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Abstract— In this work, the geometric relation between space due to hardware limitations, while the block length can
time block code desig_n for th(_? coherent channel and its non- pe chosen rather large, upper bounded only by the coherence
coherent counterpart is exploited to get an analogue of the length of the channel. Inspired from [15], in [16] a general

information theoretic inequality I(X;S) < I((X, H);S) in terms . - . - .
of diversity. It provides a lower (bounzj on (t(he pe)rfor)mance of analysis of packings in the Stiefel and Grassmann manifold

non-coherent codes when used in coherent scenarios. Thistis revealed, that the achievable squared minimal distanee (i.
in turn to a code design decomposition result splitting cohent the squared diameter of the decision regions for decoding)
code design into two complexity reduced sub tasks. Moreover grows proportionally with the block length, more precisely

a geometrical criterion for high performance space time cod the following proposition holds [16]):
design is derived. )

Proposition 1.1
I. INTRODUCTION For any T' > 2n,; setD,,r = n;(2T — n;) (coherent
channel), respD,,, v = 2n(T — n:) (non-coherent chan-
nel). Then for any prescribed rat@ = - log|C| there exist
space time block codéswith rate R and minimal distance
dy satisfying

In MIMO (Multiple Input Multiple Output) systems space
time coding schemes have been proven to be an appropri-
ate tool to exploit the spatial diversity gains. Two distinc
scenarios are common, whether the channel coefficients are
known (coherent scenario) [1], to the receiver or not (non- T (1\ DT )
coherent scenario) [2]. Prominent coherent codes are the do = C\/P— (§> ; (providedp > 1) (1)
well known Alamouti scheme [3] and general orthogonal )
designs [4]. A more flexible coding scheme are the so-called for some constanC’ > 0 depending on the channel
linear dispersion codes. They have been introduced in [§] an knowledge at the receiver. Since the rightmost term is
were further investigated in [6]. A full rate high perforgin ~ Monotonically increasing as a function @}, the receiver
example is the recently discovered Golden code [7]. Genuine Performance increases proportionally e
non-coherent codes have been proposed in [8], but m
of the research efforts in the literature focus on diffeignt
schemes, introduced in [9], since differential codes ugual

provide higher data rates than comparable non different een achieved in [17]. Moreover, the Proposition 1.1 become

codes. High performing examples have been constructede%n more important when considering space frequency code
[10], [11][12][13]. However, in both (coherent and nony sign: The schemes [18], [19] indicate, that the relevant
coherer_lt) cases most reS(_earch effort_ has been undertaker]:f%ing spaces are certain subsets of (large dimensionel§ISt

space time block codes with quadratic 2-by-2, 1e8pby-n: 54 Grassmann manifolds. Thus considering these coding
code matricest(; denotes the number of transmit antennas paces in general may be of considerable importance foespac

Although linear dispersion codes are not restricted to catad : C
shape of the design matrices the block length is not a frfﬁrgr?: igiyb?%inddei:ggz I{E;g)]hcn space frequency construc

design parameter when the number of transmit antennas $h the present work it will be shown, how general space

held fixed (compare th_e asymptc_mc guidelines in [6]). time block code designs can be decomposed into two 'smaller’
In. general [1.4] the_ signal matrices are of rectangular sha feces with reduced design complexity (Theorem 111.5) hbot
of sizeT xn, with unitary columns. The corresponding codin ready in the focus of current research. The achievedtresul
spaces for the coherent and non-coherent scenario are hﬁ be seen as complementary to that of Kammoun and
_corlrllpltehx St|efeb| and (fsiassma_?n Tamfold_s respecltllvely.- gygelfiore [21], who presented a coding scheme for non-colteren
Ically the numbern, of trahSmit antennas Is a small NUMDELy, el space time block codes in terms of coherent channel
Journal reference: IEEE Trans. Inform. Thed®, no 12 (2006), 5324— ON€S, compare Rem_ark _”|'7 for fl!”h_er 'm_pllcatlons' ]
5335. Personal use of this material is permitted. Howevermjssion to The key observation is the quite intuitive but technically
reprint/republish this material for advertising or profoagl purposes or for not obvious diversity monotonicity (Proposition |||.4) hich
creating new collective works for resale or redistributionservers or lists, ’
states that the performance of each non-coherent characs sp

or to reuse any copyrighted component of this work in otherkaanust be .
obtained from the IEEE time block code grows when considered as a coherent channel

Q%Ving the common literature (see above) in mind, this tesul
omes rather unexpected and further research effort seems
Eréomising. However, explicit code constructions haveadse
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code. This turns out to be due to some higher resolution of tteenoise ration)p. The (ergodic) channel capacity is defined
coherent channel receiver, reflecting the information tego by the supremum of the mutual information
relation between the system designs.
Further insight on the performance is obtained by local-anal ¢ — L . _ 1 .

g p Yy C=—supl((X,H);S), resp.C = —supI(X;S) (3)
ysis of diversity, leading to the overall picture of spacedi p(S) T ps)
coding as a constrained sphere packing problem. It reveals ,
additional structures not obvious from the traditionalrmaf or the coherent (resp. non-coherent) channel, and we define
view, proposing high performance design criteria (Coriolus the rateR of the codeC by
IV.2, IV.4) and adding a further estimate (Proposition & 1
the diversity embedding. By the way all results are obtained R = = log|C| 4)
the spirit of geometrical methods in space time coding theor

The remainder of this work is organized as follows. Sectiohhe normalization byt /T" is merely a convention to have the

Il introduces the basic models for the channels and codiRlpck lengthT as a free design parameter of the code, such
spaces (with emphasis on their geometrical structuress fixhat codes with distinct block length are comparable.
notation and conventions used throughout this work. Sectio
Il defines diversities for the coherent/non-coherent clehn )
cases as our fundamental performance measure and analfses0ding spaces
their interrelations, culminating in the embedding andaiiec  Hochwald and Marzetta [14, Theorem 1 and 2] have shown,
position results mentioned above. Section IV focuses on thgt signalsS of the form S = —L_®& are optimal with
local analysis of diversity and the connection to the sphelrgspect to the channel capacity nfdue to the central limit
packing problem, explqring its consequences. Finallymam theorem tending ta”, defined below, wheil” — o0), if
results will be summarized for concise reference togeth®r Wina receiver does not know the channel. More precisely one

remaining open questions. hasT > n;, £ = diag(e;) € C™*™ with ¢; non-negative,
Ee? = T stochastic independent frof, obeyingd'® = 1,,
Il. CHANNEL MODEL AND CODING SPACES (nt xne-unit matrix), ® therefore being canonically an element

