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Abstract— An iterative algorithm is presented for soft-input-
soft-output (SISO) decoding of Reed-Solomon (RS) codes. The
proposed iterative algorithm uses the sum product algorithm
(SPA) in conjunction with a binary parity check matrix of the
RS code. The novelty is in reducing a submatrix of the binary
parity check matrix that corresponds to less reliable bits to a
sparse nature before the SPA is applied at each iteration. The
proposed algorithm can be geometrically interpreted as a two-
stage gradient descent with an adaptive potential function. This
adaptive procedure is crucial to the convergence behavior of the
gradient descent algorithm and, therefore, significantly improves
the performance. Simulation results show that the proposed
decoding algorithm and its variations provide significant gain
over hard decision decoding (HDD) and compare favorably with
other popular soft decision decoding methods.

Index Terms— adapting the parity check matrix, gradient
descent, iterative decoding, soft decision decoding, Reed-Solomon
(RS) codes.

I. I NTRODUCTION

Reed-Solomon (RS) codes are one of the most popular error
correction codes in many state-of-the-art communication and
recording systems. In most of these existing systems, RS codes
are decoded via an algebraic hard decision decoding (HDD)
algorithm. When soft information about the channel output
is available, HDD can incur a significant performance loss
compared to optimal soft decision decoding. For example,
for the AWGN channel, the loss is believed to be about 2-
3 dB. Moreover, in some situations, it is desirable to obtain
soft output from the decoder. A typical example is when
turbo equalization is employed at the receiver and soft outputs
from the decoder have to be fedback to the equalizer. Con-
sequently, soft-input-soft-output (SISO) decoding algorithms
for RS codes are of research interest both for theoretical and
practical reasons.

In the literature, there are several classes of soft deci-
sion decoding algorithms. Enhanced HDD algorithms such as
generalized minimum distance (GMD) decoding [1], Chase
decoding [2] and a hybrid of Chase and GMD algorithms
(CGA) [3] use reliability information to assist HDD decod-
ing. Enhanced HDD usually gives a moderate performance
improvement over HDD with reasonable complexity. Recently,
algebraic soft interpolation based decoding (the Koetter-Vardy
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(KV) algorithm [4]), which is a list decoding technique that
uses the soft information from the channel to interpolate each
symbol, has become popular [5] [6] [7]. The KV algorithm
can significantly outperform HDD for low rate RS codes.
However, to achieve large coding gain, the complexity can be
prohibitively large. For detailed discussions of the complexity
performance tradeoff of the KV algorithm, we refer interested
readers to [7]. Another approach is decoding RS codes using
their binary image expansions. Vardy and Be’ery showed that
RS codes can be decomposed into BCH subfield subcodes
which are glued together using glue vectors [8]. Even though
this decomposition significantly reduces the trellis complexity
of maximum likelihood (ML) decoding of RS codes, the
complexity still grows exponentially with the code length and
dmin and it is thus infeasible for practical long codes. Recent
work [9] reduces the complexity and modifies the algorithm
in [8] to generate soft output efficiently. By using the binary
image expansion of RS codes, we can also use decoding
algorithms for general linear block codes such as reliability
based ordered statistics decoding (OSD) [10] and its variations
[11] for soft decision decoding of RS codes. Previous such
works include the hybrid algorithm by Hu and Shu Lin [12]
and the box and match algorithm (BMA) [13] by Fossorier
and Valembois. OSD based algorithms are quite efficient for
practical RS codes even though they do not take the structure
of the RS codes into account.

Iterative decoding [14] algorithms are of emerging interest
for soft decision decoding of RS codes [15], [16], [17].
The main difficulty in directly applying iterative decoding
techniques to RS codes is that the parity check matrix of
an RS code is in general not sparse. In order to deal with
such dense parity check matrices, Yedidiaet al. [18] pro-
posed a “generalized belief propagation” (GBP) algorithm that
introduces hidden states in iterative decoding. However, their
results show that this technique does not work well for high
density parity check (HDPC) codes (such as RS codes) over
the AWGN channel. We observe from the simulations that the
iterative decoder fails mainly due to some of the unreliable
bits “saturating” most of the checks which causes iterative
decoding to be stuck at some pseudo-equilibrium points. In
[16], the cyclic structure of RS codes is taken advantage of
and a sum product algorithm (SPA) is applied to a random
shift of the received vector at each iteration to avoid pseudo-
equilibrium points (see [16] for details). While significant
improvement in performance over HDD was obtained for short
codes, the performance improvement diminishes for long RS
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codes.
In this paper, we present an iterative SISO decoding algo-

rithm (which is based on the SPA) for RS codes. The main
novelty in the proposed scheme is to adapt the parity check
matrix at each iteration according to the bit reliabilitiessuch
that the unreliable bits correspond to a sparse submatrix and
the SPA is then applied to the adapted parity check matrix.
This adaptation prevents the iterative decoder from getting
stuck at pseudo-equilibrium points and, hence, the convergence
behavior of the iterative decoder is significantly improved.
Simulation results show that the proposed iterative decoding
scheme performs well for RS codes with reasonable decoding
complexity, even though the parity check matrices are not
sparse. While the approach in [16] is also one of adapting
the parity check matrix, the adaptation there is restrictedto
be within the class of cyclic shifts of the parity check matrix,
whereas we consider a more general adaptation procedure here
which is based on the bit reliabilities. The proposed algorithm
can be applied to any linear block code; however, we restrict
our attention to RS codes in this paper because of the practical
interest in soft decision decoding of RS codes and the fact that
the gain from this adaptive procedure is significant for codes
with dense parity check matrices such as RS codes.

