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channels were considered in [8], and in [9], [10] and [11]
Abstract—We consider the problem of communicating over the deterministic broadcast channel was analyzed.
the general discrete memoryless broadcast channel (BC) Wit For the general broadcast channel, Cover derived an achiev-

partially cooperating receivers. In our setup, receivers g able . .
to exchange messages over noiseless conference links otdicia- able rate region for the case of two independent senders

pacities, prior to decoding the messages sent from the transtter. N [12]. In [13] Korner and Marton considered the capacity
In this paper we formulate the general problem of broadcastyith ~ of general broadcast channels with degraded message sets.
cooperation. We first find the capacity region for the case whe The best achievable region and the best upper bound for
the BC is physically degraded. Then, we give achievabilityesults  ha tywo independent senders case were derived by Marton
:gL;t;gggeesni;a;leb;?%d;:ﬁsts?:;gnscl;n:?‘:Obnotnr;;t;seatgv;oClggs.pendnt in [14], and a _simple proof of Marton’s achievable region
appeared later in [15]. Another upper bound for the general
Index Terms— Broadcast channels, cooperative broadcast, re- proadcast channel, the so-called degraded, same-marginal
lay channels, channel capacity, network information theoy. (DSM) bound, was presented in [16]. This bound is weaker
than the upper bound in [14] but stronger than Sato’s upper
|. INTRODUCTION bound previously presented in [17]. We note, however, that
while Marton’s upper bound is the strongest, it is valid only
for the two-receiver case, while Sato’s bound and the DSM
In the classic broadcast scenario the receivers decode thxgiund can be extended to more than two receivers. The effect
messages independently of each other. However, the incgea®f feedback on the capacity of the Gaussian broadcast channe
interest in networking motivates the consideration of dmzest was studied in [18] and [19], and in [20] the case of correlate
scenarios in which each node in the network, besides degodsources was considered. A survey on the topic, with extensiv
its own information, tries to help other nodes in decodingeferences to previous work, can be found in [21]. In recent
This problem comes up naturally in sensor networks, whergyaars the Multiple-Input-Multiple-Output (MIMO) Gaussia
transmitter external to the sensor network wants to dowehlobroadcast channel has attracted a lot of attention. liyitigile
data into the network, e.g., to configure the sensor arraym-rate capacity was characterized in [22], [23], [24FR][2
The concept of cooperation among receivers is also relevand finally, in [26] the capacity region was obtained.
to general ad-hoc networks, since such cooperation previde None of the early work on the DMBC considerédect
a method for increasing the rates without increasing tlw@operation between the receivers. In the cooperativedbroa
spectrum allocation. Therefore, this motivates the studpe
effect of receiver cooperation on the rates for the broadcas yn
channel. W, —1-|R—X1|—~\?v1
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The broadcast channel was introduced by Cover in [1].
Following this initial work, Bergmans proved an achieviil Broadcast Channel
result for the degraded BC, [2], and also a partial converse ) . )
that holds only for the Gaussian broadcast channel [3]; jn [gégc.eli\./e?;oadcast channel with two private messages and coopgratin
Gallager established a converse that holds for any discrete '
memoryless degraded broadcast channel. In [5] El-Gamgalst scenario, a single transmitter sends two message®to tw
generalized the capacity result for the degraded broadcasieivers encoded in a single channel codew&rt] where
channel to the “more capable” case, and in [6] and [7] hBe superscript» denotes the length of a vector. Each of
showed that feedback does not increase the capacity regie@ receivers gets a noisy version of the codewdfg, at
for the physically degraded case. Several other classesf, andY;® at R,». After reception, the receivers exchange
broadcast channels were studied in the following years. R@lessages over noiseless conference links of finite cagsciti
example, the sum and product of two degraded broadcast andC,;, as depicted in Figurg The conference messages
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of cooperating users. In our work we extend this scenario to present both an achievability result and a converse. To-
the general channel and also consider the two independent gether, these two results give the capacity region for
senders case. this setup. Furthermore, this new region is shown to
be a strict enlargement of the classical region without
C. Cooperative Broadcast: A Combination of Broadcasting —cooperation [21].
and Relaying o Next, we give an achievability result for the general BC
with cooperating receivers. This region is also greater, in
general, than the classic achievable region given in [14]
for the broadcast channel.
We also consider the case where a single common mes-
sage is transmitted to both receivers. We consider two
different cooperation strategies and derive the achievabl
rates for each of them. We also derive an upper bound on
the achievable rates for this scenario. Here we provide re-
sults that explicitly link the available cooperation caipac
to the increase in the rate of information. Lastly, we show
that for a special case of the general BC, namely when
one channel is distinctly better than the other, the upper
and lower bounds coincide, resulting in the capacity for
that case.

The scenario in which one transceiver helps a second
transceiver in decoding a message is cleartglay scenario.
Hence, cooperative broadcast can be viewed as a general-
ization of the broadcast and relay scenarios into a hybrid®
broadcast/relay system, which better describes futureamom
nication networks.

Scenarios of this type have attracted considerable atenti
recently both from the practical and the theoretical aspect
From the practical aspect, new protocols are proposed for
the collaborative broadcast scenario. For example in [B8] t
authors present a protocol for collaborative decision mgki
involving broadcasting and relaying. From the theoretical
aspect, there is a considerable effort invested in charaictg
the capacity of an entire network. This work started with
[29] and recent results appear in [30] and the following The rest of this paper is structured as follows: in sectlon
work [31], [32] and [33]. This work focuses on the Gaussiale define the mathematical framework. In sectibh we
case. A complementing approach for studying the performarghalyze the physically degraded BC, and derive the capac-
of a network is to combine the basic building blocks of #Y region for that case, and in sectidi we present an
network, namely multiple access, relaying and broadogstiﬁchievability result for the general broadcast channeh wit
and study the capacity of these combinations. The rec&Qoperating receivers. Next, sectivhpresents achievability
work on relaying focuses on extending the single relay tesuf€sults and an upper bound on the rates for the case where only
derived in [34] to the MIMO case (see for example [35]) an@ single common message is transmitted. Concluding remarks
to the multiple level case [36], [37]. Another recent resufifé provided in sectioWl.
was introduced in [38] where joint decoding was applied to
the combined decode-and-forward and estimate-and-fdrwar Il. DEFINITIONS AND NOTATIONS
scheme of [34, theorem 7]. A third approach for studying

h ; f . Kis th K codi First, a word about notation: in the following we usg-)
the performance of an entire NEWorK IS the network coding jen e the entropy of a discrete random variable (RV), and
approach sparked by the work of [39], which focuses o

P(-; -) to denote the mutual information between two discrete
tolv f the ch | codi Y5ndom variables, as defined in [43, Ch. 2]. We denote random
separately from the channel coding. variables with capital letters X, Y, etc., and vectors with

In this paper we focus on the combination of broadca%ldface letters, e.gx, y. We denote byAE”)(X) the weakly

and reIay._A relevant work i_n this context is [40], in whict} ical set for the (possibly vector) random variable see

the capacity of a class of independent relay channels Wtﬁg Ch. 3] for the definition ofA(”)(X) When referring

noiseless relay is derived. Note that the case of noiseddsg r ; ™’ : . ¢ : )

is also related to the Wyner-Ziv problem [41]. This relatibip to a typical set we may omit the random variables from the
. o ) : notation, when these variables are clear from the contegt. W

will be highlighted in the sequel. Lastly, we note that a rece

work, [42], presented an achievability result for the gcajherOIenOte the cardmalny of the f'n'te. §et with [|.A]l We use
; . . , X to denote the (discrete and finite) range &t Finally,
DMBC with a single wireless cooperation channel from onge

receiver to the second receiver. This achievable rate megio we denote the probability distribution of the RV over

shown to be the capacity region for the physically degradV\féth p(x) and the conditional distribution ok givenY” with

e
p(xly).
broadcast/relay channel. Definition 1: A discrete broadcast channes a chan-

, . o nel with discrete input alphabef’, two discrete output
D. Main Contributions and Organization alphabets,); and )», and a probability transition func-

In the following we summarize the main contributions ofion, p(y;,y|z). We denote this channel by the triplet

this work. (X, p(y1, yo|x), V1 X Wa).

« We initially study a special case of the general setup Definition 2: A memoryles$roadcast channel is a broad-
formulated in Sectionl-B: the case of the physically cast channel for which the probability transition function
degraded broadcast channel. Although the physically a sequence of. symbols is given byp(y7,y5|z™) =
degraded BC is of little practical interest, it is usefu[];_, p(y1,i,y2,:lx:), wherey! = (Ye1.Yk2, - Yen) k €
in developing the coding concept for the general Bl1,2}, anda™ = (x1,x2, ..., p).
with cooperation. For the physically degraded BC, we We shall assume the channel todiscreteandmemoryless



Definition 3: Thephysically degraded broadcast chantiel  In the analysis that follows, we assume that user 1 and user
a broadcast channel in which the probability transitiorction 2 select their respective messag&s and W, independently
can be decomposed @éy1, y2|x) = p(y1|x)p(y2|y1). Hence, and uniformly over their respective message sets.
for the physically degraded BC we have thdt— Y; — Y; Definition 8: A rate pair(R;, R2) is said to beachievable

form a Markov chain. if there exists a sequence @f{2"%1,27%2) n, (Cia, Cor))
Definition 4: An (R12, R )-conferencebetweenR,; and codes withP\™ — 0 asn — cc. Obviously, this is satisfied
R,> is defined by two conference message sEfs: = if poth Pe(f) 0 andPe(;‘) _s 0 asn increases.

