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for Delay Sensitive Applications Over Fading Channels
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Abstract—In this correspondence, we consider a problem of optimal
source, channel coding rate pair allocation over a wireless link based on
the channel fading state and the queue length of the transmitter. The
source is delay sensitive. Therefore, our objective is to minimize the mean
delay under given mean power and distortion constraints. We show that by
jointly optimizing the source and channel rates, one can gain substantially
in performance as compared to only source or channel rate optimiza-
tion, as is usually considered in the literature. This is shown for single
user, single-input–single-output (SISO), multiple-input–multiple-output
(MIMO), and multiuser systems. The methods used are from Markov
decision theory.

Index Terms—Joint source–channel coding, Markov decision theory,
mean distortion constraint, multiple-input–multiple-output (MIMO)
systems, multiple-access channel, wireless link.

I. INTRODUCTION

In this correspondence, we consider the problem of transmitting
an analog/discrete source over a noisy fading channel. By Shannon’s
theorem [14], if the source and the channel are information stable,
one can independently design a source encoder and a channel encoder
without any loss of performance in distortion. However, in general
it requires arbitrarily long source and channel codes. For delay
sensitive applications, the resulting delay can be intolerable. Thus,
for acceptable delay and mean distortion, it may be advantageous
to use a joint source–channel encoder and decoder. But an optimal
joint source–channel encoder depends upon the specific source and
channel characteristics. However, in practical systems, one may
want to use common channel encoders for different sources and
applications. Therefore, as a compromise, one also considers systems
where different sources have source encoders while a set of common
channel encoders are used. Out of various combinations of source
and channel encoders, one may pick one that is good for a specific
source–channel pair [7], [8]. It is shown in [8] that such a system can
provide significant reduction in mean distortion over fading channels.
In this correspondence, we consider this problem in more detail.

We consider the transmission over a slowly fading channel. The
system is slotted. The fading process is constant over a slot. The fading
varies from slot to slot as a discrete time Markov chain with continuous
state space. The channel state is available at the transmitter and the re-
ceiver. The source output generated in a slot is quantized, coded and
stored in a buffer. The channel encoder picks a number of bits from the
buffer, encodes them and transmits on the channel. Depending upon the
channel state and the buffer contents appropriate rates for the source
encoder and the channel encoder are chosen. We obtain rate policies
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which minimize the mean delay in the buffer while keeping the mean
distortion and the average transmit power within certain bounds.

In the following, we survey the related work. The study [8] men-
tioned above is closest to our approach. However, they study a dis-
crete channel (with no average power constraint) and the queuing de-
lays are not considered. Furthermore, they obtain optimal source and
channel rates for each channel state by exhaustive search over a finite
number of possibilities. In our setup, because of buffering, Markov
modeled channel fading process and long term average delay, distor-
tion and power constraints there is dependence in the source–channel
rates picked in different slots. Thus, we address the problem via Markov
decision theory.

The set up considered in [1], [4] is similar to ours. But there is no
adaptive source coding. In [2], sequential quantization of a Markov
source is considered. They also work in Markov decision theory frame-
work and minimize the entropy of the quantized source with an upper
bound on the mean distortion. However, there is no channel involved
and no queuing delays are considered. Kashyap et al. [9] considers
linear coding and decoding techniques to minimize mean distortion
of transmitting a Gaussian source over a multi-antenna Rayleigh/Ri-
cian-fading channel. There is average power constraint but queuing de-
lays are not considered. The work in [3] minimizes the average transmit
power while maintaining an upper bound on the average distortion. The
channel coding and modulation are fixed and there is no buffering.

The correspondence is organized as follows. In Section II-A, we pro-
pose the model for our system and state the assumptions. We formulate
the problem as a constrained optimization problem. This is converted
into a family of unconstrained problems via the Lagrangian approach.
In Section II-B, we formulate this unconstrained problem as an average
cost Markov Decision Process (MDP). In Section III, we show the exis-
tence of stationary average cost optimal policies which can be obtained
as a limit of discounted cost optimal policies. We also show that these
optimal policies are optimal for the original unconstrained problem.
In Section III-B, we obtain structural results for the discounted op-
timal cost and policies some of which are needed in Section III-A.
In Section III-C, we illustrate our optimal policy on an example and
also compare its cost with the policies available in literature. We find
that the optimal policy obtained here can provide significant perfor-
mance improvement. In Sections IV and V, we extend our work to
multiple-input–multiple-output (MIMO) and multiuser cases, respec-
tively.

II. SINGLE USER, SISO SYSTEMS

In this section, we consider one source. The transmitter and the re-
ceiver have one antenna each. Generalizations to multiple antennas and
multiuser systems will be considered later. In Section II-A, we explain
the model and formulate the problem. In Section II-B, we show that this
problem can be posed in the standard Markov Decision Theory setup.
In Section III, we will study this problem in detail.

A. System Model

We consider a slotted system with a single user communicating over
a frequency nonselective fading wireless channel. The fading stays con-
stant during a slot. The data to be transmitted, arrives from a higher
layer. This data is subjected to a variable rate compression depending
on delay, power and distortion requirements. This compressed data is
placed in a buffer of infinite capacity for transmission over the fading
channel.

The transmitter acts as a controller which, with the knowledge of
the buffer and the channel states, obtains optimum source and channel
coding rates and transmission power. The objective is to minimize the
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mean delay subject to long run average transmit power and distortion
constraints. Based on these decisions, the transmitter compresses the
data, performs channel coding, and transmits over the channel.

In a practical system, e.g., for transmission of voice/video, the
overall goal is to be able to transmit with an upper bound on the end to
end distortion (mean square error) for an acceptable performance. To
reduce the complexity of the problem, this upper bound can be split
into two components: an upper bound on the mean square distortion
for source coding and an upper bound on the bit error rate (BER) at the
receiver channel decoder. A judicious choice of this split can provide
a reasonable solution for the overall system design. In our setup, we
assume that this has been done.

We consider the problem under the following set of assumptions.
• The data transmitted on the channel experiences fading and is also

corrupted by additive noise. The fading gain is Gn in slot n. The
fading process fGng is assumed to be a homogeneous Markov
process with transition function PG with a compact state space
G := [�g; �G]. We assume that it is Harris recurrent (with respect
to a finite measure on its state space). The mean time Eg[��G] to
reach the state �G from any state g, is finite. The fading process
is also stochastically nondecreasing, i.e., E[f(Gn+1)jGn = g] is
nondecreasing in g if f is a nondecreasing function. This indicates
positive correlation in the process and hence should be generally
satisfied. We also assume that PG(Gn+1 2 BjGn = g) is con-
tinuous in g for every measurable B.

