
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 10, OCTOBER 2006 4713

Proof of statement (H2): From (50)

Jl+1;T (k; z + 1; t) = Jl+1;T (k; z; t+ 1): (55)

Thus, from (53), Jl+1;T (k; z + 1; t) � Jl+1;T (k; z; t): Then, (H2)
follows from (18) and (54).

Proof of statement (H3): From (48) and (54)

Jl+1;B(k; z + 1; t� 1) � Jl+1;B(k; z; t):

From (55)

Jl+1;T (k; z + 1; t� 1) � Jl+1;T (k; z; t):

Then, (H3) follows from (18).
Thus, (H1), (H2), and (H3) hold for all l:
After taking limits as l goes to1 in (H1), it follows that the optimal

policy is threshold type.
Now, we show that the algorithm in Fig. 10 obtains a threshold that

minimizes the expected termination time for every k � K and z < Z .
Let G�(k; z) denote the expected time to terminate under a policy �
after the kth transmission and the subsequent backoff, if z receivers are
satisfied after k transmissions.

We show that for every k � K � 1 and z

G
�(k; z) = G

� (k; z): (56)

Since G�(k; z) = G� (K;Z)(k; z), (56) proves the optimality of
�2(K;Z):

Note that if z � Z , then G�(k; z) = G� (k; z) = 0 for every k.
Thus, (56) follows. Henceforth, we consider z < Z .

Let k = K�1. Clearly, �� transmits when at leastZ�z unsatisfied
receivers are ready. Thus, G� (K � 1; z) = X

p
+ V where fpug

are as defined in Fig. 10. Thus, (56) follows.
Now, we assume (56) for every k > k and show (56) for k. Clearly

G
� (k; z) =

X

pm
+V +

G�z�v

v=m

qm ;v(z+ v)G� (k+1; z+ v)

(57)
where fqu;v(z)g are as defined in Fig. 10. Now, from Lemmas 3 and 5,
0 < mk;z � Z � z. Thus, from (57)

G
� (k; z)

� min
1�u�Z�z

X

pu
+ V +

G�z�v

v=u

qu;v(z + v)G� (k + 1; z + v)

= min
1�u�Z�z

X

pu
+ V +

G�z�v

v=u

qu;v(z + v)G�(k + 1; z + v)

(from induction hypothesis): (58)

Clearly

G
� (k; z) � G

� (K;Z)(k; z) = G
�(k; z):

Thus, G� (k; z) = G�(k; z): The result follows.
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Unitary Space–Time Constellation Analysis:
An Upper Bound for the Diversity

Guangyue Han and Joachim Rosenthal, Senior Member, IEEE

Abstract—The diversity product and the diversity sum are two very im-
portant parameters for a good-performing unitary space-time constella-
tion. A basic question is what the maximal diversity product (or sum) is. In
this correspondence, we are going to derive general upper bounds on the
diversity sum and the diversity product for unitary constellations of any
dimension n and any size m using packing techniques on the compact Lie
group U(n).

Index Terms—Diversity product, diversity sum, multiple antennas,
space–time coding, space–time constellations.

I. INTRODUCTION

Let A be a matrix with complex entries andA� denote the conjugate
transpose of A. Let k � k denote the Frobenius norm of a matrix, i.e.,

kAk = tr(AA�):

A square matrix A is called unitary if A�A = AA� = I , where I
denotes the identity matrix. We denote by U(n) the set of all n � n
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unitary matrices. U(n) is a real algebraic variety and a smooth man-
ifold of real dimension n2. For the purpose of this correspondence, a
unitary space–time constellation (or code) V is simply a finite subset
of U(n)

V = fA1; A2; . . . ; Amg � U(n):

We say V has dimension n and size m. Unitary space–time codes
have been intensely studied in recent years and we refer the interested
readers to [1], [12], [13], [16], and the references of these papers. The
readers will find the motivation and engineering applications of such
kind of codes. The quality of a unitary space–time code is governed by
two important parameters, the diversity product and the diversity sum.

Definition 1.1: The diversity product [12] of a unitary space–time
code V is defined through

V :=
1

2
min j det(A�B)j jA;B 2 V; A 6= B :

The diversity sum [14] is defined as

V :=
1

2
p
n
minfkA�BkjA;B 2 V; A 6= Bg:

V is called fully diverse if V > 0. As explained in [8], a
space–time code with large diversity sum tends to perform well at low
signal-to-noise ratios whereas a code with a large diversity product
tends to perform well at high signal-to-noise ratios. A major coding
design problem is the construction of unitary space–time codes where
the diversity sum (or product) is optimal or near optimal inside the
set of all the space–time codes with the same parameters n, m. We
would like to remark that for every positive integer n and m, a Haar
distributed random space–time code is fully diverse with probability 1.

