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Abstract

Universal compression of patterns of sequences generated by independently identically dis-

tributed (i.i.d.) sources with unknown, possibly large, alphabets is investigated. A pattern is a

sequence of indices that contains all consecutive indices in increasing order of first occurrence.

If the alphabet of a source that generated a sequence is unknown, the inevitable cost of coding

the unknown alphabet symbols can be exploited to create the pattern of the sequence. This

pattern can in turn be compressed by itself. It is shown that if the alphabet size k is essentially

small, then the average minimax and maximin redundancies as well as the redundancy of every

code for almost every source, when compressing a pattern, consist of at least 0.5 log
(
n/k3

)

bits per each unknown probability parameter, and if all alphabet letters are likely to occur,

there exist codes whose redundancy is at most 0.5 log
(
n/k2

)
bits per each unknown probability

parameter, where n is the length of the data sequences. Otherwise, if the alphabet is large,

these redundancies are essentially at least O
(
n−2/3

)
bits per symbol, and there exist codes that

achieve redundancy of essentially O
(
n−1/2

)
bits per symbol. Two sub-optimal low-complexity

sequential algorithms for compression of patterns are presented and their description lengths

analyzed, also pointing out that the pattern average universal description length can decrease

below the underlying i.i.d. entropy for large enough alphabets.
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1 Introduction

Classical universal compression [5] usually considers coding sequences that were generated by a

source with a known alphabet but with some unknown statistics. In this paper, we consider the

universal coding problem, where an independently identically distributed (i.i.d.) source generates

data from an alphabet that is totally unknown to both encoder and decoder, and whose size k can

grow with n. In this case, the cost of coding the alphabet letters is inevitable and depends strictly

on the alphabet letters themselves. However, after coding of the alphabet letters, the data sequence

can be uniquely represented by its pattern. The pattern of a sequence is a sequence of pointers

that point to the actual alphabet letters, where the alphabet letters are assigned indices in order

of first occurrence. For example, the pattern of the sequence “lossless” is “12331433”. A pattern

sequence thus contains all positive integers from 1 up to a maximum value k in increasing order of

first occurrence, and is also independent of the alphabet of the actual data. One can separate the

coding of the alphabet symbols from that of the pattern, and use universal coding techniques to

encode patterns. The universal coding cost of a totally unknown alphabet is inevitable regardless of

the code used, and depends strictly on the actual alphabet letters. Therefore, the more interesting

universal coding problem becomes that of efficiently encoding the alphabet independent patterns.

To the best of our knowledge, the idea of separating the description of the alphabet symbols from

the representation of the pattern of a sequence for universal coding first appeared in the literature

in [1]. This procedure was motivated in [1] by the multi-alphabet coding problem [41], i.e., the

problem in which a sequence is generated by a known alphabet, but contains only a small subset

of the alphabet letters. A separate description was used to inform the decoder which symbols from

the alphabet have occurred in a sequence, and then their pattern was coded separately. However,

no theoretical evidence was provided to show that such a technique has advantage over other

multi-alphabet coding techniques, as those proposed in [41].

Stronger motivation for coding patterns of sequences was first given by Jevtić, Orlitsky, and

Santhanam [13] (see also [17]-[21]), who motivated this problem by the problem of universal coding

of sequences generated by sources over alphabets that are initially unknown to both the encoder and

the decoder. The encoder then has to send the decoder complete information about the alphabet
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letters, and can utilize this inevitable cost to improve the coding performance by representing the

actual data sequence by its pattern. This problem can be strongly motivated by many practical

applications that compress sequences generated by either a small or a large alphabet. For example,

consider transmission of text in a language that was never seen before. The graphical structure

of the letters must first be transmitted. If it is transmitted in the order of first occurrence, the

pattern of the text can then be compressed. This application further motivates the problem of

pattern compression over large alphabets because in text the natural alphabet unit can be a word

instead of a letter. Another example is compression of sequences of species first seen on another

planet. Since there is no prior knowledge of their forms, they can be designated by their pattern,

i.e., the first specie encountered is number 1, the second number 2, and so on.

The i.i.d. case is the simplest one to consider. However, coding of patterns whose underlying

process is i.i.d. is different from coding of i.i.d. sequences because the constraints that are imposed

by the definition of a pattern result in a non-i.i.d. probability mass function over the patterns that is

different from the i.i.d. one of the original sequence. This allows shorter representations for patterns

than those that would be used for the underlying i.i.d. sequences. Of course, this improvement is not

free, and it only comes because of the inevitable price of representing the alphabet itself. However,

while it was shown by Kieffer in [14] that if the alphabet size is very large (goes to infinity), no

universal code exists, i.e., no code can achieve vanishing redundancy for i.i.d. sequences, this is not

the case for the resulting patterns, as was first shown by Orlitsky et. al. in [13], [17]-[20], because

only at most n letters of the actual alphabet appear in the pattern sequence. Furthermore, better

universal compression performance is also possible in the case where the alphabet size k is sub-

linear in n or even fixed. Moreover, even better non-universal compression is sometimes possible

because every pattern represents a collection of many sequences, thus reducing the overall pattern

entropy (see, e.g., [31], [34], [36], [38], [39]).

The classical setting of the universal lossless compression problem [5] assumes that a sequence

xn of length n that was generated by a source θ is to be compressed without knowledge of the

particular θ that generated xn but with knowledge of the class Λ of all possible sources θ. The

average performance of any given code, that assigns a length function L(·), is judged on the basis

of the redundancy function Rn (L,θ), which is defined as the difference between the expected code

length of L (·) with respect to (w.r.t.) the given source probability mass function Pθ and the nth-

order entropy of Pθ normalized by the length n of the un-coded sequence.

Naturally, the lack of knowledge of the source parameters in universal coding results in some
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redundancy when coding data emitted by any or almost any unknown source from a known class.

To measure the universality of such a class, some notion of this redundancy is used to represent

the best possible performance for some worst case, i.e., the redundancy expected from the best

code for the worst case. This notion of redundancy thus serves as a lower bound on the worst case

redundancy of any code for this class of sources. Two such notions are the maximin redundancy

and the minimax redundancy, defined in Davisson [5]. In the maximin Bayesian approach, the

parameter θ is considered random, and the maximin redundancy is obtained by the worst distri-

bution that maximizes the minimum expected redundancy, i.e., the worst distribution for the best

code. The minimax approach considers the parameter to be deterministic, and defines the minimax

redundancy as the redundancy of the best code for the worst choice of θ. A third stronger notion

of redundancy for “most” sources in a class was later established by Rissanen [24]. This notion

describes the performance of the best possible code for almost every source in the class except a

subset of the class whose probability under the uniform prior (i.e., distribution in Λ) is negligible,

and for which smaller redundancy can be obtained. A different approach to the study of universal

codes is that of individual sequences. The minimax redundancy for individual sequences [40] is

the redundancy of the best code for the worst possible sequence xn that can be generated by any

source in the class. In this paper, however, we focus on average redundancies.

Several publications [5], [6], [7], [10], [24] investigated the average redundancy performance in

standard compression of classes of parametric sources and in particular i.i.d. sources over alphabets

of size k, which are governed by k−1 parameters. It was shown that for a finite size alphabet, each

unknown probability parameter costs at least 0.5 log n extra redundancy bits. This lower bound

applies in all average senses: minimax and maximin (which were demonstrated to be identical), and

for almost all sources in the class. It also applies in the minimax individual sense. Furthermore,

it was shown to be achievable, and in particular by using a linear complexity (fixed per symbol)

sequential coding scheme that combines the universal mixture based Krichevsky-Trofimov (KT)

probability estimators [15] with arithmetic coding [25]. Recently, [29], [30], [33], we extended the

average results and showed that if the alphabet size is allowed to grow sub-linearly with n, each

probability parameter costs 0.5 log(n/k) bits in all average senses, and also this redundancy is

achievable even sequentially with the KT estimators. At the same time, related results have been

independently obtained for the individual case by Orlitsky, Santhanam, and Zhang [19], [21].

While standard universal compression, in particular that of i.i.d. sources, has been extensively

researched, the problem of compression of patterns has only been addressed recently, with focus,
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until now, only on the individual sequence case. The initial work on this problem was presented

in [1]. However, Jevtić, Orlitsky, Santhanam, and Zhang [13], [17]-[21] have recently achieved

significant progress in understanding this problem. In particular, they considered the performance

of the best universal code for the worst sequence over all possible patterns generated by underlying

i.i.d. sequences of length n. Using combinatoric techniques, they have shown that the minimax

individual redundancy is lower bounded by O
(
n−2/3

)
bits per symbol and upper bounded by

O
(
n−1/2

)
bits per symbol. They have also derived a high complexity sequential algorithm that

achieves the order of the upper bound and a sub-optimal computationally heavy low complexity

sequential algorithm that achieves redundancy of O
(
n−1/3

)
bits per symbol.

In this paper, we focus, unlike previous work, on the average redundancy performance of uni-

versal codes for coding patterns. We also consider the different behavior for different alphabet

sizes k, and investigate the actual description length required for patterns. First, lower bounds

on the average minimax/maximin redundancies are obtained as a function of the alphabet size k.

(These bounds naturally apply also to the worst case individual redundancies.) Then, we derive

lower bounds on the redundancy for most sources. Next, we obtain upper bounds on the redun-

dancy focusing on the case in which all actual alphabet symbols are likely to be observed in the

coded sequence. Although we use techniques that are much different from those used in [1], [13],

[17]-[21] for the derivation of the minimax lower bound and the upper bound, the average case

results we obtain in this paper demonstrate similar behavior of the redundancy in the average

cases to that of the individual worst case. This is very important, because it demonstrates that

the expected behavior for the worst setting is not much better than the worst sequence behavior.

Hence, when coding patterns, like when coding standard sequences, one cannot expect to perform

significantly better for the worst source than the performance for the worst sequence. Next, two

sub-optimal low-complexity sequential algorithms are presented. The actual description length of

these algorithms is studied (where the displacement relative to the i.i.d. source entropy, defined as

the modified redundancy for patterns is considered). The description length for these algorithms

demonstrates an interesting result, where the pattern entropy for large enough alphabets must de-

crease compared to the i.i.d. one. Subsequently to the work presented here (see also [36]), pattern

entropy and entropy rate have been extensively studied, first in [34], and later in [11]-[12], [22]-[23],

[31], [38]-[39].

To derive the lower bounds, we use the relations between redundancy and capacity that are

presented in Section 3 based on [5], [9], [16]. The minimax/maximin bound we obtain for larger k’s
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is larger than that obtained for most sources. This is because we must use different techniques to

derive the two bounds, where the more demanding conditions to obtain the bound for most sources

result in a smaller bound. This hints to the fact that it may be possible that in the case of patterns,

it may cost more redundancy beyond the entropy to code the worst source than it costs to code

most other sources in the class. The upper bounds are obtained by a constructive approach. For

small k’s it combines Rissanen’s approach [24] with our recent approach from [30], [33] and with

the more demanding conditions in coding patterns.

For readability and convenience, each of the sections that contain heavy analysis is structured

such that the results and their properties are described first. Then, a short description of the

structure of the proof is given. Finally, each such section is concluded with the technical proofs,

where steps that require much technical detail are relegated to appendices.

The outline of the paper is as follows. In Section 2, we define the notation. Section 3 reviews the

individual sequence results of coding patterns, and the techniques we use to derive the new results.

Section 4 summarizes the main results in the paper. Sections 5 and 6 contain the derivations of the

minimax/maximin lower bounds and the bounds for most sources, respectively. In Section 7, we

derive upper bounds on the redundancy with focus on the class of sources for which all symbols are

likely to be observed. In Section 8, we present the sequential algorithms and study their description

lengths and their displacements from the i.i.d. entropy. Then, in Section 9, a discussion about the

results is presented. Finally, some concluding remarks are brought in Section 10.

2 Notation and Definitions

2.1 Universal Coding

Let xn
△
= (x1, x2, . . . , xn) denote a sequence of n symbols over an unknown alphabet Σ of size

k. The class of all i.i.d. sources that can generate any sequence xn over Σ will be denoted by Λ.

The subclass of i.i.d. sources that generate up to k alphabet symbols will be denoted by Λk. The

subclass of sources that generate k symbols that are likely to be observed with probability greater

than 1−o(k/n) will be denoted by Λ̃k. A parameter θ ∈ Λk is a vector of k−1 probability parameters

θ
△
= (θ1, θ2, . . . , θk−1). For convenience, we will sometimes use the constrained component θk of θ.

All k components of θ are non-negative and sum up to 1. In general, boldface letters will denote

vectors, whose components will be denoted by their indices in the vector. We will use hat to denote

the Maximum Likelihood (ML) estimator of a parameter obtained from the data sequence xn, e.g.
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θ̂ will denote the ML estimator of θ. Capital letters will denote random variables.

Let θ ∈ Λk be a parameter vector that determines the statistical parameters of some source in

the class Λk. Let x
n be a sequence of n symbols generated by the source θ. The average nth-order

redundancy obtained by a code that assigns length function L(·) for source θ is defined as

Rn (L,θ)
△
=

1

n
EθL [Xn]−Hθ [X] , (1)

where Eθ denotes expectation w.r.t. the parameter θ, and Hθ [X] is the (per-symbol) entropy of

the source. (We will also use Hθ [X
n] as the nth-order sequence entropy of θ, where in the i.i.d.

case, Hθ [X
n] = nHθ [X].) It has been established in the literature (see, e.g., [15], [16], [24])

that assigning a universal probability Q (xn) is identical to designing a universal code for coding

xn, because entropy coding techniques can be used to code the sequence using a number of bits

that equals, up to integer length constraints, to the negative logarithm to the base of 2 of the

assigned probability. In particular, one can use arithmetic coding [25] to allow sequential coding

with sequential probability assignment schemes. We will thus ignore integer length constraints, and

in places consider the redundancy as a function of the probability assignment scheme Q (·) instead
of the code L (·).

We can also define the individual sequence redundancy (see, e.g., [40]) of a code with length

function L (·) per sequence xn as

Rn (L, x
n)

△
=

1

n
{L (xn) + log PML (x

n)} , (2)

where the logarithm function is taken to the base of 2, here and elsewhere, and PML (x
n)

△
= Pθ̂ (x

n)

is the probability of xn given by the ML estimator θ̂ of the governing parameters. The negative

logarithm of this probability is the smallest possible code length for a particular sequence under a

given statistical model (in our case the i.i.d. one).

The average minimax redundancy of the class Λk is defined as

R+
n (Λk)

△
= min

L
sup
θ∈Λk

Rn (L,θ) . (3)

Similarly, we can define the individual minimax redundancy as that of the best code L (·) for the

worst sequence xn, i.e.,

R̂+
n (Λk)

△
= min

L
sup
θ∈Λk

max
xn

1

n
{L (xn) + log Pθ (x

n)} . (4)
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To define the maximin redundancy of Λk, let us assign a probability measure (prior) w (·) on

Λk and let us define the mixture source

Pw (xn)
△
=

∫

Λk

w (dθ)Pθ (x
n) . (5)

The average redundancy associated with a length function L (·) is defined as

Rn (L,w)
△
=

∫

Λk

w (dθ)Rn (L,θ) . (6)

The minimum expected redundancy for a given prior w (which is attained by the ideal code length

w.r.t. the mixture, L (xn) = − logPw (xn)) is defined as

Rn (w)
△
= min

L
Rn (L,w) . (7)

Finally, the maximin redundancy of the class Λk is the worst case minimum expected redundancy

among all priors w, i.e.,

R−
n (Λk)

△
= sup

w
Rn (w) . (8)

2.2 Patterns

The pattern of a sequence xn will be denoted by Ψ (xn). Many different sequences over the

same alphabet (and over different alphabets) have the same pattern. For example, for the se-

quences xn =“lossless”, xn =“sellsoll”, xn =“12331433”, and xn =“76887288”, the pattern is

Ψ (xn) =“12331433”. Therefore, for given Σ and θ, the probability of a pattern induced by an i.i.d.

underlying probability is given by

Pθ [Ψ (xn)] =
∑

yn:Ψ(yn)=Ψ(xn)

Pθ (y
n) . (9)

We note that the probability in (9) is dominated by some of the sequences, where others only

contribute negligibly. This fact is used to derive an upper bound in Section 7. The per sequence

(block) pattern entropy of order n of a source θ is thus defined as

Hθ [Ψ (Xn)]
△
= −

∑

Ψ(xn)

Pθ [Ψ (xn)] log Pθ [Ψ (xn)] . (10)

In order to define the redundancy function of patterns for a given code and a given source θ, we

need to realize that a vector θ′ that is a permutation of another vector θ produces similar typical

patterns, and is, in fact, the same source in the pattern domain. Therefore, we can define the

notation ψ (θ) as the permutation of θ which is ordered in non-decreasing order of components,
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i.e., ψ1 (θ) ≤ ψ2 (θ) ≤ . . . ≤ ψk (θ). For example, if θ = (0.7, 0.1, 0.2), then ψ (θ) = (0.1, 0.2, 0.7).

We can also, alternately, view a vector σ as a permutation vector of indices, and use θ (σi) to

denote the ith component of the permuted vector θ, permuted according to σ. For the example

above, if we define σ = (3, 1, 2), then θ (σ) = (0.2, 0.7, 0.1) and θ (σ2) = θ1 = 0.7. In most sections,

we will consider the original vector θ to be already ordered non-decreasingly, and therefore the

identity permutation σ = (1, 2, . . . , k) will give ψ (θ) = θ = θ (σ). All vectors ψ (θ) for all θ ∈ Λk

will constitute the pattern space Ψ (Λk), and similarly, we can define Ψ (Λ) as the pattern space

induced by (or projected from) the class Λ.

The average pattern redundancy for coding patterns generated by a source θ using a code that

assigns a representation of length L [Ψ (xn)] to the pattern of sequence xn is defined as

Rn [L,ψ (θ)]
△
=

1

n
EθL [Ψ (Xn)]− 1

n
Hθ [Ψ (Xn)] . (11)

Similarly to (2), we can define the individual pattern redundancy for a given code as

Rn [L,Ψ(xn)]
△
=

1

n

{
L [Ψ (xn)] + max

θ
{logPθ [Ψ (xn)]}

}
. (12)

Note that the ML probability is now different from that for the simple i.i.d. case, because the ML

is taken over the pattern probability and not over the i.i.d. one.

Even in the simplest i.i.d. underlying case, it becomes very difficult to derive closed form ex-

pressions beyond (9) on the probability of a pattern, (except for very specific patterns). It will

therefore be useful to define quantities that relate a code length to the i.i.d. entropy in the average

case and to the i.i.d. ML probability in the individual case. We will refer to these quantities as the

modified redundancies. The modified redundancy will be studied in Section 8, as part of the study

of the description length of the proposed sequential schemes. The average modified redundancy for

a code L (·) that codes patterns of a source θ is defined as

R̃n [L,ψ (θ)]
△
=

1

n
EθL [Ψ (Xn)]−Hθ [X] . (13)

The individual pattern modified redundancy is defined as

R̃n [L,Ψ(xn)]
△
=

1

n

{
L [Ψ (xn)] + max

θ
{logPθ [xn]}

}
. (14)

We should note that unlike the regular redundancy, the modified redundancy does not actually

satisfy conditions that must be satisfied by redundancy functions. In particular, it can be negative

also in the average case. If this happens, it simply means that one can universally describe pat-

terns using shorter descriptions than the entropy of the underlying i.i.d. source. We will see this
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phenomenon in Section 8 and in [31]. The modified redundancy thus becomes handy for bounding

the description length a code can assign to a pattern, i.e,

EθL [Ψ (Xn)] = Hθ [Ψ (Xn)] + nRn [L,ψ (θ)] = Hθ [X
n] + nR̃n [L,ψ (θ)] , (15)

and we can use either equalities to bound this description length.

