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Abstract—Multiple antennas can be used for increasing the amount of
diversity (diversity gain) or increasing the data rate (the number of degrees
of freedom or spatial multiplexing gain) in wireless communication. As
quantified by Zheng and Tse, given a multiple-input–multiple-output
(MIMO) channel, both gains can, in fact, be simultaneously obtained, but
there is a fundamental tradeoff (called the Diversity-Multiplexing Gain
(DM-G) tradeoff) between how much of each type of gain, any coding
scheme can extract. Space–time codes (STCs) can be employed to make
use of these advantages offered by multiple antennas. Space–Time Trellis
Codes (STTCs) are known to have better bit error rate performance
than Space–Time Block Codes (STBCs), but with a penalty in decoding
complexity. Also, for STTCs, the frame length is assumed to be finite
and hence zeros are forced towards the end of the frame (called the
trailing zeros), inducing rate loss. In this correspondence, we derive an
upper bound on the DM-G tradeoff of full-rate STTCs with nonvanishing
determinant (NVD). Also, we show that the full-rate STTCs with NVD are
optimal under the DM-G tradeoff for any number of transmit and receive
antennas, neglecting the rate loss due to trailing zeros. Next, we give an
explicit generalized full-rate STTC construction for any number of states
of the trellis, which achieves the optimal DM-G tradeoff for any number
of transmit and receive antennas, neglecting the rate loss due to trailing
zeros.

Index Terms—Diversity-multiplexing tradeoff, multiple-input–multiple-
output (MIMO), space–time codes.

I. INTRODUCTION AND PRELIMINARIES

Consider the quasi-static Rayleigh-fading space–time channel with
quasi-static interval T , nt transmit and nr receive antennas. The (nr�
T ) received matrix Y is given by

Y = �HX +W (1)

where X is the transmitted codeword (nt � T ) drawn from a
space–time code (STC) X , H the (nr � nt) channel matrix and W
the (nr � T ) noise matrix. The entries of H andW are assumed to be
independent and identically distributed (i.i.d.), circularly symmetric
complex Gaussian N (0; 1) random variables. STCs are classified
into two categories, namely: space–time block codes (STBC) and
space–time trellis codes (STTC). Henceforth, we assume X to be
always STTC. The entries of X are drawn from a constellation S
whose size scales with signal-to-noise ratio (SNR) with � chosen to
ensure

E(k�Xk2F ) = T SNR:
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Multiple antennas can be used for increasing the amount of di-
versity (diversity gain) or increasing the data rate (the number
of degrees of freedom or spatial multiplexing gain) in wireless
communication. As quantified by Zheng and Tse [1], given a mul-
tiple-input–multiple-output (MIMO) channel, both gains can, in fact,
be simultaneously obtained, but there is a fundamental tradeoff (called
the diversity-multiplexing gain (DM-G) tradeoff) between how much
of each type of gain, any coding scheme can extract.

At high SNRs, the probability that the received matrix Y , is decoded
to a codeword matrix X0 6= X , under the condition that X was trans-
mitted, is

P (X ! X
0) = (

�

i=1

�
2

i )
�n SNR�n �

where �1; �2; . . . ; �� are the � non-zero singular values of �X =
X �X 0. Therefore, the performance of STTC, at high SNRs, is gov-
erned, by the minimum of the rank of the matrix X � X 0 (called the
diversity gain) and minimum of the product of the non-zero singular
values of the matrix X �X 0 (called the coding gain), for X 6= X 0. A
STTC is said to achieve full diversity if minX 6=X rank(X � X 0) =
nt 8 X;X 0 2 X .

At high SNRs, the ergodic capacity i.e., capacity averaged over all
channel realizationsH of the space–time channel model in (1) is known
[8] to be

C(nt; nr; SNR) � min fnt; nrg log SNR: (2)

The above expression shows that the achievable data rate increases
with SNR as minfnt; nrg log SNR.