The rest of the paper is organized as follows: The generic
iterative decoding algorithm is presented in Section II. A
geometric interpretation of the proposed algorithm is given
in Section III. Several variations of the generic algorithmare
investigated in Section IV. In Section V, simulation results of
the proposed algorithm are presented and compared with pop-
ular RS soft decoding algorithms. Discussions and conclusions
are presented in Section VI.

II. I TERATIVE DECODING ALGORITHM BY ADAPTING THE

PARITY CHECK MATRIX

Consider a narrow sense(N,K) RS code overGF (2m)
which has a minimum distancedmin = δ = N − K + 1.
The parity check matrix overGF (2m) can be represented as
follows:

Hs =







1 β · · · β(N−1)

1 β2 · · · β2(N−1)

· · ·

1 β(δ−1) · · · β(δ−1)(N−1)







(1)

whereβ is a primitive element inGF (2m). Letn = N×m and
k = K×m be the length of the codeword and the information
at the bit level, respectively.Hs has an equivalent binary image
expansionHb (see [19] for details), whereHb is an(n−k)×n
binary parity check matrix.

We will use underlined letters to denote vectors and bold
face letters to denote matrices. Letc = [c1, c2, . . . , cn] be the
binary representation of an RS codeword. In the description
of the generic algorithm, we first assume that the bits are
modulated using BPSK (with0 mapped to+1 and1 mapped
to −1) and transmitted over an AWGN channel (extension to
other channels is straightforward). The received vector isgiven
by

..1.0..00.0.

..0.1..00...

..0.0..10...

..0.0..01.0.

..0.0..00.1.

i1 i2 i3 i4 i5 i6

Dense part

Fig. 1. Form of the Parity Check Matrix Suitable for Iterative Decoding
Obtained through Row Operations

y = (−2c+ 1) + n, (2)

Thus, the initial reliability of each bit in the received vector
can be expressed in terms of the log-likelihood ratios (LLR)
as observed from the channel:

L(0)(ci) = log
P (ci = 0|yi)

P (ci = 1|yi)
, (3)

The proposed algorithm is composed of two stages: the
matrix updating stage and the bit-reliability updating stage.
In the matrix updating stage, the magnitude of the received
LLR’s |L(ci)| are first sorted and leti1, i2, . . . , iN−K , . . . , in
denote the position of the bits in terms of ascending order
of |L(ci)|, i.e., the bit ci1 is the least reliable andcin

is
the most reliable. We begin with the original parity check
matrix Hb and first reduce theith1 column of Hb to a form
[1 0 . . . 0]T . Then, we reduce theith2 column of Hb to a
form [0 1 0 . . . 0]T and so on. We can be guaranteed to
proceed until theith(N−K) column, since there are at least
(N −K) independent columns inHb. Then we try to reduce
the ithN−K+1 column to [0 . . . 0

︸ ︷︷ ︸

(N−K)

1, 0, . . . , 0]T . However, there

is no guarantee we can do this. If we are unable to do so, we
will leave that particular column and try to reduceith(N−K+2)

column to the above form and so on. Finally, we can reduce
(n−k) columns among then columns ofHb to be the identity
matrix, since the matrix is(n − k)× n and is full rank. The
matrix is thus reduced to a form as shown in Fig. 1. We denote
the set of unreliable bits corresponding to the sparse submatrix
asBL.

The proposed algorithm is iterative and during thelth

iteration, we have a vector of LLR’s as:

L(l) = [L(l)(c1), L
(l)(c2), · · · , L

(l)(cn)] (4)

where initially L(0) is determined from the channel output.
Then, the parity check matrix is reduced to a desired form
based onL(l):
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H(l)
b = φ(Hb, |L

(l)|). (5)

In the bit-reliability updating stage, the extrinsic LLR vector
L(l)

ext is first generated according toL(l) using the SPA [14]
based on the adapted parity check matrixH(l)

b :

L(l)
ext = ψ(H(l)

b , L(l)) (6)

That is for each bit, the extrinsic LLR is updated according
to:

L(l)
ext(ci) =

n−k∑

j=1

H
(l)
ji

=1

2 tanh−1









n∏

p=1

p6=i,H
(l)
jp

=1

tanh

(

L(l)(cp)

2

)









(7)
The bit-reliability is then updated as:

L(l+1) = L(l) + αL(l)
ext (8)

where0 < α ≤ 1 is a damping coefficient. This is continued
until a predetermined number of timeslmax = N1 or until all
the parity checks are satisfied. A detailed description of the
algorithm is given in Algorithm 1.