4 : C ,

In this section the basic channel model will be presente f'thhe C?dr?halex St;uefel rganlfold/%T delflmezdhbelo/v_l\_/. In_[2] 27

leading to the Stiefel and Grassmann manifolds as codi chwa arzetla, and more generally ~heng/ise in [27,
mma 8] have shown that the optimal energy allocation

spaces. These spaces will be introduced with emphasis on t th ; | toticallyoné — /71, th
topological metric structures induced by the maximum like2 '€ antennas equais (asymptoticallypné = , thus

lihood receivers. The geometric relation between the apdin T

spaces is precisely expressed by the principal fiber streictu S=4/—0o (5)
which is also introduced here. Although the geometric terms T

used in this work will be defined (as far as it seems necessar . _

to understand the concepts), the reader who prefers rigorz?f ne 2 np, T 2 2n,. The signal§ = \/nth) then carries
definitions is invited to consult standard text books e.g],[2 the total energy| S|z = T, thus the transmitter sends with
[23] (manifolds), [23], [24], [25] (homogeneous spacesg Liunit power per time step. In this case the mutual information
groups), and/or [23], [25] (principal fibers). For the pautar (ergodic in the channel realizations).X ; S) depends only on
case of the (complex) Stiefel and Grassmann manifolds K¢ subspace ifC” spanned by the columns @, not on

introduction to their real counterparts aimed at non-sists  © itself [27]. This is reflected by the fact, that scalings and
is [26]. linear combinations of the columns &f are indistinguishable

for the detector, when the channel is non-coherent. Thexefo
these transformations cannot carry any information andrvie e
_ . . ~upwith signalsS € /L G¥ ., GY, ;- denoting the complex

We consider the Rayleigh flat fading MIMO (multipleGrassmann manifold ofi,-dimensional linear subspaces of
input multiple output) channel without channel knowledgeT
at the transmitter and maximum likelihood decoding at the oy the coherent channel the capacity has been calculated
receiver as described in [14] (with normed expected POWBY, Telatar [28] to
> E|s;;|> = 1 per time step,i = 1,...,7, E denotes
expectation):

A. Channel model

Co := Elog det (1 + ﬁHTH) (6)
X=\pSH+W, T

n nexn n @)
S =(siy) €CT*™,  HeC" ", X,WeC™™ Assuming the same energy allocatién= /T'1 one can jus-

whereasT” denotes the coherence time of the channel (respdY: that now the asymptotically optimal signal space dstss

tively the block length of the signalsy,, n, denote the num- Of signalsS € \/nthn“f,T-

ber of transmit, resp. receiver antenndg,~ i.i.d. CAV(0,1) We focus on both signal designs in this article, sometimes
is the noise H ~ i.i.d. CN (0, 1) the channel matrix and, X  called unitary space time modulation in the literaturer@nt
denote the transmitted, resp. received signal with SNRhéig duced in [2]).



C. Coherent channel: The Stiefel manifdlgiT the metricd remains invariant under left or right multiplication

The (complex) Stiefel manifold defined by of its arguments with unitary matrices (also denotededs
c . invarianceresp.right invariance:
Ve pi={®e ™ |0l =1} ) - .
d(Udv,U¥v) = d(P, ¥ 16
is diffeomorphic to a coset space with respect to the unitary (Uv, U0) (®, %) (16)
group U (T') of T-by-T unitary matrices: This property is one motivation for the geometric picture

C o 1 o ~ N1 of the Stiefel manifold as a homogeneous space with its
Vo, (T)/(o U(T—m)) , 2=(2,29)(g) (8) corresponding left and right actions. Furthermore for each
whereas’é means ’diffeomorphic to’. From this equivalencesingular values; holds
We_obtam . 152 = %Uf(ﬁ) B l/\»(NA)
Dy, 1 = dimg V,; 7 = dimg U(T') — dimg U(T — ny) et
B ’ Ai(1="@TW)) =1 = Ay mia (@)
= Nt (2T — TLt)

(9) Whereas*M :=1/2(M + Ml) denotes the hermitian part.

6,2

(17)

for free. Since the elements of the Stiefel manifolds are
dimensional orthonormal bases, they are caligeframes D- Non-Coherent channel: The Grassmann manif6fd -
Geometrically the coset representatronw,ﬁj is interpreted  The (complex) Grassmann mamf@lth is the set of all

as a so-callethomogeneous space nq-dimensional (complex) linear subspaces(8t:
7TU
<U(T) Ve UT — nt)> (10) G o ={(®) |® eV 1} (18)

Thi that each € VC . is the | ‘ oct whereas(®) denotes the column space @& Since® —
IS means that each € v, r IS the Image ot a projection (®) is a projection invariant under afl;-by-n; unitary basis

v fro_m 50”?8 u_mtaryT by-T matrix U (in th? coset repre- . 5nsformations we get the coset representation
sentationr{ is simply the projection on the first, columns

of U = (®,8*)) and for each®, ¥ € V. ;. there existan G , =~ (T)/(U(S”) U(To_m)) ,(B) =30 (19)
unitaryUgg With U = Ugg ®. The latter property is obviously )
fulfilled and called d@ransitive left actiorof the group/(T) on  (®* := (1,0)®) and

T (the defining property fol/, T being a homogeneous
space) while the former property means thdt is invariant
with respect to theight actionof U (T — n,) on V, .

Dy, 1 :=dimg Gy, 1
=dimg U(T) — dimg U(n;) — dimg U(T — ny)

As a linear algebraic convention used in this work, eigen- =2ny(T — n4)
values); and singular values; of matrices will be arranged (20)
in decreasing order, thug > --- > \,,,ando; > --- > o,,.

