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ON FILTERING OF MARKOV CHAINS IN STRONG NOISE

P.CHIGANSKY

Abstract. The filtering problem for a finite state Markov chain observed in
white noise is addressed in continuous time. The low signal to noise asymptotic
is derived for the performance indices of MAP and MMSE estimates of the
signal.

1. Introduction

Consider the continuous time signal/observation pair (Xt, Yt)t≥0, where the sig-

nal X is a Markov chain with values in S = {a1, ..., ad}, transition intensities matrix
Λ and initial distribution ν. The observation process Y is generated by

Yt =

∫ t

0

h(Xs)ds+ σBt,

where h is an S 7→ R function, σ > 0 is the noise intensity and B is a Brownian
motion, independent of X . All the random variables are assumed to be supported
on a complete probability space (Ω,F ,P).

The conditional probabilities πt(i) = P(Xt = ai|FY
t ), i = 1, ..., d, where FY

t =
σ{Ys, 0 ≤ s ≤ t} is the σ-algebra of events generated by the observations past, are
the main building blocks in the signal estimation problem. In particular the maxi-
mum a posteriori probability (MAP) and the minimal mean square error (MMSE)
estimates are given by

X̄t = argmax
ai∈S

πt(i) and X̂t =

d∑

i=1

aiπt(i), t ≥ 0, (1.1)

respectively. The vector πt of conditional probabilities satisfies the Wonham ([6],
see also [5]) filtering Itô stochastic differential equation (SDE)

dπt = Λ∗πtdt+ σ−2
(
diag(πt)− πtπ

∗
t

)(
dYt − πt(h)dt

)
, π0 = ν, (1.2)

where diag(x), x ∈ R
d stands for the scalar matrix with xi on the diagonal, h is

a column vector with entries h(ai) and x∗ is the transposed of x. Hereafter the
functions on S are identified with the vectors in R

d and the space of probability

measures on S is identified with the simplex Sd−1 = {x ∈ R
d : xi ≥ 0,

∑d
i=1 xi = 1}.

For any f : S 7→ R and η ∈ Sd−1 we denote η(f) =
∑d

i=1 ηif(ai).
While the estimates can be efficiently calculated via (1.1) and (1.2), not much is

known about the optimal performance they attain:

Emse(t) = min
ζ∈L2(Ω,FY

t ,P)
E
(
Xt − ζ

)2
= E

(
Xt − X̂t

)2
= µ(a2)− Eπ2

t (a) (1.3)
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and

Emap(t) = min
ζ∈L∞(Ω,FY

t ,P)
P
(
Xt 6= ζ

)
= 1− Emax

ai∈S

πt(i). (1.4)

Since the process B̄t = σ−1
(
Yt−

∫ t

0 πs(h)ds
)
is the innovation Brownian motion,

the solution of (1.2) is a Markov process evolving in Sd−1. Moreover as πt takes
values in a compact state space it is guaranteed to have at least one invariant
measureM(dη) (on the Borel field of Sd−1), which was recently shown to be unique
(see [1], [2]) in the case of ergodic chain X . Hence both limits

Emse := lim
t→∞

Emse(t) and Emap := lim
t→∞

Emap(t)

exist and do not depend on ν.
In the case d = 2, the exact expressions are available for both performance

indices in terms of integrals with respect to the stationary probability density of πt,
which is explicitly computable by solving the corresponding Kolmogorov-Fokker-
Plank equation (see [6], Chapter 15 §2 in [5]). The closed form solution for the KFP
equation is unavailable in the multivariate case d > 2, which makes the performance
analysis of the filter (1.2) much more complicated.

The asymptotic expansion of Emap is given in [4] for the slow switching signal,
when the transition intensities matrix of the signal is Λε := Λε and ε → 0. It is easy
to see that this asymptotic is equivalent to the high signal-to-noise limit σ → 0:

Eσ
map =

( d∑

i=1

µi

∑

j 6=i

2λij

(hi − hj)2

)
σ2 log

( 1

σ2

)(
1 + o(1)

)
, σ → 0

where µ is the stationary invariant distribution of X , i.e. µi = limt→∞ P(Xt =
ai) > 0, i = 1, ..., d and hi 6= hj for all i 6= j is assumed. Similar asymptotic is
shown to hold for Eσ

mse in1 [3]:

Eσ
mse =

d∑

i=1

∑

j 6=i

2µiλij

(hi − hj)2
(
ai − aj

)2
σ2 log

( 1

σ2

)(
1 + o(1)

)
, σ → 0

These limits reveal how the invariant measure Mσ(dη) of the filtering process πσ
t

concentrates as σ → 0 around M0(dη) =
∑d

i=1 µiδei(dη), where ei is a probability
vector with the unit i-th entry.