• The data input Bn in slot n to the source encoder is iid belonging
to an analog/discrete alphabet � with distribution P� and variance
�2� .

• Source outputs J symbols per slot and there are N channel uses
in one slot.

• The number of bits arriving into the buffer in each slot is upper
bounded by a positive number �A; �A < 1.

• Channel and buffer state information are available at the trans-
mitter and the receiver. The channel gain remains constant during
a slot.

• P (g; u), the power needed to transmit u bits in a slot when the
channel gain g is nondecreasing in u and nonincreasing and lower
semicontinuous in g. Also, P (g; u) is convex in u (needed only
for the Propositions 3 and 4).
The following are common examples that satisfy our assumptions.
— Consider a Gaussian channel with fading. Then, the power

function is

P (g; u) =
�2w

jgj2
(eku � 1)

where k = 2 ln(2)
N

and �2w is the noise variance.
— Consider the above channel with uncoded BPSK modulation.

Then, the BER (bit error rate) is given by

Pe = Q 2jgj2
P (g; u)

�2wu
:

Thus, the power expended for a target BER of Pe is

P (g; u) =
u

2:jgj2
�
2
w Q

�1(Pe)
2
:

With appropriate sampling, one can represent the channel output at
time n as

Yn = GnZn +Wn; n = 0; 1; 2; . . . (1)

where Zn is the transmitted symbol and Wn is the additive noise
process at time n.

Let Sn be the amount of data in the buffer at the beginning of the nth

slot and Sn 2 S where S = f0; 1; 2; . . .g. We define the state of the
system in the nth slot as Xn := (Sn; Gn). At the nth decision epoch,
the transmitter decides upon the amount of data bitsAn to be placed in
the buffer and the amount of data bitsUn to be removed from the buffer
for transmission. The evolution of the buffer state process is given by

Sn+1 = Sn +An � Un (2)

where

Un 2 f0; 1; . . . ; Sng and An 2 A := f0; 1; . . . ; �Ag; �A <1:

For the nth slot the transmitter incurs a cost of
• distortionD(A

J
) to encode J source symbols intoAn bits where

D(:) is the distortion-rate function.
• power P (Gn; Un) for the transmission of Un bits in a slot when

the fading gain is Gn.
The objective is to minimize the mean delay with constraints on the

mean distortion and power. Since, minimizing mean delay is very in-
volved and the mean delay is related to the mean queue length, we try
to minimize the mean queue length (observe that since the arrival rate
is also a decision variable, minimizing queue lengths, via Little’s law,
does not guarantee minimizing mean delays). However, we will show
later on that such a policy also provides lower mean delay than other
policies we are aware of. Thus the controller objective is to obtain an
optimal action pair r = (a; u) which minimizes

lim sup
M!1

1

M
E[

M�1

n=0

Sn] (3)

subject to the constraints

lim sup
M!1

1

M
E

M�1

n=0

P (Gn; Un) � �P

and

lim sup
M!1

1

M
E

M�1

n=0

D(
An

J
) � �D:

We show below that this problem may be formulated as an average
cost MDP.

In our analysis, channel model (1) itself is not important. Any other
channel model with (2) can be used provided the general assumptions
(for example assumptions on P (g; u)) are satisfied. The process fGng
could just represent the channel state.

B. Formulation as an MDP

Let fXn; n = 0; 1; . . .g denote the controlled Markov chain
with state space X = S � G, and action space R = S � A.
The set of feasible actions in state x = (s; g) is R(x) :=
f(a; u) : u 2 f0; 1; . . . ; sg; a 2 Ag. Let K := f(x; r) : x 2
X ; r 2 R(x)g be the set of all feasible state-action pairs. Let c denote
the per stage cost which is a measurable function c : K �! [0;1].
Let P(X ) be the set of all probability measures on X . The conditional
probability measure on X given K is denoted by Q(:j:) where

Q(Xn+1 2 fs
0g �G

0j(x; r))

= �(s0 = s� u+ a)
g 2G

dPG(g
0jg) (4)

and �(:) is the Kronecker delta function.
Let � be the set of all feasible policies �n where

�n : Kn � X ! f0; 1; . . . ; sng � f0; 1; . . . ; �Ag: (5)
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A stationary policy f 2 � is a measurable mapping such that

f : X ! f0; 1; . . . ; sg � f0; 1; . . . �Ag: (6)

For a stationary policy � 2 �, we define the buffer cost, the power
cost and the distortion cost, respectively, as

B
� = lim sup

M!1

1

M
E

M�1

n=0

Sn

P
� = lim sup

M!1

1

M
E

M�1

n=0

P (Gn; Un)

and

D
� = lim sup

M!1

1

M
E

M�1

n=0

D(
An

J
)

when at each stage stationary policy � is used. Given �P > 0, �D > 0,
let �c be the set of feasible policies � 2 � which satisfy the constraints
P � � �P and D� � �D.

The problem can be restated as a constrained optimization problem,

(CP ) : Minimize B� subject to � 2 �c:

The problem(CP) can be converted into an unconstrained problem
through the Lagrange’s method. Let

c(x; r) = s+ �P (g; u) + �D(a) (7)

where x = (s; g), r = (a; u), and �; � > 0 are Lagrange multipliers.
Also, we assume J = 1 for simplicity. Define the corresponding La-
grangean functional

J
�(x) = lim sup

M!1

1

M
E
�
x [

M�1

n=0

c(Xn; Rn)]: (8)

The following theorem gives sufficient conditions under which an
optimal policy for an unconstrained problem is also optimal for the
original constrained problem. This is proved in [11] for a single con-
straint but the same proof works for multiple constraints also.

Theorem 1: Let for some � > 0, � > 0, �� 2 � be the policy that
solves the unconstrained problem,

(UP ) : Minimize J� subject to � 2 �:

If �� yields B� , P � and D� as limits with P � = �P and D� =
�D, then the policy �� will necessarily solve CP.

The posed unconstrained problem (UP) is a standard Markov Deci-
sion process with an average cost. In what follows, we solve UP and
show that the obtained solution achieves the limits and satisfies the hy-
pothesis of Theorem 1.

III. EXISTENCE AND STRUCTURAL RESULTS FOR THE OPTIMAL

SOLUTION

In Section III-A, we show that (UP) has an optimal solution. We also
discuss conditions under which this solution is optimal for (CP) also.
Section III-B provides some structural results for the optimal policy.
Section III-C demonstrates that this optimal policy can be substantially
superior to policies which do not optimize the source and channel rates
simultaneously.