If jX j is the size of the STC, the STC transmits

R =
1

T
log(jX j)

bits per channel use. Let r be the normalized rate given by
R = r log(SNR). Following [1], we will refer to r as the mul-
tiplexing gain. From (2), it is seen that the maximum achievable
multiplexing gain equals r = minfnt; nrg. Let the diversity gain
d(r) corresponding to transmission at normalized rate r be defined by

d(r) = � lim
SNR!1

log(Pe)

log(SNR)

where Pe denotes the average codeword error probability. A principal
result in [1] is the proof that for a fixed integer multiplexing gain r,
and T � nt + nr � 1, the maximum achievable diversity gain d(r) is
governed by

d(r) = (nt � r)(nr � r):

Therefore, from [1], both the diversity and the spatial multiplexing gain
can be obtained simultaneously but with a fundamental tradeoff be-
tween them, called the diversity-multiplexing (DM-G) tradeoff.

A. Review of Existing STTCs

STTCs have been studied in [2], to provide improved error perfor-
mance for wireless systems using multiple transmit antennas. Let X
be a STTC and X;X 0 2 X . Then, the first column of the matrix
�X = X�X 0 would be the difference of the symbols transmitted by
the nt transmit antennas, when the paths in the trellis, corresponding
to the codewords X and X 0 diverge and the last column would corre-
spond to the symbol difference when they converge. The tth column
of �X corresponds to the symbol difference at a time t � 1 after di-
vergence. Let td be the time (from the frame beginning), at which the

Fig. 1. 2 Tx, 4-PSK, 2 bps/Hz, four-state STTC.

paths corresponding to X and X 0 diverge and td + l � 1 when they
converge. ThenX andX 0 differ in at least l locations. The convergence
length lc of the STTC is defined as

lc = min
X 6=X

l:

For full diversity a necessary condition is that lc � nt.
The scheme used to construct STTCs in [2] is the delay diversity

scheme in which the symbol transmitted from the ith antenna at time t
is again transmitted from the (i+1)th antenna at time t+1. It has been
shown [2], that such codes constructed by the delay diversity scheme
can provide full diversity gain as well as additional SNR advantage, i.e.,
coding gain. An example of delay diversity scheme for two transmit
antennas for four-state trellis is as shown in Fig. 1.

There have been many efforts to improve the performance of STTCs
[3]–[6], by employing exhaustive computer searches. A general method
to construct STTCs by using a shift register model which ensures full-
diversity and good coding gain, for any number of states, is given in
[7], where coding in conjunction with delay diversity is used.

It is known that STTCs can give better bit error performance than the
space–time block codes (STBCs), but with a penalty in the decoding
complexity. For reducing the decoding complexity, STTC is truncated
after T channel uses (called the frame length). Transmissions across
different frames are independent. To truncate the STTC, we need to
force the end state of the STTC to be same as the starting state. To
achieve this zeros are forced at the end of each frame, called the trailing
zeros, which obviously incur rate loss. Let � be the number of channel
uses for which we need to force zeros. Let us define the rate loss factor
denoted by � to be � = T��

T
, where T is the frame length. The �

quantifies the rate loss incurred by STTC due to trailing zeros.

B. DM-G Tradeoff of the Existing STTCs

It is well known that any full-rank STC achieves full diversity gain
for any number of transmit and receive antenna. Since all the existing
STTC constructions guarantee full-rank, all of them achieve the max-
imum possible diversity gain for any number of transmit and receive
antennas.

From [13], for a STC to achieve the maximum possible spatial mul-
tiplexing gain, a necessary condition is that, the rate of transmission
should at least be minfnt; nrg complex symbols per channel use. For
all the STTC constructions discussed above, the rate of transmission
is limited to only one complex symbols per channel use and therefore
these codes cannot meet the optimal DM-G tradeoff for more than one
receive antenna. This motivates the construction of high-rate STTC’s
(rates more than 1 complex symbol per channel use). One such con-
struction is given in [12], which is shown in Fig. 2, where we have
proposed a STTC for 2 transmit and 2 receive antennas, whose rate
of transmission is equal to minfnt; nrg = 2 complex symbols per
channel use. Also, only by simulation, it was shown that this STTC
achieves the optimal diversity-multiplexing tradeoff for two transmit
and two receive antennas. To the best of our knowledge this is the
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Fig. 2. 2 Tx, BPSK, 2 bps/hz, four-state high-rate STTC.

only high-rate STTC construction and no general construction exists
for high-rate STTCs for arbitrary number of transmit antennas.

