

− o

(
d∑

i=1

µ2λ,ν(τ
∗, θ∗i )τ

∗(θ∗i )
2

)
, when 0 < ν ≤ 1. (379)

We note that the result in (378) also holds when using the estimator λ∗

given in (403). Alternatively, we may just evaluate the expression (374) for
a given dataset x, estimator λ∗ and corresponding model as indexed by γd
to get the exact value of N(λ∗, ν, γd). Now we consider the integral I2 in
(300). It is difficult to evaluate as we have no natural center about which
to do a Taylor expansion. Instead we will show that I2 ≪ I1, by an indirect
approach. Since we will simply bring I1 and I2 onto forms that are easily
compared, we will keep to the coordinates θ, τ for simplicity. We need to
compare

I1 =

∫

τ∈Iτ
dτ

∫

θ∈Rd
+

dθ exp (−Φ(x, τ,θ)) |F (θ, τ)| 12

=

∫

τ∈Iτ
dτ

∫

θ∈Rd
+

dθ

d∏

i=1

gτ (xi − θi)πλ(θi) (380)

and

I2 =

∫

τ∈Iτ
dτ

∫

θ∈Rd\Rd
+

dθ exp (−Φ(x, τ,θ)) |F (θ, τ)| 12

=

∫

τ∈Iτ
dτ

∫

θ∈Rd\Rd
+

dθ

d∏

i=1

gτ (xi − θi)πλ(θi) (381)

where we have defined

gτ (x)
def
=

τ1/2√
2π

exp

(
−1

2
τx2
)
.

Now consider the integral

Q2(x, τ)
def
=

∫ 0

−∞
πλ(θ)gτ (x− θ) dθ (382)

changing variables u
def
= λ

1
2 θ, recalling the definition of SNR Ω(λ, τ) in (306),

we get

Q2(x, τ) = τ1/2
∫ 0

−∞
π1(u)g1

((n
d
Ω(λ, τ)

) 1
2
u− τ

1
2x

)
du



134 D. THE LAPLACE APPROXIMATION FORMULA FOR THE MARGINAL

≤ τ1/2

(
sup
u∈R−

π1(u)

)(n
d
Ω(λ, τ)

)− 1
2
PG

(
−τ 1

2x
)
. (383)

We continue with

Q1(x, τ)
def
=

∫ ∞

0
πλ(θ)gτ (x− θ) dθ (384)

= τ1/2
∫ ∞

0
π1(u)g1

((n
d
Ω(λ, τ)

) 1
2
u− τ

1
2x

)
du. (385)

We define

u0(τ
1
2x)

def
= τ

1
2x
(n
d
Ω(λ, τ)

)− 1
2

(386)

and we then write

Q1(x, τ) = τ1/2
∫ u0

0
π1(u)g1

((n
d
Ω(λ, τ)

) 1
2
(u− u0)

)
du

+ τ1/2
∫ ∞

u0

π1(u)g1

((n
d
Ω(λ, τ)

) 1
2
(u− u0)

)
du. (387)

Now we have

∫ u0

0
π1(u)g1

((n
d
Ω(λ, τ)

) 1
2
(u− u0)

)
du

≥ inf
t∈(0,u0)

π1(t)

∫ u0

0
g1

((n
d
Ω(λ, τ)

) 1
2
(u− u0)

)
du

= inf
t∈(0,u0)

π1(t)
1

2

(n
d
Ω (λ, τ)

)− 1
2
erf (τ

1
2x). (388)

Taylor expanding π1(u) to first order about u0 yields

∫ ∞

u0

π1(u)g1

((n
d
Ω(λ, τ)

) 1
2
(u− u0)

)
du

=

∫ ∞

u0

du
(
π1(u0) + π′1(ξu0)(u− u0)

)
g1

((n
d
Ω(λ, τ

) 1
2
(u− u0)

)

=
1

2
π1(u0)

(n
d
Ω(λ, τ

)− 1
2

+

∫ ∞

u0

π′1(ξu0)(u− u0)g1

((n
d
Ω(λ, τ

) 1
2
(u− u0)

)
du (389)
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where ξu0 is some number such that ξu0 ∈ (u0, u). Using the bound (304)
we may write

sup
0<u0<ξu0<u

∣∣π′1(ξu0)
∣∣ ≤ sup

t∈(u0,∞)
π1(t) ·

{
Cν · ν · uν−1

0 if 0 < ν ≤ 1
Cν · ν · uν−1 if 1 < ν < 2.

(390)

We may then in the case 0 < ν ≤ 1 write
∣∣∣∣
∫ ∞

u0

π′1(ξu0)(u− u0)g1

((n
d
Ω(λ, τ)

) 1
2
(u− u0)

)
du

∣∣∣∣

≤ Cν · ν · sup
t∈(u0,∞)

π1(t) · uν−1
0

∫ ∞

u0

(u− u0)g1

((n
d
Ω(λ, τ)

) 1
2
(u− u0)

)
du

= Cν · ν · uν−1
0 sup

t∈(u0,∞)
π1(t) ·

(n
d
Ω(λ, τ)

)−1
(2π)−

1
2

=
Cν · ν
(2π)

1
2

· sup
t∈(u0,∞)

π1(t) ·
(
τ

1
2x
)ν−1 (n

d
Ω(λ, τ)

)− ν+1
2
. (391)

In the case 1 < ν < 2 we have
∣∣∣∣
∫ ∞

u0

π′1(ξu0)(u− u0)g1

((n
d
Ω(λ, τ)

) 1
2
(u− u0)

)
du

∣∣∣∣

≤ Cν · ν · sup
t∈(u0,∞)

π1(t)

∫ ∞

u0

(u− u0)u
ν−1g1

((n
d
Ω(λ, τ)

) 1
2
(u− u0)

)
du.

(392)

Now, by maximizing the integrand in (392) with respect to ν ∈ (1, 2) for
each of the cases u0 ≤ 1 and u0 > 1, we find that the expression (392) may
be bounded from above for all u0 > 0 by

1 < ν < 2 ⇒
∣∣∣∣
∫ ∞

u0

du π′1(ξu0)(u− u0)g1

((n
d
Ω(λ, τ)

) 1
2
(u− u0)

)∣∣∣∣

<
Cν · ν
(2π)

1
2

· sup
t∈(u0,∞)

π1(t) ·
(n
d
Ω(λ, τ)

)−1
(
1 + u0 +

√
2π

2

(n
d
Ω(λ, τ)

)−1/2
)
.

(393)

Then by the estimates (388), (389), (391), (393) we may bound Q1(x, τ)
from below as follows

Q1(x, τ) >
1

2
τ1/2

(n
d
Ω(λ, τ)

)− 1
2

sup
t∈(u0,∞)

π1(t)

{
π1(u0)

supt∈(u0,∞) π1(t)

+erf (τ
1
2x)

inft∈(0,u0) π1(t)

supt∈(u0,∞) π1(t)
− 2Cνν

(2π)
1
2

Lν(τ
1
2x)

}
(394)
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where

Lν(τ
1
2x)

def
=





(
τ

1
2x
)ν−1 (

n
dΩ(λ, τ)

)− ν
2 if 0 < ν ≤ 1

(
n
dΩ(λ, τ)

)− 1
2

(
1 + τ

1
2x
(
n
dΩ(λ, τ)

)− 1
2

)
if 1 < ν < 2.

(395)

and u0(τ
1
2x) =

(
n
dΩ(λ, τ)

)− 1
2 τ

1
2x and we have implicitely made the assump-

tion: π1(u0)/(supt∈R π1(t)) > 2Cνν(2π)
− 1

2Lν(τ
1
2x). We may then by (383),

(386), (394), (395) write

Q2(x, τ)

Q1(x, τ)
≤

2PG

(
−τ 1

2x
)
supt∈R−

π1(t)

π1(u0)

[
1 + erf (τ

1
2x)

inft∈(0,u0)
π1(t)

π1(u0)
− 2Cνν

(2π)
1
2

supt∈(u0,∞) π1(t)

π1(u0)
Lν(τ

1
2x)

] .

(396)

We note that if πλ(θ) is a monotone decreasing function of |θ| we may write

Q2(x, τ)

Q1(x, τ)
≤

2PG

(
−τ 1

2x
)
π1(0)/π1

([
τx2

n
d
Ω(λ,τ)

] 1
2

)

1 + erf (τ
1
2x)− 2Cνν

(2π)
1
2
Lν(τ

1
2x)

. (397)

We may write

I2
I1

=
I1 + I2 − I1

I1
= −1 +

I1 + I2
I1

= −1 +

∫
τ∈Iτ

∏d
i=1

(
Q1(x‖(i), τ) +Q2(x‖(i), τ)

)
dτ

∫
τ∈Iτ

∏d
j=1Q1(x‖(j), τ) dτ

using the integral mean value theorem we get

= −1 +
|Iτ |

∏d
i=1

(
Q1(x‖(i), τ1) +Q2(x‖(i), τ1)

)

|Iτ |
∏d
j=1Q1(x‖(j), τ2)

, for some τ1, τ2 ∈ Iτ

= −1 +

∏d
i=1Q1(x‖(i), τ1)

(
1 +

Q2(x‖(i),τ1)

Q1(x‖(i),τ1)

)

∏d
j=1Q1(x‖(j), τ2)

. (398)

Now, if |Iτ | is chosen small enough, then τ1 ≈ τ2, and using the bounds on
Q1(x, τ) and Q2(x, τ) calculated above, we may write (398) as

I2
I1

≈ −1 +
d∏

i=1

(
1 +

Q2(x‖(i), τ1)

Q1(x‖(i), τ1)

)
(399)

≤ −1 +

d∏

i=1

{1+
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2PG

(
−τ

1
2
1 x‖(i)

)
supt∈R−

π1(t)/π1

(
u0(τ

1/2
1 x‖(i))

)

1 + erf (τ
1/2
1 x‖(i))

inf
t∈

(
0,u0

(
τ
1/2
1 x‖(i)

)) π1(t)

π1
(
u0(τ

1/2
1 x‖(i))

) − 2Cνν

(2π)
1
2
Lν(τ

1
2
1 x‖(i))

supt∈(u0,∞) π1(t)

π1
(
u0(τ

1/2
1 x‖(i))

)





(400)

where we have by (345) that

τ1, τ2 ∈ Iτ ⊂
(
τ∗ exp

[
−
(
log2N(λ, ν, γd)

N(λ, ν, γd)

) 1
2

]
,

τ∗ exp

[(
log2N(λ, ν, γd)

N(λ, ν, γd)

) 1
2

])
.

with N(λ, ν, γd) as given in (378) and (379).

