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Abstract— We consider the problem of communicating over
the general discrete memoryless broadcast channel (BC) with
partially cooperating receivers. In our setup, receivers are able
to exchange messages over noiseless conference links of finite ca-
pacities, prior to decoding the messages sent from the transmitter.
In this paper we formulate the general problem of broadcast with
cooperation. We first find the capacity region for the case where
the BC is physically degraded. Then, we give achievability results
for the general broadcast channel, for both the two independent
messages case and the single common message case.

Index Terms— Broadcast channels, cooperative broadcast, re-
lay channels, channel capacity, network information theory.

I. INTRODUCTION

A. Motivation

In the classic broadcast scenario the receivers decode their
messages independently of each other. However, the increasing
interest in networking motivates the consideration of broadcast
scenarios in which each node in the network, besides decoding
its own information, tries to help other nodes in decoding.
This problem comes up naturally in sensor networks, where a
transmitter external to the sensor network wants to download
data into the network, e.g., to configure the sensor array.
The concept of cooperation among receivers is also relevant
to general ad-hoc networks, since such cooperation provides
a method for increasing the rates without increasing the
spectrum allocation. Therefore, this motivates the study of the
effect of receiver cooperation on the rates for the broadcast
channel.

B. The Discrete Memoryless Broadcast Channel (DMBC)

The broadcast channel was introduced by Cover in [1].
Following this initial work, Bergmans proved an achievability
result for the degraded BC, [2], and also a partial converse
that holds only for the Gaussian broadcast channel [3]; in [4]
Gallager established a converse that holds for any discrete
memoryless degraded broadcast channel. In [5] El-Gamal
generalized the capacity result for the degraded broadcast
channel to the “more capable” case, and in [6] and [7] he
showed that feedback does not increase the capacity region
for the physically degraded case. Several other classes of
broadcast channels were studied in the following years. For
example, the sum and product of two degraded broadcast
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channels were considered in [8], and in [9], [10] and [11]
the deterministic broadcast channel was analyzed.

For the general broadcast channel, Cover derived an achiev-
able rate region for the case of two independent senders
in [12]. In [13] Korner and Marton considered the capacity
of general broadcast channels with degraded message sets.
The best achievable region and the best upper bound for
the two independent senders case were derived by Marton
in [14], and a simple proof of Marton’s achievable region
appeared later in [15]. Another upper bound for the general
broadcast channel, the so-called degraded, same-marginals
(DSM) bound, was presented in [16]. This bound is weaker
than the upper bound in [14] but stronger than Sato’s upper
bound previously presented in [17]. We note, however, that
while Marton’s upper bound is the strongest, it is valid only
for the two-receiver case, while Sato’s bound and the DSM
bound can be extended to more than two receivers. The effect
of feedback on the capacity of the Gaussian broadcast channel
was studied in [18] and [19], and in [20] the case of correlated
sources was considered. A survey on the topic, with extensive
references to previous work, can be found in [21]. In recent
years the Multiple-Input-Multiple-Output (MIMO) Gaussian
broadcast channel has attracted a lot of attention. Initially, the
sum-rate capacity was characterized in [22], [23], [24], [25],
and finally, in [26] the capacity region was obtained.

None of the early work on the DMBC considereddirect
cooperation between the receivers. In the cooperative broad-
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Fig. 1. Broadcast channel with two private messages and cooperating
receivers.

cast scenario, a single transmitter sends two messages to two
receivers encoded in a single channel codewordXn, where
the superscriptn denotes the length of a vector. Each of
the receivers gets a noisy version of the codeword,Y n1 at
Rx1 andY n2 at Rx2. After reception, the receivers exchange
messages over noiseless conference links of finite capacities
C12 andC21, as depicted in Figure1. The conference messages
are, in general, functions ofY n1 (at Rx1), Y n2 (at Rx2), and
the previous messages received from the other decoder. After
conferencing, each receiver decodes its own message.

We note that in a recent work, [27], the authors consider
the problem of interactive decoding of a single broadcast
message over the independent broadcast channel by a group
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of cooperating users. In our work we extend this scenario to
the general channel and also consider the two independent
senders case.