A. Existence of a Stationary Optimal Policy

We consider the average cost problem (UP) and define a related
�-discounted problem.Then we study the average cost problem as a

limit of �-discounted problems when � ! 1. For � 2 (0; 1), we de-
fine the total expected �-discounted cost as

v�(x; �) = E
�
x [

1

n=0

�
n
c(Xn;Rn)]; � 2 �; x 2 X : (9)

A policy �� satisfying

v�(x; �
�) = min

�2�
E
�
x [

1

n=0

�
n
c(Xn; Rn)] := J�(x); x 2 X (10)

is said to be �–discount optimal and J� is the �–discount optimal cost
function. We define corresponding relative gain function as

w�(x) = J�(x)� inf
x2X

J�(x) for x 2 X : (11)

The �–discount optimality equation (�–DCOE) is

v�(x) = min
r2R(x)

c(x; r) + �
x 2X

v�(x
0) dQ(x0j(x; r)) (12)

and J�(x) is the minimal solution to the �–DCOE. We will assume
that J� := infx2X inf�2� J

�(x) <1. This assumption should hold
in most practical problems because otherwise the cost is infinite for any
choice of the policy and thus any policy is optimal, anyway.

Consider the following set (S) of conditions [13]:
S1)R(x), the set of feasible actions in state x is a compact subset
of R for all x 2 X .
S2) Q(x0 2 B0jx; :) : R(x) �! P(X ) is continuous with
respect to set-wise convergence onP(X ) for x 2 X ,B0 2 G(X ).
S3) c(x; :) : R(x) �! [0;1] is lower semicontinuous for all
x 2 X .

It is easy to verify these conditions for our system because of the dis-
creteness of the buffer state and action spaces. The following lemma
[13] gives the conditions for existence of stationary discounted optimal
policies.

Lemma 1: Let � 2 (0; 1). Under the condition (S) there exists a
discount optimal stationary policy �� which satisfies the �–DCOE.

The next theorem gives the conditions for the existence of average
optimal policies which can be obtained as a limit of discounted optimal
policies ��. Let �g;�G be the number of jumps required for Markov
chain fGng to visit the state �G for the first time when it starts in state
g. Motivated by [13] we have the following theorem.

Theorem 2: There exists a policy �� which is average cost optimal
for (UP) and J� (x) = J� for all x. Also, �� is limit discount optimal
in the sense that for any x 2 X and given any sequence of discount
factors converging to one, there exists some subsequence �n ! 1 such
that

�
�(x) = lim

n!1
�� (x):

Furthermore

J
� = lim

�!1
(1� �) inf

x2X
J�(x): (13)

Proof: In [13] it is shown that if

sup
�<1

w�(x) <1 for all x 2 X

and conditions (S) are satisfied then the conclusions of this theorem
hold. We have already stated that conditions (S) hold under our as-
sumptions. To prove sup�<1w�(x) < 1 for all x 2 X , first we
prove that J�(x) < 1 for all x 2 X and � 2 (0; 1).
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For a state x = (s; g), let � be the policy such that u = s, a = �A.
Let cn be the cost per stage. Then for n � 1, the cost incurred is upper
bounded by �c = �A + �P (�g; �A) + �D(0) < 1. Thus

J�(x) � s+ �P (g; s) + �D( �A) + E
�
x [

1

n=1

�
n�c]

= s+ �P (g; s) + �D( �A) + �
�c

(1� �)
<1:

Now we will show that sup�<1w�(x) < 1 for all x 2 X . We
will prove in Propositions 1 and 2 below that J�(s; g) is increasing in
s and decreasing in g. Therefore, arg infx2X J�(x) = J�(x0) where
x0 = (0; �G). Let r1 = (0; ag) be the optimal policy for state (0; g).
Then we have the value function

J�(0; g) = �D(ag) + �
g 2G

J�(ag; g
0) dPG(g

0jg) (14)

for state (0; g). For any x 2 X choose a feasible policy r(x) = (s; ag)
then

J�(s; g)�s+�P (g; s)+�D(ag)+�
g 2G

J�(ag; g
0)dPG(g

0jg): (15)

From (14) and (15), we have for all (s; g) 2 X

J�(s; g) � s+ �P (g; s) + J�(0; g): (16)

Therefore

w�(s; g) � s+ �P (g; s) + J�(0; g)� J�(0; �G) (17)

and hence it is sufficient to get an upper bound on sup�<1 J�(0; g).
Consider the state (0; g). Let us use a policy under this state, r =

(0; 0) till there is a transition to state g = �G. The cost incurred per slot
by this policy can be upper bounded by �c = �D(0). Therefore, starting
from state (0; g), if ck is the cost of kth stage of the value iteration

J�(0; g) � E[

1

k=0

�
k
ck] � E[

�

k=0

�c] + J�(x0):

Therefore, from (17) it follows that

w�(s; g) � s+ �P (g; s) + �cE[�g;�G]: (18)

Since the bound is independent of �, we obtain

sup
�<1

w�(x) � s+ �P (g; s) + �cE[�g;�G] <1 for all x 2 X :

Although we have limited ourselves to stationary deterministic poli-
cies, the above theorem in fact guarantees existence of an optimal sta-
tionary deterministic policy in the class of all randomized (not neces-
sarily stationary) policies.

Under the optimal policy obtained in Theorem 2, J� is finite. Then
by TheoremE10 of [6, p. 188], there exists an invariant distribution for
the Markov chain fXng under the optimal policy��. Also, by Theorem
E11 of [6, p. 188], for policy ��,B� , P � andD� exist as limits. If
under �� the Markov chain is irreducible, these limits are independent
of the initial conditions. If the Markov chain under the �� has a single
communicating class (but the chain is not necessarily irreducible), then
also, after modifying the optimal policy initially so that in one step one

enters that communicating class, the limits ��,B� ,P � andD� can
be made independent of the initial state. Furthermore, as � increases
P � decreases and D� increases and as � decreases D� increases
andP � decreases. Thus by choosing �,� appropriately, we can ensure
that P � = �P and D� = �D. Then all the conditions of Theorem 1
are satisfied.

B. Structural Results

In this section, we obtain some structural results on the optimal cost
and policies. Some of these have been used in Section III-A. We will
first obtain the results for n–stage �–value iteration function Jn(x)
when the initial state is x. Then using the fact (to be proved below),
that for any �; 0 < � < 1, J�(x) = limn!1 Jn(x), we will obtain
the results for J�(x). Finally the results will be extended to J�.

It is proved in [6] that if the conditions (A)
A1) The one-stage cost c is lower semicontinuous, nonnegative,
and inf-compact on K, i.e., the set fr 2 R(x) : c(x; r) � tg is
compact for every x 2 X and t 2 <.
A2) Q is strongly continuous, i.e., Q(Bj:) is continuous onK for
every set B 2 G(X ).
A3) There exists a policy� such that J��(x) <1 for each x 2 X .

are satisfied, then Jn(x) converges to J�(x) which satisfies �–DCOE.
By the discreteness of the buffer and action spaces, and by the as-

sumptions made in Section II-A, the conditions A1 and A2 can be
easily verified. Condition A3 has already been verified in Section III.