The purpose of this correspondence is to derive for n and m tight
upper bounds for the diversity product V and the diversity sum V .
When n = 1, trivially j det(A�B)j = kA�Bk; and it follows that
V = V in this situation. For any unitary space–time code V , we

have V � V (see [14]). Thus, by having an upper bound for V
we immediately also have an upper bound for V .

Of course it would be desirable to know for every n and m what the
largest possible value of V is. This is the motivation of the following
definition.

Definition 1.2: Let �(n;m) be the infimum of all numbers such
that for every unitary space–time code V of dimension n and size m,
one has

V � �(n;m):

Remark 1.3: As pointed out by Liang and Xia [14], there exists a
constellationV of dimensionn and sizemwith V = �(n;m). This
is due to the fact that U(n)m is a compact manifold.

The exact values of �(n;m) are only known in very few special
cases. In the case n = 1, one checks that�(1;m) = sin �

m
form � 2.

When n � 2 and m = 3, one has �(n; 3) =
p
3
2

. When m = 2, we
have �(n; 2) = 1 for n � 2. For n = 2, the values shown in the table
at the bottom of the page were computed in [14].

Liang and Xia [14] observed the connection between a unitary con-
stellation and an Euclidean sphere code and derived an upper bound
for two-dimensional unitary constellations which is very tight when
m � 100. In this correspondence, we present a new general upper
bound for �(n;m) for every dimension n and every size m while
improving certain results in [14]. To the best of our knowledge, the
new upper bounds we derived are tighter than any previously published
bounds as soon as m is sufficiently large. Independently from this
paper, Henkel [11] derived recently also upper bounds for the problem
we study.

II. UPPER BOUND ANALYSIS

In this section, we are going to study the packing problem on U(n)
and derive three upper bounds for the numbers �(n;m). All the
resulting bounds are derived by differential geometric means and all
bounds can be viewed as certain sphere-packing bounds.

From a differential geometry point of view, we can view U(n) as
an n2-dimensional compact Lie group. U(n) is also naturally a sub-
manifold of the Euclidean space 2n . In this way, U(n) will have
the induced geometry of the standard Euclidean geometry of 2n . Fi-
nally, there is a third way to see U(n) as a submanifold of another
Riemannian manifold S(n) and we will say more later.

In the sequel, we will employ standard techniques from Riemannian
geometry in order to derive upper bounds for the maximal diversity of a
constellation. Some standard textbooks on the subjects of Riemannian
geometry, differentiable manifolds and Lie groups are, e.g., [3], [10],
and [15].

The basic strategy for computing the upper bounds for �(n;m) is
as follows. Given a unitary space–time code V = fA1; A2; . . . ; Amg,
around each matrix Aj we can choose a neighborhood Nr(Aj) with
radius r (the radius will be specified later). Let Vj = V (Nr(Aj)) be
the volume of the neighborhood Nr(Aj). If all the neighborhoods are
nonoverlapping, then necessarily we will have

m

j=1

Vj � V (U(n))

where V (U(n)) denotes the total volume of unitary group U(n).
This inequality in turn will result in an upper bound for the numbers
�(n;m). By employing different metrics (Euclidean or Riemannian)
and by considering different embeddings of U(n), we derive three
different upper bounds for �(n;m).

Let M1 be the manifold consisting of all the n � n Hermitian ma-
trices, i.e.,

M1 = fHjH = H
�g:

M1 has dimension n2 and can be viewed isometrically (see, e.g., [3,
p. 189]) as Euclidean space n . Assume thatH = (Hjk) and assume
that Hjk = xjk + iyjk . We use (dH) to denote the volume element
(see, e.g., [10, p. 216]) of M1, where

(dH) =
i

2

n(n�1)=2 n

l=1

dHll

j<k

dHjk

j<k

d �Hjk

=

n

l=1

dxll
j<k

dxjk
j<k

dyjk: (2.1)

m 2 3 4 5 6 7 8 9 10 through 16

�(2;m) 1 1
2

p
3 1

3

p
6 1

4

p
10 1

5

p
15 1

6

p
21 1

7

p
28 1

8

p
36 1

2

p
2
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With a small abuse of the notation, one can check that the volume ele-
ment of M2, the manifold consisting of all the n� n skew-Hermitian
matrices, can be written as

(dH) =
i

2

n(n�1)=2
1

i

n n

l=1

dHll

j<k

dHjk

j<k

d �Hjk

=

n

l=1

dyll
j<k

dxjk
j<k

dyjk: (2.2)

For a unitary matrix U , if we differentiate U�U = I , we will have

U
�
dU + dU

�
U = 0:

Therefore, U�dU is skew-Hermitian.
A differential form on a Lie group is left-invariant if it coincides

with the differential form induced by any left-multiplication, and is
right-invariant if it coincides with the differential form induced by any
right-multiplication. We say a differential form on a Lie group is bi-in-
variant if it is left-invariant and right-invariant at the same time. For
a compact connected Lie group, left-invariance (or right-invariance)
implies bi-invariance [15]. The following lemma will characterize the
volume element of U(n).