C. Cooperative Broadcast: A Combination of Broadcasting
and Relaying

The scenario in which one transceiver helps a second
transceiver in decoding a message is clearly arelay scenario.
Hence, cooperative broadcast can be viewed as a general-
ization of the broadcast and relay scenarios into a hybrid
broadcast/relay system, which better describes future commu-
nication networks.

Scenarios of this type have attracted considerable attention
recently both from the practical and the theoretical aspects.
From the practical aspect, new protocols are proposed for
the collaborative broadcast scenario. For example in [28] the
authors present a protocol for collaborative decision making
involving broadcasting and relaying. From the theoretical
aspect, there is a considerable effort invested in characterizing
the capacity of an entire network. This work started with
[29] and recent results appear in [30] and the following
work [31], [32] and [33]. This work focuses on the Gaussian
case. A complementing approach for studying the performance
of a network is to combine the basic building blocks of a
network, namely multiple access, relaying and broadcasting
and study the capacity of these combinations. The recent
work on relaying focuses on extending the single relay results
derived in [34] to the MIMO case (see for example [35]) and
to the multiple level case [36], [37]. Another recent result
was introduced in [38] where joint decoding was applied to
the combined decode-and-forward and estimate-and-forward
scheme of [34, theorem 7]. A third approach for studying
the performance of an entire network is the network coding
approach sparked by the work of [39], which focuses on
encoding at the nodes for maximizing the network throughput,
separately from the channel coding.

In this paper we focus on the combination of broadcast
and relay. A relevant work in this context is [40], in which
the capacity of a class of independent relay channels with
noiseless relay is derived. Note that the case of noiseless relay
is also related to the Wyner-Ziv problem [41]. This relationship
will be highlighted in the sequel. Lastly, we note that a recent
work, [42], presented an achievability result for the general
DMBC with a single wireless cooperation channel from one
receiver to the second receiver. This achievable rate region is
shown to be the capacity region for the physically degraded
broadcast/relay channel.

D. Main Contributions and Organization

In the following we summarize the main contributions of
this work.

• We initially study a special case of the general setup
formulated in SectionI-B: the case of the physically
degraded broadcast channel. Although the physically
degraded BC is of little practical interest, it is useful
in developing the coding concept for the general BC
with cooperation. For the physically degraded BC, we

present both an achievability result and a converse. To-
gether, these two results give the capacity region for
this setup. Furthermore, this new region is shown to
be a strict enlargement of the classical region without
cooperation [21].

• Next, we give an achievability result for the general BC
with cooperating receivers. This region is also greater, in
general, than the classic achievable region given in [14]
for the broadcast channel.

• We also consider the case where a single common mes-
sage is transmitted to both receivers. We consider two
different cooperation strategies and derive the achievable
rates for each of them. We also derive an upper bound on
the achievable rates for this scenario. Here we provide re-
sults that explicitly link the available cooperation capacity
to the increase in the rate of information. Lastly, we show
that for a special case of the general BC, namely when
one channel is distinctly better than the other, the upper
and lower bounds coincide, resulting in the capacity for
that case.

The rest of this paper is structured as follows: in sectionII
we define the mathematical framework. In sectionIII we
analyze the physically degraded BC, and derive the capac-
ity region for that case, and in sectionIV we present an
achievability result for the general broadcast channel with
cooperating receivers. Next, sectionV presents achievability
results and an upper bound on the rates for the case where only
a single common message is transmitted. Concluding remarks
are provided in sectionVI .

II. D EFINITIONS AND NOTATIONS

First, a word about notation: in the following we useH(·)
to denote the entropy of a discrete random variable (RV), and
I(·; ·) to denote the mutual information between two discrete
random variables, as defined in [43, Ch. 2]. We denote random
variables with capital letters –X , Y , etc., and vectors with
boldface letters, e.g.,x, y. We denote byA(n)

ǫ (X) the weakly
typical set for the (possibly vector) random variableX , see
[43, Ch. 3] for the definition ofA(n)

ǫ (X). When referring
to a typical set we may omit the random variables from the
notation, when these variables are clear from the context. We
denote the cardinality of the finite setA with ||A||. We use
X to denote the (discrete and finite) range ofX . Finally,
we denote the probability distribution of the RVX over X
with p(x) and the conditional distribution ofX givenY with
p(x|y).