In this note the low signal-to-noise asymptotic σ → ∞ is considered. In this
regime the optimal estimates converge to the corresponding trivial a priori esti-
mates. The main result is the next theorem, which describes the concentration of
Mσ(dη) around M∞(dη) = δµ(dη).

Theorem 1.1. For any t ≥ 0

σ
(
πσ
t − νt

) L
p

−−−−→
σ→∞

ξt, p ≥ 1 (1.5)

where νt = eΛ
∗tν and ξt is a zero mean Gaussian process with the covariance matrix

Pt, being solution of the Lyapunov equation

Ṗt = Λ∗P + PΛ +
(
diag(νt)− νtν

∗
t

)
hh∗

(
diag(νt)− νtν

∗
t

)
, P0 = 0. (1.6)

1The discrete time case is treated in [3], but the result and all the arguments can be easily
translated to the continuous-time
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If X is ergodic the algebraic Lyapunov equation

0 = Λ∗P + PΛ+
(
diag(µ)− µµ∗

)
hh∗

(
diag(µ) − µµ∗

)
(1.7)

has a unique solution P in the class of nonnegative definite matrices satisfying∑
ij Pij = 0. Let ξ be a zero mean Gaussian vector with covariance P , then for a

continuous function F : Sd−1 7→ R

lim
σ→∞

∫

Sd−1

F
(
σ(η − µ)

)
Mσ(dη) = EF (ξ), (1.8)

whenever the right hand side is well defined.

The immediate consequence of this theorem are asymptotic expressions for Eσ
mse

and Eσ
map

Corollary 1.2. Assume that X is ergodic, then

lim
σ→∞

σ2
(
E∞
mse − Eσ

mse

)
= a∗Pa,

where E∞
mse := µ(a2) − µ2(a) is the a priori estimation error and P is defined by

(1.7).

Eσ
map may exhibit two different asymptotics, depending on µ.

Corollary 1.3. If X is ergodic, then

lim
σ→∞

σ
(
E∞
map − Eσ

map

)
= Emax

j∈J
ξj , (1.9)

where E∞
map := 1 − maxai∈S µi is the a priori error probability, ξ is a zero mean

Gaussian random vector with covariance matrix P , defined in (1.7) and J = {i :
µi = maxj µj}. If µ has a unique maximal atom, then for any integer p ≥ 1

lim
σ→∞

σp
(
E∞
map − Eσ

map

)
= 0. (1.10)

Note that when the maximal atom of µ is not unique, the right hand side of
(1.9) remains positive in general as the following example demonstrates.

Example 1.4. For telegraphic signal d = 2 the Lyapunov equation (1.6) is one
dimensional in the required class of matrices, since −P12 = −P21 = P11 = P22 := P ,
which satisfies

0 = −2(λ12 + λ21)P + (h1 − h2)
2µ2

1µ
2
2.

For the binary chain µ1 = λ21/(λ12 + λ21) and µ2 = λ12/(λ12 + λ21) and hence

P =
(h1 − h2)

2λ2
21λ

2
12

2(λ12 + λ21)5
.

By Corollary 1.2

lim
σ→∞

σ2 lim
t→∞

(
E(Xt − µ(a))2 − E

(
Xt − πt(a)

)2)
= (a1 − a2)

2 (h1 − h2)
2λ2

21λ
2
12

2(λ12 + λ21)5
.

By Corollary 1.3 if λ12 6= λ21,

lim
σ→∞

σ
(

lim
t→∞

Emax(πt, 1− πt)−max(µ1, 1− µ1)
)
= 0,
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If λ12 = λ21 := λ, then

lim
σ→∞

σ
(

lim
t→∞

Emax(πt, 1− πt)−
1

2

)
= max

(
ξ,−ξ

)
= E|ξ| =

2
√
P

∫ ∞

0

x
1√
2π

e−x2/2dx =

√
2|h1 − h2|

λ
· 0.3989....