Lemma 2.1: The volume element ofU(n) induced by the Euclidean
space 2n is bi-invariant and the volume element can be written as
(U�dU) up to a scalar constant.

Proof: The bi-invariance comes from the orthonormality of
U(n). (U�dU) is left-invariant according to the definition. Indeed, for
a fixed yet arbitrary unitary matrix V

(V U)�d(V U) = U
�
V
�
V dU = U

�
dU:

Since U(n) is a compact Lie group, (U�dU) is also right-invariant.
Because the bi-invariant n2 differential forms are unique up to a scalar,
one concludes that the volume element can be written as (U�dU). Be-
cause the bi-invariant n2 differential forms are unique up to a scalar,
one concludes that the volume element can be written as (U�dU).

The following theorem will represent the volume element of U(n)
in another way. One will see that it is closely related to the eigenvalues
of unitary matrices.

Theorem 2.2: Consider the eigenvalue decomposition of a unitary
matrix �

� = Udiag (ei� ; e
i�

; . . . ; ei� )U�: (2.3)

In order to make this decomposition unique, we assume that U 2
~U(n), where ~U(n) denote the set of all the unitary matrices with non-
negative real diagonal elements and that �1 > �2 > � � � > �n. Then
we will have

(��d�) =
j<k

e
i� � e

i�
2

d�1 ^ d�2

^ � � � ^ d�n ^ (U�dU � diag (U�dU)): (2.4)

Proof: Let D = diag (ei� ; ei� ; . . . ; ei� ) and take the differ-
ential of (2.3)

d� = dUDU
� + UdDU

� + UDdU
�
:

It follows that

��d� =UD
�
U
�
dUDU

� + UD
�
dDU

� + UdU
�

=U(D�
U
�
dUD +D

�
dD)U� + UdU

�
:

Due to the right-invariance of the volume element in U(n), it follows
that

(��d�) = (U���d�U)

= (D�
U
�
dUD � U

�
dU + idiag(d�1; d�2; . . . ; d�n)):

Note that (D�U�dUD�U�dU)jk = (ei� �ei� )Ujk , therefore, the
diagonal elements of D�U�dUD � U�dU are all zeros and the off-
diagonal elements are scaled version of the ones of U�dU . According
to (2.2), the claim in the theorem follows.

The following theorem calculates the volume of a small neighbor-
hood with Euclidean distance r. Because of the homogeneity of U(n),
the center of this small “ball” is chosen to be I without loss of gener-
ality. For a unitary matrix U , we assume ei� ’s are its eigenvalues, i.e.,
U � diag (ei� ; ei� ; . . . ; ei� ) (here � means similar). For a fixed
unitary matrix A, let

U
E
r (n;A) = fU 2 U(n)jkU � Ak � rg:

Again, because of the homogeneity of U(n), V (UE
r (n;A)) does not

depend on the choice of A. In the sequel, V (UE
r (n)) will be used

to denote V (UE
r (n;A)) for any unitary matrix A. Let S(n) denote

a 2n2 � 1-dimensional sphere centered at the origin with radius
p
n,

i.e.,

S(n) = (x1; x2; . . . ; x2n )jx21 + x
2
2 + � � �+ x

2
2n = n :

ApparentlyU(n) is a submanifold of S(n). For a particular point S0 2
S(n), let

Sr(n; S0) = fS 2 S(n)jkS � S0k � rg:

Theorem 2.3: Let

D1 = f(�1; �2; . . . ; �n)j � � � �j < �; for j = 1; 2; . . . ; ng (2.5)

and

D2 = (�1; �2; . . . ; �n)j
n

j=1

sin2
�j

2
� r2

4
(2.6)

then

V (UE
r (n))=

D \D j<k jei� �ei� j
2
d�1d�2 � � � d�n

D j<k jei� �ei� j2d�1d�2 � � � d�n
V (U(n)):

(2.7)

Proof: Note that kI � Uk2 � r is equivalent to

n

j=1

sin2
�j

2
� r2

4
:

For a given unitary matrix �, the eigenvalue decomposition
� = U�diag (ei� ; ei� ; . . . ; ei� )U is unique if �j ’s are strictly
ordered. So if we take the integral of formula (2.4) over the integration
region disregarding the order of �j ’s, we will obtain n! times the
volume of V (UE

r (n)). Thus, the volume of UE
r (n) will be

V (UE
r (n)) =

1

n! D \D j<k

jei� � e
i� j2d�1d�2

� � � d�n
~U(n)

(U�dU � diag (U�dU)):
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Using the same argument, we will derive the volume of U(n)

V (U(n)) =
1

n! D j<k

jei� � ei� j
2
d�1d�2

� � � d�n
~U(n)

(U�dU � diag (U�dU)):

Comparing the two derived volume formulas, the claim in the theorem
follows.