Definition 1: A discrete broadcast channelis a chan-
nel with discrete input alphabetX , two discrete output
alphabets,Y1 and Y2, and a probability transition func-
tion, p(y1, y2|x). We denote this channel by the triplet
(X , p(y1, y2|x),Y1 × Y2).

Definition 2: A memorylessbroadcast channel is a broad-
cast channel for which the probability transition function
of a sequence ofn symbols is given byp(yn1 , y

n
2 |x

n) =∏n
i=1 p(y1,i, y2,i|xi), where ynk = (yk,1, yk,2, ..., yk,n), k ∈

{1, 2}, andxn = (x1, x2, ..., xn).
We shall assume the channel to bediscreteandmemoryless.
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Definition 3: Thephysically degraded broadcast channelis
a broadcast channel in which the probability transition function
can be decomposed asp(y1, y2|x) = p(y1|x)p(y2|y1). Hence,
for the physically degraded BC we have thatX − Y1 − Y2
form a Markov chain.

Definition 4: An (R12, R21)-conferencebetweenRx1 and
Rx2 is defined by two conference message setsW12 ={
1, 2, ..., 2nR12

}
, W21 =

{
1, 2, ..., 2nR21

}
, and two mapping

functions,h12 andh21 which map the received sequence ofn
symbols and the conference messages at one receiver into a
message transmitted to the other receiver:

h12 : Yn1 ×W21 7→ W12,

h21 : Yn2 ×W12 7→ W21.

We note that this is not the most general definition of a
conference, see for example [44], [45] for a more general
form. In this paper we consider only conferences in which
each receiver sends at most one message to the other receiver.
Note that there are cases where a single conference message
is enough to achieve capacity: for example, in sectionIII a
single conference step achieves capacity for the physically
degraded broadcast channel, and in [45] a single conference
step achieves capacity for the discrete memoryless multiple
access channel counterpart of the setup discussed here.

Definition 5: A (C12, C21)-admissible conferenceis a con-
ference for whichR12 ≤ C12 andR21 ≤ C21.

Definition 6: A
((
2nR1 , 2nR2

)
, n, (C12, C21)

)
codefor the

broadcast channel with cooperating receivers having confer-
ence links of capacitiesC12 and C21 between them, con-
sists of two sets of integersW1 =

{
1, 2, ..., 2nR1

}
, W2 ={

1, 2, ..., 2nR2
}

, calledmessage sets, an encoding function

f : W1 ×W2 7→ Xn,

a (C12, C21)-admissible conference

h12 : Yn1 ×W21 7→ W12,

h21 : Yn2 ×W12 7→ W21,

and two decoding functions

g1 : W21 × Yn1 7→ W1, (1)

g2 : W12 × Yn2 7→ W2. (2)
Definition 7: Theaverage probability of erroris defined as

the probability that the decoded message pair is different from
the transmitted message pair:

P (n)
e = Pr(g1(W21, Y

n
1 ) 6=W1 or g2(W12, Y

n
2 ) 6=W2) .

We also define the average probability of error for each
receiver as:

P
(n)
e1 = Pr(g1 (W21, Y

n
1 ) 6=W1) , (3)

P
(n)
e2 = Pr(g2 (W12, Y

n
2 ) 6=W2) , (4)

where we assume transmission ofn symbols for each code-
word. By the union bound we have thatmax

{
P

(n)
e1 , P

(n)
e2

}
≤

P
(n)
e ≤ P

(n)
e1 + P

(n)
e2 . Hence,P (n)

e → 0 implies that both
P

(n)
e1 → 0 and P (n)

e2 → 0, and when both individual error
probabilities go to zero thenP (n)

e goes to zero as well.

In the analysis that follows, we assume that user 1 and user
2 select their respective messagesW1 andW2 independently
and uniformly over their respective message sets.

Definition 8: A rate pair(R1, R2) is said to beachievable,
if there exists a sequence of

((
2nR1 , 2nR2

)
, n, (C12, C21)

)

codes withP (n)
e → 0 asn → ∞. Obviously, this is satisfied

if both P (n)
e1 → 0 andP (n)

e2 → 0 asn increases.
Definition 9: Thecapacity regionfor the discrete memory-

less broadcast channel with cooperating receivers is the convex
hull of all achievable rates.