{12,272} Why = {1,2,...,2"1}, and two mapping  pefinition 9: The capacity regiorfor the discrete memory-

functions, i1 andhy which map the received sequencenof |ess proadcast channel with cooperating receivers is theexo
symbols and the conference messages at one receiver in{Q R of all achievable rates.

message transmitted to the other receiver:

hiz @ V1" X Way = Wia, [1l. CAPACITY REGION FOR THEPHYSICALLY DEGRADED
ho1 @ Y5 X Wig = Way. BROADCAST CHANNEL WITH COOPERATINGRECEIVERS

We note that this is not the most general definition of a We consider the physically degraded broadcast channel with
conference, see for example [44], [45] for a more gener1‘{§|ree|ndependent messages: a private message to ea@/ler_ece|
form. In this paper we consider only conferences in whicind @ common message to both. We note that for the physically
each receiver sends at most one message to the other recefi@gfaded channel, following the argument in [43, theorem

Note that there are cases where a single conference mesdgy€-4], We can incorporate a common rate to both receiyers b
is enough to achieve capacity: for example, in sectibna replacmgl_%g, the private rate to the bad receiver, obtained for
single conference step achieves capacity for the phygicalil® two private messages case with+ I2;, whereR, denotes
degraded broadcast channel, and in [45] a single confereff@ rate of the common information. Without cooperatio®, th
step achieves capacity for the discrete memoryless mailtigaPacity region for the physically degraded BC—Y; — Y2
access channel counterpart of the setup discussed here. 9iven in [43, theorem 14.6.4], is the convex hull of all theera

Definition 5: A (Ci2, Ca; )-admissible conferends a con- {iPIEts (Fo, Ry, R) that satisfy
ference for whichR,, < C2 and Ry < Coy. .

Definition 6: A ((2"fr,27F2) 'n, (Cia, Coy)) codefor the Ry < I(X;1|U), (5)
broadcast channel with cooperating receivers having confe Ry + Ry < I(U;Y2), (6)
ence links of capacitie€';s and C,; between them, con-
sists of two sets of integersy; = {1,2,...,2"%"}, W, =
{1,2,...,2"%=} calledmessage setsn encoding function

for some joint distributiorp(u)p(x|u)p(y1|x)p(y2|y1), where

ed]] < min (||, [P0 ]], 11 D2]]}- (@)
f : W1 X WQ — Xn, i . .
o Next, consider cooperation between receivers over the-phys
a (C12, C21)-admissible conference ically degraded BC. First note that for this case, the link

from R,s to R,; does not contribute to increasing the rates
due to cooperation, and that only the link froR); to R,
does. This is due to the data processing inequality (see [43,

hig : V1" X Way = Wia,
ho1 : V3 X Wia = Wy,

and two decoding functions theorem 2.8.1]): sinc& — Y7 — Y5 form a Markov chain, any
. information aboutX contained inY, will also be contained
g1t War X Vi = Wi, (1) in Y3, and thus conferencing cannot help:
- g2: Wiz x V5 3 Wo. @ I(X:Y1,Ys) = I(X:Y3) + I(X; Ya V1) = I(X; 1)
Definition 7: Theaverage probability of errois defined as 141 42 )T A4 2210 RV

the probability that the decoded message pair is differemh f =0

the transmitted message pair: For the rest of this section then, we shall consider only a

P = Pr(gy(Wa1,Y{") # W1 or go(Wia, Y3") # Wa). communication link from the good receivét,;, to the bad
. N receiverR,» (i.e. we setCy; = 0). This implies thafils; is a
We also define the average probability of error for eacbnstant and we can thus omit it from the analysis. We begin

receiver as: with a statement of the theorem:
Pe(IL) = Pr(gs (Way, Y") # W), @) Theorgm 1: The capacny region for sendmg independent
" _ p W V) £ T 4 information over the discrete memoryless physically degda
Poy’ = Pr(ga Wiz, Y3") # Wa), (4) broadcast channelX — Y; — Y5, with cooperating receivers

where we assume transmissionrofsymbols for each code- having a noiseless conference link of capacity, as defined

word. By the union bound we have thatix {Pe(in)’ Pe(;z)} < in Sectignll, is the convex hull of all rate triplet§Ry, R1, R2)
(n) (n) (n) () U that satisfy
P < P’ + P,’. Hence, P/ — 0 implies that both

P = 0 and P — 0, and when both individual error Ry
probabilities go to zero theP?e(”) goes to zero as well. Ro + Ra

I(X;v1|U), (8)

<
< min (I(U; Y1), 1(U;Y2) + C12), )



for some joint distributionp(u)p(z|u)p(y1, y2|), where the c) Decoding Procedure:Assume first that up to the
auxiliary random variableU has cardinality bounded by end of the (i — 1)'th block there was no decoding er-
U] < min {||X]], ||I1]]}- ror. Hence, at the end of thgi — 1)'th block, R,
We note that this result presented in [46] was simultangousinows (ws 1, w12, ..., w1,i—1), (W21, W22,...,w2,;-1) and
derived in [42] for the case of a wireless relay. (s1,82,...,8;), and Ryo Knows (w1, w22, ..., w2,,—2) and
(s1,82,...,5,—1). The decoding at blockproceeds as follows:

A. Achievability Proof 1) R, knows s; from ws;_1. Hence, R,; determines

In this section, we show that the rate triplets of theorem uniquely (i1 :, ws,;) S-t.
are indeed achievable. We will show that the region defined by~ (W(2,[si), x(w01,5, 2,]5:), y1(i)) € A If there is
(8) and ©) with R, = 0 is achievable. Incorporatingo > 0 none or there is more than one, an error is declared.
easily follows as explained earlier. 2) R,s receivess; from R.;. From knowledge ofs; 1

1) Overview of Coding Strategyfhe coding strategy is a andy»(i — 1), R,» forms a list of possible messages,
combination of a broadcast code as an “outer” code used to L(i — 1) = {w2 S (y200 — 1), u(ws|si—1)) € Aﬁ”)}.
split the rate betweeik,; and R,», and an “inner” code for Now, R, usess; to find a uniqueis ; 1 € S, (N L(i—

R, using the code construction for the physically degraded 1), If there is none or there is more than one, an error
relay channel, described in [34, theorem 1]. We first geeerat is declared.

codewordsU™ for R;», according to the relay channle code 3y Analysis of the Probability of ErrorThe achievable rate
construction. Then, the codewords fBr, are used as “cloud , R,» can be proved using the same technique as in [34
centers” for the codewords transmittedRg; (which are also inegrem 1]. For the ease of description assume at is

the output to the channel). Upon receptiél), decodes both ¢onnected via an orthogonal channelg, and letX’ denote

its own message and the message/igs, and then uses the \he channel input fronk,; andY” the corresponding channel

relay code selection to select the message relayét30 .o output to Rys. Thus, R,» has combined inputYs, Y”). The
uses its received signaly’, to generate a list of possiblé™  \erall transition matrix is given by

candidates, and then uses the information f@@m to resolve
for the correct codeword. Py, v, y'|z, ") = plyr, ya2lr)p(y'|2"). (10)
2) Details of Coding Strategy:

a) Code Generation: Additionally, we select the transition matriXy’|z’) and the
) ; . ' "C input and output alphabet¥’, )’ such that the capacity of
1) Consider first the set ai/r = 2"'* relay messages. ihe orthogonal channel’ — Y is Ci». An example for such a
These are the messages that the rdtay transmits t0  gojaction is lettingt’ =)’ = {0, 1,...,2[C12] — 1} where[-]
R through the noiseless finite capacity conference link genotes the ceil function. Lettirig] denotes the integer part

between the two receivers. Index these messages byyf the real number, we set the channel transition function
wheres € {1,2,..., Mg}. to be

Next, fix p(u) andp(z|u). . l—a V' =X

2) ii(()jréeach index € [1, Mg], generate : 2 con_d|t|onally p(Y'|X') = { N :Y’ ~ " tnod (X7 + o(Chal, 2[012]) 7
pendent codewords(w:|s) ~ [[;,_, p(u;), where

wy € {1,2,...,2"}, with « selected such that/ (Y'|X’) = [Ci2] — C12. The
3) For each codewordu(w;|s) generate 2"f1 con- capacity of this channel i€, and is achieved by letting

ditionally independent codewordsc(wy,wsls) £ p(a’) = sraTy Vo' € X7, This setup is equivalent to the

x(wi|u(ws|s)) ~ [li, p(ziui(ws|s)), wherew; € original setup described in sectid+B.