Using the definition of the average pattern redundancy in (11), we can replace Rn (L,θ) by

Rn [L,ψ (θ)] in (3) to define the average minimax pattern redundancy R+
n [Ψ (Λk)]. Similarly, we

can define the average maximin pattern redundancy R−
n [Ψ (Λk)] by the same substitution in (6).

Taking the maximum of (12) on xn and the minimum on L (·), similarly to (4), we obtain the

individual minimax pattern redundancy R̂+
n [Ψ (Λk)]. Note that all these redundancies can also be

obtained w.r.t. the class of all i.i.d. sources Λ regardless of the alphabet size. Naturally, R+
n [Ψ (Λ)],

R−
n [Ψ (Λ)], and R̂+

n [Ψ (Λ)] will take the maximal redundancy value over all alphabet sizes k.

3 Technical Background

3.1 Individual Pattern Redundancy

To the best of our knowledge, universal compression of patterns was first introduced by Åberg,

Shtarkov and Smeets [1]. Åberg et. al. addressed the compression problem of individual pattern se-

quences. In particular, they used the individual sequence minimax approach developed by Shtarkov

[40] to design the best code in the individual minimax sense. For standard sequence compression,

this approach assigns to an n-symbols sequence xn probability Q (xn) that equals its ML probability

normalized by the sum of the ML probabilities over all possible sequences, i.e.,

Q (xn)
△
=

PML (x
n)∑

yn PML (yn)
, (16)

where PML (x
n) is the ML probability of xn, and the summation is over all possible sequences

yn of length n. This approach guarantees (under negligible integer length constraints) individual

redundancy of

Rn (Q,x
n) =

1

n
log

PML (x
n)

Q (xn)
=

1

n
log

{∑

yn

PML (y
n)

}
(17)

for every sequence xn. Equation (17) is true in particular for the worst sequence xn for which this

redundancy is the minimal attainable. Therefore, this approach achieves the minimax redundancy.
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The approach above was modified for patterns by modifying (16) to

Q [Ψ (xn)]
△
=

P
ψ̂(θ)

[Ψ (xn)]
∑

Ψ(yn):θ∈Ψ(Λk)
P
ψ̂(θ)

[Ψ (yn)]
, (18)

where P
ψ̂(θ)

[Ψ (xn)] is the ML pattern probability for the pattern of the sequence xn, and the nor-

malization factor is the sum of all ML probabilities for all possible patterns of sequences generated

by sources θ ∈ Λk. Restricting the derivation to Λk (and not the wider i.i.d. class Λ), it was shown

in [1] that the normalizing sum is approximately lower bounded by

∑

Ψ(yn):θ∈Ψ(Λk)

P
ψ̂(θ)

[Ψ (yn)] &
1

k!
·

√
π

Γ (k/2)
· (n/2)(k−1)/2 , (19)

where Γ (·) is the Gamma function. If further analysis steps are performed beyond those in [1], this

yields a lower bound on the individual minimax pattern redundancy for patterns with at most k

different alphabet symbols of

R̂+
n [Ψ (Λk)] & (1− ε)

(k − 1)

2n
log

n

k3
, (20)

where ε > 0 can be made arbitrarily small. This bound is, of course, useful only for k = o
(
n1/3

)

and becomes negative for larger alphabet sizes. Based on this result and prior results in [41], Åberg

et. al. also proposed a sequential scheme for coding patterns, for which they provided empirical

results. The computational requirements of this scheme appear to be rather demanding.

Major progress in the research of individual pattern compression has been recently obtained

by Jevtić, Orlitsky, Santhanam, and Zhang [13], [17]-[20]. The approach used in those papers was

similar to that in [1] based on Shtarkov’s minimax results and on combinatoric techniques. These

papers considered the compression of patterns generated by any source from the whole class Λ,

independently of the alphabet size k, i.e., the maximum number of different indices in the pattern.

First, it was shown [13] that probability assignment of

Q̃ [Ψ (xn)]
△
=

PML (x
n)∑

Ψ(yn):θ∈Ψ(Λ) PML (yn)
, (21)

where PML (x
n) is the i.i.d. ML probability (not the pattern ML probability) but the summation

is only on all possible patterns, results in modified individual redundancy of

R̃n

[
Q̃,Ψ(xn)

]
=

1.5 log e

n2/3
+ o

(
1

n2/3

)
. (22)

This redundancy is obtained for every pattern of length n independently of the number of indices

in the pattern, and is also the minimax modified individual pattern redundancy. Then, Orlitsky
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et. al. [17]-[20] demonstrated that this modified redundancy is, in fact, a lower bound on the actual

pattern redundancy. (Note that if the analysis in [1] is modified to the whole class Λ, one can

obtain the same bound.) Using integer partitioning of a sequence of length n, it was also shown

in [17]-[20] that there exist codes that achieve individual minimax pattern redundancy of at most

O
(
n−0.5

)
. Summarizing all these results, it was shown that there exist codes for which

1.5 log e

n2/3
+ o

(
1

n2/3

)
≤ R̂+

n [Ψ (Λ)] ≤ π
√

2/3 log e√
n

. (23)

Finally, a computationally demanding high complexity sequential scheme was shown in [18]-[20] to

achieve the order of the upper bound in (23), as well as a low-complexity sequential scheme that

achieves minimax individual redundancy of O
(
n−1/3

)
.

3.2 Average Case - Background

Unlike the prior results on compression of patterns, we focus on the average case problem in

compression of patterns induced by sequences generated by i.i.d. sources. To derive lower and upper

bounds, we will use techniques that are based on Davisson’s [5] and Rissanen’s [24] approaches, and

their extension [9], [16]. In particular, the well established connection between universal coding

redundancy and channel capacity will be used to obtain lower bounds on the average pattern

redundancy. In [5], it was established that the maximin redundancy of a class Λk is bounded

from below by (and asymptotically equals to) the normalized capacity of the “channel” defined by

the conditional probability Pθ (x
n), i.e., the channel whose input is the parameter θ and whose

output is the data sequence xn. It was further established that the average minimax redundancy

is lower bounded by the maximin redundancy. Using Gallager’s later result [10] that shows that

the minimax and maximin redundancies are essentially equivalent, this leads to the bound on both

minimax and maximin redundancies of

R+
n (Λk) = R−

n (Λk) ≥ sup
w

1

n
Iw (Θ; Xn) , (24)

where Iw (Θ; Xn) is the mutual information induced by the joint measure w (θ) · Pθ (xn). Using

(24), any lower bound on the capacity of the channel defined by Pθ (x
n) can be used to bound the

minimax and maximin redundancies. In particular, one can pick a set Ω of M points θ ∈ Λk. If

these points can be shown to be distinguishable by the sequence Xn, then (logM)/n can serve as

a lower bound on the normalized capacity of the respective channel, and thus on the minimax and

maximin redundancies. This lower bound is specifically implied by Fano’s Inequality using the fact

that the error probability goes to 0 (see, e.g., [16]). Distinguishability in a set of points Ω is defined
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(in a stronger sense than needed to the result above) as follows. Let θ ∈ Ω be a point that generates

the random sequence Xn. Let θ̂ = f (Xn) be an estimator of θ from Xn, and let θ̂Ω = g
(
θ̂
)
be

a point in Ω that is used to estimate θ from the estimator θ̂, where θ̂ is not necessarily a point

in Ω. Then, there exist functions f(·) and g(·), such that Pθ

(
θ̂Ω 6= θ

)
→ 0 as n → ∞, for every

θ ∈ Ω. In words, there exists an estimator of θ out of the points in Ω, such that the probability

that a sequence that was generated by one point in the set would appear to have been generated

by a different point in the set vanishes with n.

The approach described above will be adopted to patterns in order to derive the bound in

Section 5. In the patterns case, we will consider the set of sources θ ∈ Ψ(Ω), and the pattern

source estimator ψ
(
θ̂
)
will be defined as a function of the pattern, i.e., ψ

(
θ̂
)
= f [Ψ (Xn)], since

the sequence itself is not observed. Then, the estimator θ̂
ψ
Ω = g

[
ψ
(
θ̂
)]

must be in the pattern

source space Ψ (Ω). Since the minimax and maximin average redundancies are essentially the same,

we will consider only the minimax one, and the results will apply to both.

Merhav and Feder [16] extended the concept of the redundancy-capacity and derived a strong

version of the redundancy-capacity theorem. They showed that if it is possible to partition the

class Λk into disjoint sets of sources θ, each of at least M points that are distinguishable by Xn,

then the redundancy is lower bounded by

Rn (L,θ) ≥ (1− ε)
logM

n
, (25)

for every code L (·), and almost every θ ∈ Λk, where ε > 0 is arbitrarily small. In order to be

able to use this result, one needs to make sure that the points in each set are uniformly distributed

within the set, and every point in Λk is included in one set (see also [27]-[29]). Sometimes such an

assumption cannot be made unless a non-uniform prior is assumed within the class. In such cases

the result in (25) does not apply to most sources in the class, but to all sources in the class except a

subset whose probability under the prior assumed vanishes. The technique that will be presented in

Section 5 for patterns will suffer from this problem, and thus cannot be used to obtain a lower bound

on the redundancy of most sources. Therefore, a different technique that uses Merhav and Feder’s

theorem will be applied in Section 6 to derive a lower bound for most sources. As in Section 5, the

ideas described in this paragraph for standard compression will be applied to patterns in a similar

manner to that described in the preceding paragraph.

Both versions of the redundancy-capacity theorem presented above can be used by taking grids

of points from the class Λk, and showing that the points in each grid are distinguishable. Then, the

normalized logarithm of the number of grid points gives a lower bound on the required redundancy.
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For the minimax redundancy, one such grid is sufficient using the weak version of the theorem.

For the redundancy for most sources, we need to show how we shift the grid to cover the whole

class without violating the conditions of the strong version of the redundancy-capacity theorem,

where the points in each shift of the grid remain distinguishable. For standard compression with

fixed alphabet size k, a uniform grid with spacing of n−0.5(1−ε) for an arbitrarily small ε > 0

is sufficient for distinguishability. This yields the well known bound, for which the cost of each

unknown probability parameter is 0.5 log n bits. Recently, we showed [30], [33] that in the case of

large alphabets, the simple grid used to achieve the fixed k bound is not sufficient. In the minimax

case, a non-uniform grid with increasing spacing in each dimension was created, and resulted in

a cost of 0.5 log(n/k) bits for each unknown probability parameter. The same cost with smaller

second order term resulted for most sources using sphere packing [2] considerations to create a grid

(or lattice) of distinguishable points. (Note that this idea is in line with Rissanen’s proof for a

parametric source with a finite number of parameters [24].) The ideas that led to these bounds will

be modified in Sections 5 and 6 for lower bounding the minimax and most sources redundancies of

patterns.

In [9], Feder and Merhav showed that there exist classes that consist of different subclasses,

each with different redundancy within itself. For example, a union of subclasses Λk constitute the

class Λ. If all the subclasses are coded as one class, the redundancy adapts to the worst one among

the subclasses even if the actual source is from a subclass within which smaller redundancy can be

obtained. However, in most simple cases, the cost of distinguishing between subclasses is negligible

w.r.t. the universal cost within each subclass. Hierarchical coding first distinguishes between the

different subclasses and then between sources within each subclass. For example, if the class Λ is

considered, the encoder will first code the alphabet size k and then perform universal coding within

the subclass Λk. Such an approach yields lower costs for coding sources in many subclasses than

the cost of coding the whole class. Therefore, unlike the results in [13], [17]-[20], we will consider

the subclass Ψ (Λk) and analyze the pattern redundancy for each k. If k is initially unknown,

(1 + ε) log k bits can be used to relay to the decoder the number of indices in the pattern using

Elias’s [8] coding of the integers.

One technique that will be used in Section 7 to design a code for coding patterns will use

ideas as in Rissanen’s quantization two-part code method [24]. This technique estimates the ML

parameters from the sequence Xn and then quantizes them onto a grid of points. Then, only

the quantized version of the ML parameters is relayed to the decoder, and entropy coding is used

14



w.r.t. this version as if the quantized parameters are the true source parameters. The redundancy

of this code consists of the cost of relaying the quantized ML estimators and the cost caused by

the quantization of the ML parameters. The latter results from the deviation of the quantized

parameters from the actual parameters. Usually, the quantization cost can be made negligible by

tuning the grid spacing properly. Unlike Rissanen’s approach, we will need to use a non-uniform

grid for the quantization, as in [30], [33], although, unlike these references, we will be concerned

with index probabilities for patterns and not the actual letter probabilities.

4 The Main Results

The paper contains the following main results:

• a lower bound on the maximin and minimax redundancy for universal coding of patterns,

• a lower bound on the redundancy for most sources when coding patterns,

• an upper bound on the redundancy of coding patterns, specifically for not very large alphabets

where all alphabet letters are likely to occur in a sequence,

• two sub-optimal sequential low-complexity methods for coding patterns with upper bounds

on the displacements of their description lengths from the i.i.d. ML description length and

also with implications to the pattern entropy.

Each of the above results is studied in a separate subsequent section.

In particular, we show that the nth-order maximin and minimax average universal coding

redundancies for patterns induced by i.i.d. sources with alphabet size k are lower bounded by

R+
n [Ψ (Λk)] ≥





k−1
2n log n1−ε

k3
+ k−1

2n log πe3

2 −O
(
log k
n

)
, for k ≤

(
πn1−ε

2

)1/3

(
π
2

)1/3 · (1.5 log e) · n−(2+ε)/3 −O
(
logn
n

)
, for k >

(
πn1−ε

2

)1/3 . (26)

The nth-order average universal coding redundancy is lower bounded by

Rn [L,ψ (θ)] ≥





k−1
2n log n1−ε

k3
− k−1

2n log 8π
e3

−O
(
log k
n

)
, for k ≤ 1

2 ·
(
n1−ε

π

)1/3

1.5 log e
2π1/3 · n−(2+ε)/3 −O

(
logn
n

)
, for k > 1

2 ·
(
n1−ε

π

)1/3 (27)

for every code L(·) and almost every i.i.d. source θ ∈ Λk. Both lower bounds demonstrate that for

small k, each parameter costs at least 0.5 log
(
n/k3

)
bits. For larger alphabets, the cost is at least

O
(
n(1−ε)/3

)
bits overall.
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Next, it is shown that there exist codes with length function L∗ (·) that achieve redundancy

Rn [L
∗,ψ (θ)] ≤





(1 + ε) k−1
2n log n1+ε

k2
, for k ≤ √

n
1−ε

and θ ∈ Λ̃k
π
√

2/3 log e√
n

+O
(
1
n

)
, for k ≥ √

n
1−ε

or θ 6∈ Λ̃k
(28)

for patterns induced by any i.i.d. source θ ∈ Λk. Namely, for small k, each parameter costs at most

0.5 log
(
n/k2

)
bits, and for large k, O (

√
n) overall.

Next, a linear (per sequence) complexity sequential method (with prior knowledge of k) is shown

with modified individual redundancy that satisfies

R̃n [Qk,Ψ(xn)] ≤ k

2n
log

n

k3
+

(
19

12
log e

)
k

n
− 1

2n
log n+O

(
k2

n2

)
. (29)

for every pattern Ψ (xn) of a sequence xn with k distinct indices and for every k ≤ n. With increased

complexity, identical performance is also achieved without prior knowledge of k. However, a second

linear complexity scheme achieves similar asymptotic performance in k, with only second order

penalty without prior knowledge of k. Finally, the implications of these bounds on the pattern

entropy are noticed, in particular, indicating that the pattern entropy must decrease from the i.i.d.

one if k is larger than cn1/3, for some constant c.

5 A Maximin and Minimax Lower Bound

In [30], [32]-[33], it was established that for a large known alphabet of size k, choosing a set Ω

of M sources θ whose k − 1 free components are placed only at points on a non-uniform grid

of increased spacing in each dimension yields a set of distinguishable sources if the grid spacing

is properly chosen. The k − 1 components of grid points take values only from the grid vector

τ
△
= (τ1, τ2, . . . , τb, . . . , τB). The components of τ satisfy τ1 < τ2 < · · · < τb < · · · < τB , and

the spacing between every two consecutive components increases with b. The advantage of such a

grid is that it yields a tighter bound on the redundancy, as we can include more points in regions

of Λk in which closer points are distinguishable, i.e., for small probability parameters. For coding

patterns, we can build a similar grid of sources. However, we need to verify distinguishability in the

pattern domain, as explained in Section 3. A valid grid point θ ∈ Ω and a non-identity permutation

θ′ = θ (σ) 6= θ, θ′ ∈ Ω, of θ will not be distinguishable in the pattern domain, as they are likely

to generate similar patterns. Hence, in order to build a grid of sources which are distinguishable

in the pattern domain, we can take the grid Ω for i.i.d. sources, but keep only one point for each

set of permutations of the same source vector θ
△
= ψ (θ) (which is ordered in non-decreasing order
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of components). We then consider a new grid Ψ (Ω) that contains only points θ
△
= ψ (θ) in which

the components are ordered in nondecreasing order. In this section, we will show how such a grid

can be obtained, and then will use the weak-version of the redundancy-capacity theorem to derive

a lower bound on the minimax redundancy using this grid. We start by stating the main result

that lower bounds the minimax pattern redundancy, and then present its proof 1.

Theorem 1 Fix an arbitrarily small ε > 0, and let n → ∞. Then, the nth-order maximin and

minimax average universal coding redundancies for patterns induced by i.i.d. sources with alphabet

size k are lower bounded by

R+
n [Ψ (Λk)] ≥





k−1
2n log n1−ε

k3 + k−1
2n log πe3

2 −O
(
log k
n

)
, for k ≤

(
πn1−ε

2

)1/3

(
π
2

)1/3 · (1.5 log e) · n−(2+ε)/3 −O
(
logn
n

)
, for k >

(
πn1−ε

2

)1/3 . (30)

Theorem 1 shows that as long as k is small (of o
(
n1/3

)
), each index probability parameter

costs at least 0.5 log
(
n/k3

)
extra code bits. However, if the alphabet size is larger, a threshold

phenomenon occurs, and the redundancy is of O
(
n−2/3

)
overall. Note that this result applies even

if k > n, because regardless of the actual alphabet size, the number of indices that will occur in a

pattern is upper bounded by n. The bound in the first region coincides with the individual minimax

bound obtained from [1], described in (20). The second region points to the same behavior as the

worst case bound in (23). The average lower bound naturally applies to the individual minimax

worst case redundancy, but not the other way around. Theorem 1 shows that we are unlikely to

gain much in the average case over the worst sequence at least for the minimax redundancy. The

n−ε/3 gap may indicate a true small gap between the individual worst case and the average worst

case, but may also be due to sub-optimal bounding.

The proof of Theorem 1 builds a non-uniform grid Ω of points as in the i.i.d. minimax case.