We did begin the proof under the assumption that θ̂∗ ∈ Rd+. But when
considering the calculations leading to the expression in (324), we see that if

θ̂∗j < 0 for some 1 ≤ i ≤ d, then by changing the domain of integration from

R+ to R− on the θ̂j-axis in (299) and correspondingly changing the domain
of integration for I2 in (300) so that the union of integration domains in

I1 and I2 is Rd, what we get in formula (369) is simply that θ̂j changes to

−θ̂∗j inside the PG(·)-expression. Thus, if we replace θ∗i by |θ∗i | inside the

PG(·)-expression in (369), and likewise replace x‖(i) by |x‖(i)| inside the
PG(·)-expressions in (400), we see that our proof of the formulas (369) and
(400) is invariant of sign changes on x‖(i) and θ

∗
i .

There remains one question that need to be answered before the proof
can be said to be complete, that is the problem of estimating the parameter
λ. Since λ−1/2 is the second order moment of the prior density πλ(θ), we
could simply define

1

λ∗
def
=

1

d

d∑

i=1

(θ∗i )
2 (401)

This would lead to

Ω(λ∗, τ∗) =
d 1
λ∗

n 1
τ∗

=
d
d

∑d
i=1(θ

∗
i )

2

n 1
τ∗

=
1

n

d∑

i=1

τ∗(θ∗i )
2. (402)

Alternatively

1

λ∗
def
=

{
1

d

d∑

i=1

x2
‖(i)−

1

τ∗

}
(403)
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leading to

Ω(λ∗, τ∗) =
d 1
λ∗

n 1
τ∗

=
1

n

{
d∑

i=1

τ∗x2
‖(i)− d

}
. (404)

Another way to proceed which is more in line with the philosophy of the
MDL-principle would be to define

λ∗
def
= arg minλ>0 {− logmγd(x)} (405)

That is we select the value of λ minimizing the codelength of our dataset x
given the model γd. We will generally prefer this maximum likelihood form of
the moment estimator λ∗ because of its codelength optimality and because it
also simplifies computations. A special case of interest to us is πλ(θ) belongs
to the class of priors known as ”Generalized Gaussian Distributions” (GGD)
which may be expressed on the form, [ML99]

πλ(θ)
def
=

νη(ν)

2Γ(1/ν)
λ

1
2 exp

(
−η(ν)ν

∣∣∣λ 1
2 θ
∣∣∣
ν)
, η(ν)

def
=

(
Γ(3/ν)

Γ(1/ν)

) 1
2

(406)

By (302)-(304) and because − log πλ(θ) is taken to be a symmetric, non-
negative function of θ with a decay limit as stated in (303), we see that
the family of priors under consideration in this proof includes the family
of GGD-distributions. In the special case of a GGD prior the Maximum
Likelihood (ML) estimator λ∗ for λ is

1

[λ∗]v

def
=

(
νη(ν)ν

d

d∑

i=1

|[θ∗i ]v|ν
) 2

ν

(407)

This leads to

Ω(λ∗, τ∗) =
d 1
λ∗

n 1
τ∗

=

(
νη(ν)ν

n
ν
2 d1−

ν
2

d∑

i=1

|(τ∗) 1
2 θ∗i |ν

) 2
ν

. (408)

The second question is the claim (311) which is

|µλ,ν(τ∗, θ∗i )| ≤ ζµλ,ν < 1, 1 ≤ i ≤ d. (409)

Rewriting (309) yields

|µλ,ν(τ∗, θ∗i )| =
∣∣∣∣
d

n
Ω−1(λ, τ∗)|(λ) 1

2 θ∗i |ν−2Cνν(ν − 1)

∣∣∣∣

= Cνν|ν − 1| λ
τ∗

∣∣∣∣∣
(λ)

1
2

(τ∗)
1
2

(τ∗)
1
2 θ∗i

∣∣∣∣∣

ν−2

= Cνν|ν − 1|
(n
d
Ω(λ, τ∗)

)− ν
2
∣∣∣(τ∗) 1

2 θ∗i

∣∣∣
ν−2

, 0 < ν < 2 (410)



D. THE LAPLACE APPROXIMATION FORMULA FOR THE MARGINAL 139

The claim (409) may then be expressed as

sup
1≤i≤d

{
Cνν|ν − 1|

(n
d
Ω(λ, τ∗)

)− ν
2
∣∣∣(τ∗) 1

2 θ∗i

∣∣∣
ν−2
}

def
= ζµλ,ν < 1, (411)

where 0 < ν < 2.

It is now clear by considering (411) that (409) will be satisfied for ”rea-
sonable” values on the SNR Ω(λ∗, τ∗), the relative model size d

n , the tail
parameter 0 < ν < 2 and the tail constant Cν on the prior distribution πλ.
The proof is now complete.





APPENDIX E

The marginal normalization Cγd

We must address the problem of calculating the normalizing constant
Cγd defined in (73). Clearly, Cγd will depend on our choice of the domain
Y ∋ z on which mγd(z) is normalized to be a density. We will take care in
choosing this region Y as it will possibly have significant influence on the
model selection principle we will end up with. The given data set x must
be contained in the region Y . The geometry of the region Y is determined
canonically by the model index vector γd and the form of the estimators τ∗

and λ∗, as will be demonstrated below. We will concentrate on the generic
case of priors πλ defined in Theorem 4.1.

Given a data set x, a model as indexed by γd and assuming the conditions
in Theorem 4.1. We then need to calculate

Cγd =
(2π)

d+2
2

|Iτ | · |Iλ|

∫

z∈Y
dz

f(z|τ∗,θ∗)π(θ∗|λ∗)
|H(z, τ∗,θ∗)| 12 |Ψλλ(θ∗, λ∗)|

1
2

×
{

d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)} 1

2

)}
(412)

where θ∗ = θ(z‖), τ
∗ = τ∗(z) are the MAP-estimators defined in (37) and

λ∗ is the estimator for the parameter λ defined in (63). Using (36) and
exploiting the orthogonal decomposition Y = Y⊥⊕Y‖ induced by the model
γd, we may express the invariant MAP-estimator τ∗ for the noise as

1

τ∗(z)
=

1

n− d+ 2

(
‖z⊥‖22 + ‖z‖ − θ∗(z‖)‖22

)
, z⊥ ∈ Y⊥, z‖ ∈ Y‖. (413)

We evaluate the determinant of Hessian H(z, τ∗,θ∗) of Φ(z, τ,θ) by means
of (36), (290), (291), (318), (320) and we get

|H(z, τ∗,θ∗)| = n− d+ 2

2
(τ∗)d−2

{
d∏

i=1

[1 + o (µλ,ν(τ
∗, θ∗i ))]

}
×


1− 2τ∗

n− d+ 2

d∑

j=1

(
z‖(j)− θ∗j

)2

1 + o
(
µλ,ν(τ∗, θ∗j )

)


 (414)

141
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where

µλ,ν(τ
∗, θ∗j )

def
= Cνν(ν − 1)

(n
d
Ω(λ∗, τ∗)

)− ν
2
∣∣∣(τ∗) 1

2 θ∗j

∣∣∣
ν−2

. (415)

We note that the matrix H(z, τ∗,θ∗) is singular for τ∗ = 0. By (414), (413)
and under the conditions in Theorem 4.1 we may write

|H(z, τ∗,θ∗)| = 1

2
(n− d+ 2)(τ∗)d−2 exp (d · o(ζ))×

[
1− 2τ∗

n− d+ 2

‖z‖ − θ∗‖22
1 + o (ζ)

]
. (416)

We note that by expression (416) the matrix H(z, τ∗,θ∗) also becomes
singular when τ∗‖z‖ − θ∗‖22 increases from zero and becomes large enough.
Inserting (413) into (38) and exploiting the orthogonal decomposition z =
z⊥ + z‖, we get

Cγd =
(2π)

d+2
2

|Iτ | · |Iλ|
exp

(
−n− d+ 2

2

)∫

z‖∈Y‖, z⊥∈Y⊥
dz‖ dz⊥

(
τ∗

2π

)n
2

×

π(θ∗|λ∗)
|H(z, τ∗,θ∗)| 12 |Ψλλ(θ∗, λ∗)|

1
2

{
d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)} 1

2

)}

Exploiting the spherical symmetry of Y⊥ as induced by the form of the
estimator τ∗ in (413), we change to polar coordinates in z⊥, that is we set

R2
⊥

def
= ‖z⊥‖22, (417)

Sk(r)
def
=

π
k
2 k

Γ(k2 + 1)
rk−1, (418)

where Sk(r) is the surface area of a k-dimensional hyper sphere of radius r.
We find it convenient to use r2 instead of r as a integration variable, thus
we make a change of variables r → r2 which gives

Sk(1)r
k−1 dr 7→ 1

2
Sk(1)(r

2)
k−2
2 dr2. (419)