C. Contributions of This Correspondence

Recently [9]–[11], for STCs with T = nt, it has been proved that
full-rate STCs with nonvanishing determinant (NVD) property, are op-
timal under the DM-G tradeoff for any number of receive antennas. In
this correspondence, we extend this result to the case of T � nt by
introducing appropriate definitions and assumptions.

It is well known that by coding across larger block lengths we can
get more coding and diversity gain for the slow and fast fading chan-
nels respectively. For the case of high-rate STCs, STBCs (T = nt)
have been studied extensively but there has been very little done for
the case of T � nt, which can offer higher coding/diversity gain at the
cost of higher decoding complexity. For the case of STBCs (T = nt),
there have been many high-rate constructions [11], [15], [16]. All these
constructions make use of cyclic division algebras (CDA) to construct
high-rate STBCs.

We can construct high-rate STCs for nt � T where T � nt from
the known high-rate STBCs for nt = T in many ways. One way is by
deleting the appropriate T � nt rows from a high rate T � T STBC
of [14]. But, since T � nt, the entries of nt � T STC matrix will lie
in a degree T extension of (i) (where is field of rational numbers)
and hence the signaling complexity will be quite high. To reduce the
signaling complexity one more construction is presented in [14] where
T

n
number of [nt � nt] STBCs are stacked side by side to get the

required nt�T STC, if nt divides T . Each block nt�nt STBC carries
independent information. In this construction the nt�nt STBC blocks
are not coded across and hence we loose on the coding gain.

In this correspondence, we give a generalized high-rate STTC con-
struction for any number of states of trellis and any number of transmit
and receive antennas using CDA for the case of T � nt (all the ear-
lier CDA based construction were for T = nt) by using a shift register
model which does not depend onT . What we propose in this correspon-
dence is a systematic and generalized construction for nt�T high-rate
STTC for any number of states of the trellis. Therefore by increasing
the number of states of the trellis we can increase the coding gain for a
fixed rate of transmission. This construction is specifically designed for
nt transmit antennas and not in a higher dimensional space and hence
has the minimum signaling complexity possible. Also the information
is coded through all the T channel uses and hence the scheme does not
loose out on any coding gain.

One more advantage of this trellis based construction is that it does
not need the non norm element which is so essential for the high-rate
STBC constructions [11], [15], [16]. The full-rank for the high-rate
STBCs is guaranteed only for a particular set of non norm elements
depending on the signal set and nt and finding such a set is not easy.

Also the non norm element dictates the coding gain that the scheme
achieves. For the case of high-rate STBCs, it is known that coding gain
can be improved if we have freedom to choose the non norm element,
but the full-rank requirement puts a condition on it.

In our construction we only use the structure of the trellis to guar-
antee full-rank and hence avoid the non norm element. Therefore we
have more freedom to optimize the coding gain. By our shift register
model and code structure we show that any codeword difference matrix
is a upper triangular matrix with non zero diagonal entries and hence
is full rank and the STTC so constructed achieves full diversity.

We also show that the proposed codes have the NVD property and
hence achieve the optimal DM-G tradeoff (neglecting the rate loss
factor).

The contributions of this correspondence can be summarized as fol-
lows:

• We quantify the effect of rate loss factor on the optimal DM-G
tradeoff for STTCs.

• Using [11], we show that the full-rate STTCs with NVD property,
achieve the upper bound on the optimal DM-G tradeoff for any
number of receive antennas, neglecting the rate loss factor.

• The main result of this correspondence is a generalized full-rate
STTC construction, for any number of transmit antennas and any
number of states of the trellis with NVD property, which is shown
to achieve the upper bound on the optimal DM-G tradeoff for any
number of receive antennas, neglecting the rate loss factor.

The correspondence is organized as follows. In Section II, we study
the DM-G tradeoff of full-rate STTCs with NVD property. Also in that
section we show that full-rate STTCs with NVD property achieves the
upper bound on the optimal DM-G tradeoff for any number of receive
antennas, neglecting the rate loss factor. The main result of the cor-
respondence, generalized construction of full-rate STTCs is given in
Section III and proof of the optimality of full-rate STTC constructed in
Section III, under the DM-G tradeoff neglecting the rate loss factor, is
given in Section IV. Section V contains concluding remarks.