Algorithm 1 Iterative Decoding Algorithm by Adapting the
Parity Check Matrix

Step1.Initialization: setα, lmax = N1, l = 0 and the LLR’s
for the coded bits from the channel observation:
L(0) = 2

σ2 y
Step2.Reliability based parity check matrix adaptation:

H(l)
b = φ(Hb, |L

(l)|).
a) Order the coded bits according to the absolute
value of the LLR’s |L(l)| and record the ordering
indices.
b) Implement Gaussian elimination to systematize
the (n − k) unreliable positions which are indepen-
dent in the parity check matrix. (The submatrix can
also be made to be degree-2 connected, see Section
IV-A).

Step3.Extrinsic information generation: Apply SPA to gen-
erate the extrinsic LLR for each bit using the adapted
parity check matrixH(l)

b :
L(l)

ext = ψ(H(l)
b , L(l)) (according to (7)).

Step4.Bit-level reliabilities update:
L(l+1) = L(l) + αL(l)

ext, where0 < α ≤ 1.

Step5.Hard decision:ĉi =

{
0, L(l+1)(ci) > 0;
1, L(l+1)(ci) < 0.

Step6.Termination criterion: If all the checks are satisfied,
output the estimated bits; else ifl = lmax, declare a
decoding failure; otherwise setl ← l + 1 and go to
Step2 for another iteration.

The proposed adaptive algorithm is inspired by the OSD
[10]. However, instead of reprocessing the most reliable basis
(MRB), we adapt the parity check matrix according to the least
reliable basis (LRB). It can also be viewed as a generaliza-
tion of the iterativea posteriori probability (APP) decoding

algorithm based on a set of minimum weight parity check
vectors by Lucaset al. [20]. In [20], the iterative algorithm
is interpreted as a gradient descent. The adaptive algorithm
generalizes the idea of gradient descent and extends it to
be a two-stage gradient descent algorithm with an adaptive
potential function. The damping coefficientα serves as the step
size in the gradient descent process to control the dynamics
of convergence. In the following section, we look into a
geometric interpretation of this algorithm.

III. G EOMETRIC INTERPRETATION OF THEPROPOSED

ALGORITHM

In this section, a geometric interpretation of the proposed
algorithm as a two-stage optimization procedure is presented.
The idea of using optimization methods, such as gradient
descent, to solve decoding problems can be dated back to
Farrell et al. [21]. The belief propagation (BP) based algo-
rithms by Gallager [22] and Pearl [23] were also shown to
be special cases of the gradient descent algorithm. The bit
reliability updating algorithm in this paper is more similar to
that proposed by Lucaset al. in [20].

Define the operatorν : [−∞,+∞]→ [−1, 1] as a mapping
from the LLR domain totanh domain:

ν(L) = tanh

(
L

2

)

=
eL − 1

eL + 1
(9)

where the mapping is one-to-one and onto.
It is immediate that the inverse operatorν−1 : [−1,+1]→

[−∞,+∞] can be expressed as:

ν−1(t) = ln

(
1 + t

1− t

)

, t ∈ [−1,+1] (10)

We apply the one-to-onetanh transform on the LLR’s and
get the reliability measure of the received signal in thetanh
domain as:

T = [T1, T2, · · · , Tn] = [ν(L(c1)), · · · , ν(L(cn))] (11)

As in [14], we can measure the reliability of thejth parity
check node as:

γj =

n∏

p=1

Hjp=1

ν(L(cp)) (12)

Following the concept of a generalized weighted syndrome
proposed by Lucaset al. (Eqn. (20) in [20]), we define a cost
functionJ , which characterizes the reliability of the received
vectorT with a particular parity check matrixHb.

Definition 1 Define the potential functionJ as:

J(Hb,T) = −

(n−k)
∑

j=1

γj = −

(n−k)
∑

j=1

n∏

p=1

Hjp=1

Tp (13)

whereJ is a function of both the parity check matrixHb and
the received soft informationT.

The operatorν maps the originaln-dimensional unbounded
real space into ann-dimensional cube (since the output of the
tanh function is confined to [-1, 1]). The potential function
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J is minimized iff a valid codeword is reached, that is all the
checks are satisfied and|Tj | = 1 for j = 1, · · · , n, where
Jmin = −(n − k). Besides, points with all|Tj | = 1 corre-
spond to vertices of then-dimensional cube. Therefore, valid
codewords correspond to the vertices of then-dimensional
cube at which the potential function has the minimum value
of −(n − k). The decoding problem can be interpreted as
searching for the most probable minimum potential vertex
given the initial point observed from the channel.

