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Abstract

Space Time Block Codes (STBC) are designed for Multiple Input - Multiple Output

(MIMO) channels. In order to avoid errors, Single Input Single Output (SISO) fading

channels require long coding blocks and interleavers that result in high delays. If one

wishes to increase the data rate it is necessary to take advantage of space diversity.

Early STBC, that where developed by Alamouti [7] for known channels and by Tarokh

[6] for unknown channels, have been proven to increase the performance of channels char-

acterized by Rayleigh fading. Codes that are based on division algebras have by definition

non-zero diversity and therefore are suitable for STBC in order to achieve high rates at low

Symbol to Noise Ratio (SNR). This work presents new high diversity group based STBCs

with improved performance both in known and unknown channels. We describe two new

sets of codes for multiple antenna communication. The first set is a set of ‘superquater-

nions’ and improves considerably on the Alamouti codes. It is based on the mathematical

fact that “normalized” integral quaternions are very well distributed over the unit sphere

in 4 dimensional Euclidean space. The second set of codes gives arrays of 3 by 3 unitary

matrices with full diversity. Here the idea is to use cosets of finite subgroups of division

algebras that are 9 dimensional over their center, which is a finite cyclotomic extension

of the field of rational numbers. It is shown that these codes outperform Alamouti and

Gmr.
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1 Introduction

Multiple antenna wireless communication is known to be a promising solution to the problem

of increasing data rates without increasing the transmission power. It has been established in

many recent publications ([1]) that differential unitary space time transmissions are very well

suited for unknown continuously varying Rayleigh flat fading channels.

The design of such codes is comprised of a set of L unitary M × M matrices, where M

is the number of transmission antennae. In most cases L is of the form 2RM where R is the

transmission rate. The principal criterion for the quality of such sets is its so called diversity

min{1

2
M
√

|det(A − B)|}

where A,B are distinct members of the set. The set is said to have full diversity if this number

is positive.

Recent effort has concentrated on the development of sets which are groups. For example

the exhaustive paper [3] characterizes the class of sets of unitary matrices that have full diversity

and form a group. In this paper our approach has been to look at sets of matrices inside division

algebras that are finite dimensional over the field of rational numbers Q. The basic motivation

was that any set of non-zero elements of a division algebra is assured to have full diversity.

The first division algebra that comes to mind is the classical ring of Hamilton’s quaternions.

This is a four dimensional algebra over Q and its tensor product with R is also a division algebra

(this is the celebrated algebra discovered by Hamilton, later shown by Frobenius to be unique.)

In fact Alamouti’s renowned method ([7]) employs quaternions in disguise. We investigate

sets of quaternion elements, called “super-quaternions”, that are “layers” in a very interesting

infinite group that seems to be a new object. Our results were already an improvement over

existing methods.

Trying to extend our search to the 3-dimensional case, i.e. algebras which are finite dimen-

sional over Q and are 9-dimensional over their center, we developed a completely new method

to create sets of 3×3 unitary matrices with good diversity qualities. Our simulations show that

our codes outperform all known codes. Our method is based on taking cosets of known finite

groups inside the multiplicative group of the division algebra. The heart of the method is its

choice of “good” coset representatives. This is an elaborate scheme. Fortunately, in dimension

3 this scheme involves solving some linear equations. Trying to extend our considerations to

degree 4 leads to a set of quadratic equations that seem harder to solve.
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An additional aspect of our development in dimension 3 is that assuring unitarity in this

dimension is non-trivial. This is in contrast with the 2 dimensional case in which unitarity is

easily achieved: every element of norm 1 is automatically unitary.

2 Extensions of the Quaternion Groups

This section presents new codes, that are based on extensions of the quaternion groups.

2.1 Super Quaternion sets

The quaternion algebra, developed by Hamilton, is the 4 dimensional algebra over the real

numbers with basis

1, i, j,k

and the familiar rules of multiplication:

i2 = j2 = k2 = −1, ij = −ji = k.

The 8 quaternions

±1,±i,±j,±k

form a group, the renowned quaternion group. The quaternion algebra has a 2 dimensional com-

plex representation, i.e. an embedding in M2(C), in which to the elements 1, i, j,k correspond

the matrices

Q1 =





1 0

0 1



 Qi =





0 1

−1 0



 Qj =





i 0

0 −i



 Qk =





0 −i

−i 0



 .