{1,2,..,2nf}, Now consider the rate tdR,». The Markov chainU —
4) Randomly partition the message set foR.2, X — (Y3,Ys) combined with the condition in1Q) implies

{1,2,..,2"%2}  into Mp sets {S1,S,....Su.}, the following probability distribution function (p.d.f.)

by independently and uniformly assigning to each ., o ,
message an index ifl, Mg]. p(u, y1, 92, ¥, @) = p(y1, yo |u)p(y'|z)p(u, ).

b) Encoding Procedure:Consider transmission o3 Now, applying [34, theorem 1], witp(u, ') = p(u)p(z’), we
blocks, each block transmitted usingchannel symbols. Here have that (see also [32])
we usenB symbol transmissions to transnit — 1 message

pairs(wlyi,wzi) S [1,2"R1} X [1,2”R2},i: 1,2,...,B—1. Ry < mlD{I(U,X/,}/27Y/),I(U,}/HX/)}

As B — oo we have that the rateR;, Ry) 221 — (R, Ry). = min {I(U,X";Y") + (U, X", Y5|Y"), [(U; Y1)}
Hence, any rate pair achievable without blocking can be ap- = min {I(X";Y") + I(U;Y'|X') + I(U; Y2|Y")
proached arbitrarily close with blocking as well. Let ; and FI(X Y|V, U), (U Y3))

ws ; be the messages intended #@y; and R, respectively, .

at thei'th block, and also assume that;; € S,. R,1 has = min {C1 + I(U;Y2), I(U; Y1)} -

an estimatei, ;, of the message sent #,, at blocki —1.  Next, consider the rate t&,,. From the proof of [34, theorem
Letws ;-1 € Séi. At the i'th block the transmitter outputs the 1] we have thaf?,; decodedV,. Therefore R,; can now use
codewordx(w; ;, wa i|s;), and R, sends the index; to R,» successive decoding similar to the decodingat in [43, Ch.
through the noiseless conference link. 14.6.2], which imply that the achievable rate &y is given



by R; < I(X;Y1|U). Combining both bounds we get the rate The bound onR, can be developed in an alternative way.
constraints of theorerh. Begin with (14):

nRy < I(Wa; Y3, Wia(Y7)) + nd(PY)
I(

B. Converse Proof (a) (n)
(n) S W27}/2’Y1)+n5(P62)
In this section we prove that faP."’ — 0, the rates must n
satisfy the constraints in theorenFirst, note that for the case = Z T(Wo; Y1 g, Yo i [YFH V1) 4 mS(Pe(g)),(N)
of the physically degraded broadcast channel with coojperat =1
receivers we have the following Markov chain: where (a) f0||OWS from the fact that,, W) — (Y}, YJ*) —

(W12,Y3") is a Markov relation and from the data processing
inequality. Next, we can write

Considering the definition of the decoders @) @nd @), I(Wo; Vi g, Yar [YFH VT
and the definition of the probability of error for each of the

X" =Y — (Wia (Y], Y3). (11)

receivers in 8) and @), we have from Fano’s inequality ([43, & I(Was Y1 p|Y Y57
Ch. 2.11]) that = HY1[Y{ YY) = HYe YL Y wh)
HOVAY?) <P log, (277 — 1) + h(PY) (12) < O - OV, vE W)
2 ng(PY), <9ku> H(Yy Y] W)
H(Wa| V3", Wia (Vi) <P log, (2772 — 1) + h(P$Y) (13) = IV Y7 Wa)
2 s (PG, = I(Y1k; Uk) (18)

where the equality in (a) is due to the physical degradedness
and memorylessness of the channel, (b) is due to removing the
conditioning, and (c) is because the Markov chain makes
independent o’ ~* givenY;"~!. Plugging this into {7), we

get a second bound oRs:

whereh(P) is the entropy of a Bernoulh RV with parameter
P. Note that WhenP " 0 then 5( 1 ) — 0 and when
P = 0 thens(P! ) - 0.

Now, for R, we have that

Ry = HWy) = I(Wy: YY) + H(W, Y. 2 "
niy (Wh) = I(Wy; Y7") + H(W1|YT") nRzSZI(Uk;Y1,k)+n5(Pe(2))-

Applying inequality (2), and then proceeding as in [4] we k=1
get the bound o, as Collecting the three bounds we have:
1 2 n)
" . Ry < =Y I(Xp:Vir|Up) + 6(PS), (19)
ni SZ (X3 Y1,2|Ur) +n6(Pe(1))7 n; 1
Ry < = 1(Uy; Y- C o(P 20
whereUy £ (Y11,Y12,..., Y1 51, Wa). 2= n; (Uk; Yap) + Crz + 0(Pez”), (20)
For R,» we can write n
Ry < 251U Vi) +(PY). (21)
nRy = H(Ws) et ’
(2) I(Was Y3, Wia (Y1) + né(P(g)) (14) Using the standard time-sharing argument as in [43, Ch]14.3

we can write the averages irnl9) - (21) by introducing
an appropriate time sharing vanable with cardmahty empp

(n)
where the inequality in (a) is due t3). Proceeding as in [4], Pounded by4. Therefore, P — 0 and P’ — 0 as
we boundI(Wa; Y3') < S.°_, I(Uy; Yax). Next, we bound " —* the convex hull of thls region can be shown to be

= I(Wa; Y3") + I(Wo; Wia(Y1)[Y5) + nd(P)),

I(Wa; Wia (Y{)|Y3) as follows: equivalent to the convex hull of the region defined by
I(Whia(Y1"); Wa|Y5") < H(Wi2(Y7")[Y3") R < I(U:Ya) + Cho (23)
< n —_ ) I
= MWL) Ro < I(U:Yh) 24)

< nCia, (15)
Finally, the bound on the cardinality of follows from the
where the first inequality follows from the definition of matu same arguments as in the converse for the non-cooperative
information, the second is due to removing the conditioningase in [4]. Note however, thdt)s|| is absent from the
and the third is due to the admissibility of the conferenceninimization on the cardinality (cf. equatioi@)(for the non-
Combining both bounds we get that cooperative case). The reason is that even wi@g| = 1,
" information to R,» (represented by the random varialdl@,
nRy < Z (Up: Yai) + nCra +ns(PYY).  (16) can be sent through the conference link between the two
1 receivers. |



C. Discussion non-invertiblé). In this setup, the maximum possible sum-
To illustrate the implications of theorer, consider the 'ateZ(X;Y1), is achieved only wher/ is a constant, and

physically degraded binary symmetric broadcast chanrBHS nO information is sent td,,. When Ry + Ry > 0,
(BSBC) depicted in figure2. For this channel, theorern Pecause of the relationshifl + Ry < I(U;Y2) < I(U; Y1),
we cannot achieve the maximum sum-rate I¢fX;Y;) to

R,1. However, summing23) or (24) with (22), results in a

U X Y, A maximum achievable sum-rate with cooperating receivers of
Py Py P, Ro+ Ri+ Ry <I(X;Y7)

+min {0,C12 — (I(U; Y1) — I(U;Y2))} (26)

Fig. 2. The physically degraded BSB@y, p1 andp: are the transi-  comparing this to non-cooperative sum-rate given §),(it
tion probabilities at the left, middle and right segmentspeztively. . . . . ’

is clear that cooperation allows a net increase in the suej-ra
eby at mostC».

implies that||i/|| = 2. Due to the symmetry of the channel, th
probability distribution ofU which maximizes the rates, is a IV. ACHIEVABLE RATES FOR THEGENERAL BROADCAST

symmetric binary distributionPr(U = 0) = Pr(U = 1) = 3. CHANNEL WITH COOPERATINGRECEIVERS

The resulting capacity region for this case is depicted iar8g oy the classic general BC scenario, the best achievability

3 for the case wherd?y = 0. In the figure, the bottom line syt was derived by Marton in [14]. This result states that
(dash) is the non-cooperative capacity region, and theit@p Iy, the general BC, any rate paif;, R») satisfying
(dash-dot) is the maximum possible sum rate, which requires

that Chg > h(plg) — h(pl), where gl < ﬁE‘(fv’ }}jl;’ E;;;
2 < yX2),

p12 = p1(1 —p2) + p2(1 —p1). . o
( ) ( for some joint distribution p(u,v,x,y1,y2) =

This maximum sum-rate of(X; Y1) is obtained by summing p(u, v, z)p(y1, y2|x), is achievable.
the rate toR,, given by @2) and the maximum possible rate We note that Marton’s largest region contains three auyilia
for R.2 given by @4), and using the Markov chain relationRVs, (W, U, V'), whereW represents information decoded by
U — X —Y1. The middle line (solid) is the capacity region forboth receivers. Here we use a simplified version, whérés
set to a constant.
R, We now consider cooperation between the receivers. We
begin with a statement of the theorem:

10X;Y )

Theorem 2: Let( X, p(y1, ya|z), Vi x V2) be any discrete
memoryless broadcast channel, with cooperating receivers
having noiseless conference links of finite capacifies and
Cs1, as defined in Sectioh. Then, for sending independent

I(X;Y )+Co, information, any rate paif(R;, R2) satisfying
<
06 ) Ry < R(U),
Ry < R(V),
Ri+ Ry < R(U) + R(V) - I(U; V),
R, subject to,
> Co > 1(U;Ys) — I(U; Y5 30
105;Y ) 21 Z (A’ 2)_ (A: 1)a ( )
Ci2 > I(V; Y1) = I(V;Y2), (31)
Fig. 3. The capacity region for the physically degraded BSBC. Top,
middle and bottom lines correspond to maximum possible e@op where,
tion, partial cooperation and no-cooperation scenarispaetively. R(U) = I(U; Y1, 0)7 (32)
R(V) = I(V;Ya,V), (33)

the partial cooperation case where: C12 < h(p12) — h(p1).
As can be seen from this example, the capacity regidor some joint distribution p(u,v,z,y1,y2,4,0) =

derived in this section is strictly larger than the capagiyion p(u, v, z)p(y1,y2|)p(t|y2)p(dly1), is achievable, with

for the non-cooperation case. Indeed, summing the conitraiv € U, v € V,a € U, o € V, [[U|| < |[D=]| +1 and

on Ry, R, and R, without cooperation (equation&)( (6)), |[|V|| < ||J1]] + 1.

results in a maximum achievable sum-rate of In the next subsections we provide the proof of this theorem.