There are several approaches to derive upper bounds for the diversity
sum. The first approach considers U(n) as a submanifold of S(n),
then chooses the nonoverlapping neighborhoods to be small balls with
radius r (with regard to the Euclidean distance). This will result in the
first upper bound (B1) which we derive in this correspondence.

Theorem 2.4: Let D1 and D2 be defined as in (2.5) and (2.6). As-
sume rE0 = rE0 (n;m) is the solution to the following equation (with
variable r):

m
D \D j<k

jei� � ei� j
2
d�1d�2 � � � d�n

=
D j<k

jei� � ei� j
2
d�1d�2 � � � d�n (2.8)

then

�(n;m) �
(rE0 )

2

n
�

(rE0 )
4

4n2
: (B1)

Proof: For a fixed yet arbitrary unitary constellation V =
fA1; A2; . . . ; Amg, consider m small nonoverlapping neighborhoods
Sr(n;Aj) in S(n). We can increase r such that there exist l; k such
that Sr(n;Al) and Sr(n;Ak) are tangent to each other. Apparently

UE
r (n;Aj) = Sr(n;Aj) \ U(n)

for any j. Since Sr(n;Aj)’s are nonoverlapping, we conclude that
UE
r (n;Aj)’s are nonoverlapping. Therefore, we have

m

j=1

V UE
r (n;Aj) � V (U(n))

that is,

mV UE
r (n) � V (U(n)):

One can check that V UE
r (n) is an increasing function of r, so any

r satisfying the above inequality will be less than the solution to the
equality

mV (UE
r (n)) = V (U(n))

which is essentially (2.8). So we conclude that r � rE0 .
Note that any two points S0; S1 2 S(n) with two nonoverlapping

neighborhoods Sr(n; S0) and Sr(n; S1) will have distance

kS0 � S1k � 2 r2 � r4=(4n)

where the equality holds only if Sr(n; S0) and Sr(n; S1) are tangent
to each other. Apply the argument to Aj ’s and note that Al and Ak are
the closest pair of points with kAl � Akk = 2 r2 � r4=(4n), we
reach the conclusion of the theorem.

Remark 2.5: For the right-hand side of (2.8), by the Weyl denomi-
nator formula [6] one can replace

D j<k

jei� � ei� j
2
d�1d�2 � � � d�n

with (2�)nn!. However, we are not able to obtain a closed-form ex-
pression for the left-hand side of (2.8), and it seems that we need to
compute the following:

D \D j<k

jei� � ei� j
2
d�1d�2 � � � d�n:

Hassibi suggested that the preceding expression can be simplified to
facilitate the computation: first note that for any single variable function
f(�), we have

D j<k

jei� � ei� j
2

n

l=1

f(�l)d�1d�2 � � � d�n = n! det(F )

(2.9)
where F is a Hankel matrix

F =
�

��

f(�)

1

ei�

...
ei(n�1)�

[ 1 e�i� � � � e�i(n�1)� ] d�:

(2.10)
The proof of (2.9) is parallel to that of Lemma 1 in [9], and thus omitted.
Next let u(t) denote the rectangular function: u(t) is equal to 0 if t < 0
or t > 1, to 1 if 0 � t � 1. By the Fourier transform formula, we know
that

u(t) =
1

2�i

1

�1

i

w
(e�iw � 1)eitwdw:

Letting 1D denote the indicator function of D2, we have

1D =
1

2�

1

�1

1

w
(e�iw � 1)e

i 4 sin +���+4 sin =r w
dw:

Thus,

D \D j<k

jei� � ei� j
2
d�1d�2 � � � d�n

=
D j<k

jei� � ei� j
2
1D d�1d�2 � � � d�n

=
1

2�

1

w
(e�iw � 1)

�
D j<k

jei� � ei� j
2

n

l=1

f(�l)d�1d�2 � � � d�ndw;

here f(�) = e
i w . Applying (2.9), we obtain

D \D j<k

jei� � ei� j
2
d�1d�2 � � � d�n

=
n!

2�

1

w
(e�iw � 1)det(F )dw;

where F is defined in (2.10). In other words, the multiple-fold integral
of the left-hand side of (2.8) can be transformed to a single-fold inte-
gral, which will facilitate the numerical computation for large n.

For a fixed S0 2 S(n), consider Sr(n; S0) � S(n). Let
� = � (n; r) denote the maximal number � such that Sr(n; S1);
Sr(n; S2); . . . ; Sr(n; S� ) are nonoverlapping and Sr(n; Sj) is
tangent to Sr(n; S0) for j = 1; 2; . . . ; � . One checks that � (n; r)
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does not depend on the choice of S0. In this sense, �(n; r) can
be viewed as generalized kissing number [4] on an Euclidean
sphere. For a fixed n-dimensional unitary constellation V =
fA1; A2; . . . ; Amg, let r(V) denote the maximal radius r such
that Sr(n;A1); Sr(n;A2); . . . ; Sr(n;Am) are nonoverlapping. Let
ropt = ropt(n;m) denote the maximal r(V) over all possible n-di-
mensional unitary constellation V with cardinality m. One checks
�(n;m) = ropt(n;m)=

p
2n. The following theorem and corollary

give a lower bound for the optimal diversity sum �(n;m).