Note that the coordinate representati@) = ®®! " holds
only locally in general (since it requires! to have full rank),

but it turns out, that this representation covers all butteofe

measure zero and we abandon this distinction between local

(11) and global properties in the sequel and drop the distinction

betweenGE . and its coordinate domain.

whereasY = ,/pZL \I/H+W is the received signal. Throwing Again we have a geometrical reformulation in terms of the

away the noise term allows a formulation of a code des'é}omogeneous Space

criterion in the signal spacéfC 7 induced from the ML oz @

receiver: The maximization of the pairwise distandegjiven UT) = Gy 3 Ulma) x U(T =) (21)
whereas the ftransitive left action now read¥) =

by
U(¢><\p> <(I)> = <U< \1;>(I>> (eg ChOOSdJ( DY(T) = Uq)\p).
(12) The projectiony is now invariant with respect to the com-
bined right action ofU(n;) x U(T — n;), because not only
where we have set the orthogonal complement of the columns dnhas been
_ neglected, but also the particular choice of the spanning
A=0-0 B (13)  frame: Each(®, ®+) (4 9) represents the same spgde for
7:=(F1,...,0n,), 0i:=0i(A) €]0,2] (14) arbitraryu € U(ny), v € U(T — ny).
To simplify matters let us assume, < 7/2 whenever

A codeC" for the coherent channel model is given by
discrete se€V = {®;} C V, T At the receiver the maximum
likelihood decision reads (see [2])

Py = arg mln
‘IEC

d(®,0) := A =

Thus coding corresponds to a packing problem on the metric

space(V,C ., d)¥. Note, that by we are in contact with the Grassmann manifold. This is no
& restriction, since fom, > 7'/2 we can always switch to the

oi(U(® —¥)v) =04(® — V), Yyeu(r),vev(n,) (15) orthogonal complement of the subspaces under consideratio
Given now two element$d) , (V) € G, ;- then there exist

awe will see in section IlI, that this is only an approximatiohthe design L
criterion, but the importance of the packing gain will beeontear in section "t principal angles0 < ¢, .S s < 0, .S m/2 betweeh
v (®) and (¥). They are defined successively by the critical



valuesarccos|<wv;, w;>|, i = 1,...,n; (in increasing order), results are geometrical in nature rather than linear algebr
of (v, w) — arccos|<v, w>| where the unit vectors, w vary but only in the geometric context it becomes clear, that rey
over{vy,...,v;_1}+ C (®), respectivelfw,...,w;_1}* C not obvious at all, since they relate distinct metric stiues.
(W), compare [29]. The components of the vector of princip&lor the Stiefel manifold the relevant metric structure has
angles? := (¥4,...,9,,) can be computed by the formulaalready been defined in (12) and for the Grassmann manifold
(any representing,;-frame will do) [29] we will define it next.
We consider code€“ ¢ G¢ . always as discrete subsets

cosd; = 0:(2"Y) (22) o V,C ; and the maximum |Ik€|lh00d criterion for the non-

An important application of principal angles on some glveaoherent channel receiver reads now ([2])

air , with principal angles? is, that due to the
pair (), (V) principal ang \/T%@XH (25)

transitivity of the unitary group action there exist an anjt PuL = arg max
and inU (®) = (U®) one can choose a basis such that wehereasX = ,/pnlt W H+W is the received signal. To obtain

U, such that¥ (say) can always be translated irith) = U¥ e

end up with the canonical representingframes a design criterion in the signal spac, ;. we throw away
(cos ;) the noise term (as in the coherent channel case) and pass from
U, = <1) , & = | (sindy) (23) VHtoVU e GSMT C VgT (this operation does not change
0 0 the column space o¥). Setting
(where (cos ;) := diag(cost;)i=1,....n, € R™*™) for the A:=9Tp (26)
translated space§l,) = U (¥), (®y) = U (P). Note, that il 22)
the demand tachoosethe appropriate basi®, in U () is A7 =Y 07(A) =Y cos® ¥ =ny — »_sin®d; (27)
mandatory, in general there is @€ U(T) which translates i=1 i i
the n;-frames¥, & simultaneously intolg, ®q. (note that (27) does not depend on the choice of the repre-
sentingn,-frame, thus represents really an entity @ﬁhT),
E. The principal fiber structure?}’ and

The natural relationship between the homogeneous spaces 2~ (@1,---,0n,) , 0 1= 0i(A) = cos; (28)

V2 . andGY, ; is subsumed in the canonicafincipal fiber the ML criterion demands the maximization of the pairwise

bundlestructure distances
PY = (VE 1 e 29 G 1 U(ny)) (24) =V — A2 = /tr(1 - ATA
which (locally) embedanhT into V, nt’T by choosing a rep- (29)
resentingn;-frame® which spans the subspa¢®). However = Z(l - gf) = Z sin ¥,
there remains the freedom of multiplication with arbitrary i=1

unitary matricesu € U(n;) from the right (all of them have
the same image under the projectia}i), and for practical
applications it is necessary to specify a unique choicedfor

Formally d is defined on all oﬂ/‘D . but independent of the
choice of the representing;- frame as already indicated. Of
andu, given (®) (simultaneously for all®) € GC . not onl course, it is a metric in the strict sense only as a function on
U, 9 Y ne, T Y % . (known as the 'chordal’ distance, compare [30], [15]),
for pairs as in (23)). But locally this can always be ac:h|evet
rnlng again the coding problem into a packing problem in

and we do not want to go into details here. The term "princip
T d) It shares the invariance properties of the coherent
fiber bundle’ means a generalization of the term 'homogeseo ”t

Channel metrial, but satisfies even more:

space’, where now thiotal spaceVC . ho longer need to be
a group and théase space’}C risa projectionr, of the d(UPv, UVw) = d(P, V) (30)
total space which is invariant under a right actionlofn;).
The set of all element®u is called afiber over (). by

