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Abstract— In this work, the geometric relation between space
time block code design for the coherent channel and its non-
coherent counterpart is exploited to get an analogue of the
information theoretic inequality I(X;S) ≤ I((X,H);S) in terms
of diversity. It provides a lower bound on the performance of
non-coherent codes when used in coherent scenarios. This leads
in turn to a code design decomposition result splitting coherent
code design into two complexity reduced sub tasks. Moreover
a geometrical criterion for high performance space time code
design is derived.

I. I NTRODUCTION

In MIMO (Multiple Input Multiple Output) systems space
time coding schemes have been proven to be an appropri-
ate tool to exploit the spatial diversity gains. Two distinct
scenarios are common, whether the channel coefficients are
known (coherent scenario) [1], to the receiver or not (non-
coherent scenario) [2]. Prominent coherent codes are the
well known Alamouti scheme [3] and general orthogonal
designs [4]. A more flexible coding scheme are the so-called
linear dispersion codes. They have been introduced in [5] and
were further investigated in [6]. A full rate high performing
example is the recently discovered Golden code [7]. Genuine
non-coherent codes have been proposed in [8], but most
of the research efforts in the literature focus on differential
schemes, introduced in [9], since differential codes usually
provide higher data rates than comparable non differential
codes. High performing examples have been constructed in
[10], [11],[12],[13]. However, in both (coherent and non-
coherent) cases most research effort has been undertaken for
space time block codes with quadratic 2-by-2, resp.nt-by-nt

code matrices (nt denotes the number of transmit antennas).
Although linear dispersion codes are not restricted to quadratic
shape of the design matrices the block length is not a free
design parameter when the number of transmit antennas is
held fixed (compare the asymptotic guidelines in [6]).

In general [14] the signal matrices are of rectangular shape
of sizeT×nt with unitary columns. The corresponding coding
spaces for the coherent and non-coherent scenario are the
complex Stiefel and Grassmann manifolds respectively. Typ-
ically the numbernt of transmit antennas is a small number
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due to hardware limitations, while the block lengthT can
be chosen rather large, upper bounded only by the coherence
length of the channel. Inspired from [15], in [16] a general
analysis of packings in the Stiefel and Grassmann manifold
revealed, that the achievable squared minimal distance (i.e.
the squared diameter of the decision regions for decoding)
grows proportionally with the block lengthT , more precisely
the following proposition holds [16]):

Proposition I.1
For any T ≥ 2nt set Dnt,T = nt(2T − nt) (coherent
channel), resp.Dnt,T = 2nt(T − nt) (non-coherent chan-
nel). Then for any prescribed rateR = 1

T log|C| there exist
space time block codesC with rateR and minimal distance
d0 satisfying

d0 ≥ C

√
ρ
T

nt

(
1

2

) TR
Dnt,T

, (providedρ ≥ 1) (1)

for some constantC > 0 depending on the channel
knowledge at the receiver. Since the rightmost term is
monotonically increasing as a function ofT , the receiver
performance increases proportionally toTnt

.

Having the common literature (see above) in mind, this result
comes rather unexpected and further research effort seems
promising. However, explicit code constructions have already
been achieved in [17]. Moreover, the Proposition I.1 becomes
even more important when considering space frequency code
design: The schemes [18], [19] indicate, that the relevant
coding spaces are certain subsets of (large dimensional) Stiefel
and Grassmann manifolds. Thus considering these coding
spaces in general may be of considerable importance for space
frequency code designs. Explicit space frequency construc-
tions can be found in e.g. [20].

In the present work it will be shown, how general space
time block code designs can be decomposed into two ’smaller’
pieces with reduced design complexity (Theorem III.5), both
already in the focus of current research. The achieved result
can be seen as complementary to that of Kammoun and
Belfiore [21], who presented a coding scheme for non-coherent
channel space time block codes in terms of coherent channel
ones, compare Remark III.7 for further implications.

The key observation is the quite intuitive but technically
not obvious diversity monotonicity (Proposition III.4), which
states that the performance of each non-coherent channel space
time block code grows when considered as a coherent channel
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code. This turns out to be due to some higher resolution of the
coherent channel receiver, reflecting the information theoretic
relation between the system designs.

Further insight on the performance is obtained by local anal-
ysis of diversity, leading to the overall picture of space time
coding as a constrained sphere packing problem. It reveals
additional structures not obvious from the traditional point of
view, proposing high performance design criteria (Conclusion
IV.2, IV.4) and adding a further estimate (Proposition IV.5) to
the diversity embedding. By the way all results are obtainedin
the spirit of geometrical methods in space time coding theory.

The remainder of this work is organized as follows. Section
II introduces the basic models for the channels and coding
spaces (with emphasis on their geometrical structures), fixes
notation and conventions used throughout this work. Section
III defines diversities for the coherent/non-coherent channel
cases as our fundamental performance measure and analyses
their interrelations, culminating in the embedding and decom-
position results mentioned above. Section IV focuses on the
local analysis of diversity and the connection to the sphere
packing problem, exploring its consequences. Finally, themain
results will be summarized for concise reference together with
remaining open questions.

II. CHANNEL MODEL AND CODING SPACES

In this section the basic channel model will be presented,
leading to the Stiefel and Grassmann manifolds as coding
spaces. These spaces will be introduced with emphasis on their
topological metric structures induced by the maximum like-
lihood receivers. The geometric relation between the coding
spaces is precisely expressed by the principal fiber structure,
which is also introduced here. Although the geometric terms
used in this work will be defined (as far as it seems necessary
to understand the concepts), the reader who prefers rigorous
definitions is invited to consult standard text books e.g. [22],
[23] (manifolds), [23], [24], [25] (homogeneous spaces, Lie
groups), and/or [23], [25] (principal fibers). For the particular
case of the (complex) Stiefel and Grassmann manifolds an
introduction to their real counterparts aimed at non-specialists
is [26].

A. Channel model

We consider the Rayleigh flat fading MIMO (multiple
input multiple output) channel without channel knowledge
at the transmitter and maximum likelihood decoding at the
receiver as described in [14] (with normed expected power∑

j E|sij |2 = 1 per time step,i = 1, . . . , T , E denotes
expectation):

X =
√
ρ SH +W ,

S = (sij) ∈ C
T×nt , H ∈ C

nt×nr , X,W ∈ C
T×nr

(2)

whereasT denotes the coherence time of the channel (respec-
tively the block length of the signals),nt, nr denote the num-
ber of transmit, resp. receiver antennas,W ∼ i.i.d. CN (0, 1)
is the noise,H ∼ i.i.d. CN (0, 1) the channel matrix andS,X
denote the transmitted, resp. received signal with SNR (signal

to noise ration)ρ. The (ergodic) channel capacity is defined
by the supremum of the mutual information

C =
1

T
sup
p(S)

I((X,H);S) , resp.C =
1

T
sup
p(S)

I(X ;S) (3)

for the coherent (resp. non-coherent) channel, and we define
the rateR of the codeC by

R :=
1

T
log|C| (4)

The normalization by1/T is merely a convention to have the
block lengthT as a free design parameter of the code, such
that codes with distinct block length are comparable.