Theorem 2.6: Let D1 be defined as in (2.5) and assume that rE0 =
rE0 (n;m) is the solution to (2.8). Let

~D2 = (�1; �2; . . . ; �n)j
n

j=1

sin2
�j
2
� rE0

2

4

and let

D3 = (�1; �2; . . . ; �n)j
n

j=1

sin2
�j
2
� ropt(n;m)2

�ropt(n;m)4=(4n) :

Then

D \ ~D j<k

jei� � ei� j2d�1d�2 � � � d�n

� (�(n; ropt(n;m)) + 1)

�
D \D j<k

jei� � ei� j2d�1d�2 � � � d�n:

Proof: According to the derivation of rE0 , we have

m
D \ ~D j<k

jei� � ei� j2d�1d�2 � � � d�n

=
D j<k

jei� � ei� j2d�1d�2 � � � d�n: (2.11)

Assume that V = fA1; A2; . . . ; Amg is an n-dimensional unitary
constellation reaching ropt(n;m), i.e., r(V) = ropt(n;m). For sim-
plicity, let r = r(V). Let m0 denote the maximal number such that
Sr(n;A1); Sr(n;A2); . . . ; Sr(n;Am); . . . ; Sr(n;Am ) are nonover-
lapping. Let r1 = 2 r2 � r2=(4n), we claim that

U(n) �
m

j=1

UE
r (n;Aj):

Otherwise, suppose there is a unitary matrix A0 =2 m
j=1 U

E
r (n;Aj),

then kA0 � Ajk > r1 (see Theorem 2.4). Thus, Sr(n;A0) does not
intersect with Sr(n;Aj) for j = 1; 2; . . . ;m0. Therefore, one can find
m0 + 1 small balls with radius r which are nonoverlapping. This con-
tradicts the maximality of m0. Thus, we have

m

j=1

V (UE
r (n;Aj)) � V (U(n))

that is,

m0

D \D j<k

jei� � ei� j2d�1d�2 � � � d�n

�
D j<k

jei� � ei� j2d�1d�2 � � � d�n: (2.12)

We further claim that

m0 � (m� 1)(�(n; r) + 1): (2.13)

By contradiction assume that m0 � (m� 1)(�(n; r) + 1) + 1. Let

tang(j) = flj1 � l � m0; Sr(n;Al) tangent to Sr(n;Aj)g:

According to the definition of � (n; r), we know the cardinality of
tang (j) is less than � (n; r). We first pick j1 from f0; 1; . . . ;m0g,
then pick j2 from f0; 1; . . . ;m0g � tang (j1). And we continue this
process by always picking jk+1 from

f0; 1; . . . ;m0g �
k

l=1

tang (jl):

Since the cardinality of the above set is strictly greater than 0
when k � m � 1, we can pick j1; j2; . . . ; jm from the index set
f1; 2; . . . ;m0g such that Sr(n;Aj ); Sr(n;Aj ); . . . ; Sr(n;Aj )
are nonoverlapping and every two of them are not tangent to each
other. Then we can find a small enough real number " > 0 and
increase the radius r to r + " such that

Sr+"(n;Aj ); Sr+"(n; Aj ); . . . ; Sr+"(n; Aj )

are still nonoverlapping. However, this contradicts the maximality of
r = ropt(n;m). The combination of the three formulas (2.11)–(2.13)
will lead to

D j<k jei� � ei� j2d�1d�2 � � � d�n
D \D j<k jei� � ei� j2d�1d�2 � � � d�n

� D j<k jei� � ei� j2d�1d�2 � � � d�n
D \ ~D j<k jei� � ei� j2d�1d�2 � � � d�n

� 1

� (�(n; r) + 1): (2.14)

Note that the preceding inequality is, in fact, stronger than the claim in
the theorem. We can reach the conclusion of the theorem by relaxing
the right-hand side of the inequality (by ignoring �1).

Corollary 2.7: When m! 1, asymptotically we have

�(n;m) � 2
p
nrE0 (n;m)

1

2
(�(2n2 � 1) + 1)�1=n :

Proof: We only sketch the idea of the proof. Intuitively
UE
r (n;A0) looks more “flat” when m ! 1 (consequently, r ! 0),

so V (UE
r (n;A0)) can be approximated by the volume ofUE

r (n;A0)’s
projection to the tangent space of U(n) at A0

D \ ~D j<k

jei� � ei� j2d�1d�2 � � � d�n � C(rE0 )
n

for some constant C . The same argument will lead to

D \D j<k

jei� � ei� j2d�1d�2 � � � d�n � C(2ropt)
n

for the same constant C . For any fixed n, � (n; r) will approach the
standard kissing number in Euclidean space � (2n2 � 1) when r goes
to zero. Combining the three approximations, we reach the claim ac-
cording to the previous theorem.