Now we obtain the structural results for the �–value function and
�–discount optimal policy for each � 2 (0; 1). It follows from The-
orem 2 that the same will hold for average cost function and optimal
policies also.

Proposition 1: J�(s; g) is non-decreasing in s for all g 2 G.
Proof: This can be proved by induction on the value iteration

algorithm

Jn+1(s; g) = min
(u;a)2R(x)

fs+ �P (g; u)�D(a)

+�
g 2G

Jn(s� u+ a; g
0) dPG(g

0jg)g:

For n = 0 we have J0(s; g) = constant (say C). Therefore,
J0(s; g) = is nondecreasing. Assume Jn(s; g) is nondecreasing in s
for each g. Fix g. Let s1 and s2 be the two states such that s2 > s1.
Let (u1; a1) and (u2; a2) be the optimal policies corresponding to
states (s1; g) and (s2; g) for the n + 1-stage problem. Thus

Jn+1(s2; g) = s2 + �P (g; u2) + �D(a2)

+�
g 2G

Jn(s2 � u2 + a2; g
0) dPG(g

0jg):

We note that r2 = (a2; u2), is a feasible policy for state (s2; g). We
apply policy r2 = (a2; u2) for the state s1. When u2 < s1, we have

Jn+1(s1; g) � s1 + �P (g; u2) + �D(a2)

+ �
g 2G

Jn(s1 � u2 + a2; g
0) dPG(g

0jg)

� s2 + �P (g; u2) + �D(a2)

+ �
g 2G

Jn(s2 � u2 + a2; g
0) dPG(g

0jg):

=Jn+1(s2; g)

where the first inequality follows from the optimality of policy (a1; u1)
for (s1; g) and the second one follows since s2 > s1 and Jn(:; g) is
nondecreasing. When u2 > s1 apply r02 = (s1; a2) to the state s1.
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Then

Jn+1(s1; g) � s1 + �P (g; s1) + �D(a2)

+ �
g 2G

Jn(a2; g
0) dPG(g

0jg)

� s2 + �P (g; u2) + �D(a2)

+ �
g 2G

Jn(s2 � u2 + a2; g
0) dPG(g

0jg)

=Jn+1(s2; g)

where the above inequalities follow from the optimality of policies and
non-decreasing nature of P (g; :) and Jn(:; g). Hence we have proved
that Jn+1(:; g) is nondecreasing. Since J�(:) = limn!1 Jn(:), we
obtain the result for J�.

Proposition 2: J�(s; g) is non-increasing in g for all s 2 S .
Proof: As in the above proof, we prove the proposition by induc-

tion on the value iteration algorithm.
Since J0(s; g) = constant, it is non-increasing in g. Assume

Jn(s; g) is non-increasing in g for each s. Fix s. Let g1 and g2 be two
states with g2 > g1. Let (a1; u1) and (a2; u2) be the optimal policies
corresponding to (s; g1) and (s; g2) respectively for the n + 1-stage
problem. Thus,

Jn+1(s; g2) = s+ �P (g2; u2) + �D(a2)

+�
g 2G

Jn(s� u2 + a2; g
0) dPG(g

0jg2):

We apply policy r1 = (a1; u1) for the state g2. Hence we have n +
1-stage cost for (s; g2) as

Jn+1(s; g2)� s+ �P (g2; u1) + �D(a1)

+ �
g 2G

Jn(s� u1 + a1; g
0) dPG(g

0jg2)

� s+ �P (g1; u1) + �D(a1)

+�
g 2G

Jn(s� u1+a1; g
0)dPG(g

0jg2): (19)

Now we use the fact that the fading process fGng is stochas-
tically monotone and Jn(:) is non-increasing in g. Then for all
g1; g2 2 G; g1 < g2

g 2G
Jn(s; g

0) dPG(g
0jg2) �

g 2G
Jn(s; g

0) dPG(g
0jg1):

Using the above inequality in (19), we get

Jn+1(s; g2) � s+ �P (g1; u1) + �D(a1)

+ �
g 2G

Jn(s� u1 + a1; g
0) dPG(g

0jg1)

=Jn+1(s; g1):

Thus Jn(s; g) is non-increasing in g.
Proposition 3: J�(s+ 1; g) � J�(s; g) is non-decreasing in s for

all g 2 G.
Proof: Refer to Appendix I.

Proposition 4: Fix g. Let (a(s); u(s)) be an optimal policy for
buffer state s. Define r(s) = u(s)� a(s). Then r(s) is nondecreasing
in s.

Proof: This will be proved by contradiction. Let s1 and s2 be the
two states such that s1 > s2. Let the corresponding optimal policies
be (a1; u1) and (a2; u2). Let ri = ui�ai; i = 1; 2. Assume r1 < r2.

We have the cost function

J�(s; g) = min
(u;a)2R(x)

fs+ �P (g; u) + �D(a) + V�(s� r)g

where

V�(s) =�
g 2G

J�(s; g
0) dPG(g

0jg)g = �Eg jg[J�(s; g
0)]:

Thus

J�(s1; g) = s1 + �P (g; u1) + �D(a1) + V�(s1 � r1)

� s1+�P (g; u1) + �D(a2) + V�(s1 � r2): (20)

Also

J�(s2; g) = s2 + �P (g; u2) + �D(a2) + V�(s2 � r2)

� s2+�P (g; u2) + �D(a1) + V�(s2 � r1): (21)

Adding (20) and (21) we get

V�(s1 � r1)� V�(s1 � r2) � V�(s2 � r1)� V�(s2 � r2):

From Proposition 3 this leads to contradiction.

C. Example

In this section we obtain the optimal average cost solution for an ex-
ample and then compare it to other known suboptimal solutions. The
channel fading has Rayleigh distribution. The fading values are dis-
cretized into an 8-state Markov model. Number of channel uses per slot
is N = 10. The source is independent and identically distributed (i.i.d.
) Z � N (0; 1) and the channel noise is AWGN with W � N (0; 1).
Jake’s model was used to generate the fading process with eight multi-
path components and a Doppler frequency of 5 Hz. This enabled to sim-
ulate an isotropic scattering environment with high autocorrelation. We
computed the optimal policies through the value iteration algorithm.
We choose Lagrange multipliers � and � such that under the optimal
policy the average policies and distortions converged to the required
constraints. Thus they satisfy the requirements of Theorem 1. We com-
pare the costs incurred by our policy with the following two suboptimal
policies for a fixed mean distortion of 1.5%.