2. The proofs

2.1. The proof of Theorem 1.1. Since νt = exp(Λ∗t)ν solves ν̇t = Λ∗νt, ν0 = ν,
the process δσt := πσ

t − νt satisfies

dδσt = Λ∗δσt dt+ σ−1
(
diag(πσ

t )− πσ
t π

σ∗
t

)
hdB̄t, δσ0 = 0,

and hence

δσt = σ−1

∫ t

0

eΛ
∗(t−s)

(
diag(πσ

s )− πσ
s π

σ∗
s

)
hdB̄s.

Since the integrand is continuous and bounded for any t ≥ 0,

lim
σ→∞

δσt = 0, P− a.s.

which is valid in L
p for any fixed p ≥ 1 as well by dominated convergence theorem.

Let qσt be solution of the linear SDE

dqσt = Λ∗qσt dt+ σ−1
(
diag(νt)− νtν

∗
t

)
hdB̄t, qσ0 = ν. (2.1)

The process ∆σ
t = σ(πσ

t − qσt ) satisfies

d∆σ
t = Λ∗∆σ

t dt+
(
Γ(πσ

t )− Γ(νt)
)
hdB̄t, ∆σ

0 = 0,

where Γ(x) = diag(x)− xx∗ is set for brevity. Then

∆σ
t =

∫ t

0

eΛ
∗(t−s)

(
Γ(πσ

s )− Γ(νs)
)
hdB̄s

σ→∞−−−−→ 0, P− a.s and in L
p,

since Γ(·) is continuous, πσ
t and νt are bounded and πσ

t → νt as σ → ∞.
Define ξt = σ(qσt − νt), which satisfies

dξt = Λ∗ξtdt+
(
diag(νt)− νtν

∗
t

)
hdB̄t, ξ0 = 0.

Clearly ξt is a zero mean diffusion with covariance matrix given by (1.6) and (1.5)
follows

σ
(
πσ
t − νt

)
= σ

(
πσ
t − qσt

)
+ σ

(
qσt − νt

) L
p

−−−−→
σ→∞

ξt.

The stationary version (1.8) is verified by similar arguments, applied to (1.2) in
its reduced form. Namely it is regarded now as a diffusion in R

d−1, satisfying

dπσ
t =

(
a+A∗πσ

t

)
dt+ σ−1

(
diag(πσ

t )− πσ
t π

σ∗
t

)
bdB̄t, (2.2)

where a is (d− 1) dimensional column vector with entries λdj , j = 1, ..., d− 1, A is
the square matrix with entries λij − λdj 1 ≤ i, j ≤ d − 1 and b is the vector with
entries hi − hd, i = 1, ..., d − 1. To simplify the notations we do not distinguish
d− 1 dimensional vectors (as e.g. vectors in Sd−1), when embedded in R

d or Rd−1.
In particular the solutions of both (1.2) and (2.2) are identified and are denoted
by πσ

t , whose interpretation as a vector in R
d or in R

d−1 should be clear from the
context.

If (2.2) is solved subject to a random vector π0 with distribution Mσ(dη) and
independent of B̄, the process πσ

t is stationary. Note that the stationary probability
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vector µ, embedded in R
d−1 as mentioned above, satisfies 0 = a + A∗µ and thus

the process δσt = πσ
t − µ satisfies

dδσt = A∗δσt dt+ σ−1
(
diag(πσ

t )− πσ
t π

σ∗
t

)
bdB̄t, δσ0 = π0 − µ,

and hence

δσt = eA
∗t(π0 − µ) + σ−1

∫ t

0

eA
∗(t−s)

(
diag(πσ

s )− πσ
s π

σ∗
s

)
bdB̄s.