U(n) is a compact Lie group equipped with a Riemannian metric.
Given two points A0; A1 2 U(n), one can always find a geodesic 
(t)
(mapping from [0; 1] toU(n)) which will connect these two points, i.e.,

(0) = A0 and 
(1) = A1. Recall that the Euclidean distance of A0
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and A1 is defined to be kA0�A1k. We further define the Riemannian
distance between A0 and A1 to be

dist (A0; A1) =
1

0

k
0(t)kdt:

As a Lie group U(n) is homogeneous. In particular one has that

dist (A0; A1) = dist (UA0; UA1) = dist (A0U; A1U )

for any U 2 U(n). The following theorem utilizes the homogeneity
and the relationship between the Riemannian distance and Euclidean
distance to derive another upper bound for the diversity sum in general
and it is the base of the second approach.

Theorem 2.8: Let f(�) and g(�) be two fixed monotone increasing
real functions. If

g(kA0 � A1k) � dist (A0; A1) � f(kA0 �A1k)

for any two unitary matrices A0 and A1, then

�(n;m) � g�1 2f rE0 (n;m) =(2
p
n):

Proof: For a fixed unitary constellation V = fA1; A2; . . . ; Amg,
consider

UE
r (n;A1); U

E
r (n;A2); . . . ; U

E
r (n;Am)

for r > 0. We can increase r until there exist j and k such that
UE
r (n;Aj) and UE

r (n;Ak) are tangent to each other at a point A0.
As examined in Theorem 2.4, one can conclude that r � rE0 (n;m).
Accordingly, we have

dist (Aj ; Ak) �dist (Aj ; A0) + dist (Ak; A0)

� f(kAj �A0k) + f(kAk �A0k)
= 2f(r) � 2f rE0 (n;m) :

On the other hand, since g is monotonically increasing one has

kAj � Akk � g�1(dist (Aj ; Ak)):

The combination of the above two inequalities will lead to

kAj �Akk � g�1 2f(rE0 (n;m)) :

Immediately, we will have

V � g�1 2f rE0 (n;m ) =(2
p
n):

Since V is an arbitrary unitary constellation, the claim in the theorem
follows.

Based on the above theorem, the following corollary gives the second
upper bound (B2).

Corollary 2.9: For a real number r, let brc denote the greatest in-
teger less than or equal to r, then we get (B2) at the bottom of the page.

Proof: Consider I and another point

U = V diag (ei� ; ei� ; . . . ; ei� )V �

where �� � �j < �. It is known that [5] the geodesic from I to U
can be parameterized by


(t) = V diag (ei� t; ei� t; . . . ; ei� t)V �

where 0 � t � 1. The Riemannian distance from I to U is

dist (I; U) = �21 + �22 + � � �+ �2n:

We want to derive g(�); f(�) as in Theorem 2.8. Suppose the Euclidean
distance between I and U is r, i.e.,

sin2
�1
2

+ sin2
�2
2

+ � � �+ sin2
�n
2

= r2=4:

After substituting with xj = sin2 �j=2 and denoting G(x) =
arcsin2

p
x, we convert the above problem to the following optimiza-

tion problem.
Find the minimum and maximum of the function

F (x1; x2; . . . ; xn) = �21 + �22 + � � �+ �2n

=4(G(x1) +G(x2) + � � �+G(xn))

with the constraints x1 + x2 + � � � + xn = r2=4 and 0 � xj � 1 for
j = 1; 2; . . . ; n. Since G(x) is a convex function on [0; 1], we derive
the lower bound of F (x1; x2; . . . ; xn)

4n arcsin2(r=(2
p
n)) � F (x1; x2; . . . ; xn): (2.15)

In the sequel, we are going to calculate the upper bound of
F (x1; x2; . . . ; xn). Without loss of generality, we assume
0 � x1 � x2 � � � � � xn � 1. Let k = br2=4c and � = r2=4� k,
we claim that F (x1; x2; . . . ; xn) will reach its maximum when

xj =

1; � j � n� k � 1

�; j = n� k

1; n� k + 1 � j � n:

Suppose by contradiction that F reaches its maximum at
(x1; x2; . . . ; xn) with x1 > 0. Now from

x1 + xn�k + xn�k+1 + � � �+ xn � r2=4 = k + �

surely one can find x0n�k; x
0

n�k+1; . . . ; x
0

n such that

x1 + xn�k + xn�k+1 + � � �+ xn = x0n�k + x0n�k+1 + � � �+ x0n

withx0j � xj for j = n�k; n�k+1; . . . ; n. Now setx�1 = 0,x�j = xj
for j = 2; 3; . . . ; n�k�1 andx�j = x0j for j = n�k; n�k+1; . . . ; n.
By the mean value theorem, there exist �j ’s with x�1 = 0 � �1 � x1
and xj � �j � x�j for j = 2; 3; . . . ; n such that