II. ACHIEVING THE DM-G TRADEOFF

A. Signal Alphabet

Following, the definitions in [11], let S � be an alphabet (where
is the field of complex numbers) that can be scaled so as to approx-

imately contain � elements in a circle of squared radius � for large �,
for example QAM-alphabet. Let r denote the normalized rate of trans-
mission. Then S is called scalably dense, if it can be scaled with SNR
in such a way that

jSj
:
= SNR and a 2 S(SNR) =) jaj2

:

� SNR

where we have followed the exponential equality notation used in [1]

f(SNR)
:
= SNRb =) lim

SNR!1

log f(SNR)
log SNR

= b

and similarly with
:

� and
:

�. LetX denote a STTC and letXn �T 2 X
and X = [Xi;j ]; fi = 1; 2; . . . ; nt; j = 1; 2; . . . ; Tg. We shall call
X to be S-linear if every entry Xi;j of each of code matrix X is of the
form

Xi;j =

m

k=1

cijkvijk; cijk 2 S

for some vijk 2 . As X varies over X , the cijk vary over all of S .
We will assume that the vijk remain fixed for all SNR.

Let X;X0 2 X and �X = X�X 0. Any X 2 X can be written as
X = [U M ] and similarly �X can be written as �X = [�U �M ],
where U and �U are of size nt � nt and M and �M are of size
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Fig. 3. Diversity-multiplexing tradeoff, d(r) for general n ; n for full-rate STTCs.

nt � (T � nt) respectively. A S-linear STTC will be said to have
non-vanishing determinant (NVD) property, if there is a constant � in-
dependent of SNR, such that for SNR > 0,

min
X;X 2X ; X 6=X

jdet �U�Uy j � � > 0:

An S-linear STTC will be said to be of full-rate, if for every SNR, the
size of the code satisfies

jX j = jSjn �T

where � is the rate loss factor of the STTC.

B. Signal Energy

Let R be the rate of the STTC X in bits per channel use and r
R

log(SNR)
be the normalized rate at high SNR [1]. For full-rate STTC

X we have nt� as the average number of constellation symbols trans-
mitted per channel use i.e., nt�T = logjSj jX j. Thus,

jX j =2TR = SNRTr = jSjn �T

and

M2 jSj = SNR :

Let !m = exp j2�
m

and let

J=f�(M � 1);�(M � 3); . . . ;�1;+1; . . . ;M�3;M � 1g:

We define the signal constellations,

Am = f(a+ !mb)ja; b 2 Jg:

Since the scaling factor � in (1) is required to satisfy E[k�Xk2F ] =
ntSNR, assuming that each component Xij of X is uniformly drawn
from the signal constellation Am, it can be shown that

E[jXij j
2]

:
= M2:

So the normalizing factor satisfies

�2 =
SNR

ntE[jxij j2]

:
= SNR1�

:

Theorem 1: Let S be an alphabet that is scalably dense. Consider a
STTC X with T � nt, which

• is S-linear;
• has full-rank;
• has full-rate;
• has the NVD property.

Then the DM-G tradeoff curve d(r) for X is given by piece-
wise-linear function connecting the points (r; d(r)), r = l�; l =
1; 2; . . . ;min fnt; nrg where

d(r) � (nt � r=�)(nr � r=�)

and � is rate loss factor for STTC.
The DM-G tradeoff curve for the full-rate STTC with NVD property

is plotted in Fig. 3. The DM-G tradeoff curve for the full-rate STTC in-
tersects the r axis at �min fnt; nrg. This shows that the maximum
achievable spatial multiplexing gain, which the high-rate STTC can
achieve, is given by �min fnt; nrg. Since � < 1, it follows that the
full-rate STTCs, cannot achieve the maximum possible spatial multi-
plexing gain minfnt; nrg, with nt transmit and nr receive antennas.
On the other hand, the DM-G tradeoff curve for the full-rate STTC in-
tersects the d axis at the maximum diversity gain ntnr , corresponding
to nt transmit and nr receive antennas. Therefore, clearly the full-rate
STTCs with NVD property, achieves the maximum possible diversity
gain possible.