Since X is ergodic, A∗ is a stability matrix, i.e. all its eigenvalues have negative
real parts, and hence

lim
σ→∞

lim
t→∞

‖δσt ‖ = 0, P− a.s. and in L
p. (2.3)

Now let qσt be the solution of

dqσt = (a+A∗qσt )dt+ σ−1
(
diag(µ)− µµ∗

)
bdB̄t, qσ0 = µ

Then the process ∆σ
t = σ(πσ

t − qσt ) satisfies

d∆σ
t = A∗∆σ

t dt+
(
Γ(πσ

t )− Γ(µ)
)
bdB̄t, ∆σ

0 = π0 − µ

and

∆σ
t = eA

∗t(π0 − µ) +

∫ t

0

eA
∗(t−s)

(
Γ(πσ

s )− Γ(qσs )
)
bdB̄s.

Since A is stable and Γ(·) is continuous, (2.3) implies

lim
σ→∞

lim
t→∞

‖∆σ
t ‖ = 0, P− a.s. and in L

p.

The process ξt = σ(qσt − µ) satisfies

dξt = A∗ξt +
(
diag(µ)− µµ∗

)
bdB̄t, ξ0 = 0.

Since A is a stability matrix, the limit

ξ = lim
t→∞

∫ t

0

eA
∗(t−s)

(
diag(µ)− µµ∗

)
bdB̄s

exists and is a zero mean random Gaussian vector with the covariance matrix
uniquely solving

0 = A∗P + PA+
(
diag(µ)− µµ∗

)
bb∗

(
diag(µ)− µµ∗

)
.

Note that this equation is nothing but (1.7) with the imposed constrain. Since
σ(πσ

t − µ) = σ(πσ
t − qσt ) + ξt we have

lim
σ→∞

lim
t→∞

σ(πσ
t − µ) = ξ,

and (1.8) follows since

EF (σ(πσ
t − µ)) ≡

∫

Sd−1

F
(
σ(η − µ)

)
Mσ(dη), ∀t ≥ 0.

by stationarity of πσ
t . �
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2.2. The proof of Corollaries. Let πσ
t be the stationary solution of (1.2), then

by (1.3) and (1.8) one gets the claim of Corollary 1.2

σ2
(
µ(a2)− µ2(a)− Eσ

mse

)
= σ2

(
Eπ2

t (a)− µ2(a)
)
=

σ2E
(
πσ
t (a)− µ(a)

)2
= a∗Eσ2

(
πσ
t − µ

)(
πσ
t − µ

)∗
a

σ→∞−−−−→ a∗Pa.

Let J = {i : µi = maxj µj} and assume µ1 ∈ J for definiteness. Let πσ
t be the

stationary solution of (1.2). Then

σ
(
E∞
map − Eσ

map

)
= σ

(
Emax

ai∈S

πσ
t (i)−max

i
µi

)
= Eσmax

ai∈S

(πσ
t (i)− µ1) =

Emax
ai∈S

(
σ(πσ

t (i)− µi) + σ(µi − µ1)
) σ→∞−−−−→ Emax

j∈J
ξj ,

where ξ is a zero mean Gaussian random vector with covariance P given by (1.7)
and the convergence holds by (1.8), since maxi(xi), x ∈ R

d is a continuous function
and µi − µ1 < 0 for i 6∈ J .

Suppose now that µ1 is the unique maximal atom of µ and let r = maxj 6=1 |µ1 −
µj | > 0. Let Aσ := {‖πσ

t − µ‖ ≤ r/2}, where ‖ · ‖ is the usual Euclidian norm and
let I(Aσ) be the indicator function of Aσ and Ac

σ = Ω\Aσ. Then

max
ai∈S

πσ
t (i) = I(Aσ)π

σ
t (1) + I(Ac

σ)max
ai∈S

πσ
t (i) = πσ

t (1) + I(Ac
σ)
(
max
ai∈S

πσ
t (i)− πσ

t (1)
)
,

Hence for any two integers q > p ≥ 1,

σp
∣∣Emax

ai∈S

πσ
t (i)−max

i
µi

∣∣ =

σp
∣∣(Eπσ

t (1)− µ1

)
+ EI(Ac

σ)
(
max
ai∈S

πσ
t (i)− πσ

t (1)
)∣∣ =

σpEI(Ac
σ)
∣∣max
ai∈S

πσ
t (i)− πσ

t (1)
∣∣ ≤ 2σpE‖πσ

t − µ‖q
rq

σ→∞−−−−→ 0,

since by (1.8), the limit limσ→∞ σqE‖πσ
t − µ‖q exists and is finite. �
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