B. Coding spaces

Hochwald and Marzetta [14, Theorem 1 and 2] have shown,
that signalsS of the form S = 1√

nt
ΦE are optimal with

respect to the channel capacity (due to the central limit
theorem tending toC0 defined below, whenT −→ ∞), if
the receiver does not know the channel. More precisely one
hasT ≥ nt, E = diag(ǫi) ∈ Cnt×nt with ǫi non-negative,
Eǫ2i = T stochastic independent fromΦ, obeyingΦ†Φ = 1nt

(nt×nt-unit matrix),Φ therefore being canonically an element
of the complex Stiefel manifoldV C

nt,T
defined below. In [2]

Hochwald/Marzetta, and more generally Zheng/Tse in [27,
Lemma 8] have shown that the optimal energy allocationE
of the antennas equals (asymptotically inρ) E =

√
T1, thus

S =

√
T

nt
Φ (5)

for nt ≥ nr, T ≥ 2nr. The signalS =
√

T
nt

Φ then carries

the total energy‖S‖2F = T , thus the transmitter sends with
unit power per time step. In this case the mutual information
(ergodic in the channel realizations)I(X ;S) depends only on
the subspace inCT spanned by the columns ofΦ, not on
Φ itself [27]. This is reflected by the fact, that scalings and
linear combinations of the columns ofΦ are indistinguishable
for the detector, when the channel is non-coherent. Therefore
these transformations cannot carry any information and we end

up with signalsS ∈
√

T
nt

GC
nt,T

, GC
nt,T

denoting the complex
Grassmann manifold ofnt-dimensional linear subspaces of
CT .

For the coherent channel the capacity has been calculated
by Telatar [28] to

C0 := E log det

(
1+

ρ

nt
H†H

)
(6)

Assuming the same energy allocationE =
√
T1 one can jus-

tify, that now the asymptotically optimal signal space consists

of signalsS ∈
√

T
nt

V C
nt,T

.

We focus on both signal designs in this article, sometimes
called unitary space time modulation in the literature (intro-
duced in [2]).
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C. Coherent channel: The Stiefel manifoldV C
nt,T

The (complex) Stiefel manifold defined by

V C

nt,T := {Φ ∈ C
T×nt |Φ†Φ = 1} (7)

is diffeomorphic to a coset space with respect to the unitary
groupU(T ) of T -by-T unitary matrices:

V C

nt,T
∼= U(T )

/(
1 0
0 U(T−nt)

)
, Φ ∼= (Φ,Φ⊥) ( 10 ) (8)

whereas∼= means ’diffeomorphic to’. From this equivalence
we obtain

Dnt,T := dimR V C

nt,T = dimR U(T )− dimR U(T − nt)

= nt(2T − nt)
(9)

for free. Since the elements of the Stiefel manifolds arent-
dimensional orthonormal bases, they are callednt-frames.
Geometrically the coset representation ofV C

nt,T
is interpreted

as a so-calledhomogeneous space
(
U(T )

πU
V−→ V C

nt,T ; U(T − nt)

)
(10)

This means that eachΦ ∈ V C
nt,T

is the image of a projection
πU
V from some unitaryT -by-T matrix U (in the coset repre-

sentationπU
V is simply the projection on the firstnt columns

of U = (Φ,Φ⊥)) and for eachΦ,Ψ ∈ V C
nt,T

there exist an
unitaryUΦΨ with Ψ = UΦΨΦ. The latter property is obviously
fulfilled and called atransitive left actionof the groupU(T ) on
V C
nt,T

(the defining property forV C
nt,T

being a homogeneous
space), while the former property means thatπU

V is invariant
with respect to theright action of U(T − nt) on V C

nt,T
.

As a linear algebraic convention used in this work, eigen-
valuesλi and singular valuesσi of matrices will be arranged
in decreasing order, thusλ1 ≥ · · · ≥ λnt

, andσ1 ≥ · · · ≥ σnt
.

A code CV for the coherent channel model is given by a
discrete setCV = {Φi} ⊂ V C

nt,T
. At the receiver the maximum

likelihood decision reads (see [2])

ΦML = arg min
∀Φ∈C

∥∥∥X −
√
ρ T
nt

ΦH
∥∥∥

F

(11)

whereasX =
√
ρ T
nt

ΨH+W is the received signal. Throwing
away the noise term allows a formulation of a code design
criterion in the signal spaceV C

nt,T
, induced from the ML

receiver: The maximization of the pairwise distancesd, given
by

d(Φ,Ψ) := ‖∆‖F =

√√√√
nt∑

i=1

σ2
i (∆) = ‖σ‖ (12)

where we have set

∆ := Φ−Ψ (13)

σ := (σ1, . . . , σnt
) , σi := σi(∆) ∈ [0, 2] (14)

Thus coding corresponds to a packing problem on the metric
space

(
V C
nt,T

, d
)

a). Note, that by

σi(U(Φ−Ψ)v) = σi(Φ−Ψ) , ∀U∈U(T ), v∈U(nt) (15)

a)We will see in section III, that this is only an approximationof the design
criterion, but the importance of the packing gain will become clear in section
IV

the metricd remains invariant under left or right multiplication
of its arguments with unitary matrices (also denoted asleft
invarianceresp.right invariance):

d(UΦv, UΨv) = d(Φ,Ψ) (16)

This property is one motivation for the geometric picture
of the Stiefel manifold as a homogeneous space with its
corresponding left and right actions. Furthermore for each
singular valueσi holds

1
2σ

2
i = 1

2σ
2
i (∆) = 1

2λi(∆
†∆)

= λi(1− H(Φ†Ψ)) = 1− λnt−i+1(
H(Φ†Ψ))

(17)

whereasHM := 1/2(M +M †) denotes the hermitian part.

D. Non-Coherent channel: The Grassmann manifoldGC
nt,T

The (complex) Grassmann manifoldGC
nt,T

is the set of all
nt-dimensional (complex) linear subspaces ofCT :

GC

nt,T := {〈Φ〉 |Φ ∈ V C

nt,T } (18)

whereas〈Φ〉 denotes the column space ofΦ. SinceΦ 7−→
〈Φ〉 is a projection invariant under allnt-by-nt unitary basis
transformations we get the coset representation

GC

nt,T
∼= U(T )

/(
U(nt) 0

0 U(T−nt)

)
, 〈Φ〉 ∼= ΦΦ1−1

(19)

(Φ1 := (1,0)Φ) and

Dnt,T := dimR GC

nt,T

= dimR U(T )− dimR U(nt)− dimR U(T − nt)

= 2nt(T − nt)
(20)

Note that the coordinate representation〈Φ〉 ∼= ΦΦ1−1
holds

only locally in general (since it requiresΦ1 to have full rank),
but it turns out, that this representation covers all but a set of
measure zero and we abandon this distinction between local
and global properties in the sequel and drop the distinction
betweenGC

nt,T
and its coordinate domain.

Again we have a geometrical reformulation in terms of the
homogeneous space

(
U(T )

πU
G−→ GC

nt,T ; U(nt)× U(T − nt)

)
(21)

whereas the transitive left action now reads〈Ψ〉 =
U〈Φ〉〈Ψ〉 〈Φ〉 :=

〈
U〈Φ〉〈Ψ〉Φ

〉
(e.g. chooseU〈Φ〉〈Ψ〉 = UΦΨ).

The projectionπU
G is now invariant with respect to the com-

bined right action ofU(nt) × U(T − nt), because not only
the orthogonal complement of the columns inΦ has been
neglected, but also the particular choice of the spanningnt-
frame: Each(Φ,Φ⊥) ( u 0

0 v ) represents the same space〈Φ〉 for
arbitraryu ∈ U(nt), v ∈ U(T − nt).