This geometrical point of view makes clear, that we can g, ((U®v)f(UWw)) = 0;(®T0)
consider codeg® C G‘D o for the non-coherent channel as
discrete subsets df¢ T |n virtue of the local embedding of IIl. PERFORMANCE ANALYSIS DIVERSITY
G, 7 O V) 7. But one motivation for the introduction of In practical settings, wherge, T < oo, the receiver metrics
aII these perhaps unfamiliar geometrical terms is to (;Jarlf 3 fp| 0 be th 9 | dﬁ’ d it Denoting th
the relationship between the coding spaces, i.e. that there all to be the sole code design criteria. Denoting the
is no canonical representation 6F in VCT In practical palrW|se error probability of mistaking one symbol for amert

applications this peculiarity is often overlooked, sinoenton at the receiver generically ag,; one gets the union upper

) VUGU(T), v,weU (n¢) (31)

bound
mathematics software packages already use certain conven
tions when representing subspaces in terms of singulaevalu |C| Z Z B (32)
decompositions. Furthermore we will see that the unitafty le i

and right actions on the coding spaces lead naturally to tftg the exact error probability. This section deals with the
diversity embedding results derived in the next sectioreseh pairwise error probability Chernov bound, more precisely



with the diversity, which is essentially the reciprocal of thewe find generically

Chernov bound. It turns out, that the receiver metric caiesi ne
with the first order term of the diversity and the highest Div = Zsigi (42)
order term leads to the so called diversity product (further i=0

analyzed in section IV). Adopting the diversity as the majofne first and highest order coefficient of this polynomial are
performance measure, section IlI-A investigates the_cdnme of particular importance, since they dominate the diverisit
between non-coherent and coherent channel designs aan_§|OW and high SNR regime respectively. They are called

consequences for code design. For convenience we fix the Rfersity sumanddiversity productespectively, and are given
(®, ) of code symbols throughout this section and suppregg

their notation as function arguments.

For the coherent channel case the pairwise error probabilit d=/s1= || (43)
has been calculated in [2] to Pi=\/Sn, =01 Op, (44)
P(®,0) = Z Resuy—ia, The diversity sum is our familiar metrid = ||&|| = [|A]|-

{as} (12), resp.d = ||o|| = \/tr(1 — ATA) = |sind]| (29). The

n (33) diversity product acts as a regularity criterion for the ipos

semidefinite matrixATA, resp.1 — ATA: In the coherent
channel cas@? = det ATA > 0 is known as diversity criteria

1 A 1
w12 H [plch(MQ—i—oz?)

i=1 ng

7:>0 (resp. rank criteria or determinant criteria) in the litera (e.g.
with a; := /3 + g7ysz- Analogously for the non- [L]). In the non-coherent channel case= det(1 - A'A) =
coherent channel case holds [2] (1-g?)...(0-an) ® sin?9,...sin%9,, > 0 measures

the positivity of the principal angles betweéd) and (¥).
P(®,¥) = Z Resy=a; All terms 3;,, resp.s;, in the diversity expansion possess
{ei} the invariance properties induced by (15), resp. (31). &loee

ny (34) the analysis in this section applies to all terms in (42) dred t
result can be stated in closed form for the full diversityhea
than only to its first and highest order coefficient.

gi< Specializing (42) to the non-coherent channel case, one

with a; = /1 4 —1+@T/n:) checks easily that the coefficients are formally defined én al

=tV 4T (pT/ne)?(1=af)” C i i i

For both cases the we have the Chernov bound of V... r, but independent of the choice of the representing

n.-frame. Note that the coherent and non-coherent channel

1 (5 " diversities are formally similar due to (42), but the cotsing
P< 2 (H [1 T QUﬂ) (35) singular values (14), (28) reflect the underlying topolagic
=1 structures induced by the maximum likelihood receiverg,(11
whereas (coherent channel) (25) (resp. the metricd, d). And these structures are entirely
0= 5 Z_T (36) distinct.
U
0; = 0y (37) A. Embedding properties
respectively (non-coherent channel) Now let us investigate the relation between the non-colteren
s o and coherent channel diversity quantities. From the inferm
0=0:= Y _ (P2 (38) tion theoretic inequality (X; S) < I((X, H); S) between the
- o+1/4 41+ p%) corresponding mutual informations we expect such a relatio
5 ' satisfied by the diversity. The ranges fer(14) ando (28)
Ti =/ l1-g; indicate, that the coherent channel receiver may benefi fro

The term in parentheses in (35) is called (pairwise) ditgrsiSOme higher resolution’, but if and how this carries over to
n the diversity is not obvious and requires a rigorous probe T

Div = H [1 + 901-2] (40) investigations of this section give an affirmative answethsit

- conjecture.
=1

and we take it as our basic performance measure for codgfslz’y a Sfilr?rr];gblejcsztetgft?]zt?ttl)%?sle;?u‘? ?Zeé]':l)nZs:[he fiber minima
Rewriting Div as a polynomial inp requires the use of ° °L Wi P ! G

elementary symmetric polynomials defined fymg* = 1, adist, (D, V) := min 5, (B, 0) (45)
SYmM™ (T, .., Tn,) = Sop (me\ Ty, = Dop o (me) Tiy - - Ti ! dery T (@))
y 7 1, s Png Ije(jt_) I; ]je(jt) i1 i lpeﬁv—l(<\1}>)
(with (r;c) = { (i1, 0d5) ENV |1 < iy < - < iy <)), . e
j=1,...,n: With the abbreviation Then we obtain
;= sym;?t(gf,...,crf”): Z Si‘ 41) Lemma Ill1

Le() Let (®),(T) € GS,,T separated by principal angles



ﬁlw"aﬁnf Thenvhe(mj

sdist; (®, ) = |27 H(l —cosVp,—it1)

icl;

(46)

holds.