Note that the potential functionJ is minimized iff a valid
codeword is reached. It is quite natural to apply the gradient
descent algorithm to search for the minimum potential vertex,
with the initial valueT observed from the channel. Consider
the gradient ofJ with respect to the received vectorT. From
(13), it can be seen that:

∇J(Hb,T) =

(
∂J(Hb,T)

∂T1
,
∂J(Hb,T)

∂T2
, · · · ,

∂J(Hb,T)

∂Tn

)

(14)
where the component wise partial derivative with respect to
Ti is given by:

∂J(Hb,T)

∂Ti

= −

(n−k)
∑

j=1

Hji=1

n∏

p=1

p6=i,Hjp=1

Tp (15)

Thus, the gradient descent updating rule can be written as:

T(l+1) ← T(l) − α∇J(H(l)
b ,T(l)) (16)

where α is a damping coefficient as in standard gradient
descent algorithms to control the step width.

Note that the reliabilities intanh domain are confined
to Ti ∈ [−1, 1]. However, the updating rule (16) does not
guarantee this. Therefore, we use the following modified
updating rule to guarantee that the updatedTi’s ∈ [−1, 1]:

T
(l+1)
i ← ν




ν−1

(

T
(l)
i

)

− α




−

∑

H
(l)
ji

=1

ν−1






∏

p6=i,H
(l)
jp

=1

T (l)
p
















(17)
whereν−1(x) = 2 tanh−1(x). It can be seen that the above
non-linear updating rule is exactly the same as Step 3-Step 4
in Algorithm 1.

When iterative decoding is applied to an HDPC code,
with very high probability, the iterative algorithm will reach
some local minimum points where∇J(Hb,T) is zero or is
close to zero (since a few unreliable symbols will render
the components of∇J(Hb,T) to be small or close to zero).
We refer to these as pseudo-equilibrium points since gradient
descent gets stuck at these points while these points do not
correspond to valid codewords.

From (13), we observe that sinceJ is also a function of
Hb, different choices of the parity check matricesHb, though
span the same dual space, result in different potential functions
J . More importantly, eachHb results in a different gradient
∇J(Hb,T). The proposed algorithm exploits this fact and
when a pseudo equilibrium point is reached, by adapting the
parity check matrix based on the bit reliabilities, switches to
anotherHb such that it allows the update in (17) to proceed

rather than getting stuck at the pseudo-equilibrium point.
However, note that the potential function that we want to
minimize does not involve the Euclidean distance between the
received codeword and current estimate at all. That is, the
adaptive algorithm attempts merely to find a codeword that
satisfies all the parity checks, without really enforcing that it
be the one at minimum distance from the received word. Since
small steps are taken in the gradient descent, very often we
converge to the codeword at small distance from the received
vector as well. However, there is no guarantee of convergence
to the nearest codeword.

We use the following examples to show the operation of the
adaptive algorithm and its difference from directly applying
iterative decoding to an HDPC code.

Example 1:Consider decoding of a random linear block
code where each entry of the parity check matrix is i.i.d and
0 or 1 with equal probability over an erasure channel. We
first apply the gradient descent algorithm directly to HDPC
codes without reliability based adaptation. Assume that the
erasure fraction isǫ, therefore the number of erased bits isnǫ.
Consider a particular parity check, any code bit will participate
in that check with probability 1/2 (according to the i.i.d.
equiprobable assumption). A check is not erased iff all the
participated bits are not erased. Therefore, the probability that
the sth check is erased is

Pr{sthcheck is erased}
.
= 1− (

1

2
)nǫ, n→∞ (18)

Assume that theith bit is erased and it participates inr parity
checks in the parity check matrix. Theith component of the
gradient vector is zero (i.e.,∂J(Hb,T)

∂Ti
= 0) iff the extrinsic

LLR’s from all the checks it participates in are erased. The
probability that theith component of the gradient is zero is:

Pr{
∂J(Hb,T)

∂Ti

= 0}
.
= [1− 2−(nǫ−1)]r

.
= 1− r2−(nǫ−1) + o(2−(nǫ−1))
.
= 1− r2−(nǫ−1) → 1, n→∞ (19)

which suggests that unless the number of parity checks grows
exponentially with nǫ, iterative decoding gets stuck at a
pseudo-equilibrium point with high probability.

On the other hand, for the BEC, it is known that by adapting
the parity check matrix corresponding to less reliable bits(i.e.
the erased bits), ML decoding performance can be achieved
[24] in one iteration. If the Gaussian elimination is successful,
then all the erasures can be recovered. Gaussian elimination
will not be successful iff some of the columns corresponding
to the erased bits are dependent. In this case, there is ambiguity
between two or more valid codewords. That is, the ML decoder
also fails.

In conclusion, for the BEC, gradient descent without adap-
tation tends to get stuck at a pseudo-equilibrium point, while
the reliability based adaptation will help gradient descent to
converge to the ML solution in one iteration.