The set {±1,±i,±j,±k} is a group of order 8 and thus our representation has eight matrices.

We denote the quaternion group of order 8 by H2. If the transmission rate is R = log2 8/2 then

the diversity product (to be defined below) is ζH2
= 0.7071.

We now define the super-quaternion group as

SH =

{

x1 + x2i + x3j + x4k
√

x2
1 + x2

2 + x2
3 + x2

4

∣

∣ 0 < x2
1 + x2

2 + x2
3 + x2

4, xi ∈ Z

}

.

It is easy to see that SH is a group. It is of course an infinite group, and is a kind of lattice

in SU(2). How does this group look like? The integral solutions of the equation

x2
1 + x2

2 + x2
3 + x2

4 = 1, xi ∈ Z
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are simply the eight elements of the quaternion group H. For each prime integer p let

SH(p) =

{

x1 + x2i + x3j + x4k
√

x2
1 + x2

2 + x2
3 + x2

4

∣

∣ x2
1 + x2

2 + x2
3 + x2

4 a power of p

}

.

It is clear that each SH(p) is a subgroup. It can be shown that an element of SH,

whose denominator is divisible by p1, . . . , pk, is an almost unique product of elements of

SH(p1), . . . , SH(pk) ([8, 9]).

We define the n-th layer of our group as the set of all quaternions of the form

Ln
∆
=

{

x0 + x1i + x2j + x3k√
n

:
∑

x2
i = n, xi ∈ Z

}

(2.1)

where x0, x1, x2, x3 are relatively prime integers such that
∑

x2
i = n. It may well be empty. For

example L8 is empty because in every integer solution of the equation x2
0 +x2

1 +x2
2 +x2

3 = 8 the

numbers x0, x1, x2, x3 are all even so there is no solution in which the greatest common divisor

is 1. But it follows from a famous formula of Jacobi that if p is an odd prime number then the

size of Lpn is pn−1(p + 1).

We use the union of layers to generate sets of matrices. Thus we define

Sn =







x1I + x2Qi + x3Qj + x4Qk
√

x2
1 + x2

2 + x2
3 + x2

4

∣

∣

∣

∣

∣

∣

0 < x2
1 + x2

2 + x2
3 + x2

4 ≤ n,

xi ∈ Z







. (2.2)

The matrices in Sn are unitary. Indeed, if q is a linear combination of matrices in S2,

q = x1Q1 + x2Qi + x3Qj + x4Qk, and q̄ is the conjugate transpose matrix, then q̄ = x1Q1 −
x2Qi − x3Qj − x4Qk then qq̄ = ‖q‖2 = (x2

1 + x2
2 + x2

3 + x2
4)Q1 = kI. Therefore, all the elements

in Sn are normalized by 1√
k

and they become unitary matrices. Sn is the disjoint union of the

layers L1, . . . , Ln.

In this case, L1 is Q2 in Eq. 2.1 and it has eight elements. The calculation of the number

of elements in each layer (which is the number of solutions to Eq. 2.2), shows that |L2| =

24, |L3| = 32, |L4| = 24, etc.

By examining the layers Li of the super quaternion, we observe that in some cases the

same matrix element can exist in more than one layer. If (x1, ..., xn) is in layer Li, then

(αx1, αx2, ..., αxn) must be in layer Lα2i, and since the elements are normalized, the matrices

are equal. Therefore, for α > 1 we have Li ⊆ Lα2i. For example, the element Qa ∈ L1 (the

solution (1, 0, 0, 0)), is equal to element 2Qa/
√

4 ∈ L4 (the solution (2, 0, 0, 0)). To eliminate

the duplicate elements, we have to reduce these solutions in order to calculate correctly Sn and

its diversity product (gcd of all xi is 1).
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2.2 Super Quaternion diversity

In this section we present the diversity of the Super Quaternion structure.

First we calculate the diversity of the commonly used orthogonal design for comparison.

For each couple of constellation symbols S1, S2 we transmit the matrix

CS1S2
=





S1 S2

−S∗
2 S∗

1



 .