To simplify matters let us assument ≤ T/2 whenever
we are in contact with the Grassmann manifold. This is no
restriction, since fornt ≥ T/2 we can always switch to the
orthogonal complement of the subspaces under consideration.
Given now two elements〈Φ〉 , 〈Ψ〉 ∈ GC

nt,T
then there exist

nt principal angles0 ≤ ϑ1 ≤ · · · ≤ ϑnt
≤ π/2 between

〈Φ〉 and 〈Ψ〉. They are defined successively by the critical
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valuesarccos|<vi, wi>|, i = 1, . . . , nt (in increasing order),
of (v, w) 7−→ arccos|<v,w>| where the unit vectorsv, w vary
over{v1, . . . , vi−1}⊥ ⊂ 〈Φ〉, respectively{w1, . . . , wi−1}⊥ ⊂
〈Ψ〉, compare [29]. The components of the vector of principal
anglesϑ := (ϑ1, . . . , ϑnt

) can be computed by the formula
(any representingnt-frame will do) [29]

cosϑi = σi(Φ
†Ψ) (22)

An important application of principal angles on some given
pair 〈Φ〉 , 〈Ψ〉 with principal anglesϑ is, that due to the
transitivity of the unitary group action there exist an unitary
U , such thatΨ (say) can always be translated into( 10 ) = UΨ
and inU 〈Φ〉 = 〈UΦ〉 one can choose a basis such that we
end up with the canonical representingnt-frames

Ψ0 =

(
1

0

)
, Φ0 =



(cosϑi)
(sinϑi)

0


 (23)

(where (cosϑi) := diag(cosϑi)i=1,...,nt
∈ Rnt×nt ) for the

translated spaces〈Ψ0〉 = U 〈Ψ〉, 〈Φ0〉 = U 〈Φ〉. Note, that
the demand tochoosethe appropriate basisΦ0 in U 〈Φ〉 is
mandatory, in general there is noU ∈ U(T ) which translates
the nt-framesΨ, Φ simultaneously intoΨ0, Φ0.

E. The principal fiber structurePV
G

The natural relationship between the homogeneous spaces
V C
nt,T

andGC
nt,T

is subsumed in the canonicalprincipal fiber
bundlestructure

PV
G :=

(
V C

nt,T

πV
G−→ GC

nt,T ; U(nt)
)

(24)

which (locally) embedsGC
nt,T

into V C
nt,T

by choosing a rep-
resentingnt-frameΦ which spans the subspace〈Φ〉. However
there remains the freedom of multiplication with arbitrary
unitary matricesu ∈ U(nt) from the right (all of them have
the same image under the projectionπV

G ), and for practical
applications it is necessary to specify a unique choice forΦ
andu, given〈Φ〉 (simultaneously for all〈Φ〉 ∈ GC

nt,T
, not only

for pairs as in (23)). But locally this can always be achieved
and we do not want to go into details here. The term ’principal
fiber bundle’ means a generalization of the term ’homogeneous
space’, where now thetotal spaceV C

nt,T
no longer need to be

a group and thebase spaceGC
nt,T

is a projectionπV
G of the

total space which is invariant under a right action ofU(nt).
The set of all elementsΦu is called afiber over 〈Φ〉.

This geometrical point of view makes clear, that we can
consider codesCG ⊂ GC

nt,T
for the non-coherent channel as

discrete subsets ofV C
nt,T

in virtue of the local embedding of
GC

nt,T
into V C

nt,T
. But one motivation for the introduction of

all these perhaps unfamiliar geometrical terms is to clarify
the relationship between the coding spaces, i.e. that there
is no canonical representation ofCG in V C

nt,T
. In practical

applications this peculiarity is often overlooked, since common
mathematics software packages already use certain conven-
tions when representing subspaces in terms of singular value
decompositions. Furthermore we will see that the unitary left
and right actions on the coding spaces lead naturally to the
diversity embedding results derived in the next section. These

results are geometrical in nature rather than linear algebraic,
but only in the geometric context it becomes clear, that theyare
not obvious at all, since they relate distinct metric structures.
For the Stiefel manifold the relevant metric structure has
already been defined in (12) and for the Grassmann manifold
we will define it next.

We consider codesCG ⊂ GC
nt,T

always as discrete subsets
of V C

nt,T
and the maximum likelihood criterion for the non-

coherent channel receiver reads now ([2])

ΦML = argmax
∀Φ∈C

∥∥∥
√

ρ T
nt

Φ†X
∥∥∥

F

(25)

whereasX =
√
ρ T
nt

ΨH+W is the received signal. To obtain

a design criterion in the signal spaceGC
nt,T

we throw away
the noise term (as in the coherent channel case) and pass from
ΨH to Ψ ∈ GC

nt,T
⊂ V C

nt,T
(this operation does not change

the column space ofΨ). Setting

∆ := Φ†Ψ (26)

‖∆‖2F =

nt∑

i=1

σ2
i (∆)

(22)
=
∑

i

cos2 ϑi = nt −
∑

i

sin2 ϑi (27)

(note that (27) does not depend on the choice of the repre-
sentingnt-frame, thus represents really an entity onGC

nt,T
),

and
σ = (σ1, . . . , σnt

) , σi := σi(∆) = cosϑi (28)

the ML criterion demands the maximization of the pairwise
distances

d(Φ,Ψ) :=
√
nt − ‖∆‖2F =

√
tr
(
1−∆†∆

)

=

√√√√
nt∑

i=1

(
1− σ2

i

)
=

√√√√
nt∑

i=1

sin2 ϑi

(29)

Formally d is defined on all ofV C
nt,T

, but independent of the
choice of the representingnt-frame as already indicated. Of
course, it is a metric in the strict sense only as a function on
GC

nt,T
(known as the ’chordal’ distance, compare [30], [15]),

turning again the coding problem into a packing problem in(
GC

nt,T
, d
)
. It shares the invariance properties of the coherent

channel metricd, but satisfies even more:

d(UΦv, UΨw) = d(Φ,Ψ) (30)

by

σi((UΦv)†(UΨw)) = σi(Φ
†Ψ) , ∀U∈U(T ), v,w∈U(nt) (31)

III. PERFORMANCE ANALYSIS: DIVERSITY

In practical settings, whereρ, T ≪ ∞, the receiver metrics
d, d fail to be the sole code design criteria. Denoting the
pairwise error probability of mistaking one symbol for another
at the receiver generically asPij one gets the union upper
bound

1

|C|
∑

i

∑

j 6=i

Pij (32)

for the exact error probability. This section deals with the
pairwise error probability Chernov bound, more precisely
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with the diversity, which is essentially the reciprocal of the
Chernov bound. It turns out, that the receiver metric coincides
with the first order term of the diversity and the highest
order term leads to the so called diversity product (further
analyzed in section IV). Adopting the diversity as the major
performance measure, section III-A investigates the connection
between non-coherent and coherent channel designs and its
consequences for code design. For convenience we fix the pair
(Φ,Ψ) of code symbols throughout this section and suppress
their notation as function arguments.