Then, the grid size is reduced by a factor of k! eliminating all permutations of any grid point

θ except the ordered permutation ψ (θ), resulting in a new grid Ψ (Ω) in the induced patterns

space. This elimination is a worst case one, since sources for which there are identical components

θi = θj for j 6= i have less than k! permutations in the original i.i.d. grid. The elimination of

more grid points than necessary becomes significant for k = O
(
n1/3

)
or larger. For alphabets of

1The initial derivation of a related bound to that of (30) appears in [32], and was done subsequently to the

derivation of the individual sequence minimax lower bound in [20] (see, e.g., [17]). The bound in [32] was later

improved. A problem with the second region of both bounds (in [32] and the improved one) was pointed out by

Ortlitsky and Santhanam in October 2003. Consequently, the improved bound and its proof were corrected resulting

in the second region of (30).

17



these sizes, most distinguishable grid points in the i.i.d. standard compression grid contain identical

components. Therefore, we reduce the bound on the grid size by a factor that is too large. This

results in a useless bound that is smaller than 1 on the number of grid points M in the pattern

grid, and requires adaptation of the largest bound on M as a function of k to all large k’s.

A second issue that needs to be addressed in order to use the weak version of the redundancy-

capacity theorem is that of distinguishability of the grid points in the pattern domain, as described

in Section 3. Although the grid we will use is a subset of the distinguishable i.i.d. grid, we need

to have distinguishability in the pattern domain, i.e., if point θ generated the sequence Xn, the

pattern Ψ (Xn) needs to appear as if it were generated by ψ (θ). If we observe the sequence Xn

and obtain the ML estimator θ̂ of θ in the i.i.d. domain, we may have sequences for which θ̂i > θ̂j

for j > i. For such sequences, θ̂Ω may still be equal θ in the i.i.d. domain. In the pattern domain,

however, if this happens, by observing Ψ (Xn), θ̂i will appear to be the estimate of θj and θ̂j of

θi. We thus need to show, that despite that, distinguishability is still maintained, and thus by the

restriction that θ̂
ψ
Ω ∈ Ψ(Ω), we will still have θ̂

ψ
Ω = ψ (θ) for all cases in which θ̂Ω = θ. This will

be done as the last step of the proof of the theorem. The proof of Theorem 1 follows and concludes

this section.

Proof of Theorem 1: Let Λk be the class of i.i.d. sources with an alphabet of size k, and let

Ψ (Λk) denote its induced pattern class. First, let us consider a non-uniform grid Ω of points in

Λk. Also, at this point, let us assume that k ≤ n1−2ε. This assumption will be justified later on,

and then it will be shown how we can still obtain a bound for the redundancy over Ψ (Λk) for

larger values of k. Let τ be a vector of grid components, such that the first k − 1 components

θi, i = 1, . . . , k − 1, of θ ∈ Ω must satisfy θi ∈ τ . Let τb be the bth point in τ , and define it as

τb
△
=

b∑

j=1

2(j − 1
2)

n1−ε
=

b2

n1−ε
. (31)

Then, for the bth point in τ ,

b =
√
τb ·

√
n
1−ε

, (32)

and also, the spacing ∆ (τb) between points τb and τb−1 satisfies

∆ (τb)
△
= τb − τb−1 =

2
(
b− 1

2

)

n1−ε
=

2
(√

τb
√
n
1−ε − 0.5

)

n1−ε
≥

√
τb√
n
1−ε , (33)

where the last inequality is obtained because τb ≥ n−(1−ε). From (33), we see that for large b and

τb the spacing between grid points is the same spacing used to obtain the well known bounds for
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compression of i.i.d. fixed size alphabet sources. However, for small probability parameters, we

obtain a denser grid. Figure 1 demonstrates this non-uniform grid.

X X XX

X

X

X

X

XX

X X

∼ 2τ5
0.5n-0.5(1-ε)

X

X

XXX X

X

X

X X X X X

τ5τ4τ3τ2τ1

τ1

τ2

τ3

τ4

τ5

Figure 1: Non-uniform grid for a large alphabet

Let us first lower bound the number of points in the standard i.i.d. grid. Let θ = (θ1, θ2, . . . , θk−1)

be a point on the grid Ω. Let bi be the index of θi in τ , i.e., θi = τbi . Then, from (31)-(32),

k−1∑

i=1

θi =
k−1∑

i=1

τbi =
k−1∑

i=1

b2i
n1−ε

. (34)

Hence, there is a one-to-one mapping between a grid point θ and the index vector b
△
= (b1, b2, . . . , bk−1)

of positive integers. Since the components of θ are probabilities, we must have

k−1∑

i=1

θi ≤ 1. (35)

From (34) and (35), it follows that if
k−1∑

i=1

b2i ≤ n1−ε, (36)

θ must be a valid grid point. Hence, the total number of grid points is the number of nonnegative

integer components vectors b satisfying (36). As shown in the next lemma, this number is lower

bounded by the volume of a k − 1 dimensional sphere with radius
√
n
1−ε′

, Vk−1

(√
n
1−ε′

)
(see

[2] for this volume), where ε′ > ε and ε′ − ε is fixed, divided by 2k−1 for obtaining only positive

components. Note that due to the integer length constraints on the components of b we must use

the greater ε′, and we obtain a lower bound (i.e., we consider the volume of a smaller sphere in

order not to include integer vectors that are not in the sphere).
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Lemma 5.1 For the standard i.i.d. case with k ≤ n1−2ε, the number of grid points satisfying (35)

is lower bounded by

Mi.i.d. ≥
Vk−1

(√
n
1−ε′

)

2k−1
=

1

2k−1
·





π(k−1)/2·n(1−ε′)(k−1)/2

[(k−1)/2]! ; k odd,

[(k−2)/2]!·π(k−2)/2·2k−1·n(1−ε′)(k−1)/2

(k−1)! ; k even.
(37)

The proof of Lemma 5.1 is in Appendix A. Taking the logarithm of the bound in (37), and

approximating factorials by Stirling’s approximation

√
2πm ·

(m
e

)m
≤ m! ≤

√
2πm ·

(m
e

)m
· exp

{
1

12m

}
, (38)

we obtain

logMi.i.d. ≥
k − 1

2
log

n1−ε
′

k
+
k − 1

2
log

πe

2
− 1

2
log k −O(1). (39)

Now, let us consider only a portion Ψ (Ω) of the grid Ω for the grid of distinguishable patterns.

The grid Ψ (Ω) includes all points θ ∈ Ω for which ψ (θ) = θ, i.e., only the permutation of any

point θ′ ∈ Ω for which the components are in non-decreasing order is included in Ψ (Ω). Note that

this condition applies to the k dimensions of θ including the additional kth parameter θk. (For this

matter, if θk does not take a point from τ , the nearest neighboring points from τ will be considered

as its grid point value.) The transformation from the space Λk to the space Ψ (Λk), that contains

all the points in Ψ (Ω), is shown in Figure 2 for k = 2 and k = 3. In the second case, only a

projection of two components on a two dimensional space is shown.

Remaining
Space

0 01 11/2
1/2

1

XX

Same in Pattern Space X
X

Same in Pattern Space

Original
Space

Remaining
Space

k = 2 k = 3

Λk

θ1

Ψ(Λ2)

Ψ(Λ3)θ1

θ2
ψ(θ)

ψ(θ)

θ

θ

Figure 2: Transformation from i.i.d. space Λk to pattern space Ψ (Λk) for k = 2 and k = 3

In order to lower bound the size M of the grid Ψ (Ω), we need to take out from Ω any point

θ ∈ Ω that is a non-identity permutation of ψ (θ). For each point in Ψ (Ω), there are at most k!

such permutations (although there may be less). Therefore, we can lower bound the logarithm of
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M , using Stirling’s approximation and (39), by

logM ≥ logMi.i.d. − log (k!)

≥ k − 1

2
log

n1−ε
′

k3
+
k − 1

2
log

πe3

2
− 2 log k −O(1). (40)

From (40), we note that there exists a constant c such that if k > cn(1−ε
′)/3 the bound above

becomes negative. The reason is that we eliminated many points from the grid more than once.

For example, the grid point θ = [τ1, τ1, · · · , τ1] only appears once in the grid Ω but was reduced by

a factor of k! times to obtain the bound in (40). This problem is negligible for small k’s, because

such grid points make a negligible fraction of Ω. However, for large k’s, almost all or all (for very

large k’s) grid points contain many components that are identical.

To achieve a more useful bound on the logarithm of the number of grid points for large alphabets,

we can find the value of k for which the maximal lower bound is obtained from (40). Denote it

by km. Then, for k > km (including k > n), we can fix the first k − km components of θ at a

value of o
[
1/(n1+ε(k − km))

]
for all points in θ ∈ Ψ(Ω), where the ith component, i ≤ k − km,

of all θ ∈ Ψ(Ω) takes the same value, and any of these letters will appear in xn with probability

going to 0. The other km components will take the values from a pattern grid for alphabet of size

km. Note that now we can justify the assumption that km ≤ n1−2ε, assumed earlier for computing

the number of grid points. In fact, km is much smaller as indicated earlier. However, by fixing

all other components of θ as described above, the bound for km applies even for alphabets with

k > n1−2ε. If we now show that all points are distinguishable in the grid for k = km, they will also

be distinguishable in the grid defined above for larger k. Therefore, the bound for km will hold for

every larger k as well.

The bound in (40) attains a maximum value for km = (π/2)1/3 · n(1−ε′)/3 ≈ 1.16n(1−ε
′)/3.

Substituting km in (40), normalizing by n, and replacing ε′ by ε, we obtain the second region

of the bound in (30). The first region of the bound is obtained by normalizing the bound in

(40) by n and substituting ε′ by ε. To conclude the proof of Theorem 1, we only need to prove

distinguishability in the non-uniform pattern grid. By the weak version of the redundancy-capacity

theorem, if distinguishability is proved, then the bounds we have obtained lower bound the minimax

redundancy.

We will now show that distinguishability in the grid Ψ (Ω) is a direct result of the distinguisha-

bility in the grid Ω. Let the sequence Xn be generated by the point θ = ψ (θ) ∈ Ψ(Ω). Let Ψ (Xn)

be the pattern of Xn. Consider the estimator ψ
(
θ̂
)
of θ obtained as a function of Ψ (Xn), and let
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θ̂
ψ
Ω be the nearest point to ψ

(
θ̂
)
on the grid Ψ (Ω). We will show that there is an estimator ψ

(
θ̂
)

for which Pθ

(
θ̂
ψ

Ω 6= θ
)
→ 0 as n → ∞. By definition of Ψ (Ω), the components θi; 1 ≤ i ≤ k, of θ

are in non-decreasing order. Let θ̂ be the ML estimator of θ from Xn, and θ̂Ω the closest point in

Ω to θ̂ that is used to estimate θ in the standard i.i.d. case. Let ψ
(
θ̂
)
be the ordered permutation

of θ̂, that can be obtained directly from the pattern Ψ (Xn). For every θi, i = 1, . . . , k, let τbi be

the nearest point in τ to θi that is smaller than or equal to θi. (Note that for i < k, τbi = θi, and

only for θk it may be smaller than θk.) Define the event Ai as

Ai :
∣∣∣θ̂i − θi

∣∣∣ ≥ ∆(τbi)

2
, (41)

i.e., the event in which the ML estimate of component θi is outside an interval of length ∆ (τbi)

centered at θi. (If an error occurs in estimating θi by θ̂Ωi, this must be true because ∆ (τbi) /2 is

at most half the distance between θi and its nearest neighbors.) Let event Ψ (Ai) be defined as

Ψ (Ai) :
∣∣∣ψi

(
θ̂
)
− θi

∣∣∣ ≥ ∆(τbi)

2
, (42)

where ψi

(
θ̂
)
denotes the ith ordered component of the ML estimate of θ, where the components

are ordered in non-decreasing order. Define event A
△
=
⋃
iAi as the union of all events Ai and

event Ψ (A)
△
=
⋃
iΨ(Ai) as the union of all events Ψ (Ai). The probability that event A occurs

when Xn is generated by θ will be denoted by Pθ (A). In a similar manner, Pθ [Ψ (A)] will denote

the probability that Ψ (A) occurs given Xn is generated by θ. By definition of Ψ (A) and (42),

event Ψ (A) implies that the ordered version ψ
(
θ̂
)
of the ML estimator θ̂ is outside the portion

in Ψ (Λk) of the box with edges ∆ (τbi), for every i, centered at θ. The following lemma, which is

proved in Appendix B, bounds Pθ (A):

Lemma 5.2

Pθ (A) ≤ 2(log k)+(log n)−cnε/2 → 0, (43)

where c is a constant.

Note that Pθ (A) ≥ Pθ

(
θ̂Ω 6= θ

)
, but we require a bound on the larger probability in order to

apply it to the pattern space. In the standard i.i.d. case, there is thus a vanishing probability even

to estimating θ outside the defined box. The following lemma relates between the probability of

event Ψ (A) and that of event A.

Lemma 5.3

Pθ [Ψ (A)] ≤ Pθ (A) . (44)
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Proof: We show that Ā →
(
Ψ(A) ∩B

)
, where Ā is the complement to A, and event B is

defined below. Therefore,
[
Ψ(A) ∪ B̄

]
=
{
[Ψ (A) ∩B] ∪ B̄

}
→ A, and thus also Ψ (A) → A and

Pθ {Ψ(A)} ≤ Pθ (A). The proof consists of the following steps: First, let ϕ ⊆ (θ1, θ2, . . . , θk−1, τbk)

be a subset of θ with θk replaced by the nearest smaller grid point. Let ϕ consist only of distinct

(unequal) elements. Let the components of ϕ be ordered in increasing order. We show that Ā

implies that ϕ̂ is also in increasing order for any choice of ϕ as described above. The latter event

is denoted by B. Hence, the respective ordered components of ψ (ϕ̂) will not be permuted from

those of ϕ̂. This means that if ψ (ϕ̂) 6= ϕ̂ (i.e., ψ (ϕ̂) is a non-identity permutation of ϕ̂ and event

B̄ occurs), A must occur. Then, we show that for equal components of θ, although the components

of θ̂ may not be ordered, if Ā is satisfied, then each of the ordered components of ψ
(
θ̂
)

must

satisfy Ψ (Ai). Together with the first step, this means that given Ā, at least k − 2 components

of ψ
(
θ̂
)
must satisfy event Ψ (Ai). The only remaining components of ψ

(
θ̂
)
consist of at most

ψk

(
θ̂
)
and one more component ψl

(
θ̂
)
which takes the value of θ̂k if θ̂k is not the maximal ML

component of θ̂. (Otherwise, the proof is complete.) For these two components, we show that

{[Ψ (Al) ∪Ψ(Ak)] ∩B} → A, concluding the proof.

First, assume that Ā occurs. Then, for all i; 1 ≤ i ≤ k,

∣∣∣θ̂i − θi

∣∣∣ < ∆(τbi)

2
⇒ − ∆(τbi)

2
< θ̂i − θi <

∆(τbi)

2
. (45)

Let τbj > τbi . Note that by definition of θ as an ordered vector and of τb, τbj > τbi implies that

θj > θi (and also that j > i). (The other direction is true for j < k.) Given Ā, we thus have,

θ̂j − θ̂i =
(
θ̂j − θj

)
+ (θj − θi) +

(
θi − θ̂i

)
> −

∆
(
τbj
)

2
+ ∆

(
τbj
)
− ∆(τbi)

2
> 0, (46)

where the first inequality is obtained by applying the left hand side of inequality (45) to the first

two and the last two terms, respectively, and by applying the left hand side of (33) to the two

middle terms. The last inequality is from the monotonicity of ∆ (τb) in b. Hence, if τbj > τbi , then

Ā implies that we must also have θ̂j > θ̂i (and event B must occur). This means that if the ML

estimates of two letters separated by at least one grid spacing unit are within the boxes defined in

(45), then these ML estimates are still ordered in the same order as the original letters. Hence, the

only case where ML estimates of two different letters may not be in the original order of the letters

is when τbj = τbi for j > i. For j < k, this implies also that θj = θi, and thus if ψi

(
θ̂
)
= θ̂j but

also (45) holds for θj, then,

∣∣∣ψi
(
θ̂
)
− θi

∣∣∣ =
∣∣∣θ̂j − θi

∣∣∣ =
∣∣∣θ̂j − θj

∣∣∣ <
∆
(
τbj
)

2
=

∆(τbi)

2
. (47)
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Therefore, for all i ≤ k, except for at most i = k and one value i = l < k, for which τbl = τbk , if Ā

occurs, also Ψ (Ai) occurs. This is because except for permutations with θ̂k, the only permutations

violating the order of θ in the resulting θ̂ can occur between letters with equal probabilities in θ.

From the last inequality, such permutations still result in occurrence of Ψ (Ai).

The only case in which θj > θi does not necessarily imply θ̂j > θ̂i is when j = k and τbi = τbk .

Let us now consider this case when θ̂k is not the maximal component of θ̂. (If θ̂k is the maximal

component of θ̂, the order of the estimates in θ̂ is not violated beyond permutations of equal

components in θ, and we are back in the previous cases, for which the lemma has already been

proved.) Let θ̂i be the maximum component of θ̂. Then, ψk

(
θ̂
)
= θ̂i. Also, there exists l, for

which τbl = τbk , such that ψl

(
θ̂
)
= θ̂k. We show that if either Ψ (Al) or Ψ (Ak) occur together

with B, then either Ai or Ak must occur as well.

First, let Ψ (Ak) occur, i.e., ∣∣∣θ̂i − θk

∣∣∣ ≥ ∆(τbk)

2
. (48)

If θ̂i > θk,

θ̂i − θi =
(
θ̂i − θk

)
+ (θk − θi) ≥

∆(τbk)

2
, (49)

where the inequality is by definition of this case and by the ordering of θ. The last inequality

means that Ai occurs. If θ̂i < θk,

θk − θ̂k =
(
θk − θ̂i

)
+
(
θ̂i − θ̂k

)
≥ ∆(τbk)

2
, (50)

where the inequality is, again, by definition of the case, and by the assumption that θ̂i is the

maximum component of the ML estimate of θ. This inequality implies that Ak occurs. Now, let

Ψ (Al) occur for l defined above. Then,

∣∣∣ψl
(
θ̂
)
− θl

∣∣∣ =
∣∣∣θ̂k − θl

∣∣∣ ≥ ∆(τbl)

2
=

∆ (τbk)

2
=

∆ (τbi)

2
, (51)

where the equalities are since the occurrence of B implies τbl = τbk = τbi . If θ̂k < θl,

θk − θ̂k = (θk − θl) +
(
θl − θ̂k

)
≥ ∆(τbl)

2
=

∆ (τbk)

2
, (52)

where the inequality is obtained similarly to the previous cases. The last equality is from the

occurrence of B. This implies that Ak occurs. If θ̂k > θl, in a similar manner,

θ̂i − θi =
(
θ̂i − θ̂k

)
+
(
θ̂k − θi

)
=
(
θ̂i − θ̂k

)
+
(
θ̂k − θl

)
≥ ∆(τbl)

2
=

∆ (τbi)

2
, (53)

where the second and last equalities are because of the occurrence of B. This implies Ai occurs,

and concludes the proof of Lemma 5.3. ✷
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The proof of Lemma 5.3 considered three different cases relating between two components θi

and θj; j > i, of θ. Figure 3 shows the projection of these three cases onto a two dimensional

subspace that contains only components i and j. The dots represent grid points. A rectangular

box surrounding a dot contains all the ML estimator points that are in event Āi∩ Āj if (θi, θj) is on
the dot. The first two cases are in part (a) of the figure, and the last in part (b). In the first case,

the complete box is contained in Ψ (Λk). This is the case in which θj > θi; j < k. The occurrence

of Ā implies event B, which means that the ML estimates in this case will remain in the original

ordering, i.e., estimating the components of ψ
(
θ̂
)
out of Ψ (Xn) will give the same estimates as

those obtained by estimating θ̂ out of Xn. Note that Pθ {Ψ(Ai) ∪Ψ(Aj)} ≤ Pθ (Ai ∪Aj), where
a possible decrease is because some un-typical sequences that have ML estimates θ̂ 6∈ Ψ(Λk) will

be projected into the same box around θ by estimating out of Ψ (Xn) and will (insignificantly)

increase the probability of Ψ (Ai) ∪Ψ(Aj) from that of Ai ∪Aj .

j, j > i

i

X

X

θ

First case

X

X

θ
Second case

(a) (b)

(θk,θi)
i<k

third case

^ ^

ψ(θ)^

ψ(θ)^(θj,θi)

(θj,θi)

Figure 3: Decision regions in a two dimensional projection of the pattern grid Ψ (Ω)

In the second and third cases, the box around θ contains a region that is in Λk but outside

Ψ (Λk), i.e., there exist sequences x
n that can be generated by θ and result in an ML i.i.d. estimator

θ̂ of θ that is still within the box defined above, but is not properly ordered, and thus ψ
(
θ̂
)
6= θ̂.