. _ . _ . 1t can be shown thaf (U; Y1) — I(U;Ya) = 0 for the degraded channel
Ro+ By + Ry < I(X3 Y1) — (I(U: Y1) — I(U3 Y2)), (25) setup implies that ifRy + R2 > 0 then H(Y1|Y2) = 0, i.e. the channel

h h d . | . d he M kfrom R.1 to Ry2 is invertible. Under these circumstances, this setup can be
where the second term Is always positive due to the Mar FB{)Iaced by an equivalent setup in which both receiversYgetbut such a

chainU — X —Y; — Y5 (assuming the degrading channel iglegenerate setup is not interesting.



A. Overview of Coding Strategy j € [1,2"2], which form a partition of ther sequences

As in the achievability part of theorert, the proposed
code is a hybrid broadcast-relay code. Here, we combine the4)

into 2772 sets.
For every pair of integer§w,ws) € [1,2"F1] x

relay code construction of [34, theorem 6] and the broadcast [1,2"f2], define the setD,, v, = 1 (u(k),v(l)) :
code construction o_f [15]. The fact that in th_ese two the@em k € Buy,l € Cu,, (u(k),v(l)) € A:(n)(U’ V)}. Here,
the channel encoding and the relay operation are performed “(n) )

independently, allows to easily combine them into a hybrid ~ A4e (U,V) denotes the strongly typical set for the
coding scheme. The encoder generates broadcast codewords, fandom variable$/ andV" as defined in [43, Ch. 13.6].
each selected from a codebook constructed similarly to the Inthe following we may omit the random variables when
construction of [15]. This codebook splits the rate between  referring to the strongly typical set, when these variables
the two users. Next' each re'ay%g(l acts as a re'ay for are clear from the context. We now have the f0||OWing
R.> and vice-versa) generates its codebook according to the (slightly modified) lemma from [15]:

construction of [34, theorem 6]. In the decoding step, using Lemma 1: Forany 2-D celB; x Cj, € > 0, andn large
the received signaly{" at R,; andYy" at R,.), each receiver enough, we have that R{D;;|| = 0) < ¢, provided that
generates a list of the possible transmitted relay_ messages p R < RU) + R(V) = I(U; V) — 2¢ — €1, (34)
and uses the conference message from the next time interval

to resolve for the relay massage. Then, each receiver uses Wheree; — 0 ase — 0 andn — oo.

the decoded relay message and its received channel output to Proof: The proof of this lemma is obtained by
decode its own message. direct application of the technique used to prove [15,
Lemma in pg. 121], and therefore will not be repeated
) ) here. [ |
B. Encoding at the Transmitter 5) For each message paifw;,w;), Select one pair
1) Lete > 0 andn > 1 be given. Fixp(u, v, z), p(t|y2) (W(kwy ws)s V(lwyws)) € Duyw,- FOr each of the
andp(d]y1), and leté > 0 be a positive number, whose selected pairs (one pair for each message pair),
selection is described in the next item. Laf"™ (1) generate a codeword according te(wi,w2) ~
denote the set of strongly typical i.i.d. sequences of [Tim1 2 @il wi (Fuwy s )5 Vil ws)-
length n, u € U™, as defined in [43, Ch. 13.6]. 6) To transmit the message pdiw;,ws) the transmitter
Let AZ" (V) denote the set of strongly typical i.i.d. outputsx(wi , wa).
sequences of length, v € V. Let S[({}]é denote the set _
of all sequences: € A" (U), such thatA:™ (V|u) C. Encoding the Relay Messages
is nonempty as defined in [47, corollary 5.11], and Consider first the relay encoding &t,», which acts as a
similarly defineS("})g for the sequences € A" (V). relay for R,;.
2) Select2n(R(U)=) strongly typical sequences in an 1) R.o-relay has a set df"“2! relay messages inqexed by
i.i.d. manner, according to the probability s’ € [172"?21]- For each index’, g?neratan"R Li.d.
. - sequences, each Wlth probabilityp() = [[:"; p(u,),
_ e yu € S[U]5 p(a) = Zx,yhyz p(U|y2)p(y1,y2|x)p(I),A andp(z) =
p(u) 0" otherwise >y p(u,v,z). Label these codewords(z'|s'), s €
’ [1,27C=1], 2" € [1,274].
Label these sequences bk), k € 1’2n(R(U)—e)}. 2) Randomly and uniformly partition the message set
Select2"EV)-9 stronaly typical . [1,2"7] into 2"C2 setsS!,, s’ € [1,2nC21],
>elec strongly ‘typical sequences in an 3) Encoding Assume that after receiving2(i — 1) we
i.i.d. manner, according to the probability E— _
have atR.o that (a(z/_,|s,_,),y2(i —1)) € A",
—— ve S[("}])é and thatz;_, € S!, (sj_, is known from the previous
p(v) = ”S[(V)15|| therwi transmission ofz/ ,). Then, at thei'th transmission
, Otherwise interval the relay transmits the indek to R,;.
Label these sequences i), [ € [1,2"E(V)=9]  Relay encoding afz,; is performed in a symmetric manner
Note that from [47, corollary 5.11] we have thato the relay encoding ak,.. The corresponding variab,l,es for
||5[<;}>6|| > (1= 6)2nHW)=¥) 'wherey) — 0 asn — co  R.1 are Sy, andv(2"|s"”), s” € [1,2nC2], 2" € [1,2"87],
ando — 0, so for anye > 0 we can always find) <
0 < e such that fom large enough we obtai||1m9[(gl)6|| > D. Decoding the Relay Messages at the Relays
on(1(UY1,0)—¢) and||5[(3])5|| s gn(I(Viva,V)—e) Consider decoding the relay messagelak. The relay
3) Define the cells B; = decoder afR?, uses its channel inpytz(7), and its previously
[(i — 1)2nBU)-Fa=e) 1 jon(RU)=Fi=o)] decodeds! to generate the relay messagfeas follows: upon
i € [1,2"f1]. This is a partition of theu sequences receivingys(i), the relayf, decides that the messagewas
into 271 sets. Define the cells received at time if (a1 (z/|s}),y2(i)) € A:™. Following the

C; = [(j—12nBV)=Rame) 41 gon(R(V)=R=9)] = argument in [34, theorem 6] (see also the proof in [43, Ch.



13.6]), there exists suck with probability that is arbitrarily =~ Combining equations3d), (39), (40), (41) and @2), gives

close to one as long as the conditions in theorerf.
R >1 (U Y) , 35
- 2 (35) F. Error Events
andn is sufficiently large. Relay decoding &t,; is done in | the scheme described above we have to account for the
a symmetric manner to the relay decodingiab. following error events for decodingu; ;_1, ws.i—1):

E. Decoding at the Receivers 1) Encoﬂmg at the transm|ttfr fails:
ED-,i - {||Dw1,i—1-,w2,i—1|| - O}

We first find the rate constraint for decodingf@t,. R, 2) Joint typicality decoding fails:
decodes its messagsg ;_; based on its channel inpuyt (i—1)
and the relay indices; ands;_;: (n)

1) From knowledge of; , andy;(i — 1), R, calculates X(wii-1,wai-1),y1(i—1),ya2(i—1)) ¢ A" }

the set£; (i — 1) such that 3) Decoding at the relays fail¥; ; = E11,; U E12.,,

’ J— / nR'
ﬁl(l — 1) = {ZI c [17277‘1%] . Ell,z {ﬂz € [1,2 ] S.t.

(W(2']si1),y2(i—1)) € A:(n)}'
R ' ,/L.i ’ 1 c A:(n) . 7
(u (Z |S 1) y1 (Z )) } B, = {ﬂzn c [1’ onR ] s.t.