For the coherent channel case the pairwise error probability
has been calculated in [2] to

P (Φ,Ψ) =
∑

{αj}
Resω=ıαj




− 1

ω + ı/2

nt∏

i=1
σi>0

[
1

ρ T
nt

σ2
i (ω

2 + α2
i )

]nr





(33)

with αi :=
√

1
4 + 1

(ρT/nt)σ2
i

. Analogously for the non-

coherent channel case holds [2]

P (Φ,Ψ) =
∑

{αj}
Resω=ıαj




− 1

ω + ı/2

nt∏

i=1
σi<1

[
1 + (ρ T

nt
)

(ρ T
nt
)2(1− σ2

i )(ω
2 + α2

i )

]nr





(34)

with αi :=
√

1
4 + 1+(ρT/nt)

(ρT/nt)2(1−σ2
i
)
.

For both cases the we have the Chernov bound

P ≤ 1

2

(
nt∏

i=1

[
1 + ̺ σ2

i

]
)−nr

(35)

whereas (coherent channel)

̺ = ̺ :=
ρT

4nt
(36)

σi = σi (37)

respectively (non-coherent channel)

̺ = ̺ :=
̺2

̺+ 1/4
=

(ρ T
nt
)2

4(1 + ρ T
nt
)

(38)

σi =
√
1− σ2

i (39)

The term in parentheses in (35) is called (pairwise) diversity

Div :=

nt∏

i=1

[
1 + ̺ σ2

i

]
(40)

and we take it as our basic performance measure for codes.
Rewriting Div as a polynomial in̺ requires the use of
elementary symmetric polynomials defined bysymnt

0 := 1,
symnt

j (x1, . . . , xnt
) =

∑
Ij∈(ntj )

xIj
=
∑

Ij∈(ntj )
xi1 · · ·xij

(with
(
n

t

j

)
:= {(i1, . . . , ij) ∈ Nj | 1 ≤ i1 < · · · < ij ≤ nt}),

j = 1, . . . , nt. With the abbreviation

sj := symnt

j (σ2
1 , . . . , σ

2
nt
) =

∑

Ij∈(ntj )

s2Ij (41)

we find generically

Div =

nt∑

i=0

si̺
i (42)

The first and highest order coefficient of this polynomial are
of particular importance, since they dominate the diversity in
the low and high SNR regime respectively. They are called
diversity sumanddiversity productrespectively, and are given
by

d =
√
s1 = ‖σ‖ (43)

p :=
√
snt

= σ1 · · ·σnt
(44)

The diversity sum is our familiar metricd = ‖σ‖ = ‖∆‖F

(12), resp.d = ‖σ‖ =
√
tr(1−∆†∆) = ‖sinϑ‖ (29). The

diversity product acts as a regularity criterion for the positive
semidefinite matrix∆†∆, resp.1 − ∆†∆: In the coherent
channel casep2 = det∆†∆ > 0 is known as diversity criteria
(resp. rank criteria or determinant criteria) in the literature (e.g.
[1]). In the non-coherent channel casep2 = det(1−∆†∆) =

(1 − σ2
1) . . . (1 − σ2

nt
)

(28)
= sin2 ϑ1 . . . sin

2 ϑnt
> 0 measures

the positivity of the principal angles between〈Φ〉 and 〈Ψ〉.
All terms sIj , resp.sIj in the diversity expansion possess

the invariance properties induced by (15), resp. (31). Therefore
the analysis in this section applies to all terms in (42) and the
result can be stated in closed form for the full diversity, rather
than only to its first and highest order coefficient.

Specializing (42) to the non-coherent channel case, one
checks easily that the coefficients are formally defined on all
of V C

nt,T
, but independent of the choice of the representing

nt-frame. Note that the coherent and non-coherent channel
diversities are formally similar due to (42), but the constituting
singular values (14), (28) reflect the underlying topological
structures induced by the maximum likelihood receivers (11),
(25) (resp. the metricsd, d). And these structures are entirely
distinct.

A. Embedding properties

Now let us investigate the relation between the non-coherent
and coherent channel diversity quantities. From the informa-
tion theoretic inequalityI(X ;S) ≤ I((X,H);S) between the
corresponding mutual informations we expect such a relation
satisfied by the diversity. The ranges forσ (14) andσ (28)
indicate, that the coherent channel receiver may benefit from
some higher ’resolution’, but if and how this carries over to
the diversity is not obvious and requires a rigorous proof. The
investigations of this section give an affirmative answer tothat
conjecture.

By a slight abuse of notation let us define the ’fiber minima’
of sIj with respect to the fibers ofPV

G (24) as

sdistIj (Φ,Ψ) := min
Φ∈πV

G

−1
(〈Φ〉)

Ψ∈πV
G

−1
(〈Ψ〉)

sIj (Φ,Ψ) (45)

Then we obtain

Lemma III.1
Let 〈Φ〉 , 〈Ψ〉 ∈ GC

nt,T
separated by principal angles
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ϑ1, . . . , ϑnt
. Then∀Ij∈(ntj )

sdistIj (Φ,Ψ) =

√
2j
∏

i∈Ij

(1 − cosϑnt−i+1) (46)

holds.

Proof:
Due to left invariance ofsIj we can switch to the canonicalnt-
frame basesΨ0, Φ0 (23) ofU 〈Ψ〉, U 〈Φ〉. With Φ0(u) := Φ0u
(u ∈ U(nt)), running through the fiber over〈Φ0〉, ∆(u) :=
Φ0(u)−Ψ0, and 1

2∆(u)†∆(u) = 1−H((cosϑl)u) (recall, that
(cosϑl) = diag(cosϑl)l=1...nt

) we have

s2Ij (Φ0(u),Ψ0) =
∏

i∈Ij

σ2
i (∆(u))

(17)
=
∏

i∈Ij

2
{
1− λnt−i+1[

H((cosϑl)u)]
}

(∗)
≥ 2j

∏

i∈Ij

{
1− σnt−i+1 ((cosϑl)u)

}

= 2j
∏

i∈Ij

{
1− σnt−i+1((cosϑl))

}

= 2j
∏

i∈Ij

(1− cosϑnt−i+1)

(47)

where(∗) comes from the general inequality

λi

(
H(A)

)
≤ σi(A) (48)

devoted to Fan-Hoffman in [31, Prop. III.5.1].u = 1 achieves
equality in (∗) and this completes the proof.
In particular we have the fiber distance

ddist(Φ,Ψ) := min
Φ∈πV

G

−1
(〈Φ〉)

Ψ∈πV
G

−1
(〈Ψ〉)

d(Φ,Ψ)

=

√√√√
∑

I1∈(nt1 )

sdist2I1 =

√√√√2

nt∑

i=1

(1− cosϑi)

(49)

and its analogon for the diversity product

pdist(Φ,Ψ) := min
Φ∈πV

G

−1
(〈Φ〉)

Ψ∈πV
G

−1
(〈Ψ〉)

p(Φ,Ψ)

= sdistInt
=

√√√√2nt

nt∏

i=1

(1− cosϑi)

(50)

We observe, that the fiber minimasdistIj for each given
pair (Φ,Ψ) are realized by the same choice(Φ0,Ψ0), which
justifies the definition

sdistj(Φ,Ψ) :=
∑

Ij∈(ntj )

sdist2Ij (Φ,Ψ) (51)