The diversity is defined by

ζ =
1

2
min det(CS1S2

− CS
′

1
S
′

2

)| 1

m =
1

2
min

√

|S1 − S ′
1|2 + |S2 − S ′

2|2

where the min is over all the codewords CS1S2
and CS

′

1
S
′

2

. Without loss of generality, we can

assume that S1 6= S ′
1. In this case, we minimize the expression above by choosing S2 = S ′

2. We

can write ζ as:

ζ =
1

2
min|S1 − S ′

1| =
1

2
min|(S1 − S ′

1)S
∗
1/ |S1| | =

1

2
min ||S1| − S ′

1S
∗
1/ |S1|| . (2.3)

Let S1 = 1√
2
e2kπi/n, S ′

1 = 1√
2
e2k′πi/n for n − PSK code (the normalization by 1√

2
aims to

maintain transmit power of 1).

ζ =
1

2
min
k 6=k′

1√
2
|1 − e2(k′−k)πi/n|. (2.4)

|1 − e2(k′−k)πi/n|2 = |1 − e2k′′πi/n|2

= (1 − cos(2k′′π/n))2 + (sin(2k′′π/n))2

= 2(1 − cos(2k′′π/n)) = 4 sin2(k′′π/n).

(2.5)

Substituting Eq. 2.5 in Eq. 2.4 we have

ζ =
1

2
min
k 6=k′

1√
2
|1 − e2(k′−k)πi/n| =

1

2
min
k′′ 6=0

1√
2
|2 sin(k′′π/n)|

=
1√
2

min
k′′ 6=0

| sin(k′′π/n)| =
1√
2

sin(π/n).

Table 1 summarizes the diversity of some of the new quaternion structures:
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R L M ζ Diversity bound (Eq. 4.12) Group structure

2.5 32 2 0.3827 0.53 S2

3 64 2 0.3029 0.42 S3

3.161 80 2 0.2588 0.39 S4

3.5 128 2 0.1602 0.3332 S5

3.904 224 2 0.1602 0.2762 S6

4.085 288 2 0.1602 0.2542 S7 = S8

4.292 384 2 0.1374 0.2308 S9

4.522 528 2 0.0709 0.2076 S10

2.5 32 2 0.4082 0.53 L3

2.29 24 2 0.5 0.5808 L2

2.79 48 2 0.3827 0.4638 Q2 ∪ L2 ∪ L4 = SH(2)

Table 1: Super-quaternion structures (diversity products ζ, transmission rate R, size of the

constellation L, M number of antennas) and the diversity upper bound computed by Eq. 4.12

For comparison, the quaternion groups Q2, Q4 and Q5 diversity (from [3]) are shown in table

2:

R L M ζ Group structure

1.5 8 2 0.7071 Quaternion group Q2

2.5 32 2 0.1951 Quaternion group Q4

3 64 2 0.0951 Quaternion group Q5

Table 2: Quaternion groups and their diversity products ζ, transmission rate R, size of the

constellation L and M the number of antenna - from [3].

We can see that the codes in Table 1 that are proposed in this paper outperform the ζ

values in Table 2 with the same R. Generally, the diversity is in opposite ratio to the rate,

though as it may be seen from Table 1 the diversity also depends on the specific unions, that

may achieve better diversity for a given rate.
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2.2.1 Quaternion Group Example

In Q2 there are eight code words (eight matrices):





−1 0

0 −1



 ,





−i 0

0 i



 ,





0 −1

1 0



 ,





0 −i

−i 0



 ,





0 i

i 0



 ,





0 1

−1 0



 ,





i 0

0 −i



 ,





1 0

0 1



 .

The rate for this code is 1
2
log2(8) = 1.5 bits per channel use. The diversity of this code

is ζ{Q2} = 0.707, which is equal to the diversity of Orthogonal Design [7] code for BPSK

constellation that has a mere 1 bit per channel use rate.

Figure 1 describes the Quaternion group constellation for rate 1.5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

Figure 1: A Quaternion group constellation for rate 1.5

2.2.2 Super Quaternion Set Example

The Super Quaternion set Q2 ∪L2 ∪L4 contains 48 code words and is infact the group SH(2).

The rate of this code is 2.7925 and the code diversity is 0.3827. By applying Orthogonal Design

to 6-PSK we get merely a 0.3536 diversity for a lesser rate of 2.585.
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Figure 2: A Super Quaternion constellation of the set Q2 ∪ L2 ∪ L4 for rate 2.8

3 Unitary 3 × 3 matrices from certain cyclic algebras

In our efforts to find good sets of 3× 3 unitary matrices, we investigate “cyclic algebras” which

are defined below. Let K/k be a cyclic Galois extension of dimension n, so that its Galois

group is cyclic of order n. Let σ be a generator of the Galois group. Assume that 0 6= γ ∈ k.