EOJ' = (u(kwl,i—1;w2,i—1)’V(lwl,i—17w2,1i—1)7

2) At the time interval of the'th codeword,R,; receives i ) “(n)

the relayeds,. Since s, is selected from a set of . (v (z"s70) sy = 1)) € _Aé %

2nC21 possible messages, it can be transmitted over the#) Decoding the relay message at the receivers falls: =

noiseless conference link without error. iU Baa i, where By, ; = By i UES ; and By =
3) R,; now chooses, , as the relay message at time1 Ey i UEY

if)and only if there exists a uniqug&_, € S;; N L1 — By =4%1¢ S;; N Li(i — 1)},

1). Again, following the reasoning in [34, theorem 6], P (S , - , . }

this can be done with an arbitrarily small probability of 21 — EF g stTeS; NLGE-1)y,

error as long as BEyy i =21 & S0 () Lali — 1)},

R < I(U;Y1) + Cor, (36) Bfy, = {35 # 2 st3" € Sl Lai — 1)},

andn is large enough. Combining this with inequality  £,( — 1) £ {=" & [1,2"]
35) we get the constraint on the relay information rate: »
(39 weg y (v (2"[s)1) s yal(i — 1)) € AL )}_

Cor > I(U;Ya) — I(U; Y7). (37) 5) Final decoding at the receivers fails:
, o 7 _ , B3 = E31,:|J Es2,i, Where,

This expression is similar to the Wyner-Ziv expression Bar . — {(u(k )oyi(i — 1)
for the rate required to transniit to receiverk,; up to 81 w21 ) Y1 ’
a given distortion, determined byf|y,) and a decoder. u(zl_qlsi_y)) ¢ A:(”)} U {le # w1 St
Here the performance of the decoder are implied in the . R *(n)}

. ! - . kw, ws), = 1),a(z_q|s;_ Ae )
mutual informationl (U; Y1, U). The compressely® is (ks ), y1.0 = 1), 8(zalsi-1)) €
then used byR,; to assist in decodingi/;. Ezy = {(v(lwl,ifl_m,ifl),yQ(i — 1),

4) Lastly, R,; decodes w;;—; (or, equivalently T *(n)} { ‘

u(kwl,i—l-,w2,i—l)) by ChOOSingu(kﬁll,i—lyﬁ&,i—l) such V(Zi_l|8i_1)) ¢ A U o 7& w2)l_1( )S't.
that (u(kﬁll,i—l-ﬂjf&i—l)?yl(i - 1)a u (2§71|S;71)) S (V(lwl,wg)ayQ(i - 1)1 \A’(Z;/_1|3;/_1)) S A: " }

A From the point-to-point channel coding theoreriVe now bound the probability of the error events at time

(see [15]) we have thak; ;1 = w; ;—1 With probability 7. Note that at timei both R,; and R,, share the same

that is arbitrarily close to one, as long as ;, was s, , and s/ ; irrespective whether the decoding at the re-

correctly decoded aR,, and lays was correct at timeé — 1. Hence, a decoding error at
N - time ¢ — 1 does not affect the decoding at time Now,

B < RU) =1 (U;Yl’ U) : (38) " from lemmat it follows that by takingn large enough the
for sufficiently largen. Combining this with equation probability of Ep ; can be made arbitrarily small, as long as
(37) yields the rate constraint oR;: (34) is satisfied. Additionally, by taking. large enough, the

probability Pr(Ey ; () EY, ;) can be made arbitrarily small by
By < R(U), . R (39) the properties of strongjly typical sequences, see [43, lemm
as long as’y; > I(U;Y2) — I(U;Y1). (40)  13.6.2]. The probabilityPr(E, ;) can be made arbitrarily
Using symmetric arguments to those presented for decod#fgall as long as40) and @2) are satisfied, as explained is
at R,; we find the rate constraint faR,, to be sectionlV-D. Ne>_<t, the Markov lemma [50, lemma _4.2] and
the Markov chainsy; — Y, — U and Y, — Y; — V, imply
Ry < R(V), . . (41) " that Pr(Ey ; (ET; N EG,;) andPr(E5, ; (EY ;) E ;) can
as long asio > I(V;Yy) — I(V;Ys).  (42) be made arbitrarily small by taking large enough, and



Pr(Ey, ;N Ef,) andPr(Ey, ; (] Ef,) can be made arbitrarily H. Remarks

small by takingn large enough as long adQ) and @2) are  comment 4.1:0bserving the rate constraints in theor@m
satisfied. Finally,Pr(Esy;(VE5; (BT, (N ES, N ED;) and e can see that wherB@ and @1) are satisfied then the
Pr(Es2i (B3, (BT EGi (1 Ep ;) can be made arbitrarily oooperative rates are greater than the non-cooperaties rat
small by takingn large enough by the Markov lemma and thgy,e 1o the (generally) positive terms adding@’; Y;) and
chainsU,Y; — Y, — U andV,Y; — Y7 — V, and as long as I(V;Ya).

(39) and @1) are satisfied. Comment 4.2:\We note that although we present a single

This concludes the proof of theorein B |etter characterization of the rates, we are not able toyappl
standard cardinality bounding techniques such as thosg use
G. An Upper Bound in [48] or [49] for bounding||/|| and ||V||. The method of

448] cannot be applied since it relies on the fact that the

PI;)p_I(_)ﬁltlor; L Asg_ume_ tge brogdc?_stfchan?el setup Of:_] aﬁjxiliary random variables are independent, which is net th
rebrln ’ t en, olr[zselr[\z 'ng In tepefn entinformation, any achi€¥3se here. The method of [49] cannot be applied as explained
able rate pair(£;, f2) must safisfy in the comment for theorem 2 in [20]. The cardinality bounds

Ry < I(X;Y1) + Can, 0n_||Z/l|| an_d [|V|| are trivial since they are transmitted over
noiseless links.

< : . - .
Ry < I(X;Y2) + Chz, Comment 4.3 The relay strategies can be divided into two
Ri+ Ry < I(X;11,Y2), general classes. The first class is referred tal@sode-and-

forward (DAF). In this strategy, the relay first decodes the

message intended for the destination and then generates a
Proof: The proof uses the cut-set bound [43, theorep |,y message based on the decoded information. The second

14.10.1]. First we define an equivalent system by introdyicinass is referred to asstimate-and-forwardEAF). In this

two orthogonal channel¥; —YY from R.5 to R,y andXi—Y5  (|ass the relay does not decode the message intended for the

from R to Rqo. The joint probability distribution function yegtination but transmits an estimate of its channel inpttie

then becomes destination. For the physically degraded BC we used DAF,

based on [34, theorem 1], to derive theord&mand for the

general BC we used the EAF scheme of [34, theorem 6],

where the signal received &, is (Y1,Y7) and the signal to derive theoren®. Of course, one can also combine both

received atR,, is (Y3,Yy). As in the proof in section strategies and perform partial decoding at each receivédteof

M-A.3, we selectY], X3, Vi, V4, p(z}), p(xh), p(yi|xh) and other receiver's message before conferencing, followBg [

p(yblx)) such that the capacities of the channé&l$ — Y/ theorem 7]. This combination will, in general, result in an

and X7 — Yy are Cy; and Cj» respectively. Additionally, increased achievable rate region.

the codewords for the conference transmissions are deter-

mined independently from the source codebook so we se ;

p(z, 2}, 24) = p(z)p(a))p(x}). Now, from the cut-set bound,i tSpeC|aI Cases

letting the transmitter and®,» form one group andz,; the

second group, we have

for some distributiorp(x) on X'.

P (1, 1), (Y2, yo) |, 2, %) = pyr, ye|x)p(yi oy )p(ysl)),

1) No Cooperation:Ci;2 = Co; = 0: Consider first
cooperation fromR,, to R;;. SettingCs; = 0 in theorem

2 implies that
Ry < I(X, X3V, Y{|X}) H(U) = H(U|Y,). (43)
_ !, 4 / . / / /
= I(Xp: 11, Yi1X)) + (X3 11, Y7 |X3, Xo) From equation32), the constraint ori?; can be written in the
= I(X3; Y{|X7) + I(X3; V1| X1, YY) form

+ (XY XT, X5) + 1(X; Y1 X1, X, YY)

I(X5;Y]) + I(X;5 Y1) _ )
= Co + 1(X; Y1), Now we find I(U; U|Y}):

where I(X4:V1|X,,Y{) = I(X;Y{|X],X}) = 0 follows HU;UM) = HUM) - HUM, U)
from direct application of the distribution function. Siamily = H(U|Y2) — H(U|Y1,U)
we obtain the rate constraint dR,. Lastly, for the sum-rate . .
consider the transmitter in one group and the receiversdn th - H(UJYQ’ nU)-HUNU) 44
second. Then, the cut-set bound results in = —I(U;Y2|Y1,U).

Ry < I(U; Y1) + I(U; U 1Y),

—
=

—~
=

Ry + Ry < I(X;Y1,Ys, Y], YJ|X! X)) where (a) is due to4Q), and (b) is due to the Markov chain
_ . - U—(U,V)-X—(Y1,Ys)—Y>—U, which implies that giverya,
= I(X; Y1, Y] X, X)) 2\ ; ; ;

vt U is independent o¥; andU. Now, since mutual information
+ (XYY, Yo X1, X, 11, 2) is non-negative, we conclude th&tl/; U|Y;) = 0. Hence, the
= I(X;Y1,Ys), rate constraint o?; becomes

yielding the last constraint in the proposition. [ | Ry < I(U; Y1).



10

Similarly, the maximum rate?, is given byI(V;Y,), and in evaluate the achievable region. For the single common mes-
conclusion wherCy, = Co; = 0 we resort back to the rate sage case, we are able to derive results for partial cooperat
region without cooperation derived in [14] (with a constanwithout auxiliary variableswhich make this region explicitly
W). computable This scenario is depicted in figude

2) Full Cooperation:Cy2 = H(Y1|Y2), Co1 = H(Y2|Y1):

When Ci2 = H(Y1|Y2), we get from 81) that Receiver 1

. . A A
HMW1|Y2) = Ch2 > I(V; Y1) — I(V; Ya) —'| Ra I_’W
= H(V|Y2) - H(V|Y1), W, Encoder . P(Y1,Y2lX) Cio Cy
which is satisfied whei’ = Y;. Plugging this into 83), we v R, W
get that when full cooperation fromR,; to R, is available, Receiver 2
the rate constraint foR,» becomes Broadcast Channel
Ry < I(V;Ys,Y1). Fig. 4. The single message broadcast channel with cooperating

_ _ receivers. W and W are the estimates of/ at R, and R.»
Using the same reasoning we conclude that when full coopspectively.

eration fromR,, to R, is available, the rate constraint for
R, becomesk; < I(U;Y1,Ys).