(thus we have in particularddist =
√
sdist1 and pdist =√

sdistnt
) leading to

Corollary III.2
For any pair 〈Φ〉 , 〈Ψ〉 ∈ GC

nt,T
we have∀j=1,...,nt

sj(Φ,Ψ) ≤ sdistj(Φ,Ψ) ≤ sj(Φ,Ψ) (52)

Proof:
The second inequality holds by definition ofsdist. So let us
turn to the first inequality and denote the principal angles
between〈Φ〉 and〈Ψ〉 by ϑ = (ϑ1, . . . , ϑnt

), 0 ≤ ϑi ≤ π
2 . We

haves2Ij =
∏

i∈Ij
sin2 ϑi =

∏
i∈Ij

(1−cos2 ϑi) andsdist2Ij =

2j
∏

i∈Ij
(1 − cosϑnt−i+1) =

∏
i∈Ij

2(1 − cosϑnt−i+1). For
any 0 ≤ ϑi ≤ π

2

2 cosϑi − cos2 ϑi ≤ 1 (53)

holds, thus
sIj ≤ sdistI∗

j
(54)

with I∗j := (nt − i1 + 1, . . . , nt − ij + 1) for each Ij =
(i1, . . . , ij), and by

sj =
∑

Ij

s2Ij
(54)
≤
∑

Ij

sdist2I∗
j
=
∑

Ij

sdist2Ij = sdistj (55)

the claim follows.
Given a functions : C × C −→ R, let us definesmin :=
minC×C s. Then we state

Corollary III.3

smin
j ≤ sdistmin

j ≤ smin
j , ∀j=1,...,nt

(56)

(unfortunately neither there seems to be a canonical way to
determine the pairs of points, which realize the minima, nor
whether this could be achieved simultaneously for each of the
quantities above by a single pair of points)

Proof:
Corollary III.3 is an easy consequence of Corollary III.2. For
each inequality the proof goes the same, so let us take two
functionsf ≤ F, X ×X −→ R, X a discrete set, for brevity.
Then there are two cases

1) fmin = f(x0, y0) ≤ F(x0, y0) = Fmin and there is
nothing to do

2) fmin = f(x0, y0), but F(x0, y0) > F(x1, y1) = Fmin.
But then still fmin ≤ f(x1, y1) ≤ F(x1, y1) = Fmin

holds.

On the metric level (the diversity sum) this inequalities provide
a distance gain due to the channel knowledge. It increases the
resolution of the detector and allows the receiver to separate
points better than the non-coherent channel receiver coulddo,
d ≤ d, or equivalently the unit spheres with respect tod
occupy smaller volume than the corresponding (embedded)
unit spheres with respect tod, thus one can pack mored-
spheres intoV C

nt,T
than d-spheres. But due to the famous

estimate (48) we have proven a considerable stronger result
not confined to the diversity sum, but rather to any coefficient
in the diversity expansion (42). Thus we are able to relate
the inequalities derived so far to the diversity as a whole:
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Comparing the ’effective’ SNRs̺ (36),̺ (38) in the diversity
(42) demands one additional estimate (providedT ≥ nt)

4

ρ
̺ =

ρ( T
nt
)2

1 + ρ T
nt

≤ T

nt
=⇒ ̺ ≤ ̺ (57)

thus we have

Proposition III.4
For any pair 〈Φ〉 , 〈Ψ〉 ∈ GC

nt,T

Div(Φ,Ψ) ≤ Div(Φ,Ψ) (58)

holds.

Proof:
The proposition follows directly from (52) and (57)
So we conclude, that the coherent channel maximum like-
lihood receiver applied toCG has at least the diversity as
the non-coherent channel receiver, the diversity grows. This
approves the information theoretic inequalityI(X ;S) ≤
I((X,H);S) motivating our analysis.

Having explored the relationship of the embeddingGC
nt,T

⊂
V C
nt,T

let us come to a somewhat complementary scenario,
which offers the possibility of coding complexity reduction:
Consider a single fiber over〈Φ〉. Then, byΦw = (Φ,Φ⊥) ( w

0 ),
there holds a special kind of ’vertical’ left invariance, namely

sIj (Φu,Φv) = sUIj (u, v) , ∀Ij∈(ntj ) , ∀u,v∈U(nt) (59)

where the right hand side is evaluated inU(nt) = V C
nt,nt

.
Analogously we define for the special caseT = nt: ̺U := ρ

4 ,

sUj :=
∑

Ij∈(ntj )
(sUIj )

2, Div
U

:=
∑

i s
U
i (̺

U )i and we arrive
at

Theorem III.5
Given codesCG ⊂ GC

nt,T
⊂ V C

nt,T
and CU ⊂ U(nt), then

the composed codeCV ⊂ V C
nt,T

given by

CV := CG · CU =
{
Φu |Φ ∈ CG, u ∈ CU

}
(60)

satisfies

smin
j ≥ min{sdistmin

j , sU min
j } , ∀j=1,...,nt

(61)

and
Div

min ≥ min{Divmin, D̃ivU min} (62)

holds, whereas̃DivU :=
∑

i(
T
nt
)isUi (̺

U )i (thus the power

constraint factor
√

T
nt

sharpens the estimate).

Proof: The theorem follows directly from Corollary
III.3, Proposition III.4 and the definition ofsdist as a fiber
minimum.
Therefore the code design splits up into two parts: CodesCG

represent the familiar coding problem for the non-coherent
channel corresponding toGC

nt,T
, which has smaller dimension

as the general problem inV C
nt,T

. The codeCU represents a
coding problem for the coherent channel inU(nt) = V C

nt,nt
,

contributing the dimensions left byV C
nt,T

∼= GC
nt,T

× U(nt)
locally. So both parts represent a somewhat smaller coding
problem with respect to the dimension of the signal spaces.

Moreover for both parts the code design is easier to solve than
in (V C

nt,T
, d): In U(nt) there are many solutions (i.e. codes) in

the common literature, e.g. the Alamouti scheme fornt = 2,
orthogonal designs fornt ≥ 2, quasi-orthogonal space time
block codes, and many more. The Grassmannian part is also
simpler (not only concerning dimensions but also) in structure,
because the ’chordal’ design metricd is geometrically more
natural than the Euclidean distance measured (in terms of their
relation to the natural geodesic distance [16]), thus geometric
methods may apply. Also packings in(GC

nt,T
, d) are already

in the focus of current research, e.g. [30], [15], whereas
[30] also contains explicit constructions for packings in the
(real) Grassmann manifold. In [32] a differential geometric
connection (based on [16]) has been developed to construct
space time (and space frequency) codes for for the coherent
and non-coherent channel case. Further research [17] led to
space time codes with reduced design complexity by utilizing
III.5.

Remark III.6
A related question arises, when one considers the task of
given a codeCU , does there exist a codeCV with the
same rate but better performance thanCU? Concerning the
diversity sumd a partial answer gives [16]: The transmit

power constraint sets the requirement
√

T
nt
dmin ≥ dU min.

Since there exist a monotonically increasing lower bound
for dmin when T

nt
grows (Proposition I.1) this requirement

can be certainly fulfilled. This again emphasizes the need
for coding strategies in the general coding spacesV C

nt,T
,

GC
nt,T

, T larger thannt. However, it remains an open
question, whether we can achieve the goal by composed
codes of the formCV = CG · CU .