The cyclic algebra associated with this data is defined, as a left K vector space, as

K ⊕ Kb ⊕ · · · ⊕ Kbn−1.

The multiplication is defined by the following equations: bn = γ and ba = σ(a)b ∀a ∈ K.

We will denote such an algebra as (K/k, γ).

Let m, r be relatively prime integers, and let n be the order of r in the multiplicative group

(Z/(m))⋆. Let s = (r − 1,m) and t = m/s. Suppose that (n, t) = 1 and n|s. We can now

define a central simple algebra over Q. This algebra is constructed by taking the cyclotomic

extension, K, generated by the roots of unity of order m. The Galois group of this extension

is the multiplicative group (Z/(m))⋆, and r defines a cyclic subgroup of order n in the Galois

group, whose generator is an automorphism, σ, which raises roots of unity to the r-th power.

The center of our algebra will be the fixed subfield of this automorphism, k, and σ is a generator
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of the Galois group of the extension K/k. Let ξ be a primitive root of unity of order m. The

algebra is defined as the cyclic algebra Am,r = (K/k, ξt).

For certain values of m, r, Am,r is a division algebra, for instance (m, r) = (21, 4). The

precise conditions are quite complicated, and are spelled out completely in [2].

There is a natural embedding of this algebra in Mn(C), which comes from the regular

representation of the algebra as a left vector space of dimension n over K. Explicitly, the

element a0 + a1b + a2b
2 + · · · + an−1b

n−1 maps to





















a0 a1 a2 · · · an−1

γσ(an−1) σ(a0) σ(a1) · · · σ(an−2)

γσ2(an−2) γσ2(an−1) σ2(a0) · · · σ2(an−3)

· · · · · · · · · · · · · · ·
γσn−1(a1) γσn−1(a2) γσn−1(a3) · · · σn−1(an−2)





















.

We now wish to find “unitary” elements in the algebra we have defined. The definition will

depend on an anti-automorphism, τ , of the algebra, which corresponds to taking the conjugate

transpose of a matrix. The “unitary” elements will be those such that τ(x) = x−1. The field

K will be invariant under τ . Thus, it is enough to define τ on a primitive root of unity, and

we take τ(ξ) = ξ−1. This is simply the restriction of complex conjugation to K under a fixed

embedding of K in C. It remains to define τ on b, and since b should be unitary, we must

have τ(b) = b−1 = γ−1bn−1. From the requirement τ be an anti-automorphism, this defines τ

completely, and it is easy to see that it is well defined. Note that on elements of K, σ and τ

commute and that τ 2 = id.

We are now in a position to find many unitary n × n matrices that have positive diversity,

since all the elements we find will be in a division algebra. In fact, we will need to divide by

square roots. If n is odd, then adding a square root of a rational number cannot split the

algebra, hence we will still have a division algebra.

When looking for unitary elements, we are looking for

x =
n−1
∑

i=0

aib
i

where ai ∈ K. Note that τ(x) = τ(a0) +
∑n−1

i=1 γ−1σi(τ(an−i))b
i. Now, we require xτ(x) = 1 ∈

K. If z = xτ(x) then let z =
∑n−1

i=0 αib
i. It is easy to see that τ(z) = z so we get α0 = τ(α0)

and αi = γ−1σi(τ(αn−i)). For instance, if n = 3, the equation xτ(x) = 1 is really just two (and

not three) equations, because if α1 = 0 then automatically α2 = 0.
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We now specialize to the case with the case n = 3, let us consider the case where a0, a1 are

known, and are in our extended algebra. In this case we get

xτ(x) = (a0 + a1b + a2b
2)(τ(a0) + γ−1σ(τ(a2))b + γ−1σ2(τ(a1))b

2) =

= (a0τ(a0) + a1τ(a1) + a2τ(a2)) + (γ−1a0σ(τ(a2)) + a1σ(τ(a0)) + γ−1σ(τ(a1)a2))b + α2b
2

so there are really only two equations, the second of which is of the form

ασ(τ(a2)) + βa2 = δ

where α = γ−1a0, β = γ−1σ(τ(a1)), δ = −a1σ(τ(a0)), and in particular α, β, δ ∈ K.