We may then write

Cγd =
exp

(
−n−d+2

2

)

2(2π)
n−d−2

2

Sn−d(1)
|Iτ | · |Iλ|

∫

z‖∈Y‖, R2
⊥∈J

dz‖ dR
2
⊥ (τ∗)

n
2×

π(θ∗|λ∗)
(
R2

⊥
)n−d−2

2

|H(z, τ∗,θ∗)| 12 |Ψλλ(θ∗, λ∗)|
1
2

{
d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)} 1

2

)}
. (420)
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where J ⊂ R+ is an interval. We will find it convenient to change integration
variables in the integral (420) from (R2

⊥,z
T
‖ ) to (τ∗, (θ∗)T ). We define

β
def
= (τ,θ)T , β∗ def

= (τ∗,θ∗)T , y
def
= (R2

⊥,z
T
‖ )

T . (421)

Using (36) we define the gradient vector Q as

Q(y,β)
def
=

∂Φ(z,α)

∂α

∣∣∣∣
α=β

= 0. (422)

By (422) the total differential of Q(y,β) along β = β∗ may be expressed
formally as

0 = dQ =
∂Q(y,β)

∂y

∣∣∣∣
β=β∗

dy +
∂Q(y,β)

∂β

∣∣∣∣
β=β∗

dβ∗ (423)

This yields the formal expression for Jacobian ∂y
∂β∗ as

∂y

∂β∗ = −
(
∂Q(y,β)

∂y

∣∣∣∣
β=β∗

)−1
∂Q(y,β)

∂β

∣∣∣∣
β=β∗

. (424)

Now, we observe that

∂Q(y,β)

∂β

∣∣∣∣
β=β∗

=H(z, τ∗,θ∗) (425)

and

∂Q(y,β)

∂y

∣∣∣∣
β=β∗

=




1
2 a1 a2 · · · ad
0 −τ∗ 0 · · · 0
0 0 −τ∗ · · · 0
...

...
...

. . .
...

0 0 · · · 0 −τ∗




(426)

where aj
def
= −(x‖(j) − θ∗j ), 1 ≤ j ≤ d. The Jacobi-determinant for the

change of variables y → β∗ then becomes

∣∣∣∣
∂y

∂β∗

∣∣∣∣ =

∣∣∣∣∣∣

(
∂Q(y,β)

∂y

∣∣∣∣
β=β∗

)−1
∂Q(y,β)

∂β

∣∣∣∣
β=β∗

∣∣∣∣∣∣

=

(
1

2
(τ∗)d

)−1

|H(z, τ∗,θ∗)|. (427)

Define the inverse function θ∗−1(α) of α = θ∗(z‖) by

θ∗−1

(
θ∗(z‖)

) def
= z‖ (428)
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assuming such an inverse exists (θ∗i 6= 0, 1 ≤ i ≤ d). Using (413), (427) and
the relation z‖(θ

∗) = θ∗−1(θ
∗) , then (420) becomes

Cγd =
exp

(
−n−d+2

2

)

2(2π)
n−d−2

2

Sn−d(1)(n − d+ 2)
n−d−2

2 2|Iτ |−1|Iλ|−1×
∫

θ∗∈Θ∗, τ∗∈J∗
τ

dθ∗ dτ∗ (τ∗)
−d+2

2 π(θ∗|λ∗) |H(z, τ∗,θ∗)| 12 |Ψλλ(θ
∗, λ∗)|− 1

2×
(
1−

τ∗‖z‖(θ∗)− θ∗‖22
n− d+ 2

)n−d−2
2

×
{

d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)} 1

2

)}
(429)

where Θ∗ ⊂ Rd \{0} is some set still to be chosen subject to the constraints
of containing the MAP estimate θ∗ and minimizing the total codelength
expression (106) while λ∗ is constant on the boundary ∂Θ∗ of Θ∗. Also,
J∗
τ ⊂ R+ is a bounded interval. Inserting (416) into (429) yields

Cγd =
exp

(
−n−d+2

2

)
√
2(2π)

n−d−2
2

Sn−d(1)
|Iτ | · |Iλ|

(n − d+ 2)
n−d−1

2 exp

(
d

2
o(ζ)

)
×

∫

θ∗∈Θ∗, τ∗∈J∗
τ

dθ∗ dτ∗
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

(
1− τ∗‖z‖(θ∗)− θ∗‖22

n− d+ 2

)n−d−2
2

×
(
1− 2

1 + o(ζ)

τ∗‖z‖(θ∗)− θ∗‖22
n− d+ 2

)
×

{
d∏

i=1

PG

(
(τ∗)

1
2 |θ∗i | {1 + o(ζ)} 1

2

)}
. (430)

We will need bounds on ‖z‖ − θ∗‖22. Using the notation from Theorem 4.1
we have

π(θ|λ) = C · λ 1
2 exp

(
−f(λ 1

2 θ)
)

for some constant C > 0. The MAP-estimator θ∗ is given by

θ∗ = arg min θ∈R

[
1

2
τ(x− θ)2 + f(λ

1
2 θ)

]
(431)

which yields the solution θ∗ expressed by

x− θ∗ =
1

τ

d

dθ
f(λ

1
2 θ)

∣∣∣∣
θ=θ∗

. (432)



E. THE MARGINAL NORMALIZATION Cγd 145

Using the bound on f ′ stated in (52) in Theorem 4.1 together with the
expression (432), we get

0 ≤ ‖z‖ − θ∗‖22 ≤
λ

τ2
C2
νν

2
d∑

i=1

∣∣∣λ 1
2 θ∗i

∣∣∣
2ν−2

. (433)

To bound the righthand side of (433) from above we will make use of the
claim τ∗(θ∗i )

2 ≥ 1, ∀ i ∈ γd, ∀ τ ∈ Iτ in Theorem 4.1 together with the
norm inequality relation for ℓp norms on Rd

‖x‖p ≤ K(d, p)‖x‖2, x ∈ Rd, 1 ≤ p <∞ (434)

where

K(d, p)
def
= sup

‖x‖2=1

‖x‖p
‖x‖2

= max
(
1, d

1
p
− 1

2

)
. (435)

First we consider the case 0 < ν ≤ 1. Recalling the definition on the SNR
(306) we write

‖z‖ − θ∗‖22 ≤ λ

τ2
C2
νν

2
d∑

i=1

∣∣∣∣∣
λ

1
2

τ
1
2

τ
1
2 θ∗i

∣∣∣∣∣

2ν−2

=
1

τ
C2
νν

2

(
λ

τ

)ν d∑

i=1

∣∣∣τ 1
2 θ∗i

∣∣∣
2ν−2

=
1

τ
C2
νν

2
(n
d
Ω(λ, τ)

)−ν d∑

i=1

∣∣∣τ 1
2 θ∗i

∣∣∣
2ν−2

≤ 1

τ
C2
νν

2
(n
d
Ω(λ, τ)

)−ν
d, ∀ ν ∈ (0, 1] (436)

where in the last inequality in (436) we used that τ(θ∗i )
2 ≥ 1. In the case

1 < ν < 2 we may write

‖z‖ − θ∗‖22 ≤ λ

τ2
C2
νν

2
d∑

i=1

∣∣∣λ 1
2 θ∗i

∣∣∣
ν
∣∣∣∣∣
λ

1
2

τ
1
2

τ
1
2 θ∗i

∣∣∣∣∣

ν−2

=
1

τ
C2
νν

2
(n
d
Ω(λ, τ)

)− ν
2

d∑

i=1

∣∣∣λ 1
2 θ∗i

∣∣∣
ν ∣∣∣τ 1

2 θ∗i

∣∣∣
ν−2

≤ 1

τ
C2
νν

2
(n
d
Ω(λ, τ)

)− ν
2

d∑

i=1

∣∣∣λ 1
2 θ∗i

∣∣∣
ν

≤ 1

τ
C2
νν

2
(n
d
Ω(λ, τ)

)− ν
2
(
K(d, ν)‖λ 1

2θ∗‖2
)ν

=
1

τ
C2
νν

2
(n
d
Ω(λ, τ)

)− ν
2
d1−ν/2

(
d

1
2

‖θ∗‖2
‖θ∗‖2

)ν

=
1

τ
C2
νν

2
(n
d
Ω(λ, τ)

)− ν
2
d, ∀ ν ∈ (1, 2) (437)
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where we have made use of the expression (401) for the size of λ. We will
have to choose the regions Θ∗ and J∗

τ of integration subject to the claim
that the Theorem 4.1 is valid. Thus, we will have to ensure the Hessian
H(z, τ∗,θ∗) is non-singular over the region of integration. Using (436),
(437) we may now write

τ∗‖z‖(θ∗)− θ∗‖22 ≤ C2
νν

2d
(n
d
Ω(λ∗, τ∗)

)−h(ν)
,

∀ θ∗ ∈ Θ∗, ∀ τ∗ ∈ Iτ ⊂ R+ (438)

where

h(ν)
def
=

{
ν if 0 < ν ≤ 1
ν/2 if 1 < ν < 2.