Remark III.7
A conceptual simple (but computational complex) embed-
ding of GC

nt,T
into V C

nt,T
is given by the parametrization

of GC
nt,T

with (so-called ’horizontal’) tangentsXH =(
0 −B†

B 0

)
, B ∈ C(T−nt)×nt in its total spaceU(T ).

In a recent article [21] it has been shown, that coding
for the non-coherent channel is under certain assumptions
equivalent to coding on the horizontal tangent space, with
respect to the coherent channel diversity forV C

nt,T−nt
.

Combining that with Theorem III.5 we can roughly state
this correspondence asV C

nt,T−nt
⊂ GC

nt,T
⊂ V C

nt,T
, which

gives rise to a sequence. . . → CV
i → CG

i+1 → CV
i+1 → . . .

of codes with increasing block lengthi · nt, i = 1, 2, . . .

IV. EXTREMAL PROPERTIES OF THE DIVERSITY

In this section we examine the distribution of pairwise an-
gles inCG to find criteria for maximum diversity in particular

for the combined codeCV = CG · CU in
√

T
nt
V C
nt,T

. We focus
on the diversity sum and diversity product, representing the
most important diversity quantities (since they dominate the
small and high SNR regime of diversity) while still being
simple functions of the principal angles.

To get some first insight into the interplay between di-
versity sum and product (with respect to a fixed pairΦ,Ψ
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of code symbols) we exploit the homogeneity of the ele-
mentary symmetric polynomials. For both coherent and non-
coherent channel case it is quite natural to writeσ̂ := σ

‖σ‖ ,
ŝi := si

‖σ‖2i = symi(σ̂
2
1 , . . . , σ̂

2
nt
), The importance of this

factorization arises from the identityd = ‖σ‖, thus we can
now write

Div =

nt∑

i=0

ŝi
(
d2̺
)i

(42’)

which emphasizes the intuitively obvious fact, that scaling
of ̺ (resp.ρ) behaves reciprocal to scaling of the distances.
Moreover, we see that the diversity scales (term wise) with
(an appropriate power of) the metricd, which means in
particular that the task of maximizing the diversity behaves
in its higher order terms (especially the diversity product) like
a constraint on the packing problem determined by the diver-
sity sum, contrasting the impression one might have gotten
by considering only the Chernov bound (35), which seems
dominated by its highest order term. Consequently we have to
control p constrained on the unit sphereSd. In summary the
homogeneity property (42’) scales all orders of diversity by
the pairwise metric distances, turning the diversity orders≥ 2
into local quantities. Thus maximizing diversity corresponds
roughly to locally maximizing the diversity product while
globally maximizing the diversity sum (constrained packing
problem). The behavior of the diversity product on large scales
becomes unimportant due to the contributions of the lower
order terms. Let us therefore perform a Lagrangian analysis
for the diversity product constrained on the unit sphere.

Lagrangian analysis: The non-coherent channel diversity
sum and product and the corresponding lower bounds for their
coherent channel analogues (by embedding), are functions of
typeH(ϑ) =

∑nt

i=1 h(ϑi) or K(ϑ) =
∏nt

i=1 h(ϑi) with either
h = sin2 (for d2 (29), p2 (44)) or h = 2(1− cos) (for ddist2

(49), pdist2 (50)). Their domain of definition is the closed
simplexΘ of principal angles (see figure 1)

Θ :=
{
ϑ = (ϑ1, . . . , ϑnt

) | 0 ≤ ϑ1 ≤ · · · ≤ ϑnt
≤ π

2

}
(63)

(the open simplex beingΘ := {ϑ ∈ Rnt | 0 < ϑ1 <
· · · < ϑnt

< π/2}) but since the principal angles vary

      π/2H

0

0.4

0.6

0.8

1

1.2

1.4

1.6

ϑ3

0.5

1

1.5

ϑ2
0.20.40.60.8 1 1.21.41.6

ϑ1

Fig. 1. Θ̄ for nt = 3

like the identity mapid for 0 ≤ ϑi ≤ π/2 but extend to
π − id for π/2 < ϑi < π (considered as a function on the
aperture angle), the functionh (i.e. 1 − cos) fails in general
to be differentiable transversal to the closed facetHπ/2 of
Θ containingϑnt

= π/2. Transversal to any other edgeh is

smooth, of course. In order to apply the classical Lagrangian
formalism of constrained optimization problems inRnt to the
present situation, we must convince ourselves, that the non-
smooth edges and theπ/2-facet of Θ do not interfere. Our
next task therefore consists of an appropriate decomposition
of Θ into smooth pieces, which decompose the optimization
into a series of smaller tasks of one single type, solvable
simultaneously inRl, l ≤ nt (formula (67) shows the resulting
problem formulation).

We need a little bit more notation. LetΘ< := Θ \ Hπ/2,
and ∂Θ< := Θ< \ Θ the C0 boundary manifold ofΘ with
the problematic facet removed. Forl = 0, . . . , k the faces
contained inΘ< of dimensionl are given by

∂(l)Θ< :=




0 = ϑ1 = · · · = ϑp1

< ϑp1+1 = · · · = ϑp2

...

< ϑpl+1 = · · · = ϑnt

∣∣∣∣∣∣∣∣∣∣

p1 < · · · < pl

pi = i− 1 . . . nt − (l − i+ 1)





thus∂(l)Θ< consists exactly of those faces inΘ<, which are
given byp1 (possibly= 0) zero angles followed byl ’blocks’
each of equal nonzero angles, in increasing order, in particular
∂(0)Θ< = {0}, ∂(nt)Θ< = Θ. Each face∂(l)Θ< is a smooth
submanifold of∂Θ<, with ∂(∂(l)Θ<) = ∂(l−1)Θ< andΘ< =
∪̇nt

l=1∂
(l)Θ<. The tangent spaces are

T
(
∂(l)Θ<

)
=





l∑

i=1

λi(epi+1 + · · ·+ epi+1)

∣∣∣∣∣∣∣

λi ∈ R

p1 < · · · < pl < pl+1 = nt

pi = i− 1 . . . nt − (l − i+ 1)





Then we have

Lemma IV.1
GivenH(ϑ) =

∑nt

i=1 h(ϑi), K(ϑ) =
∏nt

i=1 h(ϑi) on Θ<

with h ∈ C∞([0, π/2[) (this means, thath is differentiable
from the right in0) andh′(0) = 0. Then forl = 0, . . . , nt

gradH|∂(l)Θ<
∈ T

(
∂(l)Θ<

)
(64)

gradK|∂(l)Θ<
∈ T

(
∂(l)Θ<

)
(65)

thus restricting the gradients remains intrinsic.