Proof:

Due to left invariance of; we can switch to the canonicaj-
frame base®, 9 (23) ofU( ), U (D). With &g (u) := Pou
(u € U(ny)), running through the fiber oveld,), A(u) :=
®o(u) — W, and 2 A(u)TA(u) = 1—"((cos ¥ )u) (recall, that
(cos¥;) = diag(cos ¥;)i=1...n,) We have

53 (@o(u), ¥o) = H i (Au
) H 2{1— Ay [((cos 01)u)] }
iel;
Y [T {1 =i (eost} - @
_y ﬁj{l o (eos 1)
=2 lﬁj(l —cos U, —it1)
iel;

where(x) comes from the general inequality

Ai((4)) < ai(4) (48)

devoted to Fan-Hoffman in [31, Prop. 111.5.2].= 1 achieves
equality in(x) and this completes the proof. [ |
In particular we have the fiber distance

ddist(®,¥) :=  min  d(P, )
very, (@)
(®))

= | ) sdist], =
1 1

Tery ™"

\J 2 i(l — cos ;)
i=1

(49)
and its analogon for the diversity product
pdist(®, ) := min  p(P, V)
veny(2))
vend (V)
(50)

nt

2mt H(l — cos ;)

i=1

We observe, that the fiber minimedist; for each given
pair (¢, ¥) are realized by the same chm(;@o, Uy), which
justifies the definition

sdist; (@, W) := > sdist] (@, V) (51)

Le(y)

Vvsdist; and pdist =

(thus we have in particulatidist =

y/sdist,,,) leading to

Corollary 111.2
For any pair () , (¥) € Gf, ;- we havev,_,

§j(q), \IJ) S Edistj(fl), \I/) S Ej(q), \IJ) (52)

Proof:

The second inequality holds by definition adist. So let us
turn to the first inequality and denote the principal angles
between(®) and (¥) by ¥ = (91,...,79,,), 0 < 9; < 5. We
havegi, = [l sin? ;= [Lies, (1 —0052 ;) andsdlstl =

27 [Lics, (1 = cos¥n,—i1) = [T;es, 2(1 — cosUn,—i41). For
any0 <9; <3
2cost; — cos?V; <1 (53)
holds, thus
Sy, < sdist;- (54)
with I = (ng —i1+1,...,m —i; + 1) for eachl; =
(11,... i), and by
2 (54) . 2 — 1 .2 — 1.
5; = Z§Ij < sdlstlf = Z sdisty = sdist;  (55)
the claim follows. [ |

Given a functions : C x C — R, let us defines™®» .=
mincxc s. Then we state

Corollary 111.3

s < sdist" < s (56)
(unfortunately neither there seems to be a canonical way to
determine the pairs of points, which realize the minima, nor
whether this could be achieved simultaneously for eachef th
guantities above by a single pair of points)

Proof:
Corollary 111.3 is an easy consequence of Corollary Ill.2r F
each inequality the proof goes the same, so let us take two
functionsf < F, X x X — R, X a discrete set, for brevity.
Then there are two cases
1) 7% = f(z0,90) < F(z0,%0)
nothing to do

Fmin and there is

2) foin = f(z0,y0), but F(zo,y0) > F(z1,y1) = Fmif‘
But then still fmm < f(Il,yl) < F(Zl,yl) = prmmn
holds.

||

On the metric level (the diversity sum) this inequalities\pde

a distance gain due to the channel knowledge. It increages th
resolution of the detector and allows the receiver to s¢para
points better than the non-coherent channel receiver amld

d < d, or equivalently the unit spheres with respectdo
occupy smaller volume than the corresponding (embedded)
unit spheres with respect té, thus one can pack moré
spheres intoV‘D . than d-spheres. But due to the famous
estimate (48) we have proven a considerable stronger result
not confined to the diversity sum, but rather to any coefficien
in the diversity expansion (42). Thus we are able to relate
the inequalities derived so far to the diversity as a whole:



Comparing the 'effective’ SNRg (36), o (38) in the diversity
(42) demands one additional estimate (provided n;)
T

4 o) T
—p=—1 <= = <0 57
PQ 1+pnlt_nt e=¢ &7
thus we have
Proposition IIl.4
For any pair () , (V) € G,
Div(®, V) < Div(®, V) (58)
holds.
Proof:
The proposition follows directly from (52) and (57) ]

Moreover for both parts the code design is easier to solue tha
in (V,C 1, d): In U(n,) there are many solutions (i.e. codes) in
the common literature, e.g. the Alamouti schemefpr= 2,
orthogonal designs fon; > 2, quasi-orthogonal space time
block codes, and many more. The Grassmannian part is also
simpler (not only concerning dimensions but also) in strcest
because the 'chordal’ design meticis geometrically more
natural than the Euclidean distance measi(ia terms of their
relation to the natural geodesic distance [16]), thus geome
methods may apply. Also packings (th,T’d) are already

in the focus of current research, e.g. [30], [15], whereas
[30] also contains explicit constructions for packings fre t
(real) Grassmann manifold. In [32] a differential geoneetri
connection (based on [16]) has been developed to construct
space time (and space frequency) codes for for the coherent

So we conclude, that the coherent channel maximum likend non-coherent channel case. Further research [17] led to
lihood receiver applied t&€“ has at least the diversity asspace time codes with reduced design complexity by utiizin
the non-coherent channel receiver, the diversity growss THIL.5.

approves the information theoretic inequaliffX;S) <
I((X, H); S) motivating our analysis.
Having explored the relationship of the embeddﬂ?ﬂqT C

Remark 111.6
A related question arises, when one considers the task of

V., let us come to a somewhat complementary scenario, 9iven a codeC”, does there exist a code" with the

which offers the possibility of coding complexity reductio
Consider a single fiber ové®). Then, bydw = (&, d4) (§ ),
there holds a special kind of 'vertical’ left invariance nmely

EI]' (q)u’ (I)’U) = EIUJ (u’ ’U) ? v]je(“jt) ’ vu,’UGU(nt) (59)

where the right hand side is evaluated if{n;) = V,ff,nt.
=2

Analogously we define for the special caBe= n;: oY : &
57 = lee(n}t)(ég)? Div’ = >, 5Y(2Y)" and we arrive
at

Theorem I11.5
Given code<’” c G c V,¥  andCY C U(n), then
the composed codg” c V,ff,T given by

cVi=cY-cV={du|®eCcucc’} (60)
satisfies
ST > min{sdisty™, sV ™Y Vi ., (61)
and , ——
Div > min{Div™", Dip¥ ™iny (62)

holds, wherea®iv :— L)i5U (pV)? (thus the power

i)

constraint factor, / nlt sharpens the estimate).

nt

Proof: The theorem follows directly from Corollary
[11.3, Proposition IIl.4 and the definition ofdist as a fiber
minimum. [ |
Therefore the code design splits up into two parts: Catfes

represent the familiar coding problem for the non-coherefar the combined codé" = C%-CY in

same rate but better performance tiZai? Concerning the
diversity sumd a partial answer gives [16]: The transmit
power constraint sets the requiremgpt- 4™ > V™.
Since there exist a monotonically increasing lower bound
for gmin whennlt grows (Proposition 1.1) this requirement
can be certainly fulfilled. This again emphasizes the need
for coding strategies in the general coding spab’§§T,
GS, 1. T larger thann,. However, it remains an open
guestion, whether we can achieve the goal by composed
codes of the forn¢¥ = C% - CY.