(439)

By combining (416) and (438) we get

detH(z, τ∗,θ∗) >
1

2
(n− d+ 2)(τ∗)d−2 exp (−dζ)×

(
1− d

n− d+ 2

2C2
νν

2
(
n
dΩ(λ

∗, τ∗)
)−h(ν)

1− ζ

)
(440)

which will always be a positive number if

d

n− d+ 2
· 2C

2
νν

2
(
n
dΩ(λ

∗, τ∗)
)−h(ν)

1− ζ
< 1,

and 0 < ζ < 1, and τ∗ > 0. (441)

We observe that the integral (430) diverges in τ∗ at infinity. The description
length as given by − log (mγd(x)/Cγd) decreases with decreasing Cγd . The
expression (415) tells us that µλ,ν(τ

∗, θ∗j ) → ∞ as τ∗ → 0. Because of the

claim (53) in Theorem 4.1 the left end of J∗
τ must not be ”too near” zero,

unless µλ,ν(τ
∗, θ∗i ) = 0 which is the case for priors flat in θ. However, by

equation (413) we see that τ∗(z) → ∞ as ‖z⊥‖2 → 0 and ‖z‖ − θ∗‖2 → 0
and τ∗(z) is bounded from below by a positive number when z⊥ → x⊥ and
z‖ → x‖. First we discuss the case ‖z‖−θ∗(z‖)‖22 ≡ 0. This means that the
estimator θ∗ is the ML-estimator θ∗(z‖) = z‖ corresponding to the choice
of a prior distribution πλ(θ) which is uniform (flat) in θ and is centered in
the origin. This is the case discussed in [BRY98], [Ris01]. In this case we
have ζ ≡ 0 and because this distribution is infinitely differentiable at the

origin, the term
∏d
i=1 PG

(
(τ∗)

1
2 θ∗i

)
in (430) may be replaced by 1. We then

have

Cγd =
exp

(
−n−d+2

2

)
√
2(2π)

n−d−2
2

Sn−d(1)(n − d+ 2)
n−d−1

2 |Iτ |−1|Iλ|−1×
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∫

θ∗∈Θ∗, τ∗∈J∗
τ

dθ∗ dτ∗
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

. (442)

We continue with the case of priors non-flat in θ and flat (constant) in τ .
By (438) we have the following bounds

1 ≥
(
1−

τ∗‖z‖ − θ∗‖22
n− d+ 2

)n−d−2
2
(
1− 2

1 + o(ζ)

τ∗‖z‖ − θ∗‖22
n− d+ 2

)

≥
(
1− d

n− d+ 2
C2
νν

2
(n
d
Ω(λ∗, τ∗)

)−h(ν))n−d−2
2

×
(
1− 2d

n− d+ 2

C2
νν

2
(
n
dΩ(λ

∗, τ∗)
)−h(ν)

1− ζ

)
. (443)

Using the integral version of the mean value theorem on the PG(·)-part of
the integrand we may state the following bounds

exp
(
−n−d+2

2

)
√
2(2π)

n−d−2
2

Sn−d(1)
|Iλ||Iτ |

(n− d+ 2)
n−d−1

2 exp

(
d

2
o(ζ)

)
×

(
1− d

n− d+ 2
C2
νν

2
(n
d
Ω(λ∗, τ∗)

)−h(ν))n−d−2
2

×
(
1− 2d

n− d+ 2

C2
νν

2
(
n
dΩ(λ

∗, τ∗)
)−h(ν)

1− ζ

)
×

{
d∏

i=1

PG

(
(ξ)

1
2 |αi| {1 + o(ζ)} 1

2

)}∫

θ∗∈Θ∗,τ∗∈J∗
τ

dθ∗ dτ∗
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

≤ Cγd

≤ exp
(
−n−d+2

2

)
√
2(2π)

n−d−2
2

Sn−d(1)
|Iλ||Iτ |

(n− d+ 2)
n−d−1

2 exp

(
d

2
o(ζ)

)
×

{
d∏

i=1

PG

(
(ξ)

1
2 |αi| {1 + o(ζ)} 1

2

)}∫

θ∗∈Θ∗,τ∗∈J∗
τ

dθ∗ dτ∗
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

(444)

for some ξ ∈ J∗
τ and some α ∈ Θ∗. Now, applying the Stirling approximation

[AS70] to the Γ-function in (418), we may write

Γ

(
n− d

2
+ 1

)
= Γ

(
n− d+ 2

2

)

= (2π)
1
2

(
n− d+ 2

2

)n−d+1
2

exp

(
−n− d+ 2

2

)(
1 + o

(
1

n− d+ 2

))

(445)
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and using the bounds: 1
2 = PG(0) ≤ PG(x) ≤ 1, ∀ x ≥ 0 , we may now

bound Cγd as follows:

n− d

n− d+ 2
exp

(
d

2
o(ζ)

)
P dG

(
(τ∗)1/2 inf

1≤i≤d
|θ∗i |
) √

2π

|Iλ||Iτ |
×

(
1− d

n− d+ 2
C2
νν

2
(n
d
Ω(λ∗, τ∗)

)−h(ν))n−d−2
2

×
(
1− 2d

n− d+ 2

C2
νν

2
(
n
dΩ(λ

∗, τ∗)
)−h(ν)

1− ζ

)
×

∫

θ∗∈Θ∗,τ∗∈J∗
τ

dθ∗ dτ∗
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

≤ Cγd

≤ n− d

n− d+ 2
exp

(
d

2
o(ζ)

) √
2π

|Iλ||Iτ |

∫

θ∗∈Θ∗,τ∗∈J∗
τ

dθ∗ dτ∗
π(θ∗|λ∗)

|Ψλλ(θ∗, λ∗)|
1
2

.

(446)

The result in Propostion 6.1 follows.



APPENDIX F

The partial derivatives of Φ̂(x, τ̂ , θ̂) up to order 3

Define

τ∗
def
= ψ(τ̂∗), and θ∗

def
= φ(θ̂∗, τ̂ ).

Using the independency of the parameters θi, 1 ≤ i ≤ d and the functional
relations τ = ψ(τ̂ ) and θi = φ(θ̂i, τ̂) as given in (39) we may write

Φ̂τ̂ (x, τ̂
∗, θ̂∗) = Φτ (x, τ

∗,θ∗)
∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+

d∑

i=1

Φθi(x, τ
∗,θ∗)

∂φ(θ̂i, τ̂)

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

. (447)

Φ̂θ̂k(x, τ̂
∗, θ̂∗) = Φθk(x, τ

∗,θ∗)
∂φ(θ̂k, τ̂)

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

. (448)

Φ̂τ̂ ,τ̂ (x, τ̂
∗, θ̂∗) = Φτ,τ (x, τ

∗,θ∗)

(
∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

)2

+Φτ (x, τ
∗,θ∗)

∂2ψ(τ̂ )

∂τ̂2

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+ 2

d∑

i=1

Φθi,τ (x, τ
∗,θ∗)

∂φ(θ̂i, τ̂ )

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂i=θ̂∗i

∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+

d∑

i=1

Φθi(x, τ
∗,θ∗)

∂2φ(θ̂i, τ̂ )

∂τ̂2

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+

d∑

i=1

Φθi,θi(x, τ
∗,θ∗)


 ∂φ(θ̂i, τ̂ )

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗




2

. (449)
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Φ̂θ̂k,θ̂k(x, τ̂
∗, θ̂∗) = Φθk,θk(x, τ

∗,θ∗)


 ∂φ(θ̂k, τ̂)

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗




2

. (450)

Φ̂θ̂k,τ̂ (x, τ̂
∗, θ̂∗) = Φθk(x, τ

∗,θ∗)
∂2φ(θ̂k, τ̂)

∂τ̂∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φθk,τ (x, τ
∗,θ∗)

∂φ(θ̂k, τ̂ )

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φθk,θk(x, τ
∗,θ∗)

∂φ(θ̂k, τ̂ )

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂φ(θ̂k, τ̂ )

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

. (451)

Φ̂θ̂k,θ̂k,τ̂ (x, τ̂
∗, θ̂∗) = 2Φθk,θk(x, τ

∗,θ∗)
∂φ(θ̂k, τ̂ )

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂2φ(θ̂k, τ̂)

∂τ̂∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φθk,θk,τ (x, τ
∗,θ∗)


 ∂φ(θ̂k, τ̂ )

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗




2

∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φθk,θk,θk(x, τ
∗,θ∗)


 ∂φ(θ̂k, τ̂)

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗




2

∂φ(θ̂k, τ̂)

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

. (452)

Φ̂τ̂ ,τ̂ ,θ̂k(x, τ̂
∗, θ̂∗) = Φτ,τ,θk(x, τ

∗,θ∗)

(
∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

)2
∂φ(θ̂k, τ̂ )

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φτ,θk(x, τ
∗,θ∗)

∂2ψ(τ̂ )

∂τ̂2

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂φ(θ̂k, τ̂ )

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+ 2Φθk,τ (x, τ
∗,θ∗)

∂2φ(θ̂k, τ̂ )

∂θ̂k∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂i=θ̂∗i

∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+ 2Φθk,θk,τ (x, τ
∗,θ∗)

∂φ(θ̂k, τ̂ )

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂φ(θ̂k, τ̂ )

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φθk(x, τ
∗,θ∗)

∂3φ(θ̂k, τ̂ )

∂θ̂k∂τ̂2

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φθk,θk(x, τ
∗,θ∗)

∂2φ(θ̂k, τ̂)

∂τ̂2

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂φ(θ̂k, τ̂)

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗
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+ 2Φθk,θk(x, τ
∗,θ∗)

∂φ(θ̂k, τ̂)

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂2φ(θ̂k, τ̂ )

∂θ̂k∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φθk,θk,θk(x, τ
∗,θ∗)


 ∂φ(θ̂k, τ̂)

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗




2

∂φ(θ̂k, τ̂)

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

(453)

Φ̂θ̂k,θ̂k,θ̂k(x, τ̂
∗, θ̂∗) = Φθk,θk,θk(x, τ

∗,θ∗)


 ∂φ(θ̂k, τ̂)

∂θ̂k

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗




3

(454)

Φ̂τ̂ ,τ̂ ,τ̂ (x, τ̂
∗, θ̂∗) = 2Φτ,τ (x, τ

∗,θ∗)
∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂2ψ(τ̂ )

∂τ̂2

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φτ,τ,τ (x, τ
∗,θ∗)