3) Partial Cooperation:When0 < Cy5 < H(Y1]Y3) and
0 < C91 < H(Y2]Y1), we get that

For this scenario we need to specialize the definitions of a
code and the average probability of error as follows:

o A (2" n,(C12,C21)) code for sending a common

Cor > H{UYY) — H(U|Y2) message over the broadcast channel with cooperating
= H(U|Y1) < Oy + H(U|Y2). (45) receivers having conference links of capacities and
) _ Cs1 between them, is defined in a similar manner to
Hence, the achievable rate 10, is upper bounded by definition 6 with Wy, W, and W; x W, all replaced
~ o _ nR
Rl S I(U,Yl,U) WlthW— {1,2,...,2 }.

o The average probability of erroiis defined similarly to
definition 7 with 1, and W5 replaced withiV/.

The capacity for the non-cooperative single message sce-

= I(U;Y7) + I(U; U[Y7)
(U Y1) + HUY:) — HU|U, Y1)
(
(

—
Q
~

< I(U;Yh) + H(U|Yg) _ H(U|U, V1) + Co1 nario is given in [5] by
(b) 2 2
= IU;Y1)+H(U|Y2,1A’1,U)—H(U|U7Y1)+Cz1 C:Sup{min(I(X;Yl),I(X;Yg))}. (47)
Ry < I(U;Y1)+021—I(U;}/2|U,Y1). (46) p(x)
where (a) is due to46) and (b) follow from the same reasoningn the following we consider two cooperation schemes, re-
leading to equation4d). Similarly, Ry < I(V;Ys) + Cia — ferred to as a single-step scheme and a two-step scheme Thes
[(V; V1|V, Ya). schemes are described in figuseln the single-step scheme,

Note that there exist negative termsI(U;Y2|U, Y1) after reception each receiver generates a single cooperati
and —I(V;YllV, Y,) in the achievable rate upper boundsnessage based on its channel input. In the two-step scheme,
This can be explained as follows: the mutual informatioffter reception one receiver generates a cooperation gessa
I(U;Y5|U, Y1) can be considered as a type of “ancillaryPased only on its channel input, as in the previous case, but
information thatl/ contains, since this information is con-the second receiver generates its cooperation message only
tained inU while U andY; are already known - therefore,after decoding (which is done with the help of the conference
this information is a “noise” part ofY, which does not message from the first receiver). In both cases each receiver
include any helpful information for decodirig at R,;. Thus, generates a single conference message, however in the-sing|
for cooperating in the optimal way,/ has to be a type of step conference the emphasis is on low delay, while in the

“sufficient and complete” cooperation information. two-step conference we sacrifice delay in order to gain rate.
V. THE GENERAL BROADCAST CHANNEL WITH A SINGLE  v,0 ['7®! T'me'” 0NN T‘"‘:‘ 1 T‘mi“z
COMMON MESSAGE
We now consider the case where only a single messagg, Wiy 0) it Warl20) - Wy i W0)
2
rather than two independent messages, is transmitted o bot—" R, & e
receivers. The main motivation for considering this case igecepton Conferencing | Reception TN ConErensing

that in the two independent messages case it is difficult t0  gjge step conference
specify an explicit cooperation scheme, and we therefove ha

to represent cooperation through auxiliary random vagigbl Fig. 5. Schematic description of the single-step and the two-step
Hence, we cannot identify directly the gain from coopematio conference schemes.

except in the case of full cooperation, and we also cannot

Two-Step Conference
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A. Decoding with a Single-Step Cooperation appropriate Cyo > I(V;Y1|Y2,X) or Cy; > I(U;Y2|Y1,X)
In this section we constrain both decoders to output thdf’€ one used for the first cooperation step).
decoded messages after a conference that consists of a singl Proof:

message from each receiver, based only on its received ehann1) Overview of Coding Strategyfhe scheme described in
input. For this case, we can specialize the derivation obthetheorem3 uses a single-step conference for both decoders.
rem?2 and get the fO”OWing achievable rate for the broadcaﬁbwever, if we let one receiver use a two-step conferenem, th
channel with partially cooperating receivers: that receiver, instead of using conference informatiorivedr
Theorem 3: Let(X', p(y1,y2|z), V1 x V2) be any discrete from the raw input of the other receiver, can use information
memoryless broadcast channel, with cooperating receivejgénerated by the second receiver after it already decoded th
having noiseless conference links of finite capacifigs and message. This conference information is less noisy, ansl thu
C21, as defined in sectioii. Then, for sending a commonthe rate to the first receiver can be increased.
message to both receivers, any rdtesatisfying To put this in more concrete terms, assume that at tifmg
R < sup{min {I(X;Yl,U),I(X;YQ,V)}}, _Rwl sends toR,» the _in(_jexzs;rl of the partition into which
p(z) its relay message at time denotedz; ;, belongs. In appendix
. B we show thatR,, can decode the messagg ; with an
subject to arbitrarily small probability of error as long as

Cx
Ci2

[(UY>) = (U3 Y1), .
N N < I(X:;Ys) - I(V;Y|Ys, X
I(V,Yl)_I(V7}/2), R — ( Y 2) (V7 1| 2, )

>
> . .
+min (Ciz, H(V|Y2) = H(VIV1)),  (48)

for some joint distribution p(z,y1,y2,q,0) =
p(@)p(y1, y2|w)p(aly2)p(dlyr)  is  achievable,  with angd
][ < [12]] +1 and [[V]] < [[J1]] + 1.

The proof of theoren3 follows the same lines of the proof
of theorem2 and will not be repeated here. We next show We now introduce the following modifications to the scheme
how we can increase the rates by introducing the two-staped in theoren3:

Cra > I(V; V1Y, X). (49)

conference. 2) Relay Sets Generation &,2: R,. partitions the mes-
sage sebV into 2“2 subsets in a uniform and independent
B. Decoding with a Two-Step Cooperation manner. Denote these subsets wih, 3" € [1,2"].

We consider a two-step conference: at the first step only one3) Reélay Encoding ai,»: R.o has an estimatei,; of
receiver decodes the message. The second receiver decH¥e§1€Ssage,i. Now, 12, looks for the partition into which
after the second step. Therefore, after the first receivendtes %o.: belongs and sends the index of this partition, denoted

. . A i ;
the message, relaying to the second receiver reduces to the: (0 1 at imed + 2.

decode-and-forward relay situation of [34, theorem 1]. The 4) Decpding at Ry Upon 'reception
rates achievable with a two step conference are given in e Y1(é), Rs1  generates the  set £(i) =
following theorem: weW: (x(w),y1(7)) € A:(")(X,Yl)}. At time ¢ + 2,

Theorem 4: Assume the broadcast channel setup of theorgdn reception 08", ,, R,1 looks for an indexw such that
3. Then, for sending a common message to both receivers, any r, () NS%, . If a unique suchw exists thenR,; sets
L . Si
rate R satisfying Wo,; = w, othervﬁse an error is declared.

5) Bounding the Probability of Errorising the proof tech-
R < sup [max {Ru(p(x))v RQl(p(I))}] nique in [34, theorem 1], it can be easily shown that assuming
p(z) correct decoding aR,., then any rateR < I(X;Y;) + Cyy
R™2(p(z)) 2 min (I(X;Yl) 1Oy, is achievable taf?,;.
Combining the bounds derived above, we conclude that with
I(X;Ys) — I(V;Y1|Ya, X) a two-step conference @, any rate satisfying

R*'(p(x)) £ min (I(X; Y2) + Cha, +min (Ca, H(V|Y2) — H(VIYl))),
I(X;Yh) = 1(U; Ya| V7, X) Ciz 2 1(ViYi[¥s, X),
+ min (0217H(U|y1) _ H(Ule))), ia achievable. Repeating the same derivation wRegp uses
a two-step conference, and combining with the previous case
for some joint distribution p(z,y1,y2,d,0) — proves theorerd. u

p(;)p(yl’y2|x)p(ﬁ|y2)p({)|y}) is achievable, with Set’FingU = Yo, V = Y7 in theorem4 we obtain the
|| < [|[)2]] + 1 and [|V|| < [|D1]| + 1, and with the following achievable region:
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Corollary 1: Assume the broadcast channel setup of theo- R 4
rem 3. Then, for sending a common message to both receivers,
any rate R satisfying

R < sup lmax{Rm(p(x)),Rm(p(a:))}] IXYLY,) T

p(z)

R"(p(z)) £min (I(X; Y1) + Co1, I[(X;Ya) — H(Y:[Ys, X)

+ min (Cm,H(YﬂY&))), |(X,Y])

! ! [
-

0 H(Y.IViX) H(Y-[Y1) C

R*'(p(x))£min (I(X;Yz) + Ci2, I(X; Y1) — H(Ys|Y1, X)

+ min (CQl’H(Y?|Y1)))’ Fig. 6. Achievable rate vs. C, for the two independent, identical,