1) Policy A. Source Coder (SC) Uses Only the Buffer State Infor-
mation and Channel Coder (CC) Uses Only the Channel State Infor-
mation: In this case, the CC tries to maximize the transmission rate
(channel capacity) for the given average power constraint. This sce-
nario corresponds to the case when the physical layer and higher layers
have no coupling. This provides the well known water filling power
control. The power policy obeys

P (g) =
1

�
�

1

g2

+

where � is the solution of the constraint equation

g�
p
�

1

�
�

1

g2
d�G(g) = �P

and the corresponding u = N log 1 + P (g)g

�
.

The SC adapts the source coding rate based on the buffer content
according to the optimal solution of

Jn+1(s; g)

=min
a

s+ �D(a)+
g 2G

Jn(s�u+a; g
0) dPG(g

0jg) : (22)
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Fig. 1. Average queue length versus average SNR.

2) Policy B. SC With No State Information and CC With Complete
State Information: This case is studied in [4] and [1]. Now the SC gen-
erates an i.i.d. sequence of bits satisfying the average distortion con-
straint with equality. The CC has both the channel and the buffer state
information. The CC controls the transmission power obeying the delay
and power constraints. For the given constraints we computed the op-
timal policy obtained in [4] and [1].

Fig. 1 provides the comparison between the power-workload
tradeoff curves of the JSC policy (the optimal policy obtained here),
policy A and policy B for a given mean distortion (= 1:5%). The
JSC (optimal) policy achieves much lower mean queue length than
both policy A and policy B at low signal-to-noise ration (SNR). As
the SNR increases, the difference in performance of the three policies
goes down. This is intuitively satisfying because as power increases,
the entire buffer can be served and hence all the three policies must
provide similar performance. We also observe that policy-B performs
much better than policy-A. For example, at 6 dB, the mean queue
length of policy-A is 80, of policy-B is 25 and of JSC is 15.

Fig. 2 plots the mean delays of the three policies. We observe that
the mean delays of the three policies behave in the same way as the
mean queue lengths. This justifies minimizing mean queue lengths even
though we may be actually interested in minimizing the mean delay.

IV. SINGLE USER, MIMO SYSTEM

In previous sections, we have considered a single user communi-
cating over a fading channel with a single transmit and receive antenna
single-input–single-output (SISO). Here, we consider a slotted system
with point-to-point communication with Nt transmit antennas and Nr

receive antennas over a narrowband flat-fading wireless channel. It is
well known that the potential gain in achievable rates of MIMO sys-
tems is rather large compared to single antenna systems under “spa-

tially uncorrelated fading” assumptions. When the scattering environ-
ment is rich enough to provide independent transmission paths from
each transmit antenna to receive antenna with perfect estimates of the
channel gains being available at receiver, the capacity scales linearly
with min(Nt; Nr) relative to a SISO case [12]. To make use of the
spectral efficiency of MIMO systems, we will extend our previous work
to MIMO case. We show that given mean power and mean distortion,
the mean queue length can be significantly reduced compared to SISO
case.

LetGn be the fading matrix in slot n. The elements ofGn, gi;j(i =
1; . . . ; Nr; j = 1; . . . ; Nt) are assumed to be identically distributed
and belong to the space G so that Gn 2 G

N �N . Gn evolves as an
ergodic Markov chain with a stationary distribution and transition den-
sity PG. We assume that the instantaneous channel coefficient matrix
Gn and buffer state information are available both at the transmitter
and the receiver in each slot. There are N channel uses in a slot. The
channel fading gain remains constant during a slot. With appropriate
sampling, the discrete representation of the channel in the nth slot is

Yn = GnZn +Wn; n = 0; 1; . . . (23)

whereYn is the Nr � 1 received signal vector and Zn is the Nt � 1
transmitted signal vector.Wn is the AWGN noise with the covariance
matrix E[Wn:W

H
n ] = �2w:IN .

We know that [12] a MIMO channel can be viewed as a combina-
tion of L independent SISO channels each having a channel transfer
function �i; i = 1; . . . ; L, where L is the rank of the channel ma-
trix Gn; (L � min(Nr; Nt)) and �i is the eigenvalue of the matrix
GnG

H
n . Let Pi be the power pumped into the ith spatial channel. Then

the instantaneous capacity of the corresponding channel is given by

Ci =
1

2
log

2
1 +

Pi�i

�2w
; i = 1; . . . ; L: (24)
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Fig. 2. Average delay versus average SNR.

Hence, if ui is the number of bits per slot transmitted in ith spatial
mode then, the power expended is

Pi =
�2w

�i
(eku � 1) (25)

where k = 2 ln(2)
N

.
We define the state of the system in the nth slot asXn := (Sn;Gn).

At the nth decision epoch, the transmitter decides upon the amount of
data bits An to be placed in the buffer and the amount of data bits
Un to be removed from the buffer and distributed optimally across the
L spatial subchannels for the transmission. As it was with the SISO
case, the above model also satisfies the conditions ( given in Lemma
1 and Theorem 2) required for the existence of discount optimal and
average optimal stationary policies. Therefore, the value function can
be obtained as a solution to the average cost dynamic programming
equation

Jn+1(s;G) = min
a;u

fs+ �D(a) + �P (G; u)

+
G 2G

Jn(s� u+ a;G
0) dPG(G

0jG)g

where

P (G; u) = min
0�u: u =u

L

i=1

Pi: (26)

We will show below that, for the given total transmission rate, the op-
timal power allocation policy obeys the water-filling rule.

We can solve the above constrained problem (26) by defining a La-
grangean

P�(u;G) = min
u�0

L

i=1

(Pi � �ui) (27)

= min
u�0

L

i=1

�2w

�i
(eku � 1)� �ui (28)

where � is the Lagrange multiplier. Setting @P

@u
= 0, and solving for

ui, we have

ui =
1

k
ln

�

k�2w
�i for all i (29)

where � is obtained from u = L

i=1 ui.
Thus we obtain,

ui = min
1

kL
ln e

ku

L

j=1

�i

�j

+

; u : (30)

Hence, the ith channel incurs a power cost of

Pi = min �
0 �

�2w

�i

+

;
�2w

�i
e
ku � 1

where �0 = �2w
e

�
� 1

�

+

. This obeys the well known

water-filling rule in space. The total power expended in slot n for a
given u is

P (G; u) =

L

i=1

�
0 �

�2w

�i

+

: (31)

We can see that more bits are allotted to the subchannel with the larger
eigenvalue.
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Fig. 3. Average buffer length versus average power for JSC policies of SISO and MIMO cases with.