(
∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

)3

+
d∑

i=1

Φτ,τ,θi(x, τ
∗,θ∗)

(
∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

)2
∂φ(θ̂i, τ̂ )

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φτ (x, τ
∗,θ∗)

∂3ψ(τ̂ )

∂τ̂3

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+Φτ,τ (x, τ
∗,θ∗)

∂2ψ(τ̂ )

∂τ̂2

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+

d∑

i=1

Φτ,θi(x, τ
∗,θ∗)

∂2ψ(τ̂ )

∂τ̂2

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂φ(θ̂i, τ̂)

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+ 2

d∑

i=1

Φθi,τ (x, τ
∗,θ∗)

∂2φ(θ̂i, τ̂)

∂τ̂2

∣∣∣∣∣
τ̂=τ̂∗,θ̂i=θ̂∗i

∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+ 2

d∑

i=1

Φθi,τ (x, τ
∗,θ∗)

∂φ(θ̂i, τ̂ )

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂i=θ̂∗i

∂2ψ(τ̂)

∂τ̂2

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+ 2

d∑

i=1

Φθi,τ,τ (x, τ
∗,θ∗)

∂φ(θ̂i, τ̂)

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂i=θ̂∗i

(
∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

)2

+ 2

d∑

i=1

Φθi,θi,τ (x, τ
∗,θ∗)


 ∂φ(θ̂i, τ̂)

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂i=θ̂∗i




2

∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗
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+

d∑

i=1

Φθi(x, τ
∗,θ∗)

∂3φ(θ̂i, τ̂ )

∂τ̂3

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+

d∑

i=1

Φθi,τ (x, τ
∗,θ∗)

∂2φ(θ̂i, τ̂)

∂τ̂2

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+

d∑

i=1

Φθi,θi(x, τ
∗,θ∗)

∂2φ(θ̂i, τ̂ )

∂τ̂2

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂φ(θ̂i, τ̂)

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+ 2
d∑

i=1

Φθi,θi(x, τ
∗,θ∗)

∂φ(θ̂i, τ̂ )

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

∂2φ(θ̂i, τ̂ )

∂τ̂2

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+
d∑

i=1

Φθi,θi,τ (x, τ
∗,θ∗)


 ∂φ(θ̂i, τ̂)

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗




2

∂ψ(τ̂ )

∂τ̂

∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗

+
d∑

i=1

Φθi,θi,θi(x, τ
∗,θ∗)


 ∂φ(θ̂i, τ̂ )

∂τ̂

∣∣∣∣∣
τ̂=τ̂∗,θ̂=θ̂∗




3

. (455)

Now we need to compute all nonzero partial derivatives up to third order of
the parameter mappings ψ(τ̂ ) and φ(θi, τ̂ ) to get the desired order estimates

of the coefficients of T̂ ∗
3 . Recall the definitions of ψ(τ̂ ) and φ(θ̂i, τ̂) in (39)

and let the dimensionless numbers α, δn and ǫd be defined as

α−1/2 def
=

(
2

n

) 1
2
(
¯̄τ

τ̄

) d
2

and ǫd
def
=

(
¯̄τ

τ̄

) d
2

and δn
def
=

(
2

n

) 1
2

(456)

where τ̄ and ¯̄τ are dimensionless positive real numbers. We claim 1 ≤ d < n
and 0 < ¯̄τ and 0 < τ̄ and 0 < δn ≤ 1. We may then write

∂ψ(τ̂ )

∂τ̂
= α− 1

2ψ(τ̂ ) = δnǫdψ(τ̂ ) = δnǫdτ. (457)

∂2ψ(τ̂ )

∂τ̂2
= α−1ψ(τ̂ ) = δ2nǫ

2
dψ(τ̂ ) = δ2nǫ

2
dτ. (458)

∂3ψ(τ̂ )

∂τ̂3
= α− 3

2ψ(τ̂ ) = δ3nǫ
3
dψ(τ̂ ) = δ3nǫ

3
dτ. (459)

∂φ(θ̂k, τ̂ )

∂θ̂k
= τ̄

1
2ψ− 1

2 (τ̂) = τ̄
1
2 τ−

1
2 . (460)

∂φ(θ̂k, τ̂ )

∂τ̂
= −1

2
τ̄

1
2α− 1

2 θ̂kψ
− 1

2 (τ̂) = −1

2
τ̄

1
2 δnǫdθ̂kψ

− 1
2 (τ̂)

= −1

2
δnǫdθk. (461)
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∂2φ(θ̂k, τ̂)

∂θ̂k∂τ̂
= −1

2
τ̄

1
2α− 1

2ψ− 1
2 (τ̂ ) = −1

2
τ̄

1
2 δnǫdψ

− 1
2 (τ̂ )

= −1

2
τ̄

1
2 δnǫdτ

− 1
2 . (462)

∂2φ(θ̂k, τ̂)

∂τ̂2
=

1

4
τ̄

1
2α−1θ̂kψ

− 1
2 (τ̂) =

1

4
τ̄

1
2 δ2nǫ

2
dθ̂kψ

− 1
2 (τ̂) =

1

4
δ2nǫ

2
dθk. (463)

∂3φ(θ̂k, τ̂)

∂θ̂k∂τ̂2
=

1

4
τ̄

1
2α−1ψ− 1

2 (τ̂ ) =
1

4
τ̄

1
2 δ2nǫ

2
dψ

− 1
2 (τ̂) =

1

4
τ̄

1
2 δ2nǫ

2
dτ

− 1
2 . (464)

∂3φ(θ̂k, τ̂)

∂τ̂3
= −1

8
τ̄

1
2α− 3

2 θ̂kψ
− 1

2 (τ̂) = −1

8
τ̄

1
2 δ3nǫ

3
dθ̂kψ

− 1
2 (τ̂)

= −1

8
δ3nǫ

3
dθk. (465)

We may now combine the results in (457)-(465) above with the calculated

partial derivatives of Φ̂(x, τ̂ , θ̂) with respect to the parameters τ̂ and θ̂i, 1 ≤
i ≤ d in (447)-(455). We then get

Φ̂τ̂ (x, τ̂
∗, θ̂∗) = Φτ (x, τ

∗,θ∗)δnǫdτ
∗ − 1

2
δnǫd

d∑

i=1

Φθi(x, τ
∗,θ∗)θ∗i . (466)

Φ̂θ̂k(x, τ̂
∗, θ̂∗) = Φθk(x, τ

∗,θ∗)τ̄
1
2 (τ∗)−

1
2 . (467)

Φ̂τ̂ ,τ̂ (x, τ̂
∗, θ̂∗) = Φτ,τ (x, τ

∗,θ∗)δ2nǫ
2
d(τ

∗)2 +Φτ (x, τ
∗,θ∗)δ2nǫ

2
dτ

∗

− δ2nǫ
2
dτ

∗
d∑

i=1

Φθi,τ (x, τ
∗,θ∗)θ∗i +

1

4
δ2nǫ

2
d

d∑

i=1

Φθi(x, τ
∗,θ∗)θ∗i

+
1

4
δ2nǫ

2
d

d∑

i=1

Φθi,θi(x, τ
∗,θ∗)(θ∗i )

2. (468)

Φ̂θ̂k,θ̂k(x, τ̂
∗, θ̂∗) = Φθk,θk(x, τ

∗,θ∗)τ̄(τ∗)−1. (469)

Φ̂θ̂k,τ̂ (x, τ̂
∗, θ̂∗) = −1

2
Φθk(x, τ

∗,θ∗)τ̄
1
2 δnǫd(τ

∗)−
1
2

+Φθk,τ (x, τ
∗,θ∗)τ̄

1
2 δnǫd(τ

∗)
1
2 − 1

2
Φθk,θk(x, τ

∗,θ∗)τ̄
1
2 δnǫd(τ

∗)−
1
2 θ∗k. (470)

Φ̂θ̂k,θ̂k,τ̂ (x, τ̂
∗, θ̂∗) = −Φθk,θk(x, τ

∗,θ∗)τ̄ δnǫd(τ
∗)−1

+Φθk,θk,τ (x, τ
∗,θ∗)δnǫdτ̄ −

1

2
δnǫdτ̄(τ

∗)−1Φθk,θk,θk(x, τ
∗,θ∗)θ∗k. (471)
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Φ̂τ̂ ,τ̂ ,θ̂k(x, τ̂
∗, θ̂∗) = Φτ,τ,θk(x, τ

∗,θ∗)τ̄
1
2 (τ∗)

3
2 δ2nǫ

2
d

− Φθk,θk,τ (x, τ
∗,θ∗)δ2nǫ

2
dτ̄

1
2 (τ∗)

1
2 θ∗k

+
1

4
Φθk(x, τ

∗,θ∗)δ2nǫ
2
dτ̄

1
2 (τ∗)−

1
2

+
3

4
Φθk,θk(x, τ

∗,θ∗)δ2nǫ
2
dτ̄

1
2 (τ∗)−

1
2 θ∗k

+
1

4
Φθk,θk,θk(x, τ

∗,θ∗)δ2nǫ
2
dτ̄

1
2 (τ∗)−

1
2 (θ∗k)

2. (472)

Φ̂θ̂k,θ̂k,θ̂k(x, τ̂
∗, θ̂∗) = Φθk,θk,θk(x, τ

∗,θ∗)τ̄
3
2 (τ∗)−

3
2 . (473)

Φ̂τ̂ ,τ̂ ,τ̂ (x, τ̂
∗, θ̂∗) = 3Φτ,τ (x, τ

∗,θ∗)δ3nǫ
3
d(τ

∗)2

+Φτ,τ,τ (x, τ
∗,θ∗)δ3nǫ

3
d(τ
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Some fourth order partial derivatives of Φ̂(x, τ ∗, θ∗)