III. C APACITY REGION FOR THEPHYSICALLY DEGRADED

BROADCAST CHANNEL WITH COOPERATINGRECEIVERS

We consider the physically degraded broadcast channel with
three independent messages: a private message to each receiver
and a common message to both. We note that for the physically
degraded channel, following the argument in [43, theorem
14.6.4], we can incorporate a common rate to both receivers by
replacingR2, the private rate to the bad receiver, obtained for
the two private messages case withR0+R2, whereR0 denotes
the rate of the common information. Without cooperation, the
capacity region for the physically degraded BCX − Y1 − Y2
given in [43, theorem 14.6.4], is the convex hull of all the rate
triplets (R0, R1, R2) that satisfy

R1 ≤ I(X ;Y1|U), (5)

R0 +R2 ≤ I(U ;Y2), (6)

for some joint distributionp(u)p(x|u)p(y1|x)p(y2|y1), where

||U|| ≤ min {||X ||, ||Y1||, ||Y2||} . (7)

Next, consider cooperation between receivers over the phys-
ically degraded BC. First note that for this case, the link
from Rx2 to Rx1 does not contribute to increasing the rates
due to cooperation, and that only the link fromRx1 to Rx2
does. This is due to the data processing inequality (see [43,
theorem 2.8.1]): sinceX−Y1−Y2 form a Markov chain, any
information aboutX contained inY2 will also be contained
in Y1, and thus conferencing cannot help:

I(X ;Y1, Y2) = I(X ;Y1) + I(X ;Y2|Y1)︸ ︷︷ ︸
= 0

= I(X ;Y1).

For the rest of this section then, we shall consider only a
communication link from the good receiverRx1, to the bad
receiverRx2 (i.e. we setC21 = 0). This implies thatW21 is a
constant and we can thus omit it from the analysis. We begin
with a statement of the theorem:

Theorem 1: The capacity region for sending independent
information over the discrete memoryless physically degraded
broadcast channelX − Y1 − Y2, with cooperating receivers
having a noiseless conference link of capacityC12, as defined
in SectionII , is the convex hull of all rate triplets(R0, R1, R2)
that satisfy

R1 ≤ I(X ;Y1|U), (8)

R0 +R2 ≤ min
(
I(U ;Y1), I(U ;Y2) + C12

)
, (9)
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for some joint distributionp(u)p(x|u)p(y1, y2|x), where the
auxiliary random variableU has cardinality bounded by
||U|| ≤ min {||X ||, ||Y1||}.

We note that this result presented in [46] was simultaneously
derived in [42] for the case of a wireless relay.

A. Achievability Proof

In this section, we show that the rate triplets of theorem1
are indeed achievable. We will show that the region defined by
(8) and (9) with R0 = 0 is achievable. IncorporatingR0 > 0
easily follows as explained earlier.

1) Overview of Coding Strategy:The coding strategy is a
combination of a broadcast code as an “outer” code used to
split the rate betweenRx1 andRx2, and an “inner” code for
Rx2, using the code construction for the physically degraded
relay channel, described in [34, theorem 1]. We first generate
codewordsUn for Rx2, according to the relay channel code
construction. Then, the codewords forRx2 are used as “cloud
centers” for the codewords transmitted toRx1 (which are also
the output to the channel). Upon reception,Rx1 decodes both
its own message and the message forRx2, and then uses the
relay code selection to select the message relayed toRx2. Rx2
uses its received signal,Y n2 , to generate a list of possibleUn

candidates, and then uses the information fromRx1 to resolve
for the correct codeword.

2) Details of Coding Strategy:
a) Code Generation:

1) Consider first the set ofMR = 2nC12 relay messages.
These are the messages that the relayRx1 transmits to
Rx2 through the noiseless finite capacity conference link
between the two receivers. Index these messages bys,
wheres ∈ {1, 2, ...,MR}.
Next, fix p(u) andp(x|u).

2) For each indexs ∈ [1,MR], generate2nR2 conditionally
independent codewordsu(w2|s) ∼

∏n
i=1 p(ui), where

w2 ∈
{
1, 2, ..., 2nR2

}
.