Next, we compare the performance of the MIMO system with the
SISO system of Section III-C. The MIMO system has Nt = Nr = 2
and the channel fading process is i.i.d. across space. Fig. 3 gives the
plot of average queue length vs power curves of both the systems.

We can see from the plot that for a given mean queue length, the
MIMO system achieves nearly 3–4 dB gain in average power.

V. MULTIUSER CASE

We consider a slotted multi-user uplink system over a narrowband
fading wireless channel withM users communicating to a base station
receiver. For each user, data to be transmitted, arrives from a higher
layer and this data is subjected to a variable rate compression depending
on queue length, power and distortion requirements. This compressed
data is placed into the transmission buffer. We assume that the buffer
state information of all the users is available both at each transmitters
and the receiver. We also assume perfect CSIT and perfect CSIR, i.e.,
all the transmitters and the receiver know current state of the channels
of every user. The channel is assumed to be block fading, so that the
fading gain remains constant throughout a slot. We will assume that
each user has a single transmit antenna and the base station also has
a single receive antenna. Extension to multiple transmit and receive
antennas can be done in the same way as for a single user.

The discrete representation of the channel during nth slot is

Yn =

M

i=1

Gn(i)Zn(i) +Wn; n = 0; 1; . . . (32)

where Yn is the output of the channel, Zn(i) is the transmitted symbol
of ith user in nth slot and Gn(i) is the fading gain process of ith user
and Gn(i) 2 G := [�g2; �G2] . Take Hn(i) = jGn(i)j

2 and hence,

Hn(i) 2 H := [�h; �H] for all i. Henceforth, without loss of gener-
ality we will use fading power (h) instead of fading gain. Wn is addi-
tive white Gaussian Noise process with variance �2n = �2. Denote by
M := f1; . . . ;Mg the set of transmitters. We assume that the fading
processes of all users are stationary ergodic, stochastically monotone
Markov chains. User i is also subject to a transmitter power constraint
�Pi and a distortion constraint �Di.

Let Hn = [Hn(1); . . . ; Hn(M)] be a random vector representing
the joint fading state during nth channel block. Similarly, let �P =
[ �P1; . . . ; �PM ] be a power vector and �D = [ �D1; . . . ; �DM ] be a dis-
tortion vector.

Let Sn(i) be the amount of data in the buffer of user i at the be-
ginning of nth slot and Sn(i) 2 S where S = f0; 1; . . .g and let
Sn = [Sn(1); . . . ; Sn(M)]. We define the state vector of the system
at the nth slot asXn := (Sn;Hn). At the nth decision epoch, the ith
transmitter placesAn(i) bits in the buffer and removesUn(i) bits from
the buffer for transmission. The evolution of the buffer state process for
all i 2 M, is given by

Sn+1(i) = Sn(i) + An(i)� Un(i); n = 0; 1; . . . (33)

where Un(i) 2 f0; 1; . . . ; Sn(i)g andAn(i) 2 f0; 1 . . . ; �Ag; �A <1
In this section we obtain a jointly source and channel rate optimal

policy for multiuser case. In Section V-A, we recall some results which
will be used later. In Section V-B, we formulate the optimization
problem as an MDP. In Section V-C, we provide structural results for
the optimal policy. The optimal policy is computed via value iteration.
For multiuser case, it is very computationally intensive. Therefore, in
Section V-D, we obtain an explicit suboptimal policy which can be
justified intuitively and is easy to compute. We compare it with the
optimal policy for a particular example.
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A. Preliminaries

Let the receiver noise power be �2. Define

R(Q) =
i2Q

Ri; for all Q �M:

The capacity region of an AWGN channel for any given channel
vector h and transmit power constraint vector P is given by

C(h;P)= R : R(Q)�
1

2
log 1+ i2Q

hiPi

�2
8Q �M :

We will assume, as in Section II-A, that the number of channel uses
N in one slot is large enough that a code of length N with rate close to
C(:) can be used for the needed BER. Given a rate vector c, the set of
received powers that can support c is

Pr(h; c) = fq : 9 P s:t qi = hiPi; c 2 C(h;P)g:

Lemma 2: [15] C(h;P) is a polymatroid and Pr(h; c) is a contra-
polymatroid.

B. Formulation of the Problem as an MDP

The objective is to minimize the weighted sum of mean delays ofM
users. Since, the delay process is complicated, as in previous sections,
we try to minimize the weighted sum of mean queue lengths. Thus we
obtain an optimal policy which minimizes

lim sup
M!1

1

m
E[

m

n=0

w:Sn] (34)

subject to the constraints

lim sup
M!1

1

m
E[

m

n=0

P (Hn(i); Un(i))] � �Pi and

lim sup
M!1

1

m
E[

m

n=0

D(
Ai(n)

Ji
)] � �Di

where Ji is the number of source symbols per slot for user i and w =
[w1; . . . ; wM ] is a weight vector. For vectors a = [a1; . . . ; aM ] and
b = [b1; . . . ; bM ]; a:b = M

i=1 aibi.
This constrained (CP) problem can be converted to an unconstrained

one through the Lagrange multipliers.
For a state x := (s;h) and the action r := (a;u), let

L(x; r) = w:s +Pm(���;u;h) + ���:D(a)

where, ��� = [�1; . . . ; �M ] and ��� = [�1; . . . ; �M ] are La-
grange multipliers and P(h;u) = [P1(h; u1); . . . ; PM (h; uM)],
D(a) = [D1(a1); . . . ; DM(aM)]. Also, Pm is the minimum
weighted power incurred for the given transmission rates

Pm(���;u;h) = min
P(h;u)

M

i=1

�iP(h; ui);

subject to u 2 C(h;P(h;u)): (35)

Define the corresponding Lagrangean functional

J
� = lim sup

M!1

1

m
E[

m

n=0

L(Xn;Rn] (36)

for a given policy �. The corresponding unconstrained problem is

(UP ) : Minimize J� over the class of all policies �:

As it was with SISO case, the multiple user model considered also
satisfies the nominal conditions given in Lemma 1 and Theorem 2 re-
quired for the existence of discount optimal and average optimal sta-
tionary policies.

We first obtainPm(���;u;h). We know that under the successive de-
coding scheme, the decoding order corresponding to the power alloca-
tion policy given by Tse and Hanly [15] is optimal.