Proof:
We havegradH(ϑ) = (h′(ϑ1), . . . , h

′(ϑnt
)). Sinceh′(0) = 0

the symmetry ofH ensures
gradH|∂(l)Θ<

(ϑ) =
∑l

i=1 h
′(ϑpi+1)(epi+1 + · · · + epi+1) ∈

T
(
∂(l)Θ<

)
, with λi = h′(ϑpi+1). Similarly, gradK(ϑ) =

(h′(ϑi)
∏

j 6=i h(ϑj))i, thus gradK|∂(l)Θ<
(ϑ) = 0 (for p1 >

0) or gradK|∂(l)Θ<
(ϑ) =

∑l
i=1 λi(epi+1 + · · · + epi+1) ∈

T
(
∂(l)Θ<

)
with

λi = h′(ϑpi+1)h(ϑpi+1)
pi+1−pi−1

∏
j 6=i h(ϑpj+1)

pj+1−pj .
The lemma ensures, that the Lagrangian functionalF =

f − λ(g − δ) on a neighborhood ofΘ for critical points of
f obeying the constraintg = δ (f, g eitherH or K, δ ∈ R)
applies to the boundary∂Θ<. Sincef andg are not necessarily
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differentiable transversal toHπ/2, extremal points inΘ lie in
the set{g = δ} ∩ Hπ/2 ∪ Θ< ∩ {DF = 0} (recall, that∩
has higher precedence than∪ andD denotes differentiation).
For a more unified treatment we defineΘ(l) := {0 ≤ ϑ1 ≤
· · · ≤ ϑl ≤ π/2} (in particularΘ(0) = ∅ andΘ(nt) = Θ) and
recall, that on the one handf , g are differentiable tangential to
Hπ/2 and on the other handΘl−1 ∪{ϑl = · · · = ϑnt

= π/2},
l = 1, . . . , nt − 1 exhaustsHπ/2. This leads to the following
recursion scheme: Forl = 0, . . . , nt set

H(l)(ϑ1, . . . , ϑl) =

l∑

i=1

h(ϑi) + h(π2 )(nt − l)

K(l)(ϑ1, . . . , ϑl) =
l∏

i=1

h(ϑi) · h(π2 )(nt−l)

(66)

andf (l), g(l) given by eitherH(l) or K(l). Then the extremal
points inΘ lie in the set

nt⋃

l=0

(
{DF (l) = 0} ∩Θ

(l)
< ∪ {ϑl+1 = · · · = ϑnt

=
π

2
}
)

(67)

whereasF (l) := f (l) − λ(g(l) − δ). Furthermore, forh mono-
tonically increasing on[0, π/2] and zero at0, the conditions
g(l) = δ forces δ ∈ [0, h(π2 )nt] (resp.δ ∈ [0, h(π2 )

n
t ]) and

in the first casel ≥ ⌈nt − δ/h(π2 )⌉ =: l, thus l restricts to
{l, . . . , nt}.

Let us now start the Lagrangian analysis of the diversity
(resp. with the analysis of the various diversity sums and
products). The non-coherent channel diversity sum/product
(d)(p) as well as the lower bounds(ddist)(pdist) for the
coherent channel analogues depend on theU(nt)-fibers only
(moreover they depend only on the principal angles). By left
invariance we can always assumeΨ = ( 10 ) and consider the
diversity terms as functions (marked with an0) on the single
argumentΦ, for which 〈Φ〉 is separated by principal angles
ϑ ∈ Θ from 〈( 10 )〉.
p2

0
∣∣Sd2(δ)

:

In order to find the maximum ofp in the unit distance
sphere we constrainf = p20 =

∏
i sin

2 on Sd2(δ), by setting
g = d20 =

∑
i sin

2. Thus we get the Lagrangian functional
F (ϑ) =

∏
i sin

2 ϑi−λ(
∑

i sin
2 ϑi− δ), 0 < δ ≤ nt. Here we

havel = ⌈nt−δ⌉ and from (67) we get for eachl ∈ {l, . . . , nt}

{DF (l) = 0} ∩Θ
(l)
< =

{
g(l) = δ

}
∩





0 = ϑ1 = · · · = ϑp1

< ϑp1+1 ≤ · · · ≤ ϑl <
π

2

∣∣∣∣∣λ =

l∏

i6=j

sin2 ϑi, ∀p1<j≤l





From this we get extremal points withf 6= 0 only for p1 = 0,
ϑ1 = · · · = ϑl = θ(l) with l sin2 θ(l) = δ − (nt − l) and
f (l) = (sin2 θ(l))l = (1 − nt−δ

l )l, monotonically increasing
with l, therefore

max p2
0
∣∣S

d2 (δ)
= f (nt) =

(
δ

nt

)nt

(68)

attained inϑ1 = . . . ϑnt
= θ, sin2 θ = δ/nt.

Conclusion IV.2
Locally the code points ofCG for the non-coherent channel
have to be distributed with as many of their pairwise
principal angles to be nonzero and equal in modulus as
possible.

In principle, the same holds for the coherent channel, if we
considerp and d as functions ofσ: The maximum diversity
product is attained forσ1 = · · · = σnt

= s, s
2 = δ/nt,

p2 = s
2nt = (δ/nt)

nt , but it seems difficult to characterize all
Φ ∈ Sd2(δ) subject toσ1 = . . . σnt

= s. Let us embedCG into
V C
nt,T

instead and investigate the question, which conditions
have to be imposed onCG in order to achieve some diversity
gain in terms ofddist andpdist.

ddist
2

0
∣∣Sd2(δ)

:

For the metric fiber distanceddist constrained onSd2(δ) the
Lagrangian functional readsF (ϑ) = ddist20(ϑ) − λ(d20(ϑ) −
δ) = 2k − 2

∑
i cosϑi − λ(

∑
i sin

2 ϑi − δ). Again we have
0 < δ ≤ nt, l = ⌈nt − δ⌉ and from (67) we now get for each
l ∈ {l, . . . , nt}

{DF (l) = 0} ∩Θ
(l)
< =

{
g(l) = δ

}
∩

{
0 = ϑ1 = · · · = ϑp1

< ϑp1+1 ≤ · · · ≤ ϑl <
π

2

∣∣∣∣∣λ =
1

cosϑj
, ∀p1<j≤l

}

Extremal points are contained in0 = ϑ1 = · · · = ϑp1 ,
ϑp1+1 = · · · = ϑl = θ(l) subject to (l − p1) sin

2 θ(l) =
δ− (nt− l) for l = l = ⌈nt−δ⌉, . . . , nt andp1 = 0, . . . , p1 =

⌊nt − δ⌋, with f
(l)
p1 = 2(l − p1)(1 − cos θ(l)) + 2(nt − l) =

2(l−p1)(1−
√
1− q)+2(nt−l), q := δ−nt+l

l−p1
= sin2 θ(l). For

fixed l the functionp1 7−→ f
(l)
p1 is monotonically increasing

(by analyzing the derivative, where defined) and we find
f (l) := minp1 f

(l)
p1 = f

(l)
0 and f (l) := maxp1 f

(l)
p1 = f (l)

p1
.

As functions of l both terms turn out to be monotonically
decreasing (by analyzing the derivatives with respect tol) and
we find

min ddist2
0
∣∣S

d2 (δ)
= f (nt) = 2nt

(
1−

√
1− δ/nt

)
(69a)

attained inϑ1 = . . . ϑnt
= θ, sin2 θ = δ/nt, and

max ddist2
0
∣∣S

d2(δ)
= f (l) = 2

(
1−

√
1− (δ − ⌊δ⌋)

)
+ 2⌊δ⌋

(69b)

attained forϑ1 = . . . ϑ⌊nt−δ⌋ = 0, sin2 ϑ⌈nt−δ⌉ = δ − ⌊δ⌋,
ϑ⌈nt−δ⌉+1 = . . . ϑnt

= π/2.

pdist
2

0
∣∣S

d2(δ)
:

Examining pdist instead ofddist we have the Lagrangian
F (ϑ) = 2k

∏
i(1 − cosϑi)− λ(

∑
i sin

2 ϑi − δ) and

{DF (l) = 0} ∩Θ
(l)
< =

{
g(l) = δ

}
∩





0 = ϑ1 = · · · = ϑp1

< ϑp1+1 ≤ · · · ≤ ϑl <
π

2

∣∣∣∣∣
λ =

2nt−1

cosϑj

l∏

i6=j

(1− cosϑi)

∀p1<j≤l
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From this we get extremal points withf 6= 0 only for p1 = 0,
ϑ1 = · · · = ϑl = θ(l) with l sin2 θ(l) = δ − (nt − l) and

f (l) = 2nt(1 − cos θ(l))l = 2nt(1 −
√

nt−δ
l )l, monotonically

increasing withl and therfore

max pdist2
0
∣∣S

d2 (δ)
= f (nt) = 2nt

(
1−

√
1− δ/nt

)nt

(70)

in ϑ1 = . . . ϑnt
= θ, sin2 θ = δ/nt.