As shown in the proof of Lemma 5.3, this can only occur when θi = θj, as in the second case in

Figure 3, or when j = k, and τbi = τbk , as shown in the third case of Figure 3. As shown in the

proof of Lemma 5.3, both cases still result in Ā → Ψ(A) when estimation is done according to

Ψ (xn). From Figure 3, we see that this is the case, because the re-ordering of θ̂ to generate ψ
(
θ̂
)
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means projection of components of θ̂ over the diagonal lines as shown for both cases in the figure.

To conclude the proof of Theorem 1, we need to consider the estimator θ̂
ψ
Ω ∈ Ψ(Ω), which

estimates θ = ψ (θ) by the point in Ψ (Ω) nearest to ψ
(
θ̂
)
. Based on Lemmas 5.2 and 5.3, we

show that the error probability for this estimator, which is solely based on the pattern Ψ (Xn) of

Xn, vanishes with n. An error occurs if θ̂
ψ
Ω 6= θ. If this happens, event Ψ (A) must happen, because

the distance between two adjacent grid points is not smaller than 2∆ (τbi) /2 = ∆(θi). (Note that

now we only need to estimate the first k − 1 components of θ, since the last component θk is then

determined by the others). Also, for the second region of the bound, no error is possible in the first

k− km small parameters because they need not be estimated since they are equal for all points on

the grid Ψ (Ω), and the probability that any of these letters occurs vanishes. Hence,

Pθ

(
θ̂
ψ
Ω 6= θ

)
≤ Pθ [Ψ (A)] ≤ Pθ (A) → 0. (54)

This concludes the proof of Theorem 1. ✷

6 A Lower Bound for Most Sources

The analysis in Section 5 cannot be used to lower bound the average pattern redundancy for most

sources. This is because of the non-uniform grid. The strong version of the redundancy-capacity

theorem requires the sources in each set of M sources to be uniformly distributed for the result in

(25) to hold. However, randomly choosing a non-uniform grid, generating a uniform distribution

of the sources in the grid, results in an overall non-uniform distribution of the sources in Ψ (Λk),

because sources in the dense areas are more likely to be chosen. The redundancy-capacity theorem

can still be used, but the bound that is obtained will be a bound on the class, assuming the sources

are distributed with a non-uniform prior in the class Ψ (Λk). Such a bound is not a bound for most

sources in the class in Rissanen’s sense.

To derive a lower bound on the redundancy for most sources in the class Ψ (Λk), a different

approach from that in Section 5 must, therefore, be used. Instead of a non-uniform grid, we show

that sources in the centers of disjoint spheres with radius r = n−0.5(1−ε) in the k − 1 dimensional

pattern space are distinguishable, and count the number of spheres that can be packed in the space

Ψ (Λk) (see [2] for information about the sphere packing problem). This sphere lattice can be shifted

to cover the whole class for different choices ofM points. Hence, the conditions of the strong version

of the redundancy-capacity theorem are then satisfied, and the normalized logarithm of the bound

on the number of spheres becomes the lower bound on the redundancy for most sources. (This
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approach resembles Rissanen’s pioneering work [24] for sources with a finite number of parameters.

However, here the asymptotics change due to the consideration of patterns and large alphabets.)

Since we no longer take advantage of the fact that sources that vary only in small parameters

are still distinguishable, the size of the grid that is constructed reduces w.r.t. that of the minimax

bound. This leads to a smaller lower bound on the redundancy for most sources, hinting that

it may be possible to compress most sources in the class better than the worst sources. This

is reasonable because many sources, with large k in particular, may generate very compressible

pattern sequences, that may decrease the overall average redundancy. On the other hand, however,

this redundancy reduction may also be due to looseness in the bounding techniques. The orders of

the bounds obtained remain the same as those of the minimax bound, but for large alphabets, the

coefficients become smaller. For small alphabets, the decrease in the bound is reflected in a smaller

second order term. We proceed with Theorem 2, that lower bounds the redundancy of patterns

generated by most sources in the class Λk and conclude this section with its proof.

Theorem 2 Fix an arbitrarily small ε > 0, and let n→ ∞. Then, the nth-order average universal

coding redundancy for coding patterns induced by i.i.d. sources with alphabet size k is lower bounded

by

Rn [L,ψ (θ)] ≥





k−1
2n log n1−ε

k3
− k−1

2n log 8π
e3

−O
(
log k
n

)
, for k ≤ 1

2 ·
(
n1−ε

π

)1/3

1.5 log e
2π1/3 · n−(2+ε)/3 −O

(
logn
n

)
, for k > 1

2 ·
(
n1−ε

π

)1/3 (55)

for every code L(·) and almost every i.i.d. source θ ∈ Λk, except for a set of sources Aε (n) whose

volume goes to 0 as n→ ∞.

Theorem 2 shows similar behavior of the redundancy for most sources to that shown by

Theorem 1 for the minimax redundancy. For small k, each probability parameter, again, costs

0.5 log(n/k3) extra code bits. For large k’s (including k > n), we obtain a redundancy bound

of O
(
n−2/3

)
, identical for all large values of k. The lower bound of Theorem 2 naturally is the

strongest sense bound and applies also to the minimax average and individual redundancies. It is

therefore smaller than the other two sets of bounds. While the first order term in the first region

of (55) is equal to that of (30), the second order term here is negative and decreases the redun-

dancy for most sources linearly with k, whereas the second order term of the first region in (30) is

positive and increases the minimax redundancy linearly with k. In the second region of the bound

in (55), the coefficient of the redundancy which approximately equals 0.74 decreases w.r.t. that of

the minimax redundancy in (30), which approximately equals 2.52.
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The proof of Theorem 2 lower bounds the volume of the space Ψ (Λk), and then uses sphere

packing density results [2] to lower bound the number of spheres that can be packed in this vol-

ume. Then, it is shown that sources at centers of disjoint spheres with radius r = n−0.5(1−ε) are

distinguishable also in the pattern space, i.e., by observing Ψ (Xn). There are two methods that

bound the volume of the space Ψ (Λk). The first takes the volume of Λk, which by condition (35)

must be 1/(k − 1)!, and divides it by k! to extract all permutations of the same sources, resulting

in a volume of 1/[(k − 1)!k!]. The other method directly computes the volume of Ψ (Λk) from the

conditions defining an ordered vector ψ (θ). Both methods obtain the same bound on the volume

of Ψ (Λk). We will, therefore, demonstrate only the second one. Since the second method is tight,

it hints to the fact that, unlike the reduction of the grid Ω in Section 5 by a factor of k! to form

the grid Ψ (Ω), the reduction of the volume of Λk by a factor of k! to bound the volume of Ψ (Λk)

is tight. This is because of the difference in considering a grid and a continuous space. In the

continuous space Λk, sources with several exactly identical components make a negligible portion

of the space (as the probability of any single point is zero), whereas such sources are not negligible

when we construct a grid as in Section 5.

Although the bounding of the volume of Ψ (Λk) is tight, we still encounter a similar phenomenon

to that in Section 5, where there exists a constant c, such that for every k > cn(1−ε)/3, the bound

becomes negative. This is due to another step in the bounding. In this analysis, we bound the

number of spheres packed in Ψ (Λk) dividing the volume of Ψ (Λk) by a volume of a single sphere and

factoring a packing density factor. However, as k increases, most spheres contained in Ψ (Λk) have

only portions in the space, whereas big portions of those spheres are outside the space. Therefore,

division by the complete volume of a sphere results in loose bounding of the number of sources

that are still distinguishable in the space. We solve this problem in a manner that resembles

the solution in Section 5. Let km be the value of k for which the bound is maximal. Then, for

k > km, instead of considering the whole space Ψ (Λk) and bounding the number of spheres in it,

we bound the number of spheres in a slice of this space, in which there are only km sufficiently large

probability parameters, and all the other k − km probability parameters sum to an insignificantly

small total probability. This idea is best pictured if one considers packing spheres in a triangular

based pyramid. The number of circles that can be packed on its basis is larger than the number

of circles that can be packed in any horizontal two dimension cut above the basis. If the spheres

are very large, we may not be able to pack any complete two dimensional cuts of these spheres

above the basis. Since we are not interested in complete spheres in all dimensions, it is sufficient

to consider the number of dimensions that will give the maximum number of sphere portions that
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are packed in the space. This number is a lower bound on the total number of sphere portions that

can be packed in the space. Using only km dimensions in the sphere packing analysis, we obtain

the second region of the bound. Note that when we shift the sphere lattice to obtain a covering

of the whole space, some center points that represent sources in the set will no longer be in the

space, reducingM . However, the lower bound onM obtained from the km dimensional cut will not

be affected, when at the same time the shifting allows the space covering condition of the strong

version of the redundancy-capacity theorem to be satisfied.

As in Section 5, we also need to show that distinguishability in the i.i.d. space carries over to

the pattern space. This is, in fact, easier than in the minimax case. All we need to show is that

a point θ̂ in Λk outside Ψ (Λk) but still in a sphere that is centered inside Ψ (Λk) projects onto

a point ψ
(
θ̂
)
that is still in the same sphere. The point ψ

(
θ̂
)
is the one that will be obtained

directly from Ψ (Xn). Therefore, if the ML i.i.d. estimator θ̂ of θ based on Xn is outside Ψ (Λk)

but still distinguishable in the i.i.d. space, its projection ψ
(
θ̂
)
into Ψ (Λk), obtained from Ψ (Xn),

is still in the same sphere. This is shown by geometric considerations demonstrated as a series of

exchanges that rearrange the components of θ̂ into ψ
(
θ̂
)
by exchanging a pair in each step. We

conclude this section with the proof of Theorem 2.

Proof of Theorem 2: We begin with bounding the volume of the k−1 dimensional space Ψ (Λk).

Only ordered vectors θ for which θ1 ≤ θ2 ≤ · · · ≤ θk−1 are contained in Ψ (Λk). This can be used

to set constraints on a k − 1 dimensional integral that bounds the volume of Ψ (Λk). By condition

(35),

1 ≥
k−1∑

i=1

θi ≥ (k − 1) θ1 ⇒ θ1 ≤
1

k − 1
. (56)

Similarly (and more generally),

1−
i−1∑

j=1

θj ≥
k−1∑

l=i

θl ≥ (k − i)θi ⇒ θi ≤
1−∑i−1

j=1 θj

(k − i)
. (57)

Now, (57) gives upper limits on every component of θ. The ordering condition of θ that is necessary

for θ to be in Ψ (Λk) gives lower limits on each component of θ. Ordering is maintained by the

above conditions except for the kth component θk. Therefore, the volume obtained by a k − 1

dimensional integral over 1 within all these limits needs to be reduced by a factor of k to only

take the k dimensional permutations for which θk is not smaller than all other components of θ.

Including all the constraints, V [Ψ (Λk)] is computed in the following equations:

V [Ψ (Λk)] =
1

k
·
∫ 1

k−1

0
dθ1

∫ 1
k−2

(1−θ1)

θ1

dθ2

∫ 1
k−3

(1−θ1−θ2)

θ2

dθ3 · · ·
∫ 1

1
(1−θ1−θ2−···−θk−2)

θk−2

dθk−1
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= · · · =
1

k
·
∫ 1

k−1

0
dθ1

{
1

[(k − 2)!]2
[1− (k − 1) θ1]

k−2

}

=
1

k
·
[
− 1

[(k − 1)!]2
[1− (k − 1) θ1]

k−1

] 1
k−1

0

=
k

[k!]2
=

1

(k − 1)! · k! (58)

Now, consider packing of k− 1 dimensional spheres with radius r = n−0.5(1−ε) in Ψ (Λk) so that no

spheres share the same point in the space. The ratio between the volume V [Ψ (Λk)] of Ψ (Λk) and

the volume of one sphere Vk−1(r) is

ρ
△
=
V [Ψ (Λk)]

Vk−1(r)
=

1

(k − 1)! · k! · Vk−1(r)
=





[(k−1)/2]!·n
1
2 (1−ε)(k−1)

π(k−1)/2·(k−1)!·k! ; k odd

n
1
2 (1−ε)(k−1)

[(k−2)/2]!·2k−1·π(k−2)/2·k! ; k even,
(59)

where we substituted the volume of Ψ (Λk) from (58). However, the number of spheres that can be

packed in Ψ (Λk) is bounded by

M ≥ ∆ρ ≥ 1

(k − 1)! · k! · Vk−1 (r) · 2k−1
, (60)

where the factor ∆ = 2−(k−1) is a lower bound on the sphere packing density, i.e., the fraction of

the space that is actually occupied by spheres (see [2]). Now, let us choose a grid that contains the

sources θ at the centers of all the M spheres packed in Ψ (Λk). We can lower bound the number of

sources in one such grid by using (59)-(60). Taking the logarithm of the bound in (60) and using

Stirling’s formula to bound factorials, we obtain the bound

logM ≥ (1− ε)
k − 1

2
log n− k − 1

2
log k3 − k − 1

2
log

8π

e3
− 3

2
log k +

1

2
log

e3

4π
−O

(
1

k

)
. (61)

As long as the lower bound on M is large, we can (cyclicly) shift the whole grid to allow different

choices of grids in Ψ (Λk) to cover the whole space, and satisfy the conditions of the strong version

of the redundancy-capacity theorem. All random shifts of the original grid will form a covering

of Ψ (Λk), and can be designed so that uniform distribution is preserved for choosing a point

θ ∈ Ψ(Λk) over the whole class and also within every set of M points that is chosen. Hence, in

this case we can use the normalized logarithm of the number M of points on this random grid as

a lower bound on the redundancy for most sources if all sources within any shift of the grid are

distinguishable by the observed random sequence. This yields the first region of the bound in (55).

However, observing (61), as in the minimax case, the bound becomes negative and useless for large

k’s. As in Section 5, we solve this problem by fixing the bound at its maximum value as a function

of k. Assume this value is attained at k = km. Then, for every k > km, we will obtain the same

bound, resulting in the second region in (55). By straightforward differentiation it can be shown
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that the bound in (61) attains its maximum value for km = 0.5
(
n1−ε/π

)1/3
. Substituting this value

of km in (61), normalizing by n, we obtain the bound of the second region of (55).

When km is used to obtain the bound for a larger k, we still shift the complete grid to create

a covering of the space Ψ (Λk) in which each source is contained in one grid. Unlike the minimax

case, here we cannot simply discard points in the grid with k > km nonzero parameters. These

must be included in the grid, and distinguishability between them and other points must be proven.

However, we can lower bound the number of sources in the grid by the number of spheres in km

dimensional cut of Ψ (Λk) for which all the other (first) k − km parameters are very small, and

insignificant. This analysis is valid also if k > n, and thus the bound in the second region is

general, and applies also to such large alphabets.

Finally, to satisfy the covering of the whole space, we need to show that every source in Λk is

included in a grid. Demonstrating that only for the ordered permutation is not sufficient. This

can be done by taking different grids for each permutation vector, i.e., each ordered source ψ (θ)

will appear in k! different grids through its permutations. (Since the probability of a single point

is zero in a continuous space, sources for which identical components exist do not pose a problem.)

To conclude the proof of Theorem 2, we need to show distinguishability of the grids defined

above in the pattern space. We show that this is a direct result of distinguishability of the respective

grids in the i.i.d. space. First, we state a lemma showing distinguishability in the i.i.d. space, i.e.,

by observing Xn, and then we prove another lemma that implies that distinguishability in the

i.i.d. space causes distinguishability in the pattern space on the reduced pattern grid, obtained by

observing only Ψ (Xn).

Lemma 6.1 Consider one choice of a random grid in the i.i.d. space Λk as defined above. Let

θ ∈ Λk be a point on this grid, and let the random sequence Xn be generated by the conditional

probability Pθ(X
n) (given θ). Then, the probability that the ML estimator of θ from the observed

Xn is outside the sphere of radius 1/
√
n
1−ε

centered in θ vanishes with n,

lim
n→∞

Pθ

{∥∥∥θ̂ − θ
∥∥∥ > 1

√
n
1−ε

}
= 0, (62)

for every alphabet size k.

The proof of Lemma 6.1 is presented in Appendix C. The next lemma shows that the distance

between two points, one in Ψ (Λk) and the other in Λk, can only decrease if the latter is projected

into Ψ (Λk). This lemma is necessary, because the ordered ML estimator ψ
(
θ̂
)
obtained directly
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from Ψ (Xn) simply performs this projection over the i.i.d. ML estimator θ̂. Hence, this lemma

implies that the ordered estimator must be closer to the point estimated, which is in the pattern

space.

Lemma 6.2 Let θ and θ′ be two points in Λk, such that θ ∈ Ψ(Λk). Then,

∥∥θ −ψ
(
θ′
)∥∥ ≤

∥∥θ − θ′
∥∥ . (63)

Proof: Vector ψ
(
θ′
)
, which is ordered in non-decreasing order, can be obtained from θ′ by a series

of exchanges between two components il and jl; il < jl, where each exchange must decrease the

(index) distances of both components from their location in ψ
(
θ′
)
. Namely, let θ′(l) denote the

vector obtained after the l-th exchange. Then, θ
′(l−1)
il

> θ
′(l−1)
jl

, and also il ≥ ι and jl ≤ ρ, where

ψι
(
θ′
)
= θ

′(l−1)
jl

and ψρ
(
θ′
)
= θ

′(l−1)
il

, i.e., the final destination of each of the components in the

ordered vector is in the same direction as the exchange. For simplicity, we omit the index l from

il and jl when it can be inferred from the context. We show that each exchange can only decrease

the Euclidean distance to θ. For notation simplicity, let ϕi
△
= θ

′(l)
i = θ

′(l−1)
j and ϕj

△
= θ

′(l)
j = θ

′(l−1)
i .

Thus ϕj > ϕi. The difference between the square of the Euclidean distance from θ before and after

the exchange satisfies

∥∥∥θ − θ′(l−1)
∥∥∥
2
−
∥∥∥θ − θ′(l)

∥∥∥
2

=
(
θi − θ

′(l−1)
i

)2
+
(
θj − θ

′(l−1)
j

)2
−
(
θi − θ

′(l)
i

)2
−
(
θj − θ

′(l)
j

)2

= (θi − ϕj)
2 + (θj − ϕi)

2 − (θi − ϕi)
2 − (θj − ϕj)

2

= 2 (ϕj − ϕi) (θj − θi) ≥ 0, (64)

where the last inequality is obtained since ϕj > ϕi and θj ≥ θi since θ ∈ Ψ(Λk). Figure 4 shows

a two dimensional projection of components i and j of all vectors for one exchange as described

above. It demonstrates the decrease in distance to θ resulting from the exchange.