Since K is a vector space over Q of dimension ϕ(m), we get ϕ(m) linear equations in the

ϕ(m) coordinates of a2 as an element in K.

Thus, given a0, a1 ∈ K, we check if there are solutions to the linear set of equations. For

each solution, a2, we calculate

a0τ(a0) + a1τ(a1) + a2τ(a2) = s(a0, a1, a2) ∈ K.

We divide all three values by
√

s(a0, a1, a2), to get a unitary matrix. Note, that to calculate

σ(
√

s) we can simply take
√

σ(s).

If a0, a1 are rational, it can be seen that if a2
0 6= a2

1 then there is a solution. Indeed, if we

set a2 = xγ + yγ−1, we have σ(a2) = a2 and τ(a2) = yγ + xγ−1. The equation becomes

γ−1a0(yγ + xγ−1) + γ−1a1(xγ + yγ−1) = −a0a1.

Thus, we have in fact two equations a0y + a1x = −a0a1 and a1y + a0x = 0. There is one

solution, and it is x =
a0a2

1

a2

0
−a2

1

, y = − a2

0
a1

a2

0
−a2

1

.

For n > 3 a similar procedure gives n equations, which are actually ⌈n+1
2
⌉ equations. If we

fix, as above, the value of a0, a1, . . . , an−2 we get, disregarding the equation for the coefficient

of b0, at least two equations, involving only an−1. Thus we have at least 2ϕ(m), where ϕ(m)

denotes Euler’s totient function, equations in the ϕ(m) coordinates of an−1. Since the system

of equations is overdetermined, this procedure has very little chance of working. On the other

hand, if more than one ai variable is left unknown, the equations become quadratic, and this

seems much more difficult to solve. Thus, the ideas of this section seem to be restricted to the

case n ≤ 3. Note that for n = 2 the same procedure can be used.
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4 Rate Bound for 2-transmit Diversity

This section presents general bounds for 2-transmit diversity both for the case of orthogonal

design and the specific case of unitary design.

4.1 Isometry to R4

Let M2 be a set of orthogonal matrices of the form m2 =





S1 S2

−S∗
2 S∗

1



 for each m2 ∈ M2 S1

and S2 are some complex symbols. We define the following isometry

g : M2 −→ R4 (4.1)

Assume S1 = a + bi and S2 = c + di. Then, g(m2) = (a, b, c, d). It is easy to see that g is an

isometry if we define the distance between two matrices m2,m
′

2 in M2 to be

d(m2,m
′

2) =
1

2

√

det(
∣

∣m2 − m
′

2

∣

∣) (4.2)

and the distance between two vectors in R4 to be half the Euclidian distance:

d((a, b, c, d), (a′, b′, c′, d′)) =
1

2

√

(a − a′)2 + (b − b′)2 + (c − c′)2 + (d − d′)2. (4.3)

The minimal distance among the matrices in M2, according to Eq. 4.2, is the diversity of M2

by definition.

4.2 Orthogonal Design

Assume we have a set of n vectors {(ai, bi, ci, di)}n
i=1 with minimal distance (diversity) ζ, and

maximal norm A (distance from (0,0,0,0)) How the parameters n, ζ and A are related ?

Every vector {(ai, bi, ci, di)} is surrounded by a 4-dimensional ball of radius ζ/2 that does

not contain other vectors. The volume of this ball is π2

2
ζ4. Since all the vectors have at most

norm A, all the balls that are defined by the volume π2

2
ζ4, are confined within the ball of radius

A + ζ/2, which has the volume
π2

2
(2A + ζ)4. (4.4)

It follows that

n ≤
π2

2
(2A + ζ)4

π2

2
ζ4

=

(

2A + ζ

ζ

)4

.
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Given a maximal transmit power of a matrix of m2 ∈ M2, i.e. max{det(m2)|m2 ∈ M2} = P ,

and a minimal diversity ζ, then the maximal number of matrices in M2 is

n ≤
(√

P + ζ

ζ

)4

(4.5)

and the maximal rate is

Rmax ≤ 2(log2(
√

P + ζ) − log2(ζ)). (4.6)

4.3 Unitary Design

For unitary matrices a tighter bound can be found. Since unitary matrices have determinant 1,

the isometry of a unitary set of matrices to R, is equivalent to placing vectors on the envelope

of a 4-dimensional sphere, whose volume is π2

2
ζ4. The ‘area’ of this envelope is

d

dx

(

π2

2
x4

)

x=1

= 2π2 (4.7)

In order to calculate the free space around each vector on the envelope of the four dimen-

sional sphere we change variables:

x
∆
= R cos(γ) cos(θ) cos(ϕ) y

∆
= R cos(γ) cos(θ) sin(ϕ)

z
∆
= R cos(γ) sin(θ) w

∆
= R sin(γ).