The problem (35) can be restated in terms of the received power
vector q = [q1; q2; . . . ; qM ] = [h1P1; . . . ; hMPM ] as

Pm(���;u;h) = min
q2P (h; :u)

M

i=1

�i

hi
qi

where Pr(h; 1
N
u) is the feasible power region defined by the set of

received powers for the given rate vector u as

Pr(h;
1

N
u)= q : qi = hiPi;

1

N
:u 2 C(h;P(h;u))

= q : qi=hiPi;

k2Q

qk�g(Q) for all Q�M

where g(Q) = �2[exp(v
k2Q

uk
�) � 1] and v = 2 ln 2

N
. We know

that Pr(h; 1
N
u) is a contra-polymatroid with the rank function g(�)

We observe that (35) is a linear programming problem. It follows
that the optimal solution to the above problem corresponds to a vertex
of the region Pr(h; c): Each vertex of the region corresponds to one
of M ! possible successive decoding orders, with powers such that the
rate c is achievable. A vertex q corresponding to successive decoding
order � is given by

q�(k) =

�2 exp(vc�(1))� 1 ; if k = 1

�2 exp(v k

i=1 c�(i))

� exp(v k�1
i=1 c�(i)) ; if k = 2; . . . ;M .

Here, the decoding order � is such that user �(M) is decoded first and
user �(1) decoded last, i.e., f�(i)gMi=1 is decreasing in decoding order.

Since Pr(h; c) is a contra-polymatroid, it follows that the optimal
decoding order should be in increasing value of the coefficients �

h
, i.e.,

the user with the smallest �
h

is decoded first and the user with the highest
�

h
is decoded last. It is important to note that the optimal ordering does

not depend on the target rate vector c, although optimal powers do.
Now, the value iteration algorithm is given by (37) shown at the

bottom of the page, where � is the optimal permutation order for ���

h
=

(�
h
; . . . ; �

h
) and f(x) = �2 [exp(vx)� 1].

C. Structural Results

We obtain some structural results on the optimal cost and policies.
We say a vector x is greater than or equal to a vector y if the inequality
holds for every component, i.e., x � y ) xi � yi for all i.

Proposition 5: J�(s;h) is non-decreasing in s for all h 2 HM .

Jn+1(x) = min
r=(a;u)

M

k=1

wksk +
��(k)

h�(k)
[f(

k

j=1

u�(j))� f(

k�1

j=1

u�(j))] + �kD(ak) +
H

Jn(s� u+ a;h
0)dPG(h

0jh) (37)
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Proof: This can be proved by induction on the discounted value
iteration algorithm

Jn+1(s;h) = min
r=(a;u)

w:s+
������

h���
:q��� + ���:D(a)

+ �
H

Jn(s� u+ a;h
0) dPG(h

0jh) (38)

where, � 2 (0; 1), � is the optimal permutation and

������

h���
:q��� =

��(k)

h�(k)
[f(

k

j=1

u�(j))� f(

k�1

j=1

u�(j))]:

For n = 0 we have J0(s;h) = constant. Assume Jn(s;h) is non-
decreasing in s for each h for some n � 0. We show it for n + 1. Fix
g. Let s1 and s2 be such that s2 � s1. Let (u1;a1) and (u2; a2) be
the corresponding optimal policies. Thus for any k

Jn+1(s
k
; h) = w:s

k +
����
h�

:q
k
� + ���:D(ak)

+�
H

Jn(s
k � u

k + a
k
;h

0) dPG(h
0jh)

k = 1; 2.
We apply policy r2 = (a2;u2) for the state s1. Hence we have the

cost for s1 as

Jn+1(s
1
;h) �w:s1 +

����
h�

:q
2
� + ���:D(a2)

+ �
H

Jn(s
1 � u

2 + a
2
;h

0) dPG(h
0jh)

�w:s2 +
����
h�

:q���
2 + ���:D(a2)

+ �
H

Jn(s
2 � u

2 + a
2
;h

0) dPG(h
0jh)

=Jn+1(s
2
;h)

where the first inequality follows from the optimality of policies and
the second one follows since s2 � s1 and the assumption that Jn(:;h)
is nondecreasing. Note that the permutation of decoding priority � is
same in both the cases since h is held constant. Hence, J�(:;h) is
nondecreasing.

Proposition 6: J�(s;h) is nonincreasing in h for all s 2 S .
Proof: As above, we prove the proposition by induction on the

value iteration algorithm (38).
For n = 0 we have J0(s;h) = constant. Assume Jn(s;h) is non-

increasing in h for each s. Fix s. Let h1 and h2 be the two states such
that h2 > h1. Let (u1; a1) and (u2; a2) be the corresponding optimal
policies and � and �0 be the corresponding optimal decoding orders.
Thus

Jn+1(s;h
2) =w:s +

������

h2 �
:q

2
� + ���:D(a2)

+ �
H

Jn(s� u
2 + a

2
;h

0) dPG(h
0jh2);

Jn+1(s;h
1) =w:s +

������

h1 �
:q

1
� + ���:D(a1)

+ �
H

Jn(s� u
1 + a

1
;h

0) dPG(h
0jh1):

We apply policy r1 = (a1;u1) with the decoding order � for the state
h2. Then

Jn+1(s;h
2)�w:s+

������

h2���
:q
1

��� + ���:D(a1)

+ �
H

Jn(s�u
1+a1;h0) dPG(h

0jh2)

�w:s+
������

h1�
:q
1

� + ���:D(a1)

+�
H

Jn(s�u
1+a1;h0)dPG(h

0jh2) (39)

where the first inequality follows from the optimality of policies and
the second one follows since h1 > h2. Now we use the fact that the
fading process of each user fHn(i); i = 1; . . . ;Mg is stochastically
monotone and Jn(:) is nonincreasing in h. Therefore

h 2H

Jn(s;h
0) dPG(h

0jh2)

=
h 2H

. . .
h 2H

Jn(s;h
0) dPG(h

0
1jh

2
1) . . . dPG(h

0
M jh

2
M )

�
h 2H

. . .
h 2H

Jn(s;h
0) dPG(h

0
1jh

1
1) . . . dPG(h

0
M jh

1
M )

=
h 2H

Jn(s;h
0) dPG(h

0jh1):

Thus we have

h 2H

Jn(s� u
1 + a

1
;h

0) dPG(h
0jh2)

�
h 2H

Jn(s� u
1 + a

1
;h

0) dPG(h
0jh1)

and hence, from (39), we get

Jn+1(s;h
2) � Jn+1(s;h

1):

D. A Suboptimal Policy

The optimal policy provided above will be computed via the value it-
eration algorithm. The computational complexity of this algorithm for
multiuser case is very high. Also, since it is explicitly not available,
except the above mentioned structural results, we do not have any in-
sight. Therefore, we explore a suboptimal policy which is much easier
to compute and can be easily explained.

From the value iteration algorithm on the average cost policy

J2(s;h) = min
(a;u)

fw:s+Pm(���;u;h) + ���:(D(a)

+ D( �A)) +w:(s� u + a)

= min
u

fPm(���;u;h)�w:ug

+min
a
f���:(D(a) +w:ag+K

where K = 2w:s+ �:D(�A). This is a much simpler problem because
it has been separated into two optimization problems. Also, it is intu-
itively easy to explain.