Remark 111.7
A conceptual simple (but computational complex) embed-
ding of G, . into V,C ;. is given by the parametrization
of G%T with (so-called ’horizontal’) tangents# =

0-5"), B € ¢T-m)xn in its total spaceU(T).

In a recent article [21] it has been shown, that coding
for the non-coherent channel is under certain assumptions
equivalent to coding on the horizontal tangent space, with
respect to the coherent channel diversity ME,T_M.
Combining that with Theorem IIl.5 we can roughly state
this correspondence 357 ,._,, C G, C V,¥ 1, which
gives rise to a sequence. — C} — C%, — CYy — ...

of codes with increasing block lengthn,, i =1,2,...

IV. EXTREMAL PROPERTIES OF THE DIVERSITY

In this section we examine the distribution of pairwise an-
gles inC¢ to find criteria for maximum diversity in particular

T y/C
77 Vi, - We focus

channel corresponding 8%, ., which has smaller dimensionon the diversity sum and diversity product, representirg th

as the general problem iVn‘E,T. The codeCY represents a
coding problem for the coherent channelliifn;) = V,C

ng,nt’

contributing the dimensions left by, " ;. =~ GT . x U(n;)

most important diversity quantities (since they domindte t

small and high SNR regime of diversity) while still being
simple functions of the principal angles.

locally. So both parts represent a somewhat smaller codinglo get some first insight into the interplay between di-
problem with respect to the dimension of the signal space®rsity sum and product (with respect to a fixed p&ird



of code symbols) we exploit the homogeneity of the elesmooth, of course. In order to apply the classical Lagrangia
mentary symmetric polynomials. For both coherent and noformalism of constrained optimization problemsi¥+ to the
coherent channel case it is quite natural to whte= < present situation, we must convince ourselves, that the non

ol

§i = popm = sym,;(6%,...,62,), The importance of this smooth edges and the/2-facet of © do not interfere. Our
factorization arises from the identity = ||o||, thus we can next task therefore consists of an appropriate decompositi
now write . pf O into s_mooth pieces, which decompqse the optimization
o A2\ ~ into a series of smaller tasks of one single type, solvable
Div = 2 5i (@) (42 simultaneously ifR!, I < n, (formula (67) shows the resulting
i=

problem formulation).

which emphasizes the intuitively obvious fact, that s@lin \ye need a little bit more notation. L&. == 6\ H /2
of ¢ (resp.p) behaves reciprocal to scaling of the distancegp 90 := 6.\ O the C° boundary manifold 0f® VT\r,ith
Moreover, we see that the diversity scales (term wise) witfe problematic facet removed. For= 0, ...,k the faces

(an appropriate power of) the metrié, which means in cqnained ind. of dimensionl are given by
particular that the task of maximizing the diversity belave

in its higher order terms (especially the diversity prodllige oMo, =
a constraint on the packing problem determined by the divert 0 = ¥, = --- = 9,,
sity sum, contrasting the impression one might have gotte
by considering only the Chernov bound (35), which seem
dominated by its highest order term. Consequently we have : pi=i—1..ny—(—i+1)
control p constrained on the unit sphefg. In summary the
homogeneity property (42’) scales all orders of diversity b
the pairwise metric distances, turning the diversity osder2  thus9()©_ consists exactly of those faces @, which are
into local quantities. Thus maximizing diversity corresde given byp; (possibly= 0) zero angles followed by 'blocks’
roughly to locally maximizing the diversity product whileeach of equal nonzero angles, in increasing order, in pdatic
globally maximizing the diversity sum (constrained packind®e_ = {0}, 9")O_. = ©. Each face?VO_ is a smooth
problem). The behavior of the diversity product on largdessa submanifold 0f9@ ., with (0O .) = 9-Ve_ andO. =
becomes unimportant due to the contributions of the lower, 0@ . The tangent spaces are
order terms. Let us therefore perform a Lagrangian analysis
for the diversity product constrained on the unit sphere. 7T’ (3(1)@<) =
Lagrangian analysis: The non-coherent channel diversity
sum and product and the corresponding lower bounds for th
coherent channel analogues (by embedding), are functibns
type H(9) = Y h(¥;) or K(9) = [[%, h(9;) with either
h = sin? (for d? (29), p* (44)) orh = 2(1 — cos) (for ddist> Then we have
(49), pdist? (50)). Their domain of definition is the closed
simplex© of principal angles (see figure 1) Lemma IV.1
O:={0=Wr. . 0n) | 0<O <o <0, <2 ) (63)  CVeNA) = 5 k). K(0) = 11,2, hv:) on O
2 with h € C°°([0,7/2[) (this means, thak is differentiable
(the open simplex being@ = {9 € R™|0 < ¥ < from the right in0) and 2’(0) = 0. Then forl = 0,...,n;
- < ¥, < w/2}) but since the principal angles vary

<Upy1 =" =1y, p<---<p

<Upg1 =" ="1Un,

i €R
/\i(epi+1+"'+epi+1) p1 < <pr<DPiy1 =1y
pi=i—1..ng—(l—i+1)

grad H‘a(z)@< eT (6(l)6<) (64)
grad Ko € T (a<l>®<) (65)

thus restricting the gradients remains intrinsic.