Now, using (64),

∥∥θ − θ′
∥∥2 −

∥∥θ −ψ
(
θ′
)∥∥2 =

∑

l

{∥∥∥θ − θ′(l−1)
∥∥∥
2
−
∥∥∥θ − θ′(l)

∥∥∥
2
}

= 2
∑

l

(
θ
′(l)
jl

− θ
′(l)
il

)
(θjl − θil) ≥ 0. (65)

Since all components of the sum are non-negative, the sum is also non-negative. This concludes

the proof of Lemma 6.2. ✷

From Lemma 6.2, if
∥∥∥θ − θ̂

∥∥∥ ≤ 1/
√
n
1−ε

, then also
∥∥∥θ −ψ

(
θ̂
)∥∥∥ ≤ 1/

√
n
1−ε

. Similarly to the

proof of Theorem 1, now let θ̂
ψ
Ω be the point in the random pattern grid, denoted by Ψ (Ω), nearest
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Boundary Line

θ'(l) = (ϕj , ϕi)

A

θ = (θj
, θ

i
)

B

d(θ, θ'(l-1))

d(θ, θ'(l))

j, j>i

i

θ'(l-1) = (ϕi , ϕj)

Figure 4: One exchange step in projection of a source θ′ ∈ Λk onto the pattern space Ψ (Λk)

to ψ
(
θ̂
)
. Then, using Lemmas 6.1 and 6.2, the probability that a sequence generated by θ will

appear by Ψ (Xn) to have been generated by another source in the same grid is upper bounded, as

n→ ∞, by

Pθ

(
θ̂
ψ
Ω 6= θ

)
≤ Pθ

{∥∥∥ψ
(
θ̂
)
− θ

∥∥∥ > 1
√
n
1−ε

}
≤ Pθ

{∥∥∥θ̂ − θ
∥∥∥ > 1

√
n
1−ε

}
→ 0. (66)

The first bound is since not all points in Ψ (Ω) are contained in spheres. Hence, distinguishability

is attained. This concludes the proof of Theorem 2. ✷

7 Upper Bounds

We now show how to design codes that attain low redundancy for coding patterns induced by

i.i.d. sequences. We propose a code with good performance for smaller alphabets sizes, namely,

k ≤ √
n
1−ε

, for an arbitrarily small ε > 0, and combine it with the method in [20] to asymptotically

achieve the better compression of the two for a specific pattern. The new code uses Rissanen’s [24]

two-part grid based coding approach combined with a non-uniform grid that resembles that in

Section 5. For a given sequence with k̂ distinct symbols, we find the best k̂-dimensional pattern

probability vector ψ̂ (θ), which is the vector that gives the k̂th-order ML probability for the pattern

of the sequence. Note that ψ̂ (θ) may be different from θ̂ and ψ
(
θ̂
)
. (Furthermore, the actual

ML estimate of a pattern may contain more letters than those actually observed. However, in

analyzing this code, we constrain the analysis to the average case, in which our reference is the

k-dimensional pattern probability, and to the class Λ̃k in which it is unlikely that k̂ < k.) Then,

ψ̂ (θ) is quantized to a grid. The quantized components are first coded, and then, the sequence is
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assigned a probability according to these quantized probability parameters. In [20], the number of

all different types of patterns of length n is shown to equal the number of unordered partitioning

of the integer n. Given the type, the pattern ML probability vector ψ̂u (θ) can be computed, as

well as its ML probability, which is used to then encode the sequence using a number of bits that

equals its negative logarithm. Hence, the redundancy is the logarithm of the number of types, as

shown in the upper bound of (23). The combined code can compute both description lengths, and

then choose between them, and use the one that requires fewer bits. One bit is needed to relay to

the decoder which of the codes is used. We summarize the performance of the code combined of

both codes in the next theorem.

Theorem 3 Fix an arbitrarily small ε > 0, and let n → ∞. Then, there exist codes with length

function L∗ (·) that achieve redundancy

Rn [L
∗,ψ (θ)] ≤





(1 + ε) k−1
2n log n1+ε

k2
, for k ≤ √

n
1−ε

and θ ∈ Λ̃k
π
√

2/3 log e√
n

+O
(
1
n

)
, for k ≥ √

n
1−ε

or θ 6∈ Λ̃k
(67)

for patterns induced by any i.i.d. source θ ∈ Λk, with alphabet of size k.

The first region of Theorem 3 applies to the class Λ̃k, i.e., it is assumed that the probability that

less than k letters will be observed in Xn is o(k/n). If the probabilities of all letters are greater

than 1/n1−ε, this condition is satisfied. Note that the proposed code should also achieve good

performance even if less than k letters are likely to be observed in Xn. However, further research

still needs to guarantee that the penalty does not increase in this case, and is still bounded as in

the first region of (67). The bound of the first region of (67) also applies to the individual pattern

redundancy under the assumption that the underlying alphabet contains no symbols other than

those observed. A weaker upper bound, which is to first order twice the bound of the first region of

(67) was subsequently derived in [21] for coding individual patterns with k occurring indices as long

as k = o
(
n1/3

)
. While the bound in [21] is larger (thus weaker) and applies only to smaller k’s, it

is stronger in the sense that it applies to a wider class containing all sequences in which k symbols

occur, without restricting the pattern generating alphabet to contain only symbols observed in Xn.

The bound in the second region of Theorem 3 applies to the class Λk.

The upper bounds in (67) show that we can design universal codes for patterns that require

at most 0.5 log(n/k2) bits for each unknown probability parameter, as long as k is small enough,

essentially of O (
√
n) or less. If k is larger, we observe a similar phenomenon as that of the lower

bounds, in which we achieve the same redundancy for every large k, which is of O
(
n−1/2

)
bits per
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symbol overall. This performance is better than that attainable in standard i.i.d. compression. In

particular, in the first region we gain 0.5 log k bits for each parameter, and the gain increases with

k in the second region. In Section 9, we discuss a different method that can be used to bound the

redundancy in the second region. The ideas considered can be used (as in subsequent work [35]) to

obtain stronger bounds in this region.

As indicated earlier, we observe gaps between the upper bounds and the lower bounds considered

in the previous sections. In the first region, the lower bound is smaller by 0.5 log k bits for each

parameter, whereas in the second region (as in the results in [17]-[21]), the lower bound is of

O
(
n−2/3

)
overall instead of O

(
n−1/2

)
. Naturally, the second region for the lower bounds starts

with smaller k. Gaps between the upper and the lower bounds are still an open problem and will

be discussed in Section 9 in somewhat more detail. This section is concluded with the proof of

Theorem 3.

Proof of Theorem 3: To prove Theorem 3, we demonstrate and analyze the code that achieves

the redundancy bound for the first region of (67). As mentioned earlier, a given pattern is encoded

by this code as well as the code in [20], and the one with the smaller description length is then

chosen. One bit is used to convey which code has been used (resulting in the additional O(1/n)

term of the second region). The rest of the proof is thus focused on the first region and bounding

the performance of the new code. The proof for the second region is concluded using [20].

Using the code for the first region, we first need (1 + ε) log k̂ bits to encode the number of

occurring letters k̂ with Elias’s coding for the integers [8]. Let θ ∈ Λ̃k and k ≤ √
n
1−ε

. Let

ψ̂ (θ) =
(
ψ1, ψ2, . . . , ψk̂

)
be the k̂-dimensional probability vector that maximizes the probability of

Ψ (Xn) in (9) for Xn. Let θ̂ be the i.i.d. ML estimator of θ from Xn. Let τ
△
= (τ1, τ2, . . . , τb, . . . , τB)

be a grid of B points whose bth component is defined in a similar manner to (31), where −ε is

replaced by ε, i.e.,

τb
△
=

b∑

j=1

2(j − 1
2)

n1+ε
=

b2

n1+ε
. (68)

Thus, there are

B =
√
n
1+ε

(69)

points in τ . Let ϕ
△
= (ϕ1, ϕ2, . . . , ϕk−1, ϕk) be a quantized version of ψ̂ (θ), for which each of

the first k − 1 components ϕi takes one of the two nearest grid points surrounding ψi, i.e., if

ψi ∈ [τb, τb+1], ϕi equals either τb or τb+1. The point that is chosen for ϕi between the two grid

points is the one that minimizes the absolute value of the cumulative difference between the first
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k − 1 components of ψ̂ (θ) and those of ϕ such that the non-decreasing order of the components

of ϕ is retained. This ensures that the last largest component ϕk of ϕ is within the defined grid

spacing around ψk, even if it does not take a value in τ .

The code first codes the first k− 1 components of ϕ, and then computes Pϕ [Ψ (Xn)], and uses

(up to integer length constraints) − logPϕ [Ψ (Xn)] bits to code the pattern. The average code

length for θ ∈ Λ̃k and k ≤ √
n
1−ε

is thus bounded (up to integer length constraints) by

EθL
∗ [Ψ (Xn)] ≤ 1 + (1 + ε) log k + Eθ

{
L∗
R

[
ψ̂ (θ)

]}
− Eθ {log Pϕ [Ψ (Xn)]} , (70)

where L∗
R

[
ψ̂ (θ)

]
is the cost of representing the quantized version ϕ of ψ̂ (θ). The first term of

1 is the cost of one bit distinguishing between the two codes. The second term is a bound on the

cost of representing k̂ < k. The last term is the cost of coding the pattern using the quantized ML

estimates in ϕ. The inequality is also since some patterns may be represented shorter by the code

from [20]. Denoting an upper bound on the representation cost of an up to k-dimensional vector

ϕ by L̄∗
R,k, the average redundancy for θ ∈ Λ̃k and k ≤ √

n
1−ε

is, therefore, upper bounded by

nRn [L
∗,ψ (θ)] ≤ 1 + (1 + ε) log k + Eθ

{
L∗
R

[
ψ̂ (θ)

]}
+Eθ

{
log

Pθ [Ψ (Xn)]

Pϕ [Ψ (Xn)]

}

≤ 1 + (1 + ε) log k + L̄∗
R,k + Pθ

(
k̂ < k

)
n log k + Eθ

{
log

P
ψ̂(θ)

[Ψ (Xn)]

Pϕ [Ψ (Xn)]

∣∣∣∣∣ k̂ = k

}

= L̄∗
R,k + Eθ

{
log

P
ψ̂(θ)

[Ψ (Xn)]

Pϕ [Ψ (Xn)]

∣∣∣∣∣ k̂ = k

}
+ o

(
k log

n

k2

)
. (71)

The second inequality is since at most log k bits are required to code every index, and also because

the pattern probability w.r.t. the k-dimensional ML estimate is not smaller than the probability

w.r.t. the actual parameter θ. The next equality is because of the assumption that Pθ

(
k̂ < k

)
=

o(k/n), and since o (log k) = o
(
log(n/k2)

)
by definition of the region.

To complete the bound in the first region, we now need to bound the remaining first two terms

of (71). These two costs are the cost of coding ϕ, and the cost of using the quantized version ϕ of

the k-dimensional pattern ML probability estimator ψ̂ (θ) instead of using the actual k-dimensional

pattern ML probability estimator. For the remainder of the proof, we can now assume that k̂ = k

because for the first term, we will obtain a bound that increases with k̂, and for the second term,

we compute the expectation conditioned on this event. We next bound the two costs and show

that the second is negligible w.r.t. the first in the first region of the bound. This together with (71)

results in the upper bound for this region.
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Instead of coding the first k − 1 components ϕi of ϕ, we can code their indices in τ . Let b (ϕi)

be the index in τ of the grid point that equals ϕi. Since the vector ϕ is ordered, we can use a

differential code which uses
(
1 + ε′

)
log [b (ϕi)− b (ϕi−1) + c]

bits, where c is a constant, to represent the integer displacement to the index of ϕi from that of

ϕi−1 with Elias’s code, where ε′ > 0 is arbitrarily small, b (ϕ0)
△
= 0, and extra c bits are added to

apply for zero or small displacements. Hence, altogether, we will need

L∗
R

[
ψ̂ (θ)

]
=

k−1∑

i=1

(
1 + ε′

)
log [b (ϕi)− b (ϕi−1) + c]

≤
(
1 + ε′

)
(k − 1) log

B + ck

k − 1

≤ (1 + ε1)
k − 1

2
log

n1+ε

k2
△
= L̄∗

R,k (72)

bits to represent ϕ, where the first inequality is obtained by Jensen’s inequality, and the second

follows directly from (69) and the assumption that k = o (
√
n) by absorbing low-order terms in ε1.

Note that the last inequality in (72) holds only for k = o (
√
n). The bound of (72) is used to bound

the cost of representing ϕ in (71). (We note that in Section 9, we will demonstrate a method that

yields representation cost for ϕ which is fixed at O
(
n(1+ε)/3

)
bits. For k ≥ n1/3, this cost is better

than that in (72). However, the cost of quantizing the pattern ML estimator, which is shown next,

will overwhelm this cost for large k.)

We now bound the second term of (71). The probability of Ψ (xn) can be expressed as in (9)

by summing over all sequences that have the same pattern with a fixed parameter vector. On the

other hand, we can express the same probability by fixing the actual sequence and summing over

all permutations of the parameter vector

Pθ [Ψ (xn)] =
∑

σ

Pθ(σ) (x
n) . (73)

Now, to bound the cost of quantizing the pattern ML estimator reflected in the second term of

(71), we consider the logarithm of the ratio between P
ψ̂(θ)

[Ψ (Xn)] and Pϕ [Ψ (Xn)]. We can express

each of the two probabilities using (73). Then, we discard permutations of ψ̂ (θ) that give negligible

probability for Xn (and their respective quantized versions) from each of the sums in the ratio.

Next, we bound the ratio between the probability of Xn given a non-negligible permutation of ψ̂ (θ)

and that obtained by the quantized version of this permutation. We obtain the same bound for all

these permutations. This bound can, in turn, be used to bound the ratio between P
ψ̂(θ)

[Ψ (Xn)] and
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Pϕ [Ψ (Xn)]. To obtain the bound for all permutations, we need to bound the absolute differences

between ψi and ϕi, and between θ̂i and ϕ(σi), which is the σith component of the permutation

of ϕ according to permutation vector σ. The first difference is a direct result of the definition

of the components of τ in (68). The second difference is the reason we need to omit negligible

permutations of ψ̂ (θ) from the analysis. If we do not omit such permutations, we will be unable

to bound this difference. Lemma 7.1, which is presented next, demonstrates that if the distance

of components of a permutation of ψ̂ (θ) from the respective non-permuted components of θ̂ is too

large, then the contribution of the conditional probability of this permutation to the probability of

the pattern of Xn in (73) will be negligible. A corollary to the lemma (which is shown in Appendix

E as part of the proof of Lemma 7.2) will give us a bound on the absolute difference between

components of a non-negligible permuted version of ψ̂ (θ) and those of θ̂, which, in turn, will lead

to a bound on the desired difference between θ̂i and ϕ(σi).

We begin by showing that there are permutations of the pattern ML estimator that contribute

negligibly to the pattern probability. The following lemma can be used to demonstrate that. The

lemma is stated more generally.

Lemma 7.1 Let n→ ∞. Let θ̂ be the standard i.i.d. ML estimator with k non-zero components of

the probability vector that governs Xn. Let φ
△
= (φ1, φ2, . . . , φk) be another k-dimensional probability

vector. Define

δi
△
= θ̂i − φi, i = 1, 2, . . . , k. (74)

Assume that there exists a set J of at least j indices i ∈ J , 1 ≤ i ≤ k, such that

|δi| ≥





k
j ·

√
θ̂i√

n
1−ε/4 ; if φi > 2θ̂i,

√
k
j ·

√
θ̂i√

n1−ε/4 ; if φi ≤ 2θ̂i.
(75)

Then, as n→ ∞,
k!Pφ (X

n)

Pθ̂ (X
n)

→ 0. (76)

Lemma 7.1 shows that if there are too many components of a vector φ that are far from those of

θ̂, then even if we multiply the probability of Xn given φ by k! it still remains negligible w.r.t. the

ML probability of Xn. The lemma shows that this is true for large distance with few components,

as well as smaller distance with more components. Lemma 7.1 is proved in Appendix D.

For the sake of simple notation, let ψ
△
= ψ̂ (θ) denote the pattern ML probability parameter

vector from this point on to the end of the proof of the redundancy of the code for the first region.
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(This is a slight abuse of notation, but is much less tedious.) Now, ψ (σ) and ϕ (σ) are the

permutations of ψ and ϕ, respectively, obtained by permutation vector σ. Define the set A as the

set of all permutation vectors σ, for which φ
△
= ψ(σ) satisfies the condition in Lemma 7.1 w.r.t. θ̂.

Note that Lemma 7.1 also implies that ψ cannot satisfy its conditions w.r.t. θ̂. Then, given that

for every ψ(σ) 6∈ A, we obtain Pψ(σ) (X
n) /Pϕ(σ) (X

n) ≤ α, for some expression α, the normalized

contribution of the quantization of ψ to the redundancy for every xn with k̂ = k ≤ √
n
1−ε

observed

symbols can be upper bounded by

1

n
log

P
ψ̂(θ)

[Ψ (xn)]

Pϕ [Ψ (xn)]
=

1

n
log

∑
σ Pψ(σ) (x

n)∑
σ Pϕ(σ) (x

n)

=
1

n
log

∑
σ:ψ(σ)6∈A Pψ(σ) (x

n) +
∑
σ:ψ(σ)∈A Pψ(σ) (x

n)
∑
σ:ψ(σ)6∈A Pϕ(σ) (x

n) +
∑
σ:ψ(σ)∈A Pϕ(σ) (x

n)

≤ 1

n
log

(1 + ε2)
∑
σ:ψ(σ)6∈A Pψ(σ) (x

n)
∑
σ:ψ(σ)6∈A Pϕ(σ) (x

n)

≤ 1

n
log

(1 + ε2)
∑
σ:ψ(σ)6∈A αPϕ(σ) (x

n)
∑
σ:ψ(σ)6∈A Pϕ(σ) (x

n)
≤ ε2 log e

n
+

log α

n
. (77)

The first inequality is obtained from Lemma 7.1, using a fixed arbitrarily small ε2 > 0, and also by

decreasing the denominator. The last inequality is obtained since ln (1 + x) ≤ x for every x > −1.

To complete the bound, we need to find α. This is done in the following lemma.

Lemma 7.2 Let ψ be the k-dimensional pattern ML estimator obtained from Xn for k ≤ √
n
1−ε

,

let ϕ be its quantized version, and let σ be a permutation vector such that ψ(σ) 6∈ A. Then,

log
Pψ(σ) (X

n)

Pϕ(σ) (Xn)
≤ ck ln k

nε/4
, (78)

where c is a constant.

The proof of Lemma 7.2 is in Appendix E. We can plug (78) in (77) for a particular xn to show

that
1

n
log

P
ψ̂(θ)

[Ψ (xn)]

Pϕ [Ψ (xn)]
≤ ε2 log e

n
+
ck ln k

n1+ε/4
= o

(
k

n

)
, (79)

and hence the quantization cost is negligible w.r.t. the cost of representing ϕ in (72). Plugging the

bounds of (72) and (79) in (71), absorbing all low order terms in the leading ε, normalizing by n,

we obtain the upper bound of the first region of (67), thus concluding the proof of Theorem 3. ✷
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8 Low Complexity Sequential Schemes and Pattern Entropy

We now present two sub-optimal low-complexity sequential algorithms for compressing patterns.