Example 2:The idea of reliability based parity check matrix
adaptation can naturally be extended to AWGN channels and
the insight remains the same. Though adapting the parity



5

0 20 40 60 80 100 120 140 160 180 200
−30

−25

−20

−15

−10

−5

0

number of iterations

po
te

nt
ia

l f
un

ct
io

n 
J

E
b
/N

0
 = 3.0dB, without adaptation

E
b
/N

0
 = 3.0dB, with adaptation

E
b
/N

0
 = 4.0dB, without adaptation

E
b
/N

0
 = 4.0dB, with adaptation

Fig. 2. Convergence Behavior of Iterative Decoding with andwithout
Adaptation of RS(31, 25)

check matrix based on the channel output does not guarantee
convergence to the ML decision for AWGN channels, it does
avoid iterative decoding getting stuck at pseudo-equilibrium
points and thus improves the convergence behavior. We give
a numerical example of the convergence behavior of itera-
tive decoding of an RS(31,25) code in Figure 2. A typical
realization of iterative decoding is simulated. The potential
function J is plotted against the number of iterations. Since
there are 30 parity checks for RS(31, 25), the minimum value
of the potential function isJ = −30 (corresponding to valid
codewords). We can see that due to the high density of the
parity check matrix of the RS code, iterative decoding without
matrix adaptation (Algorithm 1 without Step 2) gets stuck
at some pseudo-equilibrium. On the other hand, when the
iterative algorithm is applied in conjunction with reliability
based parity check matrix adaptation (Algorithm 1), the value
of J quickly goes to the global minimum as the number
of iteration increases. Consequently, reliability based parity
check matrix adaptation improves the convergence behavior
of iterative decoding significantly. We will show in Section
V that the adaptive algorithm also significantly improves the
error performance.

IV. VARIATIONS TO THE GENERIC ALGORITHMS

In this section, several variations of the proposed algorithm
are discussed either to improve the performance or to reduce
the decoding complexity.

A. Degree-2 Random Connection

One problem with the proposed approach is that since each
bit in the unreliable partBL participates in only one check, it
receives extrinsic information from one check only. If there is
a bit error in the dense part participating in that check, thebit
in BL tends to be flipped and the decoder tends to converge to
a wrong codeword. To overcome this drawback, we can reduce
the matrixHb to a form where the submatrix corresponding
to the less reliable bits is sparse (say column weight 2 rather
than 1). This can improve the performance since each less

reliable bit now receives more extrinsic information while
the submatrix corresponding to the unreliable bits still does
not form any loops (i.e., there is no loop involving only the
unreliable bits). We can obtain this via a degree-2 random
connection algorithm. The details are presented in Algorithm
2.

Algorithm 2 Deg-2 random connection algorithm
Step1.Apply Gaussian elimination to the parity check ma-

trix and obtain an identity matrix in the unreliable
part.

Step2.Generate a random permutation of numbers from 1 to
n-k. Record all the indices, i.e.,p1, p2, p3, · · · , pn−k.

Step3.Adapt the parity check matrix according to the follow
rule: addpth

i+1 row to pth
i row, for i = 1 to n-k-1.

After the Deg-2 random connection, all the (n-k-1) columns
in the parity check matrix are of degree-2 except thepth

1

column. The last columnp1 can be left of degree-1, which
will not significantly affect the performance. This appearsto
improve the performance of the proposed algorithm especially
in the high SNR’s.

B. Various Groupings of Unreliable Bits

Another variation that can help to further improve the
performance is to run the proposed algorithm several times
each time with the same initial LLR’s from the channel but a
different grouping of the less reliable bits. It is possiblethat
some bits with|L(l)(ci)| close to those in the unreliable setBL

are also of the wrong sign and vice-versa. Hence, we can run
the proposed algorithm several times each time with a different
grouping of the less reliable bits. That is, we can swap some
bits in the reliable part with those in the unreliable part near
the boundary and run the matrix adaptation all over again,
which gives a newHb. We then run the proposed algorithm
on that new matrixHb. Each time the proposed algorithm is
run, a different estimate of codeword may be obtained due to
the difference in the parity check matrixHb. All the returned
codewords are kept in a list and finally the one that minimizes
Euclidean distance from the received vector is chosen. We will
see from simulation results that this method can significantly
improve the asymptotic performance, but also increases the
worst case complexity. Similar techniques have been used in
conjunction with OSD by Fossorier [25] and Wu [11]. The way
of grouping reliable bits used here is similar to the grouping
scheme by Wu [11]. We refer interested readers to [11] for a
detailed description and asymptotic performance analysis.

C. Incorporated Hard Decision Decoding

A hard decision decoder can be used during each iteration
in the proposed algorithm to improve the performance and
accelerate decoding as well. Since the HDD may return a
codeword which is different from the ML codeword, we do
not stop the decoder once a codeword is returned by the HDD.
Rather, we still iterate up to a maximum number of iterations
to obtain all the codewords returned by HDD during each
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iteration and finally pick up the most likely codeword. This
guarantees to perform no worse than the proposed algorithm
or HDD. In practice, error detection schemes such as a cyclic
redundancy check (CRC) or other test techniques as discussed
in [26] can serve as a practical stopping criterion to reducethe
average decoding complexity. Combining the adaptive scheme
with other SIHO algorithms such as the KV algorithm has
recently been investigated in [27].