Remark IV.3
If we had constrainedpdist on Sddist2(δ), 0 < δ ≤ 2nt

we would have gotten

max pdist2
0
∣∣S

ddist2 (δ)
=

(
δ

nt

)nt

(71)

attained inϑ1 = . . . ϑnt
= θ, 2(1 − cos θ) = δ/nt, by

analogy to the case ofp constrained ond. The apparent
discrepancy of (70) to (71) is caused by (69b), since
at ϑ1 = · · · = ϑnt

= θ ddist20 attains its minimum
δ̃ = 2nt(1 −

√
1− δ/nt) on Sd2(δ) which yields (with

(71)) pdist2
0|ddist20=δ̃

= (δ̃/nt)
nt = 2nt(1−

√
1− δ/nt)

nt ,
which coincides with (70).

Conclusion IV.4
What remains is the general rule, that for̺ = ρT

4nt
≫ 1

(compare (36)) in favor ofpdist instead ofddist one
should distribute the pairwise principal angles inCG

locally to be all nonzero and equal in modulus (by(70)).
This coincides with the preferred strategy(68) for the
non-coherent channel code. For̺≤ 1, when the higher
order diversity terms become less important, it might be
better to distribute the pairwise principal angles globally
to maximizeddist, thus separating points inCG by as many
of the principal angles to be zero such that the remaining
ones attain large values.

pdist
2

0
∣∣Sp2(δ)

:

Finally, to get an product analogue of (69) we analyzepdist20
constrained onSp2(δ), 0 < δ ≤ 1, thus the Lagrangian reads
F (ϑ) = 2k

∏
i(1 − cosϑi) − λ(

∏
i sin

2 ϑi − δ) and for l ∈
{0, . . . , nt} we have

{DF (l) = 0} ∩Θ
(l)
< =

{
g(l) = δ

}
∩





0 = ϑ1 = · · · = ϑp1

< ϑp1+1 ≤ · · · ≤ ϑl <
π

2

∣∣∣∣∣
λ =

2nt−1

cosϑj

l∏

i6=j

1− cosϑi

sin2 ϑi

∀p1<j≤l





δ > 0 forces p1 = 0 and we getϑ1 = · · · = ϑl = θ(l),
sin2l θ(l) = δ, thus f (l) = 2nt(1 − cos θ(l))l = 2nt(1 −√
1− δ1/l)l which is monotonically decreasing inl, so

min pdist2
0
∣∣S

p2 (δ)
= f (nt) = 2nt

(
1−

√
1− δ1/nt

)nt

(72a)

attained inϑ1 = . . . ϑnt
= θ, sin2 θ = δ1/nt , and

max pdist2
0
∣∣S

p2(δ)
= f (1) = 2nt

(
1−

√
1− δ

)
(72b)

attained insin2 ϑ1 = δ, ϑ2 = · · · = ϑnt
= π/2 (whereasf (0)

is contained inf (1) whenδ = 1).
Observing, that the minima in (69) and (72) are monotoni-

cally increasing inδ we end up with

Proposition IV.5
In the situation of Proposition III.4 we have

ddist2min ≥ min ddist2
0
∣∣S

d2 (d
2min)

(73)

= 2nt

(
1−

√
1− d2min/nt

)
≥ d2min

pdist2min ≥ min pdist2
0
∣∣S

p2(p
2 min)

(74)

= 2nt

(
1−

√
1− p2min1/nt

)nt

≥ p2min

The benefit of this proposition is, that it relatesddistmin

(resp.pdistmin) directly todmin (resp.pmin), regardless if the
minimum distances (resp. diversity products) are realizedby
the same pair of points or not.

Proof:
Its only left up to show the second inequality in each formula,
which is elementary (settingx := d2min or x := p2min,
respectively):
(73) ⇐⇒

√
1− x/nt ≤ 1 − x/2nt ⇐⇒ 1 − x/nt ≤

(1− x/2nt)
2 = 1− x/nt + x2/4n2

t .
(74) ⇐⇒

√
1− x1/nt ≤ 1 − x1/k/2 ⇐⇒ 1 − x1/nt ≤

(1− x1/k/2)2 = 1− x1/nt + x2/nt/4

V. CONCLUSIONS

This work should be seen as a second step towards a
geometry based analysis of general space time block codes,
inspired by the results in [16], opening the door to potentially
high performing space time block codes, whenT ≫ nt.
The various estimates and interrelations explored in this work
assemble the following overall picture:

• Diversity monotony: The performance analysis revealed
nice embedding properties (with respect toGC

nt,T
⊂

V C
nt,T

) of the diversity quantities (Corollaries III.2, III.3,
(57)), leading to a diversity growth (Proposition III.4)
in the transition from the non-coherent channel to the
coherent channel. This turned out to be due to the various
invariance properties satisfied by the diversity, though tied
to distinct underlying topologies of the coding spaces
induced by the maximum likelihood receiver metrics.
Moreover, for the diversity sum and product, more ex-
plicit estimates have been derived (Proposition IV.5).

• Complexity reduction: Embeddings of bothGC
nt,T

and
U(nt) into V C

nt,T
can be used to construct codes onV C

nt,T

from ’smaller’ pieces (Theorem III.5), both of them being
already in the focus of current research. The other way
round, given an non-coherent channel space time code
and a ’small’ coherent channel code, the performance of
the resulting (larger dimensional) product code onV C

nt,T

is lower bounded by the diversity expressions stated in the
theorem. Thus the design complexity has been reduced
to the smaller problems onGC

nt,T
andU(nt). Together

with Proposition I.1 this opens the door to potentially
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high performing space time block codes, whenT ≫ nt.
As already indicated in the introduction this may be of
some importance in the context of space frequency codes
also.

• Localization: The local nature of the higher order diver-
sity quantities turns space time coding into a constrained
packing problem. The diversity sum still represents a
major criteria, locally superposed by the diversity product
as a rigidity constraint: The optimal code in the high SNR
regime is packed as ’diagonal’ as possible, uniformly
maximizing the principal angles (Conclusion IV.2 and
IV.4).

There are still many open issues. Some immediate will be
listed next. The explicit bounds of Proposition IV.5 are very
coarse and improvements are necessary. Moreover, it would be
desirable to obtain further decompositions in Theorem III.5.
Furthermore this work has to be related to the differential
coding scheme [9], which benefits from high rates compared
to non differential codes. Finally it remains the challenge
of effective high dimensional code construction (especially
for the non-coherent channel) with low complexity decoding
properties.
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