We are interested in analyzing the performance for various alphabet sizes, and in the total descrip-

tion length of a pattern, which can be obtained by adding the modified redundancy we obtain here

to the i.i.d. entropy as in (15). The results in this section provide bounds on the universal descrip-

tion length for coding patterns. A very interesting corollary is that for sufficiently large alphabets,

the universal description length of patterns is smaller than the i.i.d. entropy. This points out to an

interesting phenomenon where the pattern entropy must decrease from the i.i.d. one for sufficiently

large alphabets. Subsequently to the work reported in this paper, pattern entropy and entropy rate

have been extensively studied, first in [34], and later in [11]-[12], [22]-[23], [31], [38]-[39].

8.1 Known Alphabet Size and A Mixture Code

Let us first assume that although the alphabet Σ itself is unknown, its size k is known. For

coding i.i.d. sequences, Krichevsky and Trofimov [15] demonstrated that the minimum description

length (MDL) for i.i.d. sequences [24], [30] can be sequentially achieved using sequential probability

assignment, which when combined with arithmetic coding [25] results in an optimal sequential code.

In particular, they defined the probability QKT (xn) which is sequentially assigned to the sequence

xn as

QKT (xn) =

n∏

i=1

QKT
(
xi | xi−1

)
, (80)

where QKT
(
xi | xi−1

)
is a conditional probability assigned to the ith symbol xi, given the subse-

quence of all the preceding symbols xi−1. It is defined as

QKT
(
xi | xi−1

) △
=
ni−1 (xi) + 1/2

i− 1 + k/2
, (81)

where ni−1 (xi) is the number of occurrences of the symbol xi in the subsequence xi−1.

We can adopt this approach for coding patterns if we know that k symbols occur in the sequence.

If a letter (or index) has already occurred, we can still update the probability as in (81). However,

once a new symbol occurs, i.e., xi is not contained in the subsequence xi−1, Ψ (xi) will be determined

as the next available index, regardless of the actual value of xi. This means that the event that

Ψ (xi) will take a new value not in Ψ
(
xi−1

)
should be assigned the sum of the probabilities of

all letters u ∈ Σ that have not yet occurred. Hence, similarly to (80), Ψ (xn) will be assigned
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probability

Qk [Ψ (xn)] =
n∏

i=1

Qk
[
Ψ(xi) | xi−1

]
, (82)

where

Qk
[
Ψ(xi) | xi−1

]
=





ni−1(xi)+1/2
i−1+k/2 , if ni−1 (xi) > 0,

(k−Ci−1)/2
i−1+k/2 , otherwise,

(83)

where Ci−1 is the number of distinct letters that occurred in the subsequence xi−1. Theorem 4

summarizes the performance of the probability assignment in (82)-(83).

Theorem 4 Let n → ∞. Then, the individual modified redundancy of the probability assignment

in (82)-(83) is upper bounded by

R̃n [Qk,Ψ(xn)] ≤ k

2n
log

n

k3
+

(
19

12
log e

)
k

n
− 1

2n
log n+O

(
k2

n2

)
. (84)

for every pattern Ψ(xn) of a sequence xn with k distinct indices and for every k ≤ n.

The proof of Theorem 4 is purely technical relying on Stirling’s approximation and is presented

in Appendix F. From the proof, we can see that the last term is k2(log e)/
(
4n2
)
, which is always

negligible w.r.t. the sum of all other terms. We can also notice from the proof that if almost all

letters in xn (except o(k)) occur more than a fixed number of occurrences, (84) reduces to

R̃n [Qk,Ψ(xn)] ≤ k

2n
log

n

k3
+ (1.5 log e)

k

n
− 1

2n
log n+O

(
k2

n2

)
, (85)

for every k (i.e., the second term is slightly smaller). However, if there are O(k) letters that occur

only one time, we must include the term of at most k(log e)/12, obtained from the upper bound

of Stirling’s approximation. Worst sequence case bounds on the individual true redundancy can

be easily obtained from Theorem 4. If the alphabet size is limited to k, the pattern probability of

the worst sequence will be at most k! times its i.i.d. ML probability. Hence, the redundancy will

increase by log(k!), yielding the same redundancy as that of the i.i.d. case of 0.5(k − 1) log(n/k)

bits, which diminishes for k = o(n).

The expression in (85) attains a maximum for k = n1/3 (neglecting the last two terms). The

maximum of (85) meets the performance of the minimax code in (22). In fact, a minimax code

that does not distinguish between different k’s adopts the worst case performance of k = n1/3 for

every value of k. For k > e · n1/3, R̃n [Qk,Ψ(xn)] in (85) becomes negative. (This is also true for

(84) for k > e19/18 · n1/3.) This means that the number of bits required to code the pattern is

smaller than the negative logarithm of the ML i.i.d. probability of xn, and that the pattern entropy
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is much smaller than that of i.i.d. sequences for large k’s. This result cannot be observed from the

lower and upper bounds of the previous sections because they refer to the true redundancy w.r.t.

the pattern entropy. Further study of pattern entropy [31] extensively characterized the behavior

of the pattern entropy for different alphabet sizes and arrangements of the letter probabilities in θ.

The main drawback of the code above is that it requires knowledge of k. A “semi-sequential” two

pass code that identifies k during the first pass can be used to achieve almost similar performance

with additional (1 + ε) log k bits to inform the decoder of k. Elias’s coding of the integers [8] can

be used to first encode k, and then the scheme of (82)-(83) is used to code the pattern. To avoid

the use of a two pass code, one can perform a mixture over all possible values j of k. This can be

done by assigning at every i; 1 ≤ i ≤ n,

Q
[
Ψ
(
xi
)] △

=
1

n− 1

n∑

j=2

Q̃j
[
Ψ
(
xi
)]
, (86)

where Q̃j [Ψ (xn)] is defined by

Q̃j
[
Ψ(xi) | xi−1

] △
=





ni−1(xi)+1/2
i−1+j/2 , if j > Ci−1 and ni−1 (xi) > 0,

(j−Ci−1)/2
i−1+j/2 , if j > Ci−1 and ni−1 (xi) = 0,

1
Ci−1+1 , if j ≤ Ci−1,

(87)

i.e., as long as the number of distinct occurring letters does not exceed j−1, Q̃j
[
Ψ
(
xi
)]

is equal to

Qj
[
Ψ
(
xi
)]
. Otherwise, Q̃j

[
Ψ
(
xi
)]

assigns equal probability to all existing indices and also to the

innovation index. Then, Q
[
Ψ
(
xi
)]

is averaged over Q̃j
[
Ψ
(
xi
)]
. The assigned probability satisfies

for the actual k,

Q [Ψ (xn)] ≥ 1

n
Qk+1 [Ψ (xn)] , (88)

where we must consider index k + 1 in case all k symbols occur first earlier than at time n. This

leads to modified redundancy of

R̃n [Q,Ψ(xn)] ≤ k

2n
log

n

k3
+

(
19

12
log e

)
k

n
+

1

2n
log

n2

k3
+O

(
k2

n2

)
, (89)

where the third term diverges from (84) because of the mixing and the use of k + 1 instead of k,

for this linear per-symbol complexity scheme.
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8.2 Unknown Alphabet Size

The assignment described requires extra manipulations or complexity for an unknown k. In [41], a

more generalized form of (81) was presented, in which

QGKT
(
xi | xi−1

) △
=





ni−1(xi)+ν
i−1+Ci−1ν+χi−1

, if ni−1 (xi) > 0,

χi−1

(M−Ci−1)(i−1+Ci−1ν+χi−1)
, otherwise

, (90)

where ν > 0 is some constant, χi−1 is some function of the subsequence xi−1, and M is a bound

on the maximum number of alphabet letters. This extension of (81) allows asymptotically optimal

performance for coding i.i.d. sequences. This performance depends only on the actual number k of

alphabet letters that occur, and not on the total alphabet size M .

It turns out that with correct modification of (90), one can sequentially (with fixed per symbol

complexity) asymptotically (with k → ∞) achieve the same performance of (84)-(85) for patterns.

Let us consider the code in which

Q
[
Ψ(xi) | xi−1

] △
=





ni−1(xi)+1/2

i−1+Ci−1/2+(Ci−1+1)1−ε/2
, if ni−1 (xi) > 0,

(Ci−1+1)1−ε/2

i−1+Ci−1/2+(Ci−1+1)1−ε/2
, otherwise,

(91)

where ε > 0 can be chosen arbitrarily small. Theorem 5 summarizes the performance of this code.

Theorem 5 Let n → ∞. Then, the individual modified redundancy of the probability assignment

in (91) is upper bounded by

R̃n [Q,Ψ(xn)] ≤ k

2n
log

n

k3
+

(
19

12
− ε

)
(log e)

k

n
− 1

2n
log n+

k1−ε

2n
log

2n

k
+
εk log k

n
+O

(
k2

n2

)
, (92)

for every pattern Ψ(xn) of a sequence xn with k distinct indices and for every k ≤ n.

The proof of Theorem 5, again, relies on Stirling’s approximation. It is presented in Appendix G.

The bound in (92) is shown such that the first row contains the terms (up to ε) identical to the

upper bound in (84). The second row contains the additional terms that increase the bound due

to the reduced complexity. If k → ∞ and ε is arbitrarily small, the bound in (92) asymptotically

meets the modified redundancy upper bound of (84), even if k goes to infinity at a slower rate

than n. However, for smaller k’s, the two terms in the bottom row increase the redundancy, and if

k > n1/3, work against the dominant negative first term. In practice, k may be too small, and the

gap between the redundancy of the first scheme in (84) and that of the second scheme in (92) will
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be noticed. A mixture of the assigned probability of the new scheme and of those for known small

k’s in (82)-(83) can be used to achieve the performance of (84) for every k.

Under the assumption leading to (85), the worst case modified redundancy of the first scheme is

obtained when k = n1/3, where the extra number of bits required beyond − logPML (x
n) is linear in

k. The additional terms of the redundancy of the second scheme shift the maximum redundancy to

a larger value of k, yielding larger redundancy. For example, if k → ∞, a value of ε = 0.1 will attain

the worst k (under the assumption leading to (85)) at k ≈ n0.5/(1.5−ε) = n0.5/1.4 ≈ n0.357, which is

larger than n1/3. If n is not as large, the maximal redundancy will be attained for finite k’s, and will

increase w.r.t. k. For example, if n = 106, and ε = 0.1, the worst case k is slightly above k = 400,

which is approximately n0.44. Figure 5 shows the un-normalized modified redundancy bounds (in

bits) of both schemes (using a second order term of 1.5(log e)k/n, and for the first scheme with a

known k), as well as the individual modified redundancies obtained using the two proposed schemes

for patterns of actual sequences xn. The results are shown for n = 106, for alphabets of sizes k = 2

to k = 1000, and for ε = 0.1 in the second scheme. For the second scheme, the results are also

shown for the worst possible sequence, i.e., the one that is used to obtain the bound of Theorem 5,

in which all the k letters occur in the first k symbols of xn. The figure shows that the bound

in (85) is tight. As expected, the first scheme performs better than the second. The bound of

(92) is loose because the proof of Theorem 5 makes a loose assumption in order to use Stirling’s

bounds. The algorithm is thus much better than the bound in (92). Since the performance is for an

individual sequence, the simulation curve for the second scheme is rather noisy. The reason is that

the behavior varies depending on where in the sequence first occurrences are. Since each point is

for a different individual sequence, the locations of the first occurrences vary. Figure 5 also verifies

the worst values of k mentioned above.

For a given sequence xn, the schemes described in this section assign probability based on

only a single permutation of θ̂. However, a pattern probability can be expressed as a sum of all

permutations of its ML estimator. Naturally, if the probabilities of all k! permutations are included

in the assigned probability, better redundancy can be obtained. Subsequently to the derivation

of the schemes described here, a class of computationally more demanding schemes that accounts

to many such permutations was obtained and described in [18]-[20]. Unlike those schemes, the

methods proposed here can more easily be integrated into efficient low-complexity implementations

of adaptive arithmetic coding (see, e.g., [26]).
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Figure 5: Bounds and simulation results for the individual modified pattern redundancies of two

sequential schemes with n = 106 and ε = 0.1

8.3 Pattern and I.I.D. Entropies

The description length in (84) can lead to an upper bound on the pattern entropy in terms of the

i.i.d. one. In particular, it follows from (84), that if for an arbitrarily small ε > 0, the probability

that at least k′ distinct symbols will occur in a sequence of length n is at least 1− ε, then

1

n
Hθ [Ψ (Xn)] ≤





Hθ (X) ; if k′ ≤ e19/18 · n1/3,
Hθ (X)− (1− ε) 3

2
k′

n log k′

e19/18n1/3 +O
(
k′2+n logn

n2

)
; if k′ > e19/18 · n1/3.

(93)

The last equation can be shown by bounding the entropy by the average description length of the

following probability assignment code. The code assigns the pattern Ψ (xn) a codeword of length

− logPθ [Ψ (xn)] ≤ − logPθ (x
n) bits if less than k′ indices occur in Ψ (xn). Otherwise, it uses the

code leading to (84). One negligible bit is required to distinguish between the two cases, and at

most O(log n) bits are needed to inform the decoder of the actual number of indices if greater than

or equal k′. Hence, for a large k′, the pattern entropy is significantly smaller than the i.i.d. one.

In fact, from (93) and the bounds derived in this paper, we observe that not only does the pattern

entropy decrease significantly from the i.i.d. one, but also the true pattern redundancy becomes

negligible compared to this decrease. The extensive study of the pattern entropy has been the

subject of several subsequent works, first in [34], and later in [11]-[12], [22]-[23], [31], [38]-[39].
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9 Discussion

This paper considered the average case of the problem of universal pattern compression. Both lower

and upper bounds on the redundancies of codes for this problem were obtained. However, a gap still

exists between the lower bounds and the attainable upper bounds. While we considered the average

problem, other work [1], [13], [17]-[21] considered the individual sequence case, using different

techniques based on combinatorics. Although the aim and the techniques in those independent

works were different, similar qualitative results were obtained, and in particular the same gap was

shown to exist between the orders of magnitudes of the lower and the upper bounds.

Future work should try to bridge the two sets of bounds. In our work, it is clear that there is

room for improvement and tightening both lower and upper bounds. The minimax lower bounds

derived in Section 5 are not tight because we decreased the grid size dividing by k!, which eliminated

many permutations of ψ (θ), more than once each. In Section 6, the assumption that complete

spheres are contained in the pattern space, and the division by their complete volume to find the

number of spheres packed in the space resulted in a possibly loose bound for most sources. It may

be possible to use techniques from combinatorics to tighten the bounds. The question is whether

such techniques will improve the first order asymptotics or not.

On the other hand, the quantization approach of the upper bound in the first region may be

useful also for the second region with larger k’s. The derivation of the upper bound of the second

region does not quantize the estimators of the probability parameters, possibly leading to a loose

bound. One can show that quantization of the ML parameters into the vector ϕ whose components

are on the grid points of τ defined in (68) can result in representation cost of O
(
n(1+ε)/3

)
even for

large k’s. More precisely, let β be some partitioning index in the grid τ . Consider representing the

quantized ML pattern probability parameters of ϕ as follows: For each of the first β grid points

in τ use up to (1 + ε) log k bits to represent how many letters have probabilities quantized in ϕ to

this grid point. In the remaining grid points (bounded by B =
√
n
1+ε

) there are at most n1+ε/β2

quantized probability parameters in the components of ϕ (see, e.g., (68)-(69)). For each of these

components of ϕ, one can use up to (1 + ε) logB bits to represent the index in τ of the point that

equals this component. This results in a total representation cost upper bounded by

(1 + δ) β log k + (1 + δ)
n1+ε

2β2
log n (94)

for some fixed δ > ε. Differentiating w.r.t. β to find the value of the partition point β of τ that
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yields the minimum of the expression above yields a bound on the representation cost of

(1 + δ) 1.5 · n 1
3
(1+ε) · (log n)1/3 · (log k)2/3 (95)

bits for coding ϕ. A more complex analysis takes the second cost above as the number of choices

of at most n1+ε/β2 elements out of at most
√
n
1+ε

with repetitions allowed. Asymptotically, it

yields the bound of (95) divided by a factor of 31/3. Considering the bound only for k ≥ n1/3, this

stronger bound can be bounded by (1 + δ) 1.5 · n 1
3
(1+ε) · log k.

From (95) we know that the representation of a quantized version of the pattern ML estimator

whose components are quantized as proposed in Section 7 can cost O
(
n(1+ε)/3

)
bits for every k,

including all large values of k up to k = n. However, the quantization cost, in this case, increases

and becomes of O
(
k/n1+ε

)
bits per symbol. While subsequent work in [35] has already improved

the upper bound by trading off between the two costs, a gap to the lower bound still remains.

Therefore, further research should explore this direction more in order to attempt to reduce the

upper bound that consists of these two components even more.

10 Summary and Conclusions

We studied the average universal coding problem of patterns of sequences generated by i.i.d. sources.

Lower bounds on the average minimax redundancy and the redundancy for most sources were ob-

tained, as well as upper bounds obtained for specific codes. It was shown that for essentially small

alphabet sizes, the redundancy cost in coding patterns is between 0.5 log(n/k3) and 0.5 log(n/k2)

bits per each unknown probability parameter in all average senses. For essentially large alphabets,

this cost is between O
(
n1/3

)
and O

(
n1/2

)
bits overall. These redundancies are better than those

attained in standard i.i.d. sequence compression. In particular, for large k’s where universal com-

pression with vanishing redundancy is impossible in the i.i.d. case, here it has vanishing redundancy.

The gain over i.i.d. compression increases with k, since for large k’s, a fixed cost is maintained,

regardless of the value of k. This gain is reflected even more in the existence of universal pattern

codes whose pattern universal description length is smaller than the i.i.d. non-universal MDL of the

underlying sequence if the alphabet is large enough. This implies a decrease of the pattern entropy

w.r.t. the underlying i.i.d. one. This overall gain, of course, does not come for free, and the cost

is embedded in coding the unknown alphabet characters before the patterns are obtained. Two

low-complexity sub-optimal sequential algorithms were presented and were used to demonstrate the

gain in coding patterns over the i.i.d. case. Future work should attempt to bridge the gap between
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the upper and lower bounds. Also, the results on the i.i.d. problem can serve as a basis for further

research on pattern compression for patterns induced by non-memoryless sources.

Appendix A – Proof of Lemma 5.1

The number of vectors b with integer components that satisfy (36) is lower bounded by the number

of cubes with edge 1 that are fully contained in the positive quadrant of the k − 1 dimensional

sphere centered at the origin with radius
√
n
1−ε

. (This is a lower bound, because there are, in fact,

more vectors with zero components than this number). The number of these cubes equals the total

volume of these cubes. However, since there can exist cubes that are only partially contained in the

sphere, the volume of the sphere with radius
√
n
1−ε

cannot be used to bound the total volume of

these cubes. Instead, we can subtract the longest diagonal of these cubes
√
k − 1 from the radius

of the original sphere, and use the new sphere with radius
√
n
1−ε −

√
k − 1 to bound the total

volume of these cubes, or even use a shorter radius
√
n
1−ε′ ≤ √

n
1−ε −

√
k − 1 for this bound (this

radius is shorter by the assumption that k ≤ n1−2ε ≪ n1−ε). The volume of the positive quadrant

of this sphere is bounded in (37). It is thus only left to show that all cubes that are only partially

contained (or are not contained) in the sphere with radius
√
n
1−ε

are completely outside the sphere

with radius
√
n
1−ε−

√
k − 1. Hence, the volume of this sphere is a lower bound on the total volume

of cubes for which the farthest points from the origin satisfy (36), and thus a lower bound on the

number of integer components vectors b that satisfy this condition.