) ) BSBCs with a single common message, resulting from cosollar
with the appropriate C12 > H(Y1]Y3, X) or Cop >

H(Y2]Y1, X) (the one used for the first cooperation step), is

achievable. _ _ _ N Proof: Follows directly from propositiorlL by noting
This gives a partial cooperation result without auxiliaan that the common rate has to satisfy all three constraints: th
dom variables. individual rates and the sum rate. [

C. An Example for Corollary.
Consider two independent, identical, BSBCs with transitios: Remarks

probabilityp, and cooperation links of capaciti€$, = Cy; = Comment 5.1:Note that there are special cases where the
C. For this case, corollar{ gives the following maximum |ower bound of corollaryl coincides with the upper bound of
achievable rate: corollary2, yielding the capacity for these cases. For example,

assume a strong version of the “more capable” condition of
[5]: I(X;Y1) >> I(X;Y>)?for all input distributiongp(z) on

} X . Assume also that (Y2|Y7,X) < Co; < H(Y2|Y7) and

)

R = sup { min [H(Yl) — h(p) + C,

Po

min (H(Y1) + C, H(Y1,Y2)) — 2h(p)} H(Y1|Ys, X) < C19 < H(Y1]Y2). Under these conditions, we
have that[(X; Yl) + Cy > I(X, 1/2) + Cp — H(Yllyvg,X)
Thus, if R, is helping R,o first, the achievable rate is
I(X;Y3) 4+ Ci12 — H(Y1|Y2, X). If R,o is helping R, first,
for C' > h(p), where); = Vo = X ={0,1}, po = Pr(X = then the achievable rate i5(X;Y3) + Ci2. Since Ci2 —
0), and H(Y1|Y2, X) < Cia, this cooperation scheme achieves the
upper boundr = sup,,(,) {I(X;Y2) + Ci2}.
Comment 5.2:Note that the capacity region for the deter-
p2po+ (1 —p)2(1 —po), y1 = y2 = 1 ministic broadcast channel with co_opera_ting receivef@\f«ﬂ_
from corollary1 and corollary2. This region was derived in
Pr(y.) = { S A [51]. For this case we have thaf(Y;|X) = H(Y2|X) =0
ppo + (1 =p)A =po), yr =1. hencel(X;Y;) = H(Y;), i = 1,2. The achievable rate (from
Solving for the supremum for each value Of we get the corollary 1) is given by
achievable rates depicted in figueNote the linear increase
in the achievable rate faH (Y3|Y1, X) < C < H(Y»|Y1). R < min{H(Y2) + Ci2, H(Y1) + min (Ca1, H(Y2|Y1))}
= min {H(Yg) + Ch2, H(Y1) + Co1, H(Y1, Yg)} ,

)

= sup { min [H(Yl) —2h(p) + C, H(Y1,Y2) — 2h(p

Ppo

—

(1=p)?po+p*1—po), Y1 =1y2=0
Pr(y1,y2) = p(1—p), Y1 # 2

D. An Upper Bound

The upper bound for the single common message case &84 the same from corollar.

be obtained from the bound for the two independent message§Omment 5.3:\We note that although the expressions
case in propositior: in (48) and @9) seem different from the EAF expres-

Corollary 2: Let (X, p(y1,y2|z), V1 x I») be any discrete Sion of [34, theorem 6], given in theored (cf. R <

memoryless broadcast channel, with cooperating receivel§X; Y2, V), subject toCiy > I(V;Y1)—1(V;Y3)), this does
having noiseless conference links of finite capacifigs and NOt improve on the achievable rate of the standard EAF. The

C»1, as defined in sectioi. Then, for sending a common€ason is that every rate achievable according48)-(49)
message to both receivers, any ratemust satisfy can also be achieved with the standard EAF using the same

mapping of the auxiliary RV and an appropriate time-shaking
R < sup{min (I(X;Yl) + CQl,I(X;}/Q) + 012,

p(zx) 2The precise condition requires thetX; Y1) > I(X; Y2)+Ciz2 —Co1 +
H(Y2|Y1, X) for all input distributionsp(z).

I(X§ Y1, YQ)) } 3This observation is due to Shlomo Shamai and Gerhard Kramer.
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However, when considering specific, fixed assignment of thaVhenw, # w, ;_; we get from the properties of independent
auxiliary random variable(such as in corollaryl) then the sequence ([43, theorem 8.6.1]) that

rate achievable with4@)-(49) is indeed greater than the classic . - . -
EAF with the same assignment. Ey, {¢ (w2 [y2(i = 1))} = Pr{¢ (wa|y2(i — 1)) =1}
S 2777.(](U;Y2)736)7

VI. CONCLUSIONS thus,

In this paper we investigated the effect of cooperation Ey2{||£(i— 1)||} < 1 4 2729 n((UsY2)—3¢) (A.1)
between receivers on the rates for the broadcast channel. As ) o
communication networks evolve, it can be expected that i¥te that this result holds also when considering the styong
future networks, nodes that are close enough to be ablefgical set rather than the weakly typical set.
communicate directly, will use this ability to help each ath
in reception. Accommodating this characteristic, we edézh APPENDIXB
the traditional broadcast scenario, in which each decasler i PROOF OF THEACHIEVABLE RATE TO THE FIRST
assumed to operate independently, into a scenario where th(PECODER INTHEOREM 4 (EQUATIONS (48) AND (49))
receivers have finite capacity links used for cooperation. . Overview of Coding Strategy
analyzed three related scenarios: the physically degrB@d The encoder generates a single codebook in a random
- for which we derived the capacity region, the general Bé&nd independent manner. Next, the first relay partitions its
for which we presented an achievability result, and thelsingcollection of relay codewordsZ((V) for R,1) into disjoint
common message case. For the last case we identified a spagid. When a channel input is received, the first relay finds
case where capacity can be achieved. We note that it is fi® index of the partition set which contains a relay codewor
trivial to extend these results to more than two steps, sinjggntly typical with its channel input, and transmits it ave
the intermediate steps need to extract information fronigdar the noiseless conference link to the second receiver. Then,
relay information. Although this can be done by introducingecond receiver looks for a unique source codeword that is
additional auxiliary variables, obtaining a computablgioa is jointly typical with its channel input, and with at least ook
not a simple task. This study is an initial step in this iniggst the relay codewords in the set of possible codewords regeive
tion and future work includes several extensions: a nafirsdl from the first relay.
extension is to consider a fully wireless system, and exteed In the following analysis we assume th&t,; is the first
analysis to the Gaussian case. Another extension is todemsielay andR,, decodes first.
the interaction between the Wyner-Ziv compression and the

achievable rates for the general channel. B. Codebook Generation and Encoding at the Transmitter
Fix p(x) and generate2"” ii.d. codewordsx, with
ACKNOWLEDGEMENTS p(x(w)) =TT, p(zi(w)), w € W = {1,2,...,2"7}. For

The authors would like to thank the reviewers for theif@nsmitting the message, ; at times, the transmitter outputs
careful reading of the manuscript and their useful suggesti X(wo,i) to the channel.

C. Relay Sets Generation

APPENDIXA i .
BACKGROUND RESULTS Fix P(U|ydl)- A iy
. . . . o Consider the .d.f. 0 =
Consider the construction in sectioll-A. Let £(: — > . P on 5(1))

1 = ) 1 ‘ A(n) We bound X V1,Ve p(v|y1)p(;yl,y2|x)p(ar) .
) = @2 H(y2(i = 1), u(wnfsi-1)) € Ae } o R, generates2"”1 ¥ sequences in an i.i.d. manner
Ey, {|I£( = 1)[[}. Let, according top(V(25)) = [, p(0i(20)), 20 € Z(V) =

1, (aws]si_1), yali — 1)) € A {12,207},

o (unlyati - 1) = {

0, otherwise. o R, partitions the message sﬁ(f/) into 27¢12 sets,
by assigning an index betwed, 2"“12] to eachz; €
Z(V), in a random, independent and uniform manner
over[1,2"“2]. Denote these sets 8, s’ € [1,2"2].

Hence, as in [34, theorem 1], we can write the random variable
[|L£(i — 1)|| as a sum of random variables:

gnk2
LG =D =D ¥ (waly2(i—1)), D. Decoding and Encoding at the Relai.()
wa=1 » Upon reception of (i), the relayR,, decides that; ; €
and therefore Z(V) was received if(¥(z5.), y1(i)) € A:"™(V,v1).

Now, R, finds the indexs;, , of the setS!, s.t.z;; €
. CZit1
S!, . Then, at timei + 1, R, transmitss;; t0 R,

By {I£G = VII} = By, {8 (w21 ly2(i = 1))}

2 _ thriaﬁgh the finite capacity noiseless conference link. If
+ Y By {0 (walya(i—1))}. there is noz; € Z(V) such thatv(z;) is jointly typical
wa=1 with y4 (), an error is declared.

WoFEW, i1
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E. Decoding the Source Messagelat, 3) Bounding Pr(E;, N Ef ;N EG,;): The probability of

o EY.NE{,;NES,; can be written as
At the 7'th transmission intervalR,> generates the set ™ ’ ’

Lo(i) = {w eW: (x(w),ya(i)) € A:<">(X,Y2)}. At the  Pr(Ey, () E5. () ES.)