(4.8)

The absolute value of the Jacobian of these variables is:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos(γ) cos(θ) cos(ϕ) cos(γ) cos(θ) sin(ϕ) cos(γ) sin(θ) sin(γ)

−R sin(γ) cos(θ) cos(ϕ) −Rsin(γ) cos(θ) sin(ϕ) −Rsin(γ) sin(θ) R cos(γ)

−R cos(γ) sin(θ) cos(ϕ) −R cos(γ) sin(θ) sin(ϕ) R cos(γ) cos(θ) 0

R cos(γ) cos(θ) sin(ϕ) −R cos(γ) cos(θ) cos(ϕ) 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= R3 cos2(γ) cos(θ).

(4.9)

Without loss of generality we calculate the free space around the vector
→
r0= (wo, x0, y0, z0),

(equivalently defined by R0, γ0, θ0 and ϕ0) on the w axis, i.e. w0 = 1, x0 = y0 = z0 = 0 or in

our new coordinates R0 = 1, γ0 = π/2.

For diversity ζ we calculate the free three-dimensional area around
→
r0 by integrating over

the envelope of the sphere and over the vectors within distance smaller than ζ/2 (by saying

distance we mean the definition in Eq. 4.3). The vector
→
r on the sphere satisfies:

d(
→
r ,

→
r0) =

1

2

√

x2 + y2 + z2 + (w − 1)2 =
1

2

√
2 − 2w =

1

2

√

2 − 2 sin(γ).
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The free ‘area’ is therefore confined to

d(
→
r ,

→
r0) =

1

2

√

2 − 2 sin(γ) ≤ ζ/2

sin(γ) ≥ 1 − 1

2
ζ2

γ ≥ arcsin

(

1 − ζ2

2

)

.

Now, we can calculate the free ‘area’ around
→
r0:

∫ ∫ ∫

d(
→

r ,
→

r0)≤ζ/2
R3 cos2(γ) cos(θ)dγdθdϕ =

∫ ∫ ∫

γ≥arcsin
�
1− ζ2

2

� cos2(γ) cos(θ)dγdθdϕ =

∫ 2π

0
dϕ
∫

pi

2

−pi

2

cos(θ)dθ
∫

pi

2

arcsin
�
1− ζ2

2

� cos2(γ)dγ = 2π · sin(θ)|π/2
−π/2 ·

∫
pi

2

arcsin
�
1− ζ2

2

�(1
2
(1 + cos(2γ))dγ =

2π
[

π
2
− arcsin

(

1 − ζ2

2

)

− 1
2
sin(2arcsin

(

1 − ζ2

2

)

)
]

.

Using the identity:

sin(2arcsinx) = 2 sin(arcsinx) cos(arcsinx) = 2x
√

1 − x2

we get that the free ‘area’ is:

∫ ∫ ∫

d(
→
r ,

→
r0) ≤ ζ/2R3 cos2(γ) cos(θ)dγdθdϕ

= 2π

[

π

2
− arcsin

(

1 − ζ2

2

)

− ζ

(

1 − ζ2

2

)

√

1 − ζ2

4

]

.

(4.10)

The size of a unitary constellation with diversity ζ according to Eqs. 4.7 and 4.10 is smaller

than

n ≤ π

π
2
− arcsin

(

1 − ζ2

2

)

− ζ
(

1 − ζ2

2

)
√

1 − ζ2

4

. (4.11)

and the maximal achieved rate is

Rmax ≤ 1

2

(

log2(π) − log2(
π

2
− arcsin

(

1 − ζ2

2

)

− ζ

(

1 − ζ2

2

)

√

1 − ζ2

4
)

)

. (4.12)

Examples:

1. The Super Quaternion group Q2 ∪ L2 ∪ L4 has diversity ζ = 0.3827 and rate R = 2.79,

while the bound on the rate of a set with diversity ζ = 0.3827 is Rmax ≤ 3.2.