Let a
△
= (a1, a2, . . . , ak−1) be the farthest point from the origin in an edge 1 cube that is either

partially in the sphere with radius
√
n
1−ε

centered at the origin or not in the sphere. By definition,

k−1∑

i=1

a2i > n1−ε ⇒

√√√√
k−1∑

i=1

a2i >
√
n
1−ε ⇒ 1

√
n
1−ε >

1√∑k−1
i=1 a

2
i

. (A.1)

By Jensen’s inequality on the function x2,

k−1∑

i=1

a2i ≥ (k − 1)

(
k−1∑

i=1

ai
k − 1

)2

=
1

k − 1

(
k−1∑

i=1

ai

)2

⇒
k−1∑

i=1

ai ≤
√
k − 1

√√√√
k−1∑

i=1

a2i . (A.2)

The nearest point to the origin of the cube considered is the point (a1 − 1, a2 − 1, . . . , ak−1 − 1).

To prove that the cube is completely outside the new sphere, we need to show that this nearest

point to the origin is outside this sphere, i.e., that
∑

(ai − 1)2 > ρ2 where ρ =
√
n
1−ε −

√
k − 1 is
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the radius of the new sphere. The difference between the two sides of this equation is

k−1∑

i=1

(ai − 1)2 −
(√

n
1−ε −

√
k − 1

)2
=

(
k−1∑

i=1

a2i − n1−ε
)

− 2

(
k−1∑

i=1

ai −
√
k − 1

√
n
1−ε
)

≥
√
n
1−ε



√√√√

k−1∑

i=1

a2i −
√
n
1−ε


− 2

√
k − 1



√√√√

k−1∑

i=1

a2i −
√
n
1−ε




=
(√

n
1−ε − 2

√
k − 1

)


√√√√

k−1∑

i=1

a2i −
√
n
1−ε


 > 0. (A.3)

The first inequality is obtained by using (A.1) for the first term and (A.2) for the second. The

next inequality is because the left term is positive as long as k < n1−ε/4 + 1, and the right term is

positive by (A.1). This proves that any point in a cube that is not completely inside the sphere with

radius
√
n
1−ε

must be outside the sphere we defined with a smaller radius, and thus the volume of

this sphere in the positive quadrant lower bounds the number of nonnegative integer components

vectors that satisfy (36). This concludes the proof of Lemma 5.1. ✷

Appendix B – Proof of Lemma 5.2

Let the observed data sequence Xn be generated with distribution Pθ(x
n), where θ ∈ Ω. Let θ̂ be

the ML estimate of θ from Xn. To bound the probability of event A, we will use the union bound

on events Ai. Define

δi
△
= θ̂i − θi. (B.1)

As defined in (41), event Ai for 1 ≤ i ≤ k occurs if |δi| ≥ ∆(τbi) /2, where ∆ (τbi) is as defined in

(33). Recall that for i < k, τbi = θi. For i = k, the constrained parameter θk may not be on τ

and we define τbk as the nearest point in τ to θk that is smaller than or equal to θk. Note that in

order to generate a bound that can be useful for the distinguishability of patterns, we must bound

Pθ(A), which is greater than Pθ

(
θ̂Ω 6= θ

)
. The latter is sufficient for distinguishability in the i.i.d.

case (see, e.g., [30]). In particular, we must include Ak in the error event, although we can use the

assumption that θk ≥ θi, for all i; 1 ≤ i ≤ k − 1. Hence, for all i, θi ≥ 1/n1−ε from the definition

of the minimum grid point in (31).

In the following lemma, we lower bound |δi| as a function of θ̂i given event Ai occurred. Following

the lemma and its proof, we use this bound and the union bound on the components of θ to show

that the overall probability of A vanishes.
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Lemma B.1 If event Ai occurs, then event

Bi : |δi| =
∣∣∣θ̂i − θi

∣∣∣ ≥
√
θ̂i

10
√
n
1−ε (B.2)

must occur as well.

Note that if θ̂i = 0, Lemma B.1 holds simply because the right hand side of (B.2) is zero.

Proof: First, extend the definition of the function ∆ (θ), defined in (33), to every value of θ ≥
1/n1−ε,

∆ (θ)
△
=

2
(√

θ
√
n
1−ε − 0.5

)

n1−ε
≥

√
θ

√
n
1−ε . (B.3)

The function ∆ (θ) is increasing in θ. Now, given Ai occurred, consider two separate cases: (1)

θ̂i ≤ τbi+2, and (2) θ̂i > τbi+2. For case (1),

|δi| =
∣∣∣θ̂i − θi

∣∣∣ ≥ ∆(τbi)

2
≥ ∆(τbi+2)

10
≥

√
τbi+2

10
√
n
1−ε ≥

√
θ̂i

10
√
n
1−ε . (B.4)

To obtain the second inequality, we use the fact that ∆ (τbi+2) ≤ 5∆ (τbi), which can be shown by

observing the case bi = 1. Then, inequality (B.3) is used. Finally, the definition of this case leads

to the last inequality. (Note that we need to consider τbi+2 instead of τbi+1 only in case θk is closer

to τbk+1 than to τbk , resulting in θ̂k > τbk+1 still satisfying the complement event to Ak.) For case

(2), let b̂i be the index of the largest grid point still smaller than θ̂i, i.e., θ̂i > τb̂i . Then, since there

is more than one unit of grid spacing between θi and θ̂i,

|δi| = θ̂i − θi > ∆
(
τb̂i

)
=

2
(
b̂i − 1

2

)

n1−ε
≥ b̂i +

1
2

n1−ε
=

∆
(
τb̂i+1

)

2
≥

∆
(
θ̂i

)

2
≥

√
θ̂i

2
√
n
1−ε . (B.5)

The second inequality is obtained since b̂i ≥ 2. This concludes the proof of Lemma B.1. ✷

Using Lemma B.1 and the union bound,

Pθ (A) ≤
k∑

i=1

Pθ (Ai) ≤
k∑

i=1

Pθ (Bi) , (B.6)

and we need to bound Pθ (Bi). Consider the Bernoulli n-sequence Yi, whose jth symbol is defined

by

Yij =





1, if Xj = i

0, otherwise
, (B.7)

where Xj is the jth symbol of Xn, and we assume, without loss of generality, that the k alphabet

letters are 1, 2, . . . , k. Let Pθi (Yi = yn) be the probability that Yi takes value y
n △
= (y1, y2, . . . , yn),
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where the symbols yj can be either 0 or 1. Let Pθ̂i be the empirical distribution of yn which was

drawn by Pθi (Yi), i.e., the Bernoulli probability mass function induced by the ML estimator θ̂i

of θi on the random vector Yi. For a given value of the random sequence Xn, the sequence Yi,

defined in (B.7), will give the exact same ML estimator θ̂i as the one obtained from Xn. Therefore,

by typical sequences analysis (see [3], [4]),

Pθ (Bi) = Pθi (Bi) ≤ n · 2−n·minyn∈Bi
D
(
P
θ̂i

|| Pθi

)
, (B.8)

where D
(
Pθ̂i || Pθi

)
is the divergence (relative entropy) between the two distributions, and the

coefficient n bounds the number of possible different n-sequence types, for which event Bi occurs.

We now need to lower boundD
(
Pθ̂i || Pθi

)
given event Bi has occurred. This is done as follows:

First, let us define the function

f (x)
△
=





x2

4 ; 0 ≤ x ≤ 1,

(1− ln 2) x; x > 1.
(B.9)

Using Taylor series expansions, it can be shown that

− log (1 + x) ≥ [−x+ f(x)] log e, if x ≥ 0 (B.10)

− log (1− x) ≥
(
x+

x2

2

)
log e, if 0 ≤ x < 1. (B.11)

We will use these inequalities in the following derivations. Given Bi has occurred, for θ̂i > 0,

D
(
Pθ̂i || Pθi

)
= θ̂i log

θ̂i
θi

+
(
1− θ̂i

)
log

1− θ̂i
1− θi

= θ̂i log
θ̂i

θ̂i − δi
+
(
1− θ̂i

)
log

1− θ̂i

1− θ̂i + δi

= −θ̂i log
(
1− δi

θ̂i

)
−
(
1− θ̂i

)
log

(
1 +

δi

1− θ̂i

)

≥





log e ·
[
θ̂i

(
δi
θ̂i
+

δ2i
2θ̂2i

)
+
(
1− θ̂i

) [
− δi

1−θ̂i
+ f

(
δi

1−θ̂i

)]]
; if δi > 0

log e ·
[
θ̂i

[
δi
θ̂i
+ f

(
|δi|
θ̂i

)]
+
(
1− θ̂i

)(
− δi

1−θ̂i
+

δ2i

2(1−θ̂i)
2

)]
; otherwise

=





log e ·
[
δ2i
2θ̂i

+
(
1− θ̂i

)
f
(

δi
1−θ̂i

)]
; if δi > 0

log e ·
[
θ̂if
(
|δi|
θ̂i

)
+

δ2i
2(1−θ̂i)

]
; otherwise

≥





log e
200n1−ε ; if δi > 0,

log e
400n1−ε ; if δi < 0 and 0 < |δi|

θ̂i
< 1,

(log e)(1−ln 2)

10n1−ε/2 ; if δi < 0 and |δi|
θ̂i

≥ 1.

(B.12)
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The first inequality is obtained by applying (B.10)-(B.11). (Note that it is true also in the limits of

θ̂i → 0 and θ̂i → 1.) Then, the first order terms cancel each other out. Finally, since all remaining

terms are positive, we only use the first term in each case with the definition of event Bi in (B.2)

to obtain the last inequality. In the third case, we also assume that a nonzero ML estimator must

satisfy θ̂i ≥ 1/n to obtain the bound. For θ̂i = 0,

D
(
Pθ̂i || Pθi

)
= − log (1− θi) ≥ θi log e ≥

log e

n1−ε
, (B.13)

where the first inequality is obtained since − ln(1 − x) ≥ x for 0 ≤ x ≤ 1, and the second by the

definition of the minimum grid point in (31).

We can now plug the lower bounds on D
(
Pθ̂i || Pθi

)
in (B.8) to bound Pθ (Bi)

Pθ (Bi) ≤ n · 2−n·
c

n1−ε/2 = 2logn−cn
ε/2
, (B.14)

where c is a constant that is the minimum over all the cases described above. Finally, by the union

bound in (B.6), we obtain

Pθ (A) ≤ k ·max
i

{Pθ (Bi)} ≤ 2(log k)+(logn)−cnε/2 → 0. (B.15)

This concludes the proof of Lemma 5.2. ✷

Appendix C – Proof of Lemma 6.1

Let Xn be the observed random data sequence, which was generated by point θ on the uniform

random grid. Let θ̂ be the ML estimator of θ from Xn. Let δi be defined as in (B.1). Then, for

the event in (62), we have

∥∥∥θ̂ − θ
∥∥∥ =

√√√√
k−1∑

i=1

δ2i >
1

√
n
1−ε . (C.1)

As in Appendix B, we will show that the event in (C.1) is a union of events, and use the union bound

on these events to bound the error probability. However, here, the events are more complicated.

We start with a lemma, that will be used to define the events.

Lemma C.1 Let n → ∞ and let θ̂ and θ satisfy (C.1). Then, there exists j; 1 ≤ j ≤ k′
△
=

min
{
2n1−ε/2, k − 1

}
; such that for at least j components θi of θ,

(
θ̂i − θi

)2
≥ 1

jn1−ε/2
. (C.2)
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Proof: Let F contain all the indices i for which either θi ≥ 1/n1−ε/2 or θ̂i ≥ 1/n1−ε/2. The

cardinality of F is bounded by |F| ≤ 2n1−ε/2. We separate the components of θ in F from those

outside of it. For i ∈ F̄ , let θi
△
= αi/n

1−ε/2 and θ̂i
△
= α̂i/n

1−ε/2, where 0 < αi < 1 and 0 < α̂i < 1.

The contribution of all i ∈ F̄ to the sum in (C.1) is negligible, and thus the event defined in (C.1)

depends mostly on i ∈ F . This step is necessary to show that distinguishability includes also

sources with more than km letters for larger k.

Now, assume that no j as defined above exists. Then, for every i,

(
θ̂i − θi

)2
<

1

n1−ε/2
. (C.3)

Then, for every component i, but one,

(
θ̂i − θi

)2
<

1

2n1−ε/2
, (C.4)

and for at most one component θi of θ,

1

2n1−ε/2
≤
(
θ̂i − θi

)2
<

1

n1−ε/2
. (C.5)

Next, there are at most two components θi of θ, for which

(
θ̂i − θi

)2
≥ 1

3n1−ε/2
, (C.6)

but for at least one of them, (C.4) must also be satisfied, and for both (C.3) must be satisfied. We

can proceed this process up to j = min
{
k − 1, 2n1−ε/2

}
≤ 2n1−ε/2. Using this process, (C.3)-(C.6),

and the following similar equations that can be obtained for larger j’s, we can obtain the upper

bound

∥∥∥θ̂ − θ
∥∥∥
2

=
∑

i∈F̄

(
θ̂i − θi

)2
+
∑

i∈F

(
θ̂i − θi

)2
<
∑

i∈F̄
θ2i +

∑

i∈F̄
θ̂2i +

2n1−ε∑

j=1

1

j · n1−ε/2

≤
∑

i∈F̄

α2
i

n2−ε
+
∑

i∈F̄

α̂2
i

n2−ε
+

1

n1−ε/2

(
1 +

∫ 2n1−ε/2+1

1

1

x
dx

)

<
∑

i∈F̄

αi
n2−ε

+
∑

i∈F̄

α̂i
n2−ε

+
1

n1−ε/2
ln
[
e
(
2n1−ε/2 + 1

)]

<
2

n1−ε/2
+

nε/4

n1−ε/2
<

1

n1−ε
. (C.7)

The first inequality is by applying the above relations and by bounding the square distance for

small probabilities by the sum of their squares. The third inequality is since α2
i < αi since αi < 1

for i ∈ F̄ , and the same applies for α̂i. The next inequality is since
∑

i∈F̄ αi ≤ n1−ε/2 since
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∑
i∈F̄ θi ≤ 1, and again, the same is applied for α̂i. In addition, we apply n → ∞ to bound the

last term for this inequality and for the last inequality. Inequality (C.7) contradicts (C.1). This

concludes the proof of Lemma C.1. ✷

Before we use Lemma C.1, let us partition θ into the set θ− containing all letters with θi <

1/n2+ε and θ+, containing all the remaining letters. This is, again, necessary for the case in which

k > km. Let event T contain all xn for which any of the letters in θ− occurs more than once. We

can now use (C.2) to define event Aj as all sequences x
n for which there are (at least) j components

θ̂i of θ
+, for which (C.2) is satisfied. Thus,

Pθ

{∥∥∥θ̂ − θ
∥∥∥ > 1

√
n
1−ε

}
≤ Pθ (T ) +

k′′∑

j=1

Pθ (Aj) , (C.8)

where k′′ = min
{∣∣θ+

∣∣ , k′
}
≤ 2n1−ε/2. Inequality (C.8) is because if (C.1) is satisfied, either Aj

occurs for some j, or there exist components in θ− for which (C.2) is satisfied. For such components,

the occurrence of (C.2) means that the letter occurred (significantly) more than once.

First, let us bound the first term of (C.8). The probability that letter i ∈ θ− occurs in Xn is

given by

Pθ (i ∈ Xn) = 1− (1− θi)
n ≥ nθi −

(
n
2

)
θ2i . (C.9)

The average re-occurrences (beyond the first occurrence) of such a letter is then upper bounded by

ENx (i)− Pθ (i ∈ Xn) ≤
(
n
2

)
θ2i , (C.10)

where ENx (i) is the expected number of occurrences of letter i. Then, the average re-occurrence

of any of the letters in θ− is bounded by

∑

θi∈θ−
{ENx (i)− Pθ (i ∈ Xn)} ≤

(
n
2

) ∑

θi∈θ−
θ2i ≤

n2

2

∑

θi∈θ−

α2
i

n4+2ε
≤ 1

2nε
→ 0, (C.11)

where θi
△
= αi/n

2+ε, αi < 1, and the last inequality is obtained similarly to the derivation in (C.7),

where
∑

i α
2
i <

∑
i αi < n2+ε. Using Markov inequality, the probability of T is bounded by the

bound above, i.e., Pθ (T ) → 0.

Event Aj in (C.8) is the union of all events for which any j components of θ+ satisfy (C.2).

This applies to any choice of j components out of k̃ =
∣∣θ+
∣∣ ≤ n2+ε. Let Ajl be the event in which

the j components of the lth choice out of

L ≤
(
k̃
j

)
(C.12)
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choices of components of θ+ satisfy (C.2). Using the union bound, again,

Pθ (Aj) ≤
L∑

l=1

Pθ (Ajl) ≤
(
k̃
j

)
·max

l
Pθ (Ajl) < k̃j ·max

l
Pθ (Ajl) . (C.13)

To bound Pθ (Ajl) for given j and l, let us define a transformation of the alphabet of Λk to the

alphabet Σjl with cardinality j + 1. The j letters denoted by u1, u2, . . . , uj , whose ML estimates

satisfy (C.2) will be numbered from 1 to j, and all other letters will be transformed into the letter

j + 1 ∈ Σjl. Let Yl be an n-dimensional transformation of Xn that takes a value yn, such that, in

a similar manner to (B.7),

Ylm =





i, if Xm = ui,

j + 1, otherwise
. (C.14)

Let ϕi = θui for 1 ≤ i ≤ j, be the probability of Ylm taking the value i, where ϕj+1 is the sum of

all the remaining probability components of θ. Let ϕ̂i be the ML estimate of ϕi from the vector

Yl. Let ϕ be the j dimensional vector that defines the i.i.d. distribution of vector Yl. Since the

probability of Ajl depends only on the j parameters that satisfy (C.2), we can now use the new

parameter vector ϕ, which is a permutation of these j parameters with all other components of θ

condensed into one probability parameter, to bound this probability. By typical sets analysis,

Pθ (Ajl) = Pϕ (Ajl) ≤ (n+ 1)j 2
−nminyn∈Ajl

D(Pϕ̂ || Pϕ), (C.15)

where the polynomial coefficient is a bound on the number of types. To bound the expression in

(C.15), we can lower bound the divergence in its exponent. Let U1 be the set of components of ϕ

for which ϕ̂i ≥ ϕi, and U2 the set for which ϕ̂i < ϕi. Also define δi now w.r.t. ϕ and ϕ̂. Then,

D (Pϕ̂ || Pϕ) =
∑

ϕi∈U1

ϕ̂i log
ϕ̂i
ϕi

+
∑

ϕi∈U2

ϕ̂i log
ϕ̂i
ϕi

= −
∑

ϕi∈U1

ϕ̂i log

(
1− δi

ϕ̂i

)
−
∑

ϕi∈U2

ϕ̂i log

(
1− δi

ϕ̂i

)

≥ log e ·




∑

ϕi∈U1

ϕ̂i

[
δi
ϕ̂i

+
δ2i
2ϕ̂2

i

]
+
∑

ϕi∈U2

ϕ̂i

[
−−δi
ϕ̂i

+ f

(−δi
ϕ̂i

)]


= log e ·




∑

ϕi∈U1

δ2i
2ϕ̂i

+
∑

ϕi∈U2

ϕ̂if

(−δi
ϕ̂i

)
 . (C.16)

The inequality is obtained from (B.10) and (B.11) and the definition of the function f(·) in (B.9).