F (x�1; x
�

2; . . . ; x
�

n)� F (x1; x2; . . . ; xn) =

n

j=1

G0(�j)(x
�

j � xj):

Since G(x) is a strictly convex function, we have

0 < G0(�1) < G0(�2) < � � � < G0(�n):

�(n;m) � sin
�2

n

(rE0 )
2
(n;m)

4
+

4

n
arcsin2

(rE0 )
2
(n;m)

4
� (rE0 )

2
(n;m)

4
: (B2)
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Fig. 1. The comparisons of two upper bounds as functions of r = r (n;m) for n = 3 and n = 100.

Now

F (x�1; x
�

2; . . . ; x
�

n)� F (x1; x2; . . . ; xn)

� G0(�2)

n

j=2

(x�j � xj) �G0(�1) (x1 � x�1)

= G0(�2)�G0(�1) (x1 � x�1)

= (G0(�2)�G0(�1))x1 > 0:

This contradicts the maximality ofF at (x1; x2; . . . ; xn). Applying ex-
actly the same analysis to x2; x3; . . . ; xn�k�1; xn�k, we deduce that
xj = 0 for j = 2; 3; . . . ; n � k � 1 and xn�k = �. So the upper
bound of F can be given as

F (x1; x2; . . . ; xn) � k
�2

4
+ arcsin2(

p
�) :

Take

g(r) = 2
p
n arcsin(r=(2

p
n))

and

f(r) = 2 k�2=4 + arcsin2
p
�

the corollary follows according to the previous theorem.

Note that both upper bound (B1) and upper bound (B2) depend
on rE0 (n;m). In Fig. 1, we plot both upper bounds as functions of
rE0 (n;m) for 3 and 100 dimensions. One can see that if and only
if rE0 (3;m) > 2:0881, the upper bound (B2) is tighter than the
upper bound (B1). While for the 100-dimensional case, the upper
bound (B1) is tighter than the upper bound (B2) if and only if
rE0 (100;m) > 11:9155. In fact, it can be checked that asymptotically
when n is large enough, upper bound (B2) is tighter than upper bound
(B1) if and only if rE0 (n;m) > 1:1892

p
n. For a packing problem

on a manifold, alternatively, one can choose the neighborhood to be a
small “ball” with Riemannian radius r. This will be our third approach
to derive an upper bound for the diversity sum. For a particular
A 2 U(n), let

UR
r (n;A) = fU 2 U(n)jdist (U;A) � rg:

Note that the constraint dist (U; I) � r is equivalent to

�21 + �22 + � � �+ �2n � r2:

Therefore, we apply the same argument as in the proof of Theorem 2.3
and conclude that

V (UR
r (n)) =

D \D j<k jei� � ei� j2d�1d�2 � � � d�n
D j<k jei� � ei� j2d�1d�2 � � � d�n

�V (U(n))

where D1 was defined in (2.5) and

D4 := (�1; �2; . . . ; �n)j
n

j=1

�2j � r2 : (2.16)

Instead of considering the Euclidean neighborhoods UE
r (n;A1);

UE
r (n;A2); . . . ; U

E
r (n;Am), we can consider the Riemannian neigh-

borhood UR
r (n;A1); U

R
r (n;A2); . . . ; U

R
r (n;Am). Utilizing the fact

that the Euclidean distance kAj � Akk and the Riemannian distance
dist (Aj ; Ak) are related (compare with (2.15)

4n arcsin2(kAj � Akk=(2
p
n)) � dist (Aj ; Ak)

for any two unitary matrices Aj and Ak , we can derive the third upper
bound (B3). The proof of the following theorem is very similar to the
one of Theorem 2.8 and for the sake of brevity we omit it.

Theorem 2.10: Let D1 and D4 be defined as in (2.5) and (2.16)
and assume rR0 (n;m) is the solution to the following equation (with
variable r):

m
D \D j<k

jei� � ei� j2d�1d�2 � � � d�n

=
D j<k

jei� � ei� j2d�1d�2 � � � d�n: (2.17)

Then

�(n;m) � sin
rR0 (n;m)p

n
: (B3)

Remark 2.11: Again suggested by Hassibi and similar to the anal-
ysis in Remark 2.5, we have

D \D j<k

jei� � ei� j2d�1d�2 � � � d�n

=
n!

2�

1

w
(e�iw � 1)det(F )dw

where F is defined in (2.10) with f(�) = e
i w . Furthermore, by the

following formula:
1

�1

e�ix = (1=2� 1=2i)
p
2�

one can explicitly calculate the entries of F as follows:

Fjk = (r=2� r=2i)eir (j�k) =4
p
2�:

We gave three approaches to derive upper bounds for the diversity
sum and hence also for the diversity product. All of them involve the
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Fig. 2. Upper bounds for two- and three-dimensional constellations.