Differentiating the expression (452) with respect to τ̂ we get

Φ̂θ̂k,θ̂k,τ̂ ,τ̂ (x, τ̂
∗, θ̂∗) = 2Φθk,θk(x, τ

∗,θ∗)

(
∂2φ(θ̂k, τ̂)

∂θ̂k∂τ̂

])(
∂2φ(θ̂k, τ̂ )

∂τ̂∂θ̂k

])

+ 2Φθk,θk(x, τ
∗,θ∗)

(
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∂θ̂k

])(
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∂τ̂
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+ 2Φθk,θk,θ̂k(x, τ
∗,θ∗)

(
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])(
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∂τ̂∂θ̂k

])(
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(
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(
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+Φθk,θk,θk,θk(x, τ
∗,θ∗)

(
∂φ(θ̂k, τ̂)

∂θ̂k

])2(
∂φ(θ̂k, τ̂ )

∂τ̂

])(
∂φ(θ̂k, τ̂ )

∂τ̂

])

(475)

where ] means evaluating the derivatives in τ̂ = τ̂∗, θ̂ = θ̂∗. By differentiat-

ing (454) with respect to θ̂k we get

Φ̂θ̂k,θ̂k,θ̂k,θ̂k(x, τ̂
∗, θ̂∗) = Φθk,θk,θk,θk(x, τ

∗,θ∗)τ̄2(τ∗)−2. (476)

By differentiating (454) with respect to τ̂ we get

Φ̂θ̂k,θ̂k,θ̂k,τ̂ (x, τ̂
∗, θ̂∗) = Φθk,θk,θk,θk(x, τ
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(
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∂τ̂
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(
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])(
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∂θ̂k

])2

(477)

In the case of a gaussian likelihood function, the expression (475) reduces to

Φ̂θ̂k,θ̂k,τ̂ ,τ̂ (x, τ̂
∗, θ̂∗) = Φθk,θk(x, τ

∗,θ∗)δ2nǫ
2
dτ̄(τ

∗)−1

− Φθk,θk,τ (x, τ
∗,θ∗)δ2nǫ

2
dτ̄ +Φθk,θk,θk(x, τ

∗,θ∗)δ2nǫ
2
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+
1

4
Φθk,θk,θk,θk(x, τ

∗,θ∗)δ2nǫ
2
dτ̄(θ

∗
k)

2(τ∗)−1 (478)

and the expression (477) reduces to

Φ̂θ̂k,θ̂k,θ̂k,τ̂ (x, τ̂
∗, θ̂∗) = −1

2
Φθk,θk,θk,θk(x, τ

∗,θ∗)δnǫdτ̄
3
2 (τ∗)−

3
2 θk

− 3

2
Φθk,θk,θk(x, τ

∗,θ∗)δnǫdτ̄
3
2 (τ∗)−

3
2 . (479)
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Table 1. The results from the test image Barbara, N =
512 × 512, wavelet used: Symmlet 16. The first row in each
entry in the table is the scaled RMSE measure in (213), the
second row is the SNR of the reconstruction, see (212), the
third row shows the proportion of nonzero wavelet coefficient
estimates θ∗i as a fraction of the sample size N and the fourth
row shows the estimated value of the GGD shape parameter
ν provided by the INMDL algorithm.

SNR RiskShrink SureShrink T
(0.70)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 24.3% 20.0% 23.4% 24.2% 93.4% 33.5%
13.1 dB 14.8 dB 13.4 dB 12.9 dB 3.88 dB 10.6 dB
0.0961% 0.790% 0.155% 0.810% 39.7% 1.34%

1.02
5.0 dB 34.0% 28.5% 32.1% 35.6% 81.1% 37.8%

14.2 dB 15.8 dB 14.8 dB 13.9 dB 7.60 dB 13.5 dB
0.188% 1.64% 1.52% 18.8% 19.9% 1.35%

0.913
10.0 dB 51.2% 40.3% 52.4% 62.5% 59.2% 47.9%

15.7 dB 17.8 dB 15.6 dB 14.2 dB 14.6 dB 16.4 dB
0.434% 8.83% 11.1% 55.6% 5.47% 1.92%

0.842
15.0 dB 72.6% 49.4% 67.7% 79.4% 59.8% 58.6%

17.7 dB 21.1 dB 18.4 dB 17.1 dB 19.5 dB 19.6 dB
1.19% 15.9% 27.7% 77.1% 4.94% 3.20%

0.824
20.0 dB 102% 66.3% 79.3% 88.8% 75.0% 78.7%

19.8 dB 23.5 dB 22.0 dB 21.1 dB 22.5 dB 22.1 dB
2.81% 24.1% 44.9% 87.9% 7.22% 5.67%

0.815
25.0 dB 122% 75.3% 85.6% 93.4% 89.6% 95.1%

23.3 dB 27.4 dB 26.4 dB 25.6 dB 25.9 dB 25.4 dB
5.14% 30.0% 57.1% 92.9% 9.4% 8.10%

0.791
50.0 dB 971% 441% 129% 100% 797% 873%

30.2 dB 37.1 dB 47.8 dB 50.0 dB 32.0 dB 31.2 dB
14.0% 51.0% 74.2% 97.4% 17.4% 15.8%

0.703
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Table 2. The results from the test image Lena, N = 512×
512, wavelet used: Symmlet 16. The first row in each entry
in the table is the scaled RMSE measure in (213), the second
row is the SNR of the reconstruction, see (212), the third row
shows the proportion of nonzero wavelet coefficient estimates
θ∗i as a fraction of the sample size N and the fourth row shows
the estimated value of the GGD shape parameter ν provided
by the INMDL algorithm.

SNR RiskShrink SureShrink T
(0.70)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 17.9% 14.1% 17.1% 17.9% 93.0% 31.8%
15.9 dB 18.0 dB 16.2 dB 15.7 dB 3.91 dB 11.2 dB
0.0755% 0.544 % 0.122% 0.764% 38.9% 1.17%

1.02
5.0 dB 24.0% 19.1% 24.8% 31.0% 78.5% 32.6%

17.3 dB 19.3 dB 17.1 dB 15.2 dB 7.87 dB 14.8 dB
0.138% 0.935% 1.24% 18.4% 17.8% 1.21%

0.901
10.0 dB 34.2% 26.1% 46.1% 60.5% 48.1% 35.7%

19.3 dB 21.6 dB 16.8 dB 14.5 dB 16.4 dB 18.9 dB
0.300% 2.39% 10.0% 55.3% 3.52% 1.50%

0.807
15.0 dB 47.0% 34.3% 65.0% 79.0% 44.5% 41.7%

21.5 dB 24.3 dB 18.8 dB 17.1 dB 22.0 dB 22.6 dB
0.658% 5.65% 26.6% 77.3% 2.42% 1.94%

0.742
20.0 dB 62.8% 45.9% 77.6% 88.8% 53.1% 52.4%

24.0 dB 26.7 dB 22.2 dB 21.1 dB 25.5 dB 25.6 dB
1.34% 10.6% 44.2% 88.3% 3.05% 2.89%

0.700
25.0 dB 84.4% 60.2% 93.8% 85.6% 70.0% 69.7%

26.5 dB 29.4 dB 25.6 dB 26.4 dB 28.1 dB 28.1 dB
2.42% 17.3% 93.5% 58.5% 4.31% 4.26%

0.657
50.0 dB 738% 381% 110% 99.3% 705% 689%

32.6 dB 38.4 dB 49.2 dB 50.1 dB 33.0 dB 33.2 dB
8.9% 48.5% 82.3% 98.6% 9.73% 10.2%

0.588
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Table 3. The results from the test image Baboon, N =
512 × 512, wavelet used: Symmlet 16. The first row in each
entry in the table is the scaled RMSE measure in (213), the
second row is the SNR of the reconstruction, see (212), the
third row shows the proportion of nonzero wavelet coefficient
estimates θ∗i as a fraction of the sample size N and the fourth
row shows the estimated value of the GGD shape parameter
ν provided by the INMDL algorithm.

SNR RiskShrink SureShrink T
(0.70)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 25.1% 22.9% 24.7% 24.9% 93.7% 35.3%
12.8 dB 13.6 dB 12.9 dB 12.8 dB 3.86 dB 10.1 dB
0.0420% 0.580% 0.0801% 0.731% 40.3% 1.31%

1.04
5.0 dB 37.5% 34.3% 37.2% 38.9% 83.2% 42.9%

13.3 dB 14.1 dB 13.4 dB 13.1 dB 7.40 dB 12.3 dB
0.0946% 1.39% 1.45% 19.1% 21.2% 1.29%

0.95
10.0 dB 62.0% 48.7% 58.4% 64.6% 66.9% 58.4%

14.0 dB 16.2 dB 14.7 dB 13.9 dB 13.6 dB 14.6 dB
0.263% 12.1% 11.9% 55.9% 6.21% 1.90%

0.904
15.0 dB 97.9% 66.1% 74.7% 80.9% 81.1% 83.8%

15.1 dB 18.5 dB 17.5 dB 16.9 dB 16.8 dB 16.5 dB
0.929% 23.6% 29.7% 77.2% 5.93% 3.31%

0.912
20.0 dB 146% 84.8% 85.0% 89.1% 110% 123%

16.7 dB 21.4 dB 21.4 dB 21.0 dB 19.1 dB 18.1 dB
2.65% 36.5% 45.8% 87.2% 8.70% 5.48%

0.931
25.0 dB 214% 105% 92.3% 93.3% 159% 188%

18.3 dB 24.5 dB 25.7 dB 25.6 20.9 dB 19.5dB
5.27% 48.0% 56.7% 91.7% 11.7% 5.27%

0.954
50.0 dB 2788% 1030% 425% 165% 2271% 2892%

21.1 dB 29.7 dB 37.4 dB 45.6 dB 22.9 dB 20.7 dB
10.7% 59.7% 67.4% 94.9% 15.4% 9.96%

0.941
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Table 4. The results from the test image Goldhill, N =
512 × 512, wavelet used: Symmlet 16. The first row in each
entry in the table is the scaled RMSE measure in (213), the
second row is the SNR of the reconstruction, see (212), the
third row shows the proportion of nonzero wavelet coefficient
estimates θ∗i as a fraction of the sample size N and the fourth
row shows the estimated value of the GGD shape parameter
ν provided by the INMDL algorithm.