D. Partial Reliable Bits Updating

The complexity in the bit level reliabilities update part can
be further reduced via “partial reliable bits updating” scheme.
The main floating-point operation complexity comes from the
computation of the extrinsic information in the reliable part
(where the submatrix is dense). However, in the adaptation
of the parity check matrix, only some bits in the boundary
will be switched from the reliable part to the unreliable part.
Therefore, in the bit reliability updating stage, we only update
the bits in the unreliable setBL and some reliable bits with
|L(l)(cj)| close to those in the unreliable setBL. For example,
at each iteration, we may update theith1 , · · · , ithn−k+M LLR’s
rather than all of them (wherei1 through in are sorted in
ascending reliability). The number of bits in the reliable part
M can be adjusted to control the complexity.

In the computation of thetanh of each check, we can also
make approximations to reduce the complexity. For instance,
min-sum can be used instead of SPA in Step 3 Algorithm 1
[28]. Furthermore, since the bit reliabilities are first ordered,
the minimum of the absolute value of the LLR’s in the
dense part of the parity check matrix is known. Thus, we
can approximate thetanh of all the bits in the reliable part
using thetanh of the minimum value. This modification can
significantly reduce the floating point operation complexity
while retaining most of the performance gain.

More sophisticated updating schemes can also reduce the
complexity of matrix adaptation. El-khamy and McEliece have
proposed a scheme that adapts the parity check matrix from
previous ones, which reduces the overall complexity by75%
(private communication).

E. Symbol-level Adaptation

Gaussian elimination requires serial update of the rows
and is difficult to parallelize. Here we propose an alternative
algorithm that is parallelizable. The idea is to take advantage
of the structure of RS codes and adapt the parity check
matrix at the symbol level. LetSL = {i1, i2, . . . , i(N−K)}
be a set of(N − K) least reliable symbols (symbol-level
reliability can be computed by taking thetanh product of
bit-level reliabilities or taking the minimum of the bit-level
reliabilities). In order to update the parity check matrix at the
symbol level, we need to find a valid parity check matrix for
which the submatrix corresponding to the symbols inSL is
an identity matrix. The detailed procedure is as follows: first,
the submatrix corresponding to the symbols inSL is filled
with an (N − K) × (N − K) identity matrix and the rest
of the matrix with unknowns (erasure). The key idea is that
computing the unknown symbols in the parity check matrix

is equivalent to finding(N −K) valid codewords of the dual
code which will be the rows of the parity check matrix for
the original code. For thejth row, the ithj entry is 1 and the
ith1 , i

th
2 , . . . , i

th
j−1, i

th
j+1, . . . , i

th
N−K entries are 0s and all other

entries are erasuresE (i.e., all the positions corresponding
to the reliable symbols are erased). Since the dual code is an
(N,N−K) RS code withdmin = K+1 and there are exactly
K erasures in each row, Forney’s algorithm [29] can be used
to compute the values in the erased positions. Each decoded
codeword corresponds to one row in the original parity check
matrix. By repeating this procedure for all(N − K) rows,
we can get a systematic parity check matrix overGF (2m),
where the submatrix corresponding to unreliable symbols is
the identity matrix. Using the binary expansion, we can then
get the binary parity check matrix and thereafter apply the
SPA using it. Unlike Gaussian elimination, each element in
the parity check matrix can be computed independently and,
hence, the whole procedure can be parallelized. This provides
a computationally efficient way to obtain a parity check matrix
in the desired form for hardware implementation. Related
concepts such as re-encoding have also been used to reduce
the complexity of KV decoding (see [30]).

V. SIMULATION RESULTS

In this section, simulation results for iterative decoding
of RS codes by adapting the parity check matrix and its
variations over various channel models are presented. The
following notations will be used in the legends. ADP(N1,N2)
refers to the proposed adaptive decoding scheme.N1 refers
to the maximum number of iterations of iterative decoding.
N2 refers to the number of decoding rounds with different
groupings of the unreliable bits (see Section IV-B). ADP
& HDD refers to the proposed algorithm with an HDD in
each iteration (see Section IV-C). SYM ADP refers to the
proposed algorithm with symbol-level adaptation (see Section
IV-E). RED(M) ADP refers to the reduced complexity partial
updating schedule with M bits in the reliable part to be updated
(see Section IV-D). MS ADP refers to the proposed algorithm
using “min-sum” in updating the LLR’s (using min-sum rather
than sum-product in Step 3 in Algorithm 1 [28]). Unless
otherwise indicated, all the simulations adopt Deg-2 random
connection (see Section IV-A) to improve the asymptotic
performance. The damping coefficientα is also specified on
the plots. For comparison, the simulation-based ML lower
bounds and analytical ML upper bounds are also plotted in
some figures. The details for obtaining the ML lower bound
is described in [20] and the ML upper bound will be discussed
in detail in the following subsection.