2. The Super Quaternion set S8 has diversity ζ = 0.1602 and rate R = 4, while the bound

on the rate of a set with such diversity is Rmax ≤ 5.
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5 Finding good cosets in dimension 3

In this section n = 3. Our purpose here to exhibit good coset extensions of some Gm,r groups,

i.e. sets of the form a ·Gm,r, with a in the algebra, that are disjoint from each other. Using the

terminology in section 3, we know that there is an infinite number of unitary matrices we can

try, simply by taking a0, a1 to be rational. In fact, if we take a0 = 1 and a1 very small, we will

get a unitary matrix that is very close to being the identity. This gives us the ability to make

small “changes” to elements of the algebra.

We can now describe two different methods for trying to find cosets. In the first method, we

construct a number of elements of the algebra in the way described above. We then simply take

random multiplications of these elements. For each new element we get we check the diversity

against the set of matrices we have so far. It is easy to see that this will be the diversity of the

entire coset. We do this many times, and choose the coset that has the best diversity.

The second method is to construct a set of matrices that are close to the identity. One way

to do this is to take a0 = 1, and for each basis element of K over Q and each of the three

elements of the first row of the matrix, we add a small rational multiple of this basis element.

We can decrease this multiple as we go along, so that we make smaller and smaller changes.

If we have a set of matrices, and a trial matrix, we try changing it “slightly” in all directions,

and take the best one. If we can no longer improve, we decrease the multiple and try again.

We can also try to add two or more cosets at a time, and try changes in one or more of the

matrices. So far, when attempting to add two cosets, the best method seems to be taking two

additional elements and trying to change both of them slowly.
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Set multiple at initial value

ISet of matrices       Initial trial matrix
inputs

Generate a set of “small
matrices” using the multiple

Multiply trial matrix by each

small matrix

Does any product gives
 a better  diversity ?

Change trial
matrix

yes
Decrease
multiple

No

Is the multiple small
enough ?

No

Finish
yes

Figure 3: Flow chart for the coset computation

6 Results

6.1 Results of Super Quaternion structures

Due to the orthogonal design of the Super Quaternion structure, the Super Quaternion codes

can be implemented over unknown channels as well as known channels. The two following

graphs show Super Quaternion performance compared to orthogonal design over known and

unknown channels. At rate 4 it can be seen than Super Quaternion design outperforms the

Orthogonal design [7] by almost 2 dB at high SNR.
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Figure 4: Comparison of Super Quaternion to other codes at high rates over known channels.

* marks codes that where concatenated to whole rate for bit allocation
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Figure 5: Comparison of Super Quaternion and Alamouti [7] Orthogonal design over known

channels (the codes are available at different rates)
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Figure 6: Comparison between the Super Quaternion and Tarokh [6] Orthogonal design over

unknown channels (the codes are available at different rates)

6.2 Results of coset search

When attempting to find a good set of 512 3 × 3 unitary matrices, using the Gm,r groups, the

best diversity we can get is 0.184, for m = 186, r = 25 (there are actually 558 matrices, but for

practical purposes it is often best to take a power of 2 number of matrices). However, when

taking m = 63, r = 37 and adjoining two additional cosets (using the second method mentioned

above, adding both cosets at the same time), we achieve a diversity of 0.224. When running

simulations of error rates compared to SNR, we see that around an error rate of 10−2, the new

set has an SNR that is better by almost 1dB than the best Gm,r group.
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Figure 7: Comparison of rate 3 cosets over known channels to Gmr, Alamouti and SU(3) ([4])

performance

7 Conclusion

We propose new STBC that are based on division algebras. They achieve high rates at low

Symbol to Noise Ratio (SNR). This work presents improved performance both in known and

unknown channels. We describe two new sets of codes. The first set is a set of ‘superquaternions’

that improves considerably on the Alamouti codes. It is based on the mathematical fact that

“normalized” integral quaternions are very well distributed over the unit sphere in 4 dimensional

Euclidean space. The second set of codes gives arrays of 3 by 3 unitary matrices with full

diversity. Here the idea is to use cosets of finite subgroups of division algebras that are 9

dimensional over their center, which is a finite cyclotomic extension of the field of rational

numbers. It is shown that these codes outperform Alamouti and Gmr.
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In the future, we intend to extend our techniques and develop codes for 4 transmit antennas.
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