SNR RiskShrink SureShrink T
(0.70)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 21.2% 16.6% 19.8% 20.6% 93.2% 32.7%
14.3 dB 16.5 dB 14.9 dB 14.4 dB 3.90 dB 10.9 dB
0.0763% 0.795% 0.140% 0.795% 39.4% 1.15%

0.999
5.0 dB 28.5% 23.0% 28.3% 33.1% 79.9% 35.2%

15.8 dB 17.7 dB 15.9 dB 14.6 dB 7.73 dB 14.1 dB
0.161% 1.45% 1.34% 18.6% 18.9% 1.26%

0.891
10.0 dB 41.9% 33.6% 49.5% 61.6% 53.4% 41.6%

17.5 dB 19.4 dB 16.1 dB 14.3 dB 15.5 dB 17.6 dB
0.354% 3.16% 10.6% 55.7% 4.21% 1.61%

0.804
15.0 dB 61.6% 45.8% 68.1% 79.9% 56.5% 54.2%

19.2 dB 21.7 dB 18.4 dB 17.0 dB 20.0 dB 20.3 dB
0.80% 9.63% 28.3% 77.7% 3.29% 2.34%

0.758
20.0 dB 88.1% 59.5% 80.5% 89.4% 73.6% 74.5%

21.1 dB 24.5 dB 21.9 dB 21.0 dB 22.6 dB 22.5 dB
1.78% 23.2% 46.6% 88.5% 4.48% 3.78%

0.741
25.0 dB 124% 76.1% 88.1% 94.2% 104% 107%

23.1 dB 27.4 dB 26.10 dB 25.5 dB 24.7dB 24.4 dB
3.56% 35.4% 60.9% 93.6% 6.50% 5.73%

0.732
50.0 dB 1309% 521% 152% 103% 1278% 1352%

27.7 dB 35.6 dB 46.3dB 49.8 dB 27.9 dB 27.4 dB
10.9% 58.8% 78.6% 97.9% 11.4% 10.3%

0.710
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Table 5. The results from the test image Bridge, N = 512×
512, wavelet used: Symmlet 16. The first row in each entry
in the table is the scaled RMSE measure in (213), the second
row is the SNR of the reconstruction, see (212), the third row
shows the proportion of nonzero wavelet coefficient estimates
θ∗i as a fraction of the sample size N and the fourth row shows
the estimated value of the GGD shape parameter ν provided
by the INMDL algorithm.

SNR RiskShrink SureShrink T
(0.70)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 27.2% 23.2% 26.2% 26.7% 93.5% 35.0%
12.1 dB 13.5 dB 12.3 dB 12.0 dB 3.87 dB 10.2 dB
0.0931% 0.813% 0.160% 0.849% 39.8% 1.37%

1.02
5.0 dB 38.5% 31.0% 36.2% 38.3% 82.3% 41.5%

13.1 dB 15.0 dB 13.7 dB 13.2 dB 7.48 dB 12.6 dB
0.200% 2.90% 1.62% 18.9% 24.5% 1.42%

0.928
10.0 dB 58.7% 44.6% 56.4% 63.9% 63.9% 54.0%

14.5 dB 16.9 dB 15.0 dB 13.9 dB 13.9 dB 15.3 dB
0.503% 8.38% 11.7% 55.9% 5.86% 1.97%

0.870
15.0 dB 88.3% 62.0% 73.4% 80.9% 75.6% 77.1%

16.0 dB 19.1 dB 17.7 dB 16.9 dB 17.4 dB 17.2 dB
1.23% 19.8% 30.1% 77.9% 5.46% 3.13%

0.848
20.0 dB 131% 79.3% 84.2% 89.6% 104% 113%

17.6 dB 22.0 dB 21.5 dB 21.0 dB 19.7 dB 18.9 dB
2.74% 34.7% 47.5% 88.0% 7.64 % 5.06%

0.841
25.0 dB 189% 95.9 % 91.0% 93.9% 152% 173%

19.4 dB 25.3 dB 25.8 dB 25.5 dB 21.4 dB 20.2 dB
5.39% 49.8% 60.2% 92.9% 10.3% 7.06%

0.844
50.0 dB 2126% 644% 244% 119% 2165% 2660%

23.4 dB 33.8 dB 42.3 dB 48.5 dB 23.3 dB 21.5 dB
14.3% 68.2% 74.9% 96.7% 13.9% 9.30%

0.829
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Table 6. The results from the test image Boat, N = 512×
512, wavelet used: Symmlet 16. The first row in each entry
in the table is the scaled RMSE measure in (213), the second
row is the SNR of the reconstruction, see (212), the third row
shows the proportion of nonzero wavelet coefficient estimates
θ∗i as a fraction of the sample size N and the fourth row shows
the estimated value of the GGD shape parameter ν provided
by the INMDL algorithm.

SNR RiskShrink SureShrink T
(0.70)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 20.7% 17.4% 19.8% 20.4% 93.2% 33.3%
14.6 dB 16.1 dB 14.9 dB 14.5 dB 3.90 dB 10.8 dB
0.0687% 0.713% 0.124% 0.792% 39.3% 1.18%

1.02
5.0 dB 28.9% 24.0% 28.8% 33.4% 79.9% 35.7%

15.7 dB 17.3 dB 15.8 dB 14.5 dB 7.72 dB 14.0 dB
0.139% 1.34% 1.37% 18.8% 18.9% 1.29%

0.920
10.0 dB 43.4% 32.7% 49.3% 61.8% 53.6% 41.5%

17.2 dB 19.7 dB 16.2 dB 14.3 dB 15.5 dB 17.6 dB
0.333% 4.74% 10.8% 55.9% 4.43% 1.71%

0.842
15.0 dB 61.1% 44.9% 67.4% 79.7% 54.6% 51.9%

19.2 dB 21.9 dB 18.5 dB 17.0dB 20.3 dB 20.7 dB
0.872% 9.2% 28.0% 77.7% 3.56% 2.55%

0.812
20.0 dB 83.4% 55.8% 79.3% 89.0% 68.3% 69.0%

21.6 dB 25.1 dB 22.0 dB 21.0 dB 23.3 dB 23.2 dB
1.96% 20.5% 45.3% 88.2% 4.68% 3.99%

0.789
25.0 dB 115% 73.5% 86.5% 93.6% 92.0% 94.5%

23.7 dB 27.7 dB 26.3 dB 25.6dB 25.7 dB 25.5 dB
3.59% 26.8% 58.1% 93.2% 6.68% 6.05%

0.771
50.0 dB 1289% 649% 183% 105% 1070% 1110%

27.8 dB 33.7 dB 44.8 dB 49.6 dB 29.4 dB 29.1 dB
8.41% 43.3% 70.6% 96.7% 11.7% 11.0%

0.718
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Table 7. The results from the test image Tank, N = 512×
512, wavelet used: Symmlet 16. The first row in each entry
in the table is the scaled RMSE measure in (213), the second
row is the SNR of the rconstruction, see (212), the third row
shows the proportion of nonzero wavelet coefficient estimates
θ∗i as a fraction of the sample size N and the fourth row shows
the estimated value of the GGD shape parameter ν provided
by the INMDL algorithm.

SNR RiskShrink SureShrink T
(0.70)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 19.4% 16.4% 18.9% 19.0% 93.2% 33.6%
15.1 dB 16.6 dB 15.4 dB 15.3 dB 3.89 dB 10.7 dB
0.0278% 0.593% 0.0618% 0.667% 39.2% 1.15%

1.04
5.0 dB 28.5% 23.4% 29.1% 33.4% 79.8% 36.7%

15.8 dB 17.5 dB 15.7 dB 14.5 dB 7.73 dB 13.8 dB
0.0698% 1.14% 1.23% 18.3% 18.5% 1.27%

0.951
10.0 dB 44.5% 34.8% 50.9% 61.9% 55.1% 44.8%

17.0 dB 19.1 dB 15.9 dB 14.3 dB 15.2 dB 17.0 dB
0.220% 3.26% 10.3% 55.3% 3.93% 1.60%

0.885
15.0 dB 67.6% 49.8 % 69.9% 80.0% 62.3% 60.5%

18.3 dB 21.0 dB 18.1 dB 17.0 dB 19.1 dB 19.3 dB
0.633% 9.68% 27.9% 77.5% 3.04% 2.24%

0.856
20.0 dB 101% 68.7% 82.4% 89.4% 87.9% 88.9%

19.8 dB 23.2 dB 21.7 dB 21.0 dB 21.1 dB 21.0 dB
1.52% 24.0% 46.4% 88.4% 4.00% 3.41%

0.850
25.0 dB 154% 93.0% 90.3% 94.0% 134% 138%

21.2 dB 25.6 dB 25.9 dB 25.5 dB 22.4 dB 22.2 dB
2.94% 36.4% 60.0% 93.3% 5.56% 4.85%

0.848
50.0 dB 2155% 858% 288% 126% 2039% 2139%

23.3 dB 31.3 dB 40.8 dB 48.0 dB 23.8 dB 23.4 dB
6.64% 58.3% 73.6% 96.6% 7.86% 6.81%

0.842
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Table 8. The results from the test signal Blocks, N = 1024,
wavelet used: Haar wavelet. The first row in each entry in
the table is the scaled RMSE measure in (213), the second
row is the SNR of the reconstruction, see (212), the third row
shows the proportion of nonzero wavelet coefficient estimates
θ∗i as a fraction of the sample size N and the fourth row shows
the fixed value of the GGD shape parameter ν used by the
INMDL algorithm.