To speed up simulation, a genie aided stopping criterion
scheme has been used, i.e., the decoding procedure stops
when ADP & HDD gives the correct codeword. This is
mildly optimistic as can be seen from the following argument.
Assume that there is no genie, then the actual decoder will
run a fixed number ofN1 iterations and may return a list of
codewords (since the HDD may generate different codewords
at different iterations). The actual decoder will pick the most
likely codeword from the list. Thus, if the transmitted code-
word is the most likely one, the result of the actual decoder
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will be the same as that of the genie aided decoder. Only when
the transmitted codeword is not the most likely codeword, i.e.,
when the ML decoder would have made errors, the result of the
actual decoder may be different from the genie aided decoder
and, hence, the genie aided decoder may be optimistic.

A. Performance of Reed Solomon Codes under Maximum
Likelihood Decoding

We first study the performance of RS codes under ML
decoding. The intention is to show that RS codes are them-
selves good codes (even for medium rate long codes) and
the performance loss is due to the suboptimal symbol-level
bounded distance decoder. The weight enumerator of an RS
code under a specific binary image expansion is in general
unknown. In this paper, we study the performance of the
averaged ensemble of RS codes [31] under ML decoding using
the Divsalar bound [32]. The averaged ensemble of the RS
code is taken by averaging over all possible binary expansions.
For details, we refer to [31] and more recent work [33].

We first investigate the performance of a widely used high
rate code, i.e., RS(255,239). In Figure 3, we plot the upper
bound on the performance of RS ensemble under ML decod-
ing, HDD with error correction radiust = (dmin−1)/2 and a
hypothetical decoder which can correct up tot = (dmin − 1)
symbol errors (that is we assume the genie decoder can decode
the received vector as long as it is within the distance oft =
(dmin−1) at symbol-level from the transmitted codeword). We
can see that, the HDD is asymptotically 3dB worse than the
performance under ML decoding (the largest gap is about 4dB,
which appears at around an FER= 10−20). The hypothetical
decoder is optimal for asymptotically large SNR’s. However,
this happens only at very low FER (say, at an FER =10−200),
which is impractical for most of the applications. For practical
SNR’s, there is a loss of approximately 2dB compared to the
performance of the ML decoder.

We further investigate a medium rate code RS(255,127)
R = 0.498 ≈ 0.5 in Figure 4. We can see that the performance
under ML decoding of the RS ensemble reaches an FER =
10−4 at anEb/N0 = 1.2dB and outperforms the hypothetical

0 1 2 3 4 5 6 7 8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

comparison of performance bounds of RS(255,127)

HDD t=(d
min

−1)/2

HDD t=(d
min

−1)

RS ensemble ml

Fig. 4. Comparison of Performance Bounds of RS(255,127) in Practical
SNR Region

decoder and HDD by 2.5dB and 5dB, respectively. The ML
performance of RS ensemble is only 0.6 dB away from
the sphere packing bound [34], making it comparable to
the best known turbo and LDPC codes. Note that for this
code, all known decoders up to now are still away from
the performance under ML decoding, making it difficult to
obtain good simulation based lower bounds to estimate the
ML performance of the RS code.

The above examples show that the symbol-level bounded
distance decoding does not fully exploit the error correction
capability of the code. The hypothetical decoder, which de-
codes up tot = dmin − 1, still performs far away from ML
decoding, which suggests that an alternative design principle
should be adopted for RS soft decision decoding. Besides, the
analytical performance bounds of RS codes under ML decod-
ing are of interest as benchmarks for suboptimal decoders as
will be discussed in the following subsections.

B. AWGN Channels

We first present results for the RS (31,25) code over the
AWGN channel in Fig. 5. For this code, standard belief
propagation (BP) decoding (either with or without the damping
coefficient, not plotted in the figure) has little gain (within
0.5 dB from algebraic HDD) due to the large number of short
cycles. However, the proposed ADP(20,1) & HDD provides
a 2.3 dB gain over HDD and an 1.0 dB over Chase-GMD(3)
at an FER =10−4. Using the grouping method, the proposed
ADP(20,3) & HDD can approach the ML lower bound within
0.25dB at an FER =10−4. The reduced complexity version
RED(20) ADP(20,1) incurs 0.2dB performance loss compared
with the generic ADP and outperforms MS ADP by about
0.5dB at an FER =3× 10−5. The ML upper bound over RS
averaged ensemble is also plotted for comparison. It can be
seen that the ML upper bound is 0.5dB away from the ML
lower bound at an FER =10−4 and these two bounds converge
in the high SNR region.

Now we consider the (63,55) RS code. The performance is
shown in Fig. 6. For this code, standard BP performs even
worse than HDD (not plotted in the figure). However, the
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proposed algorithm ADP(5,1) & HDD provides 1.95 dB and
1.05 dB gain over algebraic HDD and Chase-GMD(3) at an
FER = 10−4. ADP(20,3) performs about 0.7 dB within ML
lower bound at an FER =10−4. It also provides another
0.3 dB gain over ADP(5,1). Similar to other gradient descent
methods, the damping coefficient of the adaptive algorithm
must be carefully chosen to control the updating step width.
The performance curve of ADP(100,1) without damping or
Deg-2 connection has a flat slope and the asymptotic gain
diminishes, which is mainly due to the overshooting of the
update scheduling such that the decoder tends to converge to
a wrong codeword quickly. SYM ADP(20,1) & HDD also
provides a non-trivial gain of about 0.7dB over HDD at an
FER = 10−4, which is comparable to Chase-GMD(3) while
the complexity is significantly smaller. The ML upper bound
also converges to the ML lower bound in the high SNR region
as in the previous cases.