Proof:

We havegrad H(9) = (b (V1),...,h (9,,)). Sinceh’'(0) =0

the symmetry ofH ensures

gradH|6(l)®<(19) = Zé:l h/(ﬁpiJrl)(e;DiJrl +oeee epi+1) €
A EIEI T (0Ve.), with A; = B (9p,41). Similarly, grad K (J) =
02040608 (' (9:) [T, (95))i, thus grad K pme_ (9) = 0 (for py >
Fig. 1. © for n; = 3 0) or grad Kjpne_ (9) = Yoy Milepa1 + - + €p,y,) €

T (06 .) with

like the identity mapid for 0 < ¥; < 7/2 but extend to \; = h’(ﬁpiﬂ)h(ﬁpiﬂ)mﬂ*Pi*H#ih(ﬁpﬁl)PM*Pi. [ |
7 —1id for 7/2 < ¥; < = (considered as a function on the The lemma ensures, that the Lagrangian functiafiak
aperture angle), the functioh (i.e. 1 — cos) fails in general f — \(g — §) on a neighborhood 0® for critical points of
to be differentiable transversal to the closed fagt,, of f obeying the constraing = o (f,g either H or K, § € R)
© containingd,,, = w/2. Transversal to any other edgeis applies to the bounda@© .. Sincef andg are not necessarily




differentiable transversal tél; », extremal points ir® lie in  Conclusion 1V.2

the set{g = 6} N H,/» U O N{DF = 0} (recall, thatn Locally the code points @“ for the non-coherent channel
has higher precedence thanand D denotes differentiation). have to be distributed with as many of their pairwise
For a more unified treatment we defi@!) := {0 < ¥; < principal angles to be nonzero and equal in modulus as
- <9 < w/2} (in particular©(® = () and©™) = ©) and possible.
recall, that on the one haryj g are differentiable tangential to o .
H,, and on the other han@' ' U {0, = --- = ¥,,, = 7/2}, In _prlne|ple, the same holds fer the coherent channel, if we
I =1,...,n; — 1 exhaustsH, ,. This leads to the following con5|derp andc_l as functions ofz: The maximum diversity
recursion scheme: Fér=0,...,n; set product is attained fory = -+ = 0,, = 5, §° = §/ny,
p? = %" = (§/ny)™, but it seems difficult to characterize all
) ® € S42(6) subjecttor; = ...5,, = s. Letus embed® into
HO W, ..., 0 Zh +h(3)(n —1) Ve o inEst()aad and investigate the question, which conditions
(66) have to be imposed 0@ in order to achieve some diversity
KO (O1,...,0 Hh h(Z) (nt—l) gain in terms ofddist and pdist.
ddist?
o|5d2(5) B
and £, g\ given by eitherd " or K. Then the extremal For the metric fiber distancédist constrained orf,;: () the
points in© lie in the set Lagrangian functional readB(J) = ddlsto(ﬁ) — Ad5(0) —
ne §) = 2k — 23, cos; — A3, sin®9; — &). Again we have
U ({DF(” =0}n8Y U = =0, = g}) 67) 0 <{5 < ny, ;}_ [n; — &] and from (67) we now get for each
=0 ledl,...,n

whereasF(!) := () — \(¢{V) — ). Furthermore, for mono-  (pr® = 0} N QY = {g(l) _ 5} A
tonically increasing or0, /2] and zero a0, the conditions

g = ¢ forces§ € [0,h(Z)n] (resp.d € [0,h(%)}]) and O0=d1=--=19p -
in the first case > [n; — §/h(%)] =: I, thus! restricts to <41 < <Y< g - 00519 Vb1 <i<t
L. ne}

Let us now start the Lagrangian analysis of the diversifyxtremal pomts are contained i = ¥; = --- ;9

(resp. with the analysis of the various diversity sums anth,+1 = --- = ¢ = 60 SUbJeCt to(l — p)sin? 0¥ =
products). The non-coherent channel diversity sum/produc— (n;—1) forl =1 = [n,—4d],...,n, andp; =0,...,p1 =
(d)(p) as well as the lower boundgidist)(pdist) for the |n; — &], with fp1 = 2(! —pl)(l — cosfW) + 2(nt —-1) =
coherent channel analogues depend onlfle, )-fibers only 2(1—p;)(1— \/IT)+2(nt—l) = St — sin® (). For

(moreover they depend only on the principal angles). By |eff§<edl the functionp; — £ is monotonlcally increasing

invariance we can always assunile= () and consider the (py analyzing the derivative, where deflned) and we find
diversity terms as functions (marked with ghon the single FO = min, fp = D and 7O = max, p _ fg)
: 1 1 N 1 1

argument®, for which (®) is separated by principal anglesas functions ofi both terms turn out to be monotonlcally

¥ € © from ((3)). decreasing (by analyzing the derivatives with respeé} tmd
p? . we find
~0[5,2(8)

In order to find the maximum ofo in the unit distance  in ddist?

sphere we constralgﬁ =p5 =11, sin? on S,z (d), by setting

g = d2 > sm . Thus we get the Lagrangian functional
F(9) =[], sin*¥; —)\(Z sin?; —4), 0 < & < n;. Here we

=1 =2 (1= /T=6/m)  (69a)

0|52 (8) — *

attained in; = ... 9, = 60, sin?0 = §/n;, and

havel = [n;—4§] and from (67) we get for eadhe {I,...,n:} o ddist? _ 0 _y (1 Yy W)) +214]
0) 5 (1) W 0]5,2(6)
(DFO =0} neY = {g = 5} N (69b)
O0=v1=--=1p 5\ _ 29 v attained ford; = ...9,,_s = 0, sin® 4,51 = 6 — |6,
<0p]+1§...§0l<g _il;gsnl iy Vp1<j<l ’(9|'nt,5*‘+1:...19nt:ﬂ'/2.
From this we get extremal points with= 0 only for p; = 0, deStO S, ®)
9 = - =9 = 00 with Isin?0V) = § — (n, — 1) and Examining pdist instead ofddist we have the Lagrangian

fO = (sin® V)l = (1 — 2e=2)!, monotonically increasing F (1) = 2% [.(1 — cos¥;) — A(Y2, sin?9; — &) and
with [, therefore -
{DF" =0}neY = {g(l) = 6} N

s\™
maXPO‘ = fom) = <—) (68) gni—1
2 ( n ng—
Sa ) t 0=1, = =Up, /\:CO 3 (1 —cosd;)
attained ind, = ... 9, =0, sin“0 = §/n;. m SVj - L
1 s sin /g <1 << < 3 #J

vpl <j<li
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From this we get extremal points with= 0 only for p; = 0, attained insin? 9, = §, 9y = --- = ¥,,, = /2 (whereasf®)