Consider the problem of minimizing V1 = ���:D(a) + w:a =
M

i=1 (�iD(ai) + wiai). The optimization can be done separately
for each user. If D is differentiable, then ai solving D0(ai) = �w

�
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Fig. 4. Average buffer length versus average power for JSC policy.

provides the optimal solution. For example, for Gaussian sources,
D(ai) = �2s2

(�2a ) and the solution is

ai =
1

k
ln

k�i�
2
s

wi

+

; k = 2 ln(2): (40)

The solution says that fix the source coding rate for user i according to
the value of �i and wi. A user with higher value of �

w
will have higher

compression rate indicating that the distortion requirements are more
stringent than delay requirements.

Now, consider the problem of minimizing

V2 = fPm(���;u;h)�w:ug over 0 � u � s:

To solve this constrained problem we introduce Lagrange multipliers
�i; �i; i = 1; 2 . . . ;M and the corresponding Lagrangean is

L(u;���;���) = Pm(���;u;h)�w:u + ���:u � ���:u:

For simplicity, we consider the case M = 2. Let �i = �

h
; i =

1; 2. Without loss of generality we can assume that �1 > �2. The
Lagrangean is

L(u;���;���) = �1(e
vu � 1) + �2(e

v(u +u ) � e
vu )

+(�1 � �1 � w1)u1 + (�1 � �1 � w1)u2

where v = 2 ln(2)
N

.
Taking the derivatives of L(:) with respect to u1 and u2 and setting

them to zero, we get

v(�1��2)e
vu +v�2e

v(u +u ) + (�1 � �1�w1) = 0 (41)

v�2e
v(u +u ) + (�2��2�w2) = 0: (42)

We find the values of u1; u2 that satisfy these equations along with
Kuhn–Tucker (KKT) conditions.

We consider the following cases.
• Case 1) w1 > w2.

The solution pairs satisfying KKT conditions are

fu1 = 0; u2 = 0g

u1 = min b
1

v
ln

w1 � w2

v(�1 � �2)
c+; s1

u2 = min b
1

v
ln

w2(�1 � �2)

�2(w1 � w2)
c+; s2

fu1=min b
1

v
ln

w1

v(�1 � �2 + �2evs )
c+; s1 ; u2 = s2g

fu1 = 0; u2 = min b[
1

v
ln

w2

v�2
c+; s2 g

fu1 = 0; u2 = s2g

fu1 = s1; u2 = s2g:

For a given state (s;h), among the above solution pairs we should
choose the one for which the value of V2 is minimum.

• Case 2) w1 � w2.
The solution pairs satisfying KKT conditions are

fu1 = 0; u2 = 0g

fu1 =min b
1

v
ln

w1

v(�1 � �2 + �2evs )
c+; s1 ; u2=s2g

fu1 = 0; u2 = min b
1

v
ln

w2

v�2
c+; s2 g

fu1 = s1; u2 = s2g

fu1 = 0; u2 = s2g:

For a given state (s;h), among the above solution pairs we should
choose the one for which the value of V2 is minimum.
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Jn+1(s� 1; g) + Jn+1(s+ 1; g)

= 2s+ �P (g; u1) + �P (g; u2) + �D(a1) + �D(a2)

+ �
g 2G

Jn(s+ 1� u1 + a1; g
0) + Jn(s� 1� u2 + a2; g

0) dPG(g
0jg) (43)

�� P (g; d
u1 + u2

2
e) + P (g; b

u1 + u2

2
c) + � D(d

a1 + a2

2
e) +D(b

a1 + a2

2
c)

+�
g 2G

Jn(d
(s+1�u1+a1)+(s�1�u2+a2)

2
e; g0) + Jn(b

(s+ 1� u1 + a1) + (s� 1� u2 + a2)

2
c; g0) dPG(g

0jg)

(44)

=� P (g; d
u1 + u2

2
e) + P (g; b

u1 + u2

2
c) + � D(d

a1 + a2

2
e) +D(b

a1 + a2

2
c)

+ �
g 2G

Jn(s� b
(u1 + u2)

2
c + d

(a1 + a2)

2
e; g0) + Jn(s� d

(u1 + u2)

2
e+ b

(a1 + a2)

2
c; g0) dPG(g

0jg)

� 2Jn+1(s; g): (45)

For comparison, we consider a two user MAC system with symmetry
in all requirements. The fading of each user is a four-state i.i.d. process.
The number of channel uses per slot, N is 5 for each user. The sources
are i.i.d. and the channel noise is AWGN with W � N (0; 1) for each
user. The comparison of J2 with the optimal JSC-policy is shown in
Fig. 4 for a fixed average distortion (= 1:5%). JSC-policy performs
better than J2. However, above 7.5 dB, the two policies are compa-
rable.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this correspondence, we considered the problem of joint source
and channel coding for a wireless link with the goal of minimizing the
mean queue length. We proved the existence of optimal stationary poli-
cies. We considered a single user with SISO and MIMO channel and
multiuser systems. We also characterized the structure of the optimal
policies and the value function. Our scheme achieved substantial gain
in minimizing mean queue length as well as mean delay when com-
pared to the other suboptimal schemes. Thus, our work shows that it is
useful to jointly optimize source and channel coding rates exploiting
channel and buffer states. We have also shown that using multiple an-
tennas at transmitter and receiver can significantly improve the perfor-
mance. For the multiuser case we have identified a much simpler policy
which provides reasonable performance at not very low SNR.

The work can be extended to the case where only partial channel state
information is available at the transmitter. It will be useful to know the
effect of partial CSIT. Furthermore, although we are able to give some
structure of the optimal policy and a explicitly characterized subop-
timal policy in case of multiuser, the behavior of optimal policy needs
to be studied further. It will also be useful to obtain better suboptimal
policies.

APPENDIX

PROOF OF THE PROPOSITION 3

J0(s; g) is constant. Assume Jn(s + 1; g) � Jn(s; g) is nonde-
creasing in s for each g. Fix g.

Let r1 = (a1; u1) and r2 = (a2; u2) be optimal policies for states
s + 1 and s � 1, respectively. Then by value iteration, we have (43)
shown at the top of the page.

Inequalities (44) and (45) (also at the top of the page) follow from
convexity assumptions on P (g; :) ; Jn(:; g) (and the fact that D(:) is
convex [5]) and also the optimality of policies. Therefore, we have

Jn+1(s+ 1; g)� Jn+1(s; g) � Jn+1(s; g)� Jn+1(s� 1; g):

Thus Jn(s+ 1; g)� Jn(s; g) is an nondecreasing function of s.
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