Since � < 1, the upper bound on the DM-G tradeoff for the full rate
STTCs is always lower than the optimal DM-G tradeoff [1], for nt; nr
transmit and receive antennas, respectively. For non integer values of l,
the DM-G tradeoff for STTCs d(r) (where r = l�) is given by straight
line interpolation of d(r) between r = blc� and r = dle� respectively,
where b:c denotes the largest integer less than (:) and and d:e denotes
the smallest integer greater than (:).
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This result is expected, since for STTC, there is a inherent rate loss
due to the trailing zeros. Also, for STTC, T is very large and since
� < � where 2� is the number of states of the STTC, � = T��

T
is very

close to 1. Therefore, Theorem 1 shows that, ignoring the trailing zeros
(� = 1), high-rate STTCs achieve the upper bound on the optimal
DM-G tradeoff curve for any number of transmit and receive antennas.

Before we give the proof of Theorem 1 we establish the following
lemma which will be helpful in the proof.

Lemma 1: Let X be a full-rank STTC and let �X = X �X0, be
the difference matrix of X;X 0 2 X of dimension nt � T . Any �X
can be written as [�U �M ], where �U is of size nt�nt and �M is
of size nt � (T � nt). Written in this way, �U is always of full-rank.

Proof: Assume to the contrary that �U is not always full-rank.
For the case of STTC, we can choose to truncate the STTC at any T �
nt, without compromising full rank. Let us make a choice of T = nt
to truncate the STTC, then �X = �U , which is a valid codeword
difference matrix from X . Since �U is not full rank, �X is not full
rank and hence STTC X is not full rank for T � nt, leading to a
contradiction. Therefore �U is of full rank.

Proof: (Theorem 1) Let �X = X �X 0, be the difference ma-
trix of X;X 0 2 X of dimension nt � T . Any �X can be written as
[�U �M ], where �U is of size nt�nt and �M is of size nt� (T �
nt). Since X is of full-rank, �U is always full-rank (Lemma 1). Also,
let U = f�U : X 6= X 0; X;X 0 2 Xg. Let �1 � �2 � � � � � �n ,

1 � 
2 � . . . � 
n and l1 � l2 � � � � � ln be the ordered eigen
values of HyH;�U�Uy and �X�Xy, respectively.

Let d2E denote the squared Euclidean distance between any two code-
words from X . Then we have

d2E =Tr(�2H�X�XyHy); (Tr is the Trace function)

=Tr �2H �U�Uy +�M�My Hy :

Since �M�My is Hermitian

d2E � Tr �2H�U�UyHy d2�U : (3)

Our objective is to lower bound d2E . Let �i = SNR�� . Ordering of
�i imposes �1 � �2 � � � � � �n . Let ��� = (�1; �2; . . . ; �n ). Also,
for a particular channel realization ���, let Pe(�) be the codeword error
probability, and as before W is the noise matrix. Then

Pe (���) � PrfkWk2 >
d2E;min(���)

4
g Pe;�X(�)

where d2E;min is the minimum squared Euclidean distance between any
two distinct codewords from X . The average codeword error proba-
bility Pe can be computed from Pe(�) by taking the expectation over
the eigenvalues of HyH . Recall that

d(r) = � lim
SNR!1

log(Pe)

log SNR
: (4)

From (3), d2E;min(���) � d2�U;min(���), and hence in the worst case

Pe (���) � PrfkWk2 >
d2�U;min(���)

4
g Pe;�U (�) (5)

where

d�U;min = min
�U

d�U :

This allows us to transform our original problem of lower bounding
d2E , to lower bound d2�U . Let us define

dU(r) lim
SNR!1

log(P�U )

log SNR

where P�U is obtained by taking expectation of Pe;�U (�) over the
eigenvalues of HyH .