TABLE I
FOR n = 2 THE TABLE COMPARES THE UPPER BOUNDS IN [14] WITH OUR NEW BOUNDS (B1) AND (B2)

calculation of rE0 (n;m) or rR0 (n;m), which are the solutions of (2.8)
and (2.17), respectively. Fortunately, we are dealing with finding a root
of a monotone increasing function (recall that both V (UEr (n;m)) and
V (URr (n;m)) are monotone increasing functions with respect to r),
the bisection method [2] will be highly effective to solve this kind
of problem. Our numerical experiments for small-size constellations
with small dimensions show that upper bound (B3) is looser than the
first two upper bounds. However, when m goes to infinity, these three
upper bounds give almost the same estimation. This makes sense be-
cause asymptotically the small balls look like a n2-dimensional ball in
Euclidean space. One can see the derived upper bounds for two- and
three-dimensional constellations in Fig. 2.

We compare the derived upper bounds with the currently existing one
presented in [14] (For computations, we refer to [7]). From Table I, one
sees that the upper bounds (n = 2) of Liang and Xia [14] tend to be
better when m � 100 and our bounds become tighter when m � 100.

One interesting fact about the limiting behavior of �(n;m) (when
m ! 1) is its connection to the Kepler problem [4]. Certainly one
can use Kepler density [4] to obtain a tighter bound of the diversity
sum asymptotically.

III. CONCLUSION AND FUTURE WORK

We presented three approaches to derive upper bounds for the diver-
sity sum of unitary constellations of any dimension n and any size m.
The derived bounds seem to improve the existing bounds when n = 2
and m � 100. When n is large, the exact computation of rE0 is rather
involved and hence it is also computationally difficult to compute the
bounds (B1) and (B2). Nonetheless, it is our belief that the resulting

upper bounds (B1) and (B2) become fairly tight as soon as m is suffi-
ciently large.

It was pointed out that the resulting upper bounds also apply for
the diversity product, although the bounds seem to be less tight in this
situation. Future work may involve the derivation of a tighter upper
bound analysis for the diversity product of unitary constellations using
differential geometric means.
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Subchannel Allocation in Multiuser Multiple-
Input–Multiple-Output Systems

Pedro Tejera, Wolfgang Utschick, Senior Member, IEEE, Gerhard
Bauch, Senior Member, IEEE, and Josef A. Nossek, Fellow, IEEE

Abstract—Assuming perfect channel state information at the transmitter
of a Gaussian broadcast channel, strategies are investigated on how to as-
sign subchannels in frequency and space domain to each receiver aiming
at a maximization of the sum rate transmitted over the channel. For the
general sum capacity maximizing solution, which has recently been found,
a method is proposed that transforms each of the resulting vector chan-
nels into a set of scalar channels. This makes possible to achieve capacity
by simply using scalar coding and detection techniques. The high com-
plexity involved in the computation of this optimum solution motivates the
introduction of a novel suboptimum zero-forcing allocation strategy that
directly results in a set of virtually decoupled scalar channels. Simulation
results show that this technique tightly approaches the performance of the
optimum solution, i.e., complexity reduction comes at almost no cost in
terms of sum capacity. As the optimum solution, the zero-forcing alloca-
tion strategy applies to any number of transmit antennas, receive antennas
and users.

Index Terms—Broadcast channel, multiuser multiple-input mul-
tiple-output (MIMO), orthogonal frequency division multiplexing
(OFDM), successive encoding, sum capacity, zero-forcing.

I. INTRODUCTION

Increasing demand for broadband services calls for higher data rates
in future wireless communication systems [1]. Data rates of several
Mb/s for high mobility scenarios and up to 1 Gb/s in low mobility or
static scenarios are expected in fourth generation systems. In the way
to such transmission rates there are two major barriers to be overcome.
The first is the scarcity of spectrum, which limits the amount of band-
width available for transmission. The second is the wireless channel
that severely distorts the signal due to multipath propagation.

The combination of multiple antennas and multicarrier tech-
nology seems to be ideal to achieve the expected rates under the
mentioned constraints [2]. On the one hand, multiple-input mul-
tiple-output (MIMO) channels resulting from the use of multiple
antennas at both transmitter and receiver show higher capacity than
single-input–single-output (SISO) channels and this difference linearly
grows for increasing transmit power. Thus, multiple antennas lead to
higher spectral efficiency. On the other hand, multicarrier techniques,
such as orthogonal frequency division multiplexing (OFDM), trans-
form the frequency selective broadband channel into a set of nearly
flat narrowband channels. As a result, distortion due to multipath is
reduced and equalization at the receiver is greatly simplified.

In the work at hand, we consider the downlink of a wireless commu-
nication system with multiple antennas at the transmitter and the re-
ceivers and OFDM as transmission scheme. We assume that receivers
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