9 = - =9 = 00 with Isin®#D = § — (n, — 1) and is contained inf(") when§ = 1).

fO =27 (1 — cos V) = 2me(1 — /nf—é) monotonically Ob_serving., tha_lt the minima in _(69) and (72) are monotoni-
increasing with! and therfore cally increasing ind we end up with

)= fme) = gne (1 — /1 - 6/nt)nt (70) Proposition V.5

max pdist? ‘S
In the situation of Proposition Ill.4 we have

az (6

. _ _ . 2 _
n ’(91 = 197“ —9, S11 9—5/”t ddlstlen >mlnddlbt (73)
0|2 (@2 mim)
Remark 1V.3 _ . = on, (1 _ \/—QIT“‘/M) > g2min
If we had constrainegdist on Sgq;2(9), 0 < § < 2my '
we would have gotten pdist®™™ > min pdist? . (74)
08,2 (p2 min)
5 ni — ni
— ng minl/mt min
maxpdlsto‘ Sreia(8) <nt) (71) —9 (1 —\1-p? / ) > 132
attained inY; = ...9,, = 6, 2(1 — cosf) = &/n;, by The benefit of this proposition is, that it relatefglist™™"

analogy to the case qf constrained oni. The apparent (resp pdist™™) directly tod™ (resp.p™), regardless if the
discrepancy of (70) to (71) is caused by (69b), sinaminimum distances (resp. diversity products) are realizgd
atv, = - =9, =0 ddlStO attains its minimum the same pair of points or not.

d = 2nt(1 —/1—=0/ng) on Sge (6) which yields (with Proof:

(71))pdlst0\dd1st2 5= 0/ =2 (1=/T=5/ne)™, g only left up to show the second inequality in each formula

which coincides with (70). which is elementary (setting := d2™" or z := pzmm
. respectively):
Conclusion V.4 (73) — J1—-za/ny <1—2/2ny <= 1—2z/n <

What remains is the general rule, that for= £ ”T >1 (1—2/2n,)% =1 — a/n; + 22/4n2.
(compare (36)) in favor ofpdist instead OfddlSt one (74) «— Vi—zl/m < 1—2Yk/2 = 1—a¥/m <

should distribute the pairwise principal angles i (1— 2k /2)2 =1 — gl/m 4 g2/m0 /4 u
locally to be all nonzero and equal in modulus ((40)).
This coincides with the preferred strated@8) for the V. CONCLUSIONS

non-coherent channel code. Far < 1, when the higher
order diversity terms become less important, it might
better to distribute the pairwise principal angles glolyall
to maximizeldist, thus separating points i@~ by as many
of the principal angles to be zero such that the remaini
ones attain large values.

be This work should be seen as a second step towards a
| geometry based analysis of general space time block codes,
inspired by the results in [16], opening the door to potdiytia
jgh performing space time block codes, whén > n,.
he various estimates and interrelations explored in tlugkw
assemble the following overall picture:

« Diversity monotony: The performance analysis revealed

Finally, to get an product analogue of (69) we analz;zkst0 n|ce embedding properties (with respect (ﬂg x C

constrained orb,:(8), 0 < & < 1, thus the Lagrangian reads T) of the diversity quantities (Corollaries Il1. 2 1.3,
F(9) = 2* H_(l—_ cos ;) —_(H-sin2 9; — 8) and forl € (57)) leading to a diversity growth (Proposition 111.4)
{0 ne} wé have ’ ’ in the transition from the non-coherent channel to the

coherent channel. This turned out to be due to the various

pdlst0|5 . (5)

{DF(” =0}n @(<l> — {g(l) — 5} N invariance properties satisfied by the diversity, thougd ti
. to distinct underlying topologies of the coding spaces
O=th = =1, _ 2me—1 1 — cosv; induced by the maximum likelihood receiver metrics.
. cost¥; +1 sin? 9, Moreover, for the diversity sum and product, more ex-
<Upp1 < < < 5 7 plicit estimates have been derived (Proposition IV.5).
Vpi<isi « Complexity reduction: Embeddings of bothi}"D 7 and
5 > 0 forcesp; = 0 and we getd; = --- = 9 = 0, U(ne) into V,€ ;. can be used to construct codesqu%T
sin? 9 = §, thus fO = 27 (1 — cosfD)l = 27¢(1 — from smaller pieces (Theorem 1l1.5), both of them belng
V1 = 61/1)! which is monotonically decreasing in so already in the focus of current research. The other way
e round, given an non-coherent channel space time code
min@disti‘s 0= f) = gm (1 —V1- 61/"t) (72a) and a 'small’ coherent channel code, the performance of
17 the resulting (larger dimensional) product codeIQﬁT
attained ind; = ..., = 6, sin26 = §'/", and is lower bounded by the diversity expressions stated in the
theorem. Thus the design complexity has been reduced
maxf?dist§|5 — D) = gm (1 _ \/m) (72b) to the smaller problems o6y ; and U(ny). Together
0[Sp2(9) with Proposition 1.1 this opens the door to potentially



high performing space time block codes, wHEn> n;. [14]
As already indicated in the introduction this may be of
some importance in the context of space frequency Coq%
also.

« Localization: The local nature of the higher order diver-
sity quantities turns space time coding into a constrainélc?]
packing problem. The diversity sum still represents a
major criteria, locally superposed by the diversity praduét7]
as a rigidity constraint: The optimal code in the high SNlﬁg]
regime is packed as ’'diagonal’ as possible, uniformly
maximizing the principal angles (Conclusion IV.2 and
IV.4). [19]

There are still many open issues. Some immediate will be
listed next. The explicit bounds of Proposition IV.5 arewer,,
coarse and improvements are necessary. Moreover, it weuld b
desirable to obtain further decompositions in Theorenblll.
Furthermore this work has to be related to the differentia);
coding scheme [9], which benefits from high rates compared
to non differential codes. Finally it remains the challenge
of effective high dimensional code construction (espdgpial[22
for the non-coherent channel) with low complexity decoding
properties. [23]

[24]
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ments.
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