Since the STC U is of dimension nt � nt, we can use the results
from [11]. Also, we haveU to be STC with dimension nt�nt and with
NVD property and also �2 = SNR1� . Carrying out the analysis as
similar to Theorem 1 [11] for nr � nt, on (5), to lower bound d2U , we
have

dU(r) � inf
�2B

n

i=1

(2i� 1 + nr � nt)�i

where the set B is given by

B = f� : �i � 0 8i; �j � 0; j = 0; 1; . . . ; nt � 1g

and

�j(�) = 1�
r

�(j + 1)
�

n

i=n �j

�i
j + 1

:

Since Pe;�X(�) � Pe;�U (�), clearly, d(r) � d�U (r).
Evaluating the above infimum for (l � 1)� � r � l�, where l =

1; 2; . . . ; nt, we get,

d(r)

�

n �l

i=1

(2i� 1� nr � nt) + [2(nt � l+ 1)� 1 + nr � nt](l�
r

�
):

The values for the non-integral r where f(l � 1)� < r < l�g are
obtained by straight line equation above and for integral values r = l�
we have

d(l�) � (nt � l)(nr � l)

and for r = (l � 1)�

d ((l� 1)�) � (nt � l+ 1)(nr � l+ 1):

Now by letting p = l�, we have

d(p) � (nt � p=�)(nr � p=�)

d(p� �) � (nt � p=�+ 1)(nr � p=�+ 1):

Also, by making use of the results from Appendix 3 [11], the case when
nr < nt can be proved similarly.

III. HIGH-RATE STTCS

The shift register model for our full-rate STTCs is shown in Fig. 4.
We assume that the state complexity of the STTC is 2�. Let the rate of
transmission be ntb bits/s/Hz (neglecting the trailing zeros). From [2],
� � ntb(nt � 1) for full diversity. Let � = qntb + k : k < ntb.
In Fig. 4, each Bi; i 2 (1; 2; . . . q + 1) represents ntb bits. The most
significant 
 bits, where 
 = (q�nt+1)ntb+k, is denoted by B
 in
the figure. The shift register keeps shifting to the left ntb bits at a time.
The past 
+(nt�1)ntb bits (B
 ; Bn ; Bn �1; . . . ; B2) represent the
state of the trellis and the current ntb bits, which have entered the shift
register, represent one of the 2n b branches diverging out of a state. It is
easy to verify, that for the STTC so constructed, the convergence length
lc = b �

n b
c + 1 = q + 1, since q � nt � 1; lc � nt.

For each of the Bi; i 2 (1; 2; . . . q + 1), we divide the ntb bits
into nt groups of b bits each. We represent each of these nt groups
by bi;j for i = 1; 2; . . . q + 1 and j = 0; 1; 2; . . . ; nt � 1. By using
some bijective map, each of these bi;j bits are mapped to xi;j , where
xi;j 2 S with jSj = 2b. At time t we represent xi;j by xti;j . For
each of Bi; i = 1; 2; . . . q + 1, we feed these constellation points for
all the nt groups to a map �, whose output is �ti = ( n

j=1
xtij�j) at

time t, for i = 1; 2; . . . ; q + 1, where �j 2 8 j. Each of the �i for
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Fig. 4. Shift register model for high-rate STTC.

i = 1; 2; . . . q + 1, are fed to the map 			, to determine what is to be
transmitted from each of the transmit antenna. We here give a particular
choice of 			 to guarantee that the STTC so constructed is full-rank.

Lemma 2: Let F = (j), where is the field of rational num-
bers and j =

p�1. Then from Theorem 6 and 7 [11], for any nt =
2m l

i=2 p
m
i where pi is an arbitrary prime, there exist a cyclic Galois

extension K with degree nt over F .
Theorem 2: Let F = (j) and �1; �2; . . . �n be the integral basis

of K=F , where K is the cyclic Galois extension of F of degree nt and
� be the generator of the cyclic Galois group denoted by Gal(K=F)
(Lemma 2 shows that it exists). In Fig. 4, let xti;j 2 S 2 F and if 			 is

such that, c(i)t = �ti = �i�1 n

j=1 x
t
i;j�i for i = 1; 2; . . .nt, where

c
(i)
t is the transmitted signal from the ith transmit antenna in the tth

time instant, then the STTC X so constructed achieves full diversity.
Proof: Consider two distinct codewords matrices C and E such

that C;E 2 X ; C 6= E . Let their difference matrix B(C;E) =
E � C , be

e11�c11 � � � e1t �c1t � � � e1t �c1t � � � e1T�c1T
e21�c21 � � � e2t �c2t � � � e2t �c2t � � � e2T�c2T

...
...

...
...