Simulation results for the RS(255, 239) code over the
AWGN channel are shown in Fig. 7. When large complexity is
tolerable, ADP(80, 50) & HDD outperforms the popular KV
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Fig. 7. RS (255,239) over AWGN channel

method proposed in [30] (with maximum multiplicity 100) by
1.0 dB and algebraic HDD by 1.65 dB respectively at an FER
= 10−4. We also compare this algorithm with BMA order-
1 [13], ADP(80, 50) & HDD is also about 0.6 dB better
than BMA (1) at an FER =10−4. Compared with the ML
lower bound obtained by using a near ML decoding algorithm
recently proposed in [35], the adaptive algorithm is still 0.6dB
away from ML lower bound at an FER =10−3. With reason-
able complexity, ADP(5,1) & HDD outperforms the KV(100)
at an FER =10−4. Using the “min sum” approximation, it will
incur about 0.3dB loss at an FER =10−4. At the price of a
slight increase in complexity, ADP(20,3) & HDD can provide
comparable performance with BMA(1) at FER =10−4.

C. Rayleigh Fading Channels

Now we study the performance of the proposed iterative
decoding of RS codes over Rayleigh fading channels. It is
assumed that perfect channel state information is available at
the receiver (CSIR). We first assume BPSK modulation where
the coded bits are fully interleaved at symbol-level, so that
fading remains constant over one symbol but changes from
symbol to symbol. The performance of an RS(31,15) code is
shown in Fig. 8, the proposed algorithm ADP(40,1) & HDD
outperforms algebraic HDD and GMD decoding by 6.5 dB and
3.3 dB respectively at an FER =10−4. ADP(40,3) & HDD can
further improve the asymptotic performance. The performance
of SYM ADP(40,1) & HDD is also plotted. We see that it also
offers about 5 dB gain over HDD and 1.8 dB gain over GMD
decoding respectively at an FER =10−4. Similar results are
observed for long codes with rateR = 0.5. The performance
of a shortened RS(128,64) over GF(256) is given in Fig. 9.
The proposed decoding scheme provides several dB gain over
HDD. This is a nontrivial gain considering the powerful burst
error correction capability of HDD.

We also study the performance of RS coded modulation
system over a symbol-level fully interleaved channel. We
show in Fig. 10 the performance of a shortened RS(204,188)
code with 256QAM modulation and gray mapping, which has
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similar settings as many existing standards. We can see from
the figure that the proposed algorithm ADP(20,1) & HDD
outperforms algebraic HDD by more than 7dB at an FER
= 10−3. Compared with KV decoder, there is also a 3 to
4dB gain. Though KV decoder takes the symbol-level soft
information directly, its performance is mainly limited bythe
algebraic bounded distance decoding kernel.

VI. D ISCUSSIONS ANDCONCLUSION

There are several potential extensions of the adaptive al-
gorithm. Firstly, the gain of the proposed scheme may di-
minish at high SNR’s for long codes. Further improvement
of the generic decoder without significantly increasing the
complexity remains an challenging problem. It is favorable
that the structure of the RS codes can be taken into account in
conjunction with the adaptive algorithm. Therefore, Vardyand
Be’ery’s coset decomposition [8] seems to be a promising way
to represent theHb using a relatively sparse form. It is also
natural to apply some more sophisticated decoding techniques
(e.g. constructing some sub-trellis with reasonable complexity)
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and adopt the idea of the adaptive algorithm to improve
the decoding performance. Secondly, from our simulation
experience, when the channel has memory (say ISI channel
or some FSK signaling), the performance gain of adaptive
algorithm (without turbo equalization) diminishes. How to
extend the adaptive scheme to detection and equalization such
that they can generate good quality bit-level soft information is
under investigation. Thirdly, asymptotic performance analysis
of the adaptive algorithm is also of interest. Ahmedet al.
[28] showed that using a certain probabilistic model, the
performance of the adaptive algorithm under min-sum approx-
imation can be evaluated using the OSD bound. However, the
performance bounds for the exact scheme is still of interest
especially in the high SNR’s.

In conclusion, we present a novel iterative SISO decoding
algorithm of RS codes by adapting the parity check matrix.
The proposed algorithm can be geometrically interpreted as
a two-stage gradient descent algorithm with an adaptive po-
tential function. Simulation results show that the proposed
algorithm compares favorably with known RS codes soft
decoding methods over various channels for a wide range of
RS codes of practical interest. Besides, the proposed algorithm
and its variations also provide flexible performance-complexity
trade-off for different applications.
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