(i + 1)'th transmission intervalR,, receivess; , from R,y ({ A , _ )
through the noiseless conference link, then looks for a Pr(qF= € S‘ ’3w 7 wo,i, w € La(i),

unique wy S.t. Wy € Lo(i) and Jz; € S’ , for which (x(w), y2(i), ¥(25)) € AXM (X, Yy, V }ﬂEumEo l)

(x(th0), y2(1), ¥(25)) € AL(X, Y, V). If such uniqued, (o) ,
exists, themiy is the decoded message at tirdf there is = FT ({3w # wo,i, w € Lo(1),

none, or there is more than one, an error is declared. w(n
(x(w), y2(3), ¥ (24,1)) € AL(X, Y, V) () B5 () E.)
—|—Pr({3w5£wol,w€£2() Jzs GS/ Z@;ézm,

(x(w), y2(0), ¥(29)) € ALV (X, Yo, V }mElzﬂEoz)
Pr (Eéll i) +PY(E221)

F. Analysis of the Probability of Error

1) Error Events: The error events for the scheme described
above, for decoding the messagg;, are:
1) Relay decoding fails: where (@) is because the eIementsSQ,f are selected in an
Bo:={P2 € 2(V) sit. independent manner.

() 7 We first boundPr (EY , ;) as follows:
(‘Af(zﬁ%}’l(l)) S AE (V,}/l) .
B

1 .
2) Joint typicality decoding fails: LeE; ; = E7 ; Pr(Eyy ) =

where 7 Pr (43w # wo,i,w € La(i), (x(w),y2(7),v(25,:))
Bl {0y ¢ A0, 2 (s 2
B = { Gclw0.): 90200, 72(0)) ¢ AX (X, V¥ . e A (X, v, V) (VB () B[ £20)) Pr(£()
3) Decoding atR, fails: Ex; = E; ;|J Ey ;, @
Ey, = {ﬂzv €S}, for which Eyz{ > Pr ({( (W), y2(i),¥(24,0)) €
(). ¥(z0). () € A0 (X, V. 13) e
Eél,i — {Hw 75 wWe,5, W € EQ(Z) s.t.dz; € S;:;H’ A*(n X Yy, V mE mE y2 }
(x(w), ¥ (z), 2(0) € AZ(X, 7, Y) . I 0)

Next, applying the union bound we get that

RS S Pr(Elya(),x(w)

2 we Lo (i) ve
P = Pr <U Ek,i) wtwo.s A (Vlys (i) x(w))
k=0
= : (MBS, ® o
Pr(Eo,i) + Pr (Evi() B, Y g, Y 3 Pr (V]ys (i)
c c w 4 *(n)
+ Pr (EQ_’Z' ﬂ El,i ﬂ EO,i) . wifjo( 1) Ve A" (Viy2(i),x(w))

2) Bounding the Probabilities of the Error EventBpliow- < Eyz{ > A (Vv (i), x(w))]] x
ing the same argument as in sectibAD, R} > I(V;Y7) weLs (i)

implies that taking: large enough, we can make(E, ;) < e. W,

Next, from the properties of strongly typical sequenceg (se . .

[43, lemma 13.??.1];3, by taking Iarggeyerzl(?ugh, Wg can malge o Pr (vly:(®)) }}
Pr(E{ ;) < . Additionally, the Markov lemma, [50, Iemma (¥2(),9)€A; ™ (¥2,V)

4.2] |mpl|es that we can makBr(EY; B NES;) < 5

for any arbitrarye > 0 by takingn Iarge enough Therefore (2 E Z 2n(H(V|Y2,X)+2n)2—n(H(V\Yg)—2n)

by the union boundPr(E; ; M Ef,) < e. We also have that — * wela(d)

Pr(Ey ;N ES;NE§;) = 0 because undefs ;N E§, we w00 g

have thatx(wp ;),y2(i) and v(z; ;) are jointly typical, and < By, {||£s(i )||}2—n(H(V\Yz)—H(Vle,X)—4n)

by constructionz; ; € S, . Hence, we need to show that= ~2 2 ’

the probabilityPr(£3 ; () E ﬂ E§ ;) can be made arbitrarily where (a) is becausg; (i) is a deterministic function o (i)
small. Note that due to the symmetry of the construction, tlead we also applied the union bound and (b) is becasg; )
probability of error does not depend on the specific messageindependent ok(w) for w # wp,. The bounds in (c) on
wo,; transmitted. the size of the conditionally typical set and the maximum
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conditional probability follow from [47, theorem 5.2] withis independent ok(w) andy (i) whenz; # z; 4, and (d) is
n — 0 ase — 0, assuming that is large enough. Lastly because

we note that here _ ,
Ey, < {120 - 150,11}

= By { Bary, {16601 1%, 11} }

Pr(y2(i)) £ Pr (y2(i) received| x(wo ;) transmitted .

Next, applying the same technique to bound the expectafion o ) , ,

[|£2(7)]| as in [34, theorem 1] (see also derivation of equation = Eyz{||£2(1)||E0\y2{||582+1||}}

A.1)), we get that fom large enough, @)

(A1), we g ge enoug 2 B, {IIL.@1E{1IS%, 1}
{||£2( )||}<1+2n(R I(XY2)+377) (Bl) _ y2{||£2( )H} {HS/ ||}

Plugging this back into the bound dir (E3, ;) we get that \ypere (f) is because the average siz&gfi) does not depend

. Ca(1(X571¥2)—1n) onv(zs,) wheny(i) is given, and (g) is because the average
Pr(Ey,;) <2 iR size of S/, does not depend of2(i). The bounds ofPr(v)

4o (AT —H(VIV) +H(VIY2, X)+70) (B 2)  gpg ||A:<’5(V|y2,x)|| in (d) follow from [47, Ch. 5]. The

) ) _ bound onEy, {||£2(7)||} in (e) follows from equationE.1).
which can be made less than any arbitrary 0 by takingn  \we note that here

large enough, as long ‘as
Pr(y2(i),v(2s,4)) £ Ppr ( (y2(2),V(25,)) received| x(wp ;)

R <I(X;Ys) = H(V[Yz, X) + H(V|Y2). (B.3)
transmittet) .
For boundingPr(Ey, ;) we begin essentially in the same

manner and get that We conclude thaPr (EY, ;) can be made smaller than any

e > 0 by takingn large enough, as long as

Pr(Eg,Q,i) . ,
@ R < I(X;Ys) — H(V|Ya, X) + Ci2 — R, + H(V) (B.4)
< Eyz,o{ Pr ({Hw # wo,i,w € La(i), Iz € S;;+1, Ry < Cip— H(V|Yy, X)+ H(V) (B.5)
R < I(X;Y2) +1(V; Y2, X) (B.6)
2o # Zo,i, (x(w), y2(i), V(20)) € R > (7
1 = (V7 le)a (B7)
AV (X, Y,V Hy2 vz, 1))} where B.7) follows from appendixB-F.2
, Now note that makingPr(Ey ; () ET; () E§ ;) arbitrarily
(<) Eyaie Z Z Pr( y2(i),¥(23)) € small requires making botir(EY, ;) and Pr(Eé’_’M) arbi-
- 20eSl,  weLa(i) trarily small. Thus we also need to satisf.8). Combining
: Lol wFwo,; with (B.6) we see thatR.3) guaranteesH.6) and we are left
e with (B.3), (B.4), (B.5) and B.7).
A(X, Yy, V ‘yz (Zv,i)) The maximum rate is achieved for the minin#{, therefore
we plug R} = I(V;Y7) in (B.4) and combining with B.3) we
© obtain the following achievable rate
< By, e Pr (v .
B { L2 A MZ . ( )} R < I(X;Ys) - H(V|YV2, X)
#0€5y ”‘”6;2(?) VEAL (Vl]y2(i),x(w)) . .
sorray WPV +min (C1 +H(V|Y1),H(V|Y2)) .(B.8)
(d)
< FEy {||5§;+1||} By, {||L2(i)]]} 2 "(H=HVI2X)=30) 2o the combination ofB.5) and B.7), we conclude that
(&) this is achievable as long as

< (1 + 2"<R/1_Cl2)) (1 + 2"(R—1(X;Y2)+3n)) X

27n(H(V)7H(V\Y2,X)73n)
o—n(Cr2+H (V) =R, —H(V|Y2,X)~3n)

Cra > I(ViYy) + H(V|Y2, X) — H(V)
= H(V|Y2, X) — H(V|17)
= I(V;Y1|X,Ya). (B.9)

IN

+ 2n(R—I(X;Yg)—I(V;Yg,X)+677) + 2—n(I(V;Y2,X)—377)
T on(R—I(X;Y2)~Cra+Ry—H(V)+H(V|Y2,X)+61) Equations B.8) and B.9) give the conditions for the message
’ W to be decoded aR,» with an arbitrarily small probability
where (a) is because we dropped the intersection widf, error by takingr large enough. Note that the requirement in

E$ ;) E§ ;. (b) is due to the union bound, (c) is becasge;) (B.9) implies that whenC1, < I(V;Yi[Y2, X), R, cannot
use this cooperation scheme, and the rateRig is simply

4We assume thaf(X; V|Y2) > 0 otherwise the relay message does nof (X Y2). Combining this with equationB(8) yields the rate
help decoding the source messageRab. expression in48) and @9).
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