The last equality is since all the first order terms cancel each other. Now, define the set U ′
1 as the

union of all components ϕi, 1 ≤ i ≤ j, in U1 and these components in U2 for which |δi| ≤ ϕ̂i, and

U ′
2 as the set of all the remaining components in U2. (Note that we extract ϕj+1 from both sets.)
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Assume that there are αj, 0 ≤ α ≤ 1, components in U ′
2. Then, by definition of f (·) in (B.9), and

since all j components in both sets satisfy (C.2), we obtain from (C.16),

D (Pϕ̂ || Pϕ) ≥
∑

ϕi∈U ′

1

log e

4jn1−ε/2ϕ̂i
+
∑

ϕi∈U ′

2

log(e/2)
√
j
√
n
1−ε/2

≥ (log e) (1− α) j

4jn1−ε/2

∑

ϕi∈U ′

1

1

(1− α) j
· 1

ϕ̂i
+
α
√
j log(e/2)
√
n
1−ε/2

≥ (log e) (1− α)2 j2

4jn1−ε/2
+

4αj2 log(e/2)√
2 · 4jn1−ε/2

≥ cj

n1−ε/2
. (C.17)

The first term of the third inequality is obtained by Jensen’s inequality over the convex function

1/x, and since the sum on all ϕ̂i ∈ U ′
1 is not larger than 1. The second term is obtained since

j ≤ 2n1−ε/2. The last inequality is obtained since the expression is greater than 0 for every value of

α, and we can choose a proper constant c > 0, for which the inequality is satisfied. (We note that

the derivation above also applies in the limit if there exist components of ϕ whose ML estimates

are 0.) Combining (C.8) and the bound on Pθ (T ), (C.13), (C.15), and (C.17), we conclude that

Pθ

{∥∥∥θ̂ − θ
∥∥∥ > 1

√
n
1−ε

}
≤ 1

nε
+

k′′∑

j=1

2−j·[cn
ε/2−log(n+1)−log k̃]

≤ 1

nε
+ 2−[cn

ε/2−log(n+1)−(2+ε) logn−log(2n1−ε/2)] → 0. (C.18)

This concludes the proof of Lemma 6.1. ✷

Appendix D – Proof of Lemma 7.1

Let us first bound the logarithm of the ratio between the probability given by the parameter vector

φ and the ML probability of Xn. Similarly to (B.10)-(B.11), if x < 1, then

log (1− x) ≤ (log e) ·
[
−x− f ′(x)

]
, (D.1)

where

f ′(x)
△
=





x2

2 ; if x ≥ 0,

x2

4 ; if 0 > x ≥ −1,

− (1− ln 2) x; if x < −1.

(D.2)

Using the above,

log
Pφ (X

n)

Pθ̂ (X
n)

= log
k∏

i=1

(
φi

θ̂i

)nθ̂i
= n

k∑

i=1

θ̂i log

(
1− δi

θ̂i

)
(D.3)
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≤ (log e)n

k∑

i=1

θ̂i

[
−δi
θ̂i

− f ′
(
δi

θ̂i

)]
= − (log e)n

k∑

i=1

θ̂if
′
(
δi

θ̂i

)
(D.4)

= − (log e)n
k∑

i=1

θ̂i ·





δ2i
2θ̂2i

; if δi
θ̂i

≥ 0,

δ2i
4θ̂2i

; if 0 ≥ δi
θ̂i

≥ −1,

− (1− ln 2) δi
θ̂i
; if δi

θ̂i
< −1

(D.5)

≤ − (log e)n

k∑

i=1

θ̂i ·





δ2i
4θ̂2i

; if φi ≤ 2θ̂i,

− (1− ln 2) δi
θ̂i
; if φi > 2θ̂i

(D.6)

≤ − (log e)n
∑

i∈J





k
4jn1−ε/4 ; if φi ≤ 2θ̂i,

(1− ln 2) kj ·
√
θ̂i√

n
1−ε/4 ; if φi > 2θ̂i

(D.7)

≤ − (log e)n
∑

i∈J

k

4jn1−ε/8
≤ − knε/8

4(ln 2)
. (D.8)

The inequality in (D.4) is obtained from (D.1), and the equality since the summation on all δi must

be zero. The boundaries in (D.6) are obtained from the definition of δi in (74). To obtain (D.7),

we bound all (negative) elements of the sum for which i 6∈ J by zero, and all elements i ∈ J using

(75). Then, to obtain (D.8), we take the maximum over the different regions, and also use the fact

that by the definition of a k-dimensional i.i.d. ML vector, θ̂i ≥ 1/n. The last inequality follows the

fact that there are at least j elements in J .

Taking the bound of (D.8), we obtain

k!Pφ (X
n)

Pθ̂i (X
n)

≤ k! · exp
{
−kn

ε/8

4

}
≤ exp

{
−k
(
nε/8

4
− ln k

)}
→ 0. (D.9)

This concludes the proof of Lemma 7.1. ✷

Appendix E – Proof of Lemma 7.2

To prove Lemma 7.2, we express the logarithm of the desired ratio as a function of the components

of ϕ and of distances between components of ψ(σ), ϕ(σ), and θ̂. First, we bound distances between

corresponding components of the three vectors under the assumption that ψ (σ) 6∈ A, and use these

bounds to bound the logarithm of the ratio in (78). Let δ(a, b)
△
= a − b be the difference between

a and b. Then, by definition of ϕ as the quantized form of ψ, quantized onto points in τ , and by

definition of τ , we must have for every i, 1 ≤ i ≤ k − 1,

|δ (ψi, ϕi)| ≤ ∆
(
τb(ϕi)+1

)
=

2
[
b (ϕi) +

1
2

]

n1+ε
≤ 2.5b (ϕi)

n1+ε
=

2.5
√
ϕi√

n
1+ε , (E.1)
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where ∆ (·) is defined as in (33) but w.r.t. τ defined in (68). The first inequality is obtained since

either ψ ∈
[
τb(ϕi)−1, τb(ϕi) = ϕi

]
or ψ ∈

[
τb(ϕi), τb(ϕi)+1

]
. In either case, ψi is at most ∆

(
τb(ϕi)+1

)

away from ϕi. The last equality is obtained using a similar equation to (32) where −ε is replaced

by ε for the proper grid. The distance between the last kth components of ψ and ϕ can be bounded

similarly by

|δ (ψk, ϕk)| ≤
2.5

√
ϕk−1√
n
1+ε ≤ 2.5

√
ϕk√

n
1+ε . (E.2)

This is because of the procedure used to quantize ψ into ϕ, that ensures that the absolute value

of the cumulative difference between the components of ψ and those of ϕ is minimized, and is

therefore bounded by the maximal spacing around the largest free component.

From Lemma 7.1, in order for Pψ(σ) (X
n), the probability of Xn that is given by a permutation

ψ(σ), not to be negligible w.r.t. the ML probability of Xn, ψ(σ) must have, for every j, no more

than j − 1 components for which (75) is satisfied (where δi is replaced by δ
[
θ̂i, ψ(σi)

]
, and φi by

ψ(σi)). This implies that if a permutation ψ(σ) of ψ is not negligible, it must have at least k−j+1

components for every j, 1 ≤ j ≤ k, that satisfy

∣∣∣δ
[
θ̂i, ψ(σi)

]∣∣∣ ≤





k
j ·

√
θ̂i√

n1−ε/4 ; if ψ(σi) > 2θ̂i,
√

k
j ·

√
θ̂i√

n1−ε/4 ; if ψ(σi) ≤ 2θ̂i.
(E.3)

Hence, in the worst case, there is one distance component for which the tightest upper bound is

obtained from (E.3) with j = 1, one for j = 2, and so on, up to j = k, i.e., for each j, the inequality

is satisfied for a distinct component i. Conversely, for the worst case, we can denote the distinct

value of j for each i as a function of i and of the two vectors θ̂ and ψ (σ), i.e., as j
(
θ̂,ψ (σ) , i

)
.

We can now express δ
[
θ̂i, ϕ(σi)

]
as

δ
[
θ̂i, ϕ(σi)

]
= θ̂i − ϕ(σi) = θ̂i − ψ(σi) + ψ(σi)− ϕ(σi)

= δ
[
θ̂i, ψ(σi)

]
+ δ [ψ(σi), ϕ(σi)] . (E.4)

By the triangle inequality, (E.1), (E.2), and (E.3), if ψ(σ) 6∈ A, for the k − j + 1 components of

ψ (σi) that satisfy (E.3),

∣∣∣δ
[
θ̂i, ϕ(σi)

]∣∣∣ ≤
∣∣∣δ
[
θ̂i, ψ(σi)

]∣∣∣+ |δ [ψ(σi), ϕ(σi)]|

≤ 2 ·max
{∣∣∣δ

[
θ̂i, ψ(σi)

]∣∣∣ , |δ [ψ(σi), ϕ(σi)]|
}

≤





5
√

2ϕ(σi)√
n
1−ε/4 · kj ; if θ̂i ≤ 2ϕ(σi),

5
√
θ̂i√

n1−ε/4 ·
√

k
j ; if θ̂i > 2ϕ(σi).

(E.5)
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The first region is obtained by combining the worse bound of (E.3) with that of (E.1). The bound

in the second region is true because 2θ̂i > 4ϕ(σi) > ψ(σi) since it can be shown by definition of τ

that always ψ(σi) ≤ 3ϕ(σi).

The first region of the bound in (E.5) is expressed as a function of ϕ (σi). However, the second

region is in terms of θ̂i. In order to obtain the bound of (78), we need to express both bounds in

terms of ϕ (σi). Hence, we need to first bound the second region of (E.5) in terms of ϕ (σi), or

alternatively bound
√
θ̂i in terms of

√
ϕ (σi). To achieve that, we observe that ϕ(σi) is smaller

than half θ̂i. This means that we represent the i.i.d. ML probability component θ̂i using ψ(σ) by

a probability that is roughly smaller than its half (since ψ(σi) is asymptotically much closer to

ϕ(σi)). If θ̂i is large, this must yield a negligible probability because ψ(σi) will be too far from θ̂i.

Therefore, there must be an upper bound on θ̂i for which the second region of (E.5) still applies

while ψ (σ) 6∈ A. By the bound in the second region of (E.5), we must have

5
√
θ̂i√

n
1−ε/4 ·

√
k

j
≥
∣∣∣δ
[
θ̂i, ϕ(σi)

]∣∣∣ = θ̂i − ϕ(σi) ≥
θ̂i
2
. (E.6)

Hence, by rearranging terms of the last inequality,

θ̂i ≤
100k

jn1−ε/4
. (E.7)

Now, we need the following lemma.

Lemma E.1 Let k̂ = k ≤ √
n
1−ε

, and let ξ > 0 be arbitrarily small. Then, for all i; 1 ≤ i ≤ k,

ϕi ≥ (1− ξ)/n. (E.8)

Proof: Let θ̂k = nx(k)/n be the maximal component of θ̂, where nx(k) is the occurrence count of

the respective letter. Then, first, we must have ψk ≥ (1−ξ/2)θ̂k . Otherwise, ψ̂ (θ) ∈ A, and cannot

be the pattern ML estimate, using Lemma 7.1. This is shown below. Assume ψk < (1 − ξ/2)θ̂k.

Then,

δ
(
θ̂k, ψk

)
>
ξθ̂k
2

≥
ξ

√
θ̂k

2n(1−ε)/4
≥
√
k

1
·

√
θ̂k

√
n
1−ε/4 · ξ

2

√
n
3ε/4

>

√
k

1
·

√
θ̂k

√
n
1−ε/4 . (E.9)

The second inequality is since θ̂k ≥ 1/k ≥ 1/
√
n
1−ε

. The next inequality is again by the assumption

that k ≤ √
n
1−ε

. The right hand side above shows that if ψk < (1 − ξ/2)θ̂k < 2θ̂k, the condition

of Lemma 7.1 is satisfied w.r.t. ψ̂ (θ), thus contradicting the fact that ψ̂ (θ) is the pattern ML

probability vector.
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Using the fact that ψk ≥ (1 − ξ/2)θ̂k, we now show by differentiation that Pψ [Ψ (Xn)] attains

its maximum w.r.t. ψ1 for ψ1 ≥ (1− ξ/2)/n. First, from (73),

dPψ [Ψ (Xn)]

dψ1
=
∑

σ

[
nx (σ1)

ψ1
− nx (σk)

ψk

]
Pψ(σ) (X

n) , (E.10)

where nx (σi) is the permuted entry of the occurrence vector at index i. This derivative is a weighted

sum of decreasing functions in ψ1, each attaining the value 0 at

ψ1 =
nx (σ1)

nx (σk)
ψk ≥ (1− ξ/2)

nx(k)

n
· nx (σ1)
nx (σk)

≥ 1− ξ/2

n
, (E.11)

where the first inequality is since ψk ≥ (1 − ξ/2)θ̂k, and the second is because nx (σ1) ≥ 1 and

nx(k) ≥ nx (σk). Finally, by the quantization of ψ1 to ϕ1 (using the definition of τ ) and the ordering

in vector ϕ, we obtain ϕi ≥ ϕ1 ≥ (1− ξ)/n. ✷

Using Lemma E.1 (in particular, (E.8)), we can now bound
√
θ̂i for the second region of the

bound in (E.5). From (E.7) and bounding, we have

√
θ̂i ≤ 10 ·

√
k

j
· 1
√
n
1−ε/4 ≤ 10 ·

√
k

(1− ξ)j
· nε/8 ·

√
ϕ(σi). (E.12)

We can now bound the logarithm of the desired ratio. This is done below:

log
Pψ(σ) (X

n)

Pϕ(σ) (Xn)
= log

{
k∏

i=1

[
ψ(σi)

ϕ(σi)

]nθ̂i}
(E.13)

= n
k∑

i=1

θ̂i log
ψ(σi)

ϕ(σi)
(E.14)

= n

k∑

i=1

θ̂i log

(
1 +

δ [ψ(σi), ϕ(σi)]

ϕ(σi)

)
(E.15)

≤ n(log e)

k∑

i=1

θ̂i ·
δ [ψ(σi), ϕ(σi)]

ϕ(σi)
(E.16)

= n(log e)
k∑

i=1

ϕ(σi) ·


1 +

δ
[
θ̂i, ϕ(σi)

]

ϕ(σi)


 · δ [ψ(σi), ϕ(σi)]

ϕ(σi)
(E.17)

= n(log e)
k∑

i=1

δ
[
θ̂i, ϕ(σi)

]
· δ [ψ(σi), ϕ(σi)]
ϕ(σi)

(E.18)

≤ n(log e)

k∑

i=1





12.5
√
2

n1+3ε/8 · k

j
(
ˆθ,ψ(σ),i

) ; if θ̂i ≤ 2ϕ(σi),

12.5
n1+3ε/8 ·

√
θ̂i

ϕ(σi)
· k

j
(
ˆθ,ψ(σ),i

) ; if θ̂i > 2ϕ(σi).
(E.19)

≤ (log e) ·
k∑

j=1

125k√
1− ξnε/4j

≤ 125√
1− ξ ln 2

· k ln(e(k + 1))

nε/4
. (E.20)

60



Equalities (E.15) and (E.17) are obtained by using ψ(σi) = ϕ(σi)+δ [ψ(σi), ϕ(σi)] and θ̂i = ϕ(σi)+

δ
[
θ̂i, ϕ(σi)

]
, respectively. Inequality (E.16) is true because ln(1 + x) ≤ x for x > −1. The sum on

all displacements of one distribution w.r.t. the other is zero, yielding (E.18). Then, the bounds in

(E.1), (E.2), and (E.5) result in (E.19), where we use the worst case defined following (E.3). Then,

we rearrange the sum by j instead of i and use (E.12) to obtain (E.20). The last inequality of

(E.20) is obtained since
∑k

j=1 1/j ≤ ln(e(k + 1)). This concludes the proof of Lemma 7.2. ✷

Appendix F – Proof of Theorem 4

The individual modified redundancy of the code defined in (82)-(83) is obtained by

nR̃n [Qk,Ψ(xn)] = − logQk [Ψ (xn)] + log PML (x
n) . (F.1)

From (82)-(83), it can be observed that

Qk [Ψ (xn)] = k! ·QKT (xn) . (F.2)

Therefore, the individual modified redundancy of this code is log(k!) bits less than the i.i.d. redun-

dancy of the KT code, which is well known. This yields the bound of (84). However, for the sake

of completeness, we show the main steps of the derivation of the bound from Qk [Ψ (xn)] itself.

By definition of Qk [Ψ (xn)] in (82)-(83),

− logQk [Ψ (xn)] =





− log

[
( k
2
−1)!·k!

(n+ k
2
−1)!

·∏k
j=1

[2nx(j)]!

22nx(j)[nx(j)]!

]
; for even k,

− log

[
(k−1)!·(n+ k−1

2 )!·22n+k−1·k!
( k−1

2 )!·(2n+k−1)!·2k−1
·∏k

j=1
[2nx(j)]!

22nx(j)[nx(j)]!

]
; for odd k,

(F.3)

where nx(j) is the number of occurrences of index j in the pattern Ψ (xn), and the k! factor

is the only different additional factor to the expression above beyond that of the standard KT

probability. The terms to the left of the product on the right hand side of the equation (except

the k! term) are the result of multiplying the values of the denominator at all time points from

1 to n. The product on the right hand side with the k! term are the result of multiplying the

numerators. To complete the derivation of the bound in (84), we plug (F.3) into (F.1) to compute

the redundancy, use Stirling’s approximation (38) to upper and lower bound factorials, use the

relationship ln(1 + x) ≤ x, and combine similar order terms. The ML i.i.d. probability is reduced

by the occurrence of the same factors in Qk [Ψ (xn)] resulting from the product term on the right

hand side of (F.3). This concludes the proof of Theorem 4. ✷
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Appendix G – Proof of Theorem 5

To prove Theorem 5, we need to make one key observation. Let

m =

⌈
k

2
+

(k + 1)1−ε

2

⌉
. (G.1)

Then, we can use (G.1) to upper bound the product in the denominator of Q [Ψ (xn)] by (n+m−
1)!/(m − 1)!. This bound bounds each term of the product over the time n by an expression that

is larger than each such term, resulting in a somewhat loose bound. This is true even for the worst

sequence in which all the k distinct letters occur in the first k time units, for which the denominator

of Q [Ψ (xn)] is maximal. Using this bound,

Q [Ψ (xn)] ≥ (m− 1)! · (k!)1−ε
(n+m− 1)! · 22n ·

k∏

j=1

[2nx(j)]!

[nx(j)]!
. (G.2)

The remaining steps use Stirling’s bounds (38) to bound factorial terms, and the bound ln(1+x) ≤
x, and then combine similar order terms, eventually substituting (G.1) to express the bound as a

function of k. Finally, we plug an upper bound on the negative logarithm of Q [Ψ (xn)] in (F.1)

instead of Qk [Ψ (xn)]. The components of the i.i.d. ML probability cancel out, and (92) is attained.

This concludes the proof of Theorem 5. ✷
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