...
en1 �cn1 � � � ent �cnt � � � ent �cnt � � � enT �cnT

where T , is the frame length of the STTC. Since at the beginning of
the frame and the end of the frame, the state of the encoder is zero,
the trellis path corresponding to the two codewords considered, should
diverge and converge at a later time, assume that td is the time when the
paths corresponding to the two codewords diverge, and tc is the time
when they converge. Then the first td � 1 columns and the last T � tc
columns of the above matrix are zero. Thus we need to consider only
the columns from td to tc. Note that the convergence length lc = q+1
and hence lc � nt. We have td + tc � 1 columns to consider. We
see that tc � td + 1 � nt, since the convergence length is at least
nt(
 � 0) and the number of non-zero columns here is at least the
convergence length. Let us call the matrix that contains the non-zero

columns of B(C;E) as Be�(C;E). Let the total number of columns
of matrix Be� (C;E) be l, (l = tc � td + 1 � lc = nt). We take the
worst case of l being equal to lc. Therefore the matrix Be� (C;E) has
dimensions nt � lc.

Our aim is to lower bound the rank of the matrixBe� (C;E). We can
writeBe� (C;E) = [U M ], whereU andM are of dimensionsnt�nt
andnt�(lc�nt), respectively. Since rank(Beff(C;E)) = rank(U),
for STTC to achieve full diversity, it is sufficient to show that the matrix
U is of full-rank (rank(U) = nt).

We will prove the theorem in two parts, in the first part, we show that
the matrix U is upper triangular (i.e., all the elements below the main
diagonal are zero) and in the second part we show that all the diagonal
elements of the matrix U are non-zero.

Part 1) By definition

U=

e1t �c1t e1t +1�c1t +1 � � � e1t +n �1�c1t +n �1

e2t �c2t e2t +1�c2t +1 � � � e2t +n �1�c2t +n �1

...
...

...
...

ent � cnt ent +1� cnt +1 � � � ent +n �1� cnt +n �1

:

The i; jth entry of U is

e
(i)
t +j�1 � c

(i)
t +j�1 = �i�1

n �1

k=0

(xj+i�1i;k � x j+i�1
i;k )�k

where at least for one k; xi;k 6= x0i;k and i = 1; 2; . . . ; nt; j =
td; td+1; td+nt� 1. Since at time td, when there is divergence
for codewords C and E, all the bits in B

t

i for i = 2; 3; . . . ; 

are same. Also from Fig. 4, it is clear that, xti;j depends only on

B
t

i . Therefore, c(i)t +t = e
(i)
t +t for i > t + 2; i = 1; 2; . . .nt;

t = 0; 1; . . .nt�2. Hence all the elements of matrix U below the
main diagonal are zero.
Part 2) Now, consider the diagonal elements of U . These are of
the form,

e
(i)
t � c

(i)
t = �i�1

n �1

k=0

xti;k � x0ti;k �j
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Fig. 5. New code for 2 Tx, BPSK, 2 bps/Hz, eight-state STTC.

for i = 1; 2; . . .nt and t = td; td + 1; . . . td + nt � 1. Since
� 2 Gal(K=F ), � is an automorphism from K ! K

�i�1
n �1

k=0

(xti;k � x0ti;k)�j = 0

if and only if

n �1

k=0

(xti;k � x0ti;k)�j = 0:

Since C 6= E, at least for one value of k; (xti;k 6= x0ti;k), hence

n �1

j=0

(xti;j � x0ti;j)�j 6= 0

for i = 1; 2; . . .nt and t = td; td +1; . . . td +nt� 1. Therefore,
all the diagonal elements of the matrix U , are of the form

e
(i)
t � c

(i)
t = �i�1

n �1

j=0

(xti;j � x0ti;j)�j 6= 0:

We have shown that, rank(U) = nt, implying that
rank Beff(C;E) = nt and hence the STTC X achieves full
diversity.

Example 1: Suppose we need to construct a STTC for two transmit
antennas with rate 2 bits/s/Hz. We choose the BPSK signal set and
for the case of 4 states trellis, we have parameters � = 2, b = 1
and 
 = � = 0. For F = (j) and nt = 2, from [11] we have
K = (!8) where !n = exp(�j2�

n
). The basis of (!8) over (j)

is f1;pjg and � 2 Gal(K=F ) is such that � :
p
j ! �pj. Then

from Theorem 2 we have a full rank STTC, which is same as given in
[12] and also as shown in Fig. 2.