SNR RiskShrink SureShrink T
(0.5)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 43.4% 35.2% 42.1% 41.1% 93.0% 54.0%
8.11 dB 9.45 dB 7.82 dB 6.99 dB 3.89 dB 6.91 dB
1.66% 3.22% 1.66% 7.32% 44.3% 7.23%

1.00
5.0 dB 42.0% 39.4% 42.4% 48.6% 78.9% 52.9%

12.5 dB 12.7 dB 12.2 dB 10.8 dB 7.81 dB 10.7 dB
2.83% 5.47% 3.61% 34.3% 21.1% 7.23%

1.00
10.0 dB 48.5% 44.9% 45.4% 69.0% 57.5% 46.9%

16.3 dB 16.7 dB 16.8 dB 13.2 dB 14.9 dB 16.6 dB
3.71% 11.8% 7.81% 66.4% 9.18% 6.83%

1.00
15.0 dB 39.8% 44.9% 53.4% 82.0% 46.1% 41.8%

23.0dB 21.8 dB 20.5 dB 16.8 dB 21.8 dB 22.6 dB
5.08% 14.9% 12.7% 81.6% 7.23% 6.64%

1.00
20.0 dB 30.5% 46.3% 62.9% 89.4% 38.9% 38.5%

30.3 dB 26.6 dB 24.0 dB 21.0 dB 28.2 dB 28.3 dB
5.96% 15.0% 20.6% 90.7% 6.64% 6.64%

1.00
25.0 dB 28.1% 44.4% 71.2% 93.2% 35.0% 33.8%

36.0 dB 32.0 dB 28.0 dB 25.6 dB 34.1 dB 34.4 dB
6.15% 19.2% 29.1% 94.4% 6.64% 6.54%

1.00
50.0 dB 21.9% 50.2% 80.4% 98.3% 25.9% 25.9%

63.2 dB 56.0 dB 51.9 dB 50.2 dB 61.7 dB 61.7 dB
5.96% 8.39% 42.7% 99.4% 6.05% 6.05%

1.00
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Table 9. The results from the test signal Bumps, N = 1024,
wavelet used: Symmlet 12. The first row in each entry in the
table is the scaled RMSE measure in (213), the second row is
the SNR of the reconstruction, see (212), the third row shows
the proportion of nonzero wavelet coefficient estimates θ∗i as
a fraction of the sample size N and the fourth row shows
the fixed value of the GGD shape parameter ν used by the
INMDL algorithm.

SNR RiskShrink SureShrink T
(0.5)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 44.7% 37.2% 47.5% 56.6% 91.0% 55.2%
7.59 dB 8.58 dB 6.01 dB 2.15 dB 3.92 dB 6.57 dB
1.76% 5.57% 1.56% 2.15% 38.9% 7.81 %

1.00
5.0 dB 55.3% 40.1% 52.3% 49.2% 76.9% 55.0%

9.83 dB 12.2 dB 9.97 dB 9.94 dB 7.94 dB 10.2 dB
2.34% 7.62% 2.73% 15.0% 20.1% 7.42%

1.00
10.0 dB 57.9% 47.2% 46.7% 61.7% 63.1% 52.8%

14.6 dB 16.1dB 16.4 dB 14.0 dB 14.1 dB 15.5 dB
4.39% 8.79% 6.35% 53.8% 11.1% 7.62%

1.00
15.0 dB 55.6% 56.5% 52.7% 78.5% 52.8% 51.2%

20.1 dB 19.7 dB 20.5 dB 17.1 dB 20.5 dB 20.8 dB
6.15% 10.8% 11.5% 78.1% 9.38% 8.79%

1.00
20.0 dB 53.8% 56.0% 63.0% 87.9% 56.2% 54.8%

25.4 dB 24.9 dB 24.0 dB 21.1 dB 25.0 dB 25.2 dB
8.20% 15.7% 18.8% 89.6% 9.38% 9.18%

1.00
25.0 dB 62.7% 63.1% 71.7% 92.7% 57.1% 57.4%

29.0dB 28.9 dB 27.9 dB 25.7 dB 29.9 dB 29.8 dB
9.87% 18.6% 28.0% 93.8% 10.9% 10.5%

1.00
50.0 dB 79.7% 83.6% 91.5% 98.0% 80.5% 80.5%

52.0 dB 51.6 dB 50.8 dB 50.2 dB 51.9 dB 51.9 dB
22.0% 45.7% 68.8% 99.6% 21.9% 21.9%

1.00
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Table 10. The results from the test signal Heavisine, N =
1024, wavelet used: Symmlet 12. The first row in each entry
in the table is the scaled RMSE measure in (213), the second
row is the SNR of the reconstruction, see (212), the third row
shows the proportion of nonzero wavelet coefficient estimates
θ∗i as a fraction of the sample size N and the fourth row shows
the fixed value of the GGD shape parameter ν used by the
INMDL algorithm.

SNR RiskShrink SureShrink T
(0.5)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 14.7% 15.6% 19.2% 24.3% 89.9% 50.6%
18.0 dB 16.7 dB 15.2 dB 11.8 dB 4.28 dB 7.81 dB
0.684% 0.977% 0.586% 1.27% 36.9% 5.86%

1.00
5.0 dB 21.9% 17.1% 23.2% 29.4% 72.2% 48.2%

18.3 dB 20.0 dB 17.7 dB 15.4 dB 8.66 dB 11.8 dB
0.684% 1.37% 0.781% 16.4% 14.6% 5.27%

1.00
10.0 dB 22.5% 23.5% 30.3% 57.4% 49.4% 46.7%

23.1 dB 22.4 dB 20.5 dB 14.9 dB 16.3 dB 16.8 dB
1.07% 1.56% 2.44% 55.0% 4.69% 4.49%

1.00
15.0 dB 31.7% 30.3% 42.8% 76.2% 39.6% 39.0%

25.0 dB 25.3 dB 22.4 dB 17.5 dB 23.1 dB 23.2 dB
1.47% 2.25% 5.66% 76.2% 3.13% 3.13%

1.00
20.0 dB 36.1% 35.0% 54.2% 86.3% 35.4% 36.4%

28.9 dB 29.0 dB 25.4 dB 21.3 dB 29.1 dB 28.8 dB
1.95% 4.30% 12.5% 88.0% 2.93% 3.42%

1.00
25.0 dB 32.6% 40.2% 64.4% 91.7% 34.4% 34.3%

34.8 dB 32.9 dB 28.9 dB 25.8 dB 34.3 dB 34.3 dB
2.93% 7.62% 20.2% 92.7% 3.71% 3.71%

1.00
50.0 dB 38.4% 51.5% 90.5% 97.9% 38.4% 38.4%

58.3 dB 55.8 dB 50.9 dB 50.2 dB 58.3 dB 58.3 dB
7.03 % 19.9% 65.5% 99.6% 7.03% 7.03%

1.00



168 H. NUMERICAL RESULTS

Table 11. The results from the test signal Doppler, N =
1024, wavelet used: Symmlet 12. The first row in each entry
in the table is the scaled RMSE measure in (213), the second
row is the SNR of the reconstruction, see (212), the third row
shows the proportion of nonzero wavelet coefficient estimates
θ∗i as a fraction of the sample size N and the fourth row shows
the fixed value of the GGD shape parameter ν used by the
INMDL algorithm.

SNR RiskShrink SureShrink T
(0.5)
MAP T

(1.0)
MAP NML INMDL

1.0 dB 33.8% 35.1% 41.6% 51.8% 92.3% 52.6%
9.98 dB 8.98 dB 7.30 dB 3.06 dB 3.82 dB 7.01 dB
1.37% 2.83% 1.17% 1.56% 42.8% 7.42%

1.00
5.0 dB 38.4% 39.5% 37.5% 41.1% 76.0% 50.6%

13.1 dB 12.4 dB 13.0 dB 11.7 dB 7.98 dB 11.0 dB
1.95% 3.81% 2.34% 15.0% 18.2% 6.64%

1.00
10.0 dB 42.7% 45.5% 39.4% 57.3% 58.7% 52.0%
g 17.3dB 16.4 dB 17.9 dB 14.6 dB 14.7 dB 15.7 dB

2.64% 5.18% 4.30% 50.1% 8.98% 7.03%
1.00

15.0 dB 42.3% 53.2% 48.8% 75.7% 52.9% 49.4%
22.4 dB 20.3 dB 21.2 dB 17.4 dB 20.5 dB 21.1 dB
4.00% 9.57% 8.11% 74.3% 7.03% 6.25%

1.00
20.0 dB 47.7% 57.2% 56.5% 86.0% 49.8% 47.1%

26.4 dB 24.7 dB 24.9 dB 21.3 dB 26.0 dB 26.5 dB
5.27% 12.7% 12.7% 87.7% 7.23% 6.83%

1.00
25.0 dB 57.8% 64.0% 64.2% 91.6% 50.1% 49.0%

29.8 dB 28.8 dB 28.8 dB 25.8 dB 31.0 dB 31.2 dB
6.25% 14.9% 21.0% 92.1% 8.00% 7.81%

1.00
50.0 dB 60.0% 67.6% 90.6% 97.9% 60.0% 60.0%

54.4 dB 53.4 dB 50.9 dB 50.2 dB 54.4 dB 54.4 dB
12.3% 30.6% 65.5% 99.8% 12.3% 12.3%

1.00