Example 1 shows that the code construction in [12], is a special case
of the generalized full-rate STTC construction of this correspondence.
With � = 2, b = 1 and changing 
 = � = 1, we have a 8 state STTC
for two transmit antennas with rate 2 bits/s/Hz as shown in Fig. 5,

Example 2: For the case of three transmit antennas, rate 3 bits/s/Hz,
we have b = 1 for BPSK signal set and � � 6. If we need to construct
a 64–state STTC for three transmit antennas with 3 bits/s/Hz, we have
� = 6; 
 = � = 0. So, we takeF = (!3; !12). Then the polynomial
x3 � !12 is irreducible over F . Hence !36 is a root of the polynomial
x3 � !12 and the automorphism is given by � : !36 ! !36w3. For
the sake of brevity we do not draw the trellis, but it can be easily con-
structed with all these parameters from Theorem 2.

IV. DM-G TRADEOFF OF FULL-RATE STTCS

In this section we study the DM-G tradeoff of the proposed full-
rate STTC construction. From the previous section, Be�(C;E) can be
written as Be� (C;E) = [U M ] where U is an upper triangular matrix
of dimension nt � nt and M is a matrix of dimension nt � (lc � nt).
As proved in Theorem 2 for our proposed full-rate STTCs, the matrix
U is upper triangular and full rank. Hence U is of the form

U=

e1t � c1t e1t +1�c1t +1 � � � e1t +n �1� c1t +n �1

0 e2t +1� c2t +1 � � � e2t +n �1�c2t +n �1

... 0
. . . en �2

t +n �1� cn �2
t +n �1

...
...

... en �1
t +n �1� cn �1

t +n �1

0 0 0 ent +n �1� cnt +n �1

:

It is easy to verify that

det(U) =

n

i=1

eit +i�1 � cit +i�1

=

n

i=1

�i�1
n �1

j=0

(x
t +i�1
i;j � x

t +i�1
i;j )�j :

Since � is an automorphism of degree nt, we have � (det(U)) =
det(U). Thus, det(U) belongs toF = (j). Moreover, with the signal
set S � [j] ( [j] = a+ jb : a; b 2 ) and the basis f�1; �2; . . . �n g
an integral basis, we have det(U) 2 [j] [17]. Thus, jdet(U)j � 1,
and thus the STTC X has the NVD property. Since, X is S-linear, has
full-rate and has the NVD property, from Theorem 1, STTCX achieves
the upper bound on the optimal DM-G tradeoff neglecting the rate loss
factor, which is very small.

As discussed in the last section, STTC constructed for two transmit
antennas [12] is a special case of our proposed full-rate STTC construc-
tion. It is shown in [12] only by simulation, that the high-rate STTC for
2 transmit antennas achieves the DM-G tradeoff, where as Theorem 1
proves this analytically, neglecting the rate loss factor.

V. CONCLUSION

In this correspondence, we derive the bound on the the DM-G
tradeoff of full-rate STTCs with NVD property. We show that the
full-rate STTCs with NVD property are optimal under the DM-G
tradeoff for any number nt of transmit antennas and any number nr
of receive antennas, neglecting the rate loss factor. In the process of
bounding the DM-G tradeoff of full-rate STTCs with NVD property,
we generalize the result that for T = nt, STCs with full-rate and
NVD property achieves the upper bound on optimal DM-G tradeoff
[9]–[11], to the case T � nt where it is sufficient that the matrix
formed by the first nt columns of the full-rate STC has the NVD
property to achieve the upper bound on the DM-G tradeoff.

Also, we show that the existing schemes to construct STTCs, do not
achieve the optimal diversity-multiplexing tradeoff, for n transmit and
n receive antennas (n � 2), except for the STTC [12]. We then propose
a full-rate STTC construction, which is shown to achieve the upper
bound of the optimal DM-G tradeoff for any number of transmit and
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receive antennas, neglecting the rate loss factor. We also show that the
STTC [12] is a special case of our proposed high-rate STTC.
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