3) For each codewordu(w2|s) generate 2nR1 con-
ditionally independent codewordsx(w1, w2|s) ,

x(w1|u(w2|s)) ∼
∏n
i=1 p(xi|ui(w2|s)), wherew1 ∈{

1, 2, ..., 2nR1
}

.
4) Randomly partition the message set forRx2,{

1, 2, ..., 2nR2
}

, into MR sets {S1, S2, ..., SMR
},

by independently and uniformly assigning to each
message an index in[1,MR].

b) Encoding Procedure:Consider transmission ofB
blocks, each block transmitted usingn channel symbols. Here
we usenB symbol transmissions to transmitB − 1 message
pairs(w1,i, w2,i) ∈

[
1, 2nR1

]
×
[
1, 2nR2

]
, i = 1, 2, . . . , B−1.

As B → ∞ we have that the rate(R1, R2)
B−1
B

→ (R1, R2).
Hence, any rate pair achievable without blocking can be ap-
proached arbitrarily close with blocking as well. Letw1,i and
w2,i be the messages intended forRx1 andRx2 respectively,
at thei’th block, and also assume thatw2,i−1 ∈ Ssi . Rx1 has
an estimateˆ̂w2,i−1 of the message sent toRx2 at blocki− 1.
Let ˆ̂w2,i−1 ∈ Sˆ̂si

. At the i’th block the transmitter outputs the
codewordx(w1,i, w2,i|si), andRx1 sends the index̂̂si to Rx2
through the noiseless conference link.

c) Decoding Procedure:Assume first that up to the
end of the (i − 1)’th block there was no decoding er-
ror. Hence, at the end of the(i − 1)’th block, Rx1
knows (w1,1, w1,2, ..., w1,i−1), (w2,1, w2,2, ..., w2,i−1) and
(s1, s2, ..., si), and Rx2 knows (w2,1, w2,2, ..., w2,i−2) and
(s1, s2, ..., si−1). The decoding at blocki proceeds as follows:

1) Rx1 knows si from w2,i−1. Hence,Rx1 determines
uniquely(ŵ1,i, ŵ2,i) s.t.(
u(ŵ2,i|si),x(ŵ1,i, ŵ2,i|si),y1(i)

)
∈ A

(n)
ǫ . If there is

none or there is more than one, an error is declared.
2) Rx2 receivessi from Rx1. From knowledge ofsi−1

andy2(i − 1), Rx2 forms a list of possible messages,

L(i − 1) =
{
w2 : (y2(i− 1),u(w2|si−1)) ∈ A

(n)
ǫ

}
.

Now,Rx2 usessi to find a uniqueŵ2,i−1 ∈ Ssi
⋂
L(i−

1). If there is none or there is more than one, an error
is declared.

3) Analysis of the Probability of Error:The achievable rate
to Rx2 can be proved using the same technique as in [34,
theorem 1]. For the ease of description assume thatRx1 is
connected via an orthogonal channel toRx2 and letX ′ denote
the channel input fromRx1 andY ′ the corresponding channel
output toRx2. Thus,Rx2 has combined input(Y2, Y ′). The
overall transition matrix is given by

p(y1, y2, y
′|x, x′) = p(y1, y2|x)p(y

′|x′). (10)

Additionally, we select the transition matrixp(y′|x′) and the
input and output alphabetsX ′, Y ′ such that the capacity of
the orthogonal channelX ′−Y ′ is C12. An example for such a
selection is lettingX ′ = Y ′ =

{
0, 1, ..., 2⌈C12⌉ − 1

}
, where⌈·⌉

is denotes the ceil function. Letting[a] denotes the integer part
of the real numbera, we set the channel transition function
to be

p(Y ′|X ′) =

{
1− α , Y ′ = X ′

α , Y ′ = mod
(
X ′ + 2[C12], 2⌈C12⌉

)
,

with α selected such thatH(Y ′|X ′) = ⌈C12⌉ − C12. The
capacity of this channel isC12 and is achieved by letting
p(x′) = 1

2⌈C12⌉ , ∀x′ ∈ X ′. This setup is equivalent to the
original setup described in sectionI-B.

Now consider the rate toRx2. The Markov chainU −
X − (Y1, Y2) combined with the condition in (10) implies
the following probability distribution function (p.d.f.)

p(u, y1, y2, y
′, x′) = p(y1, y2|u)p(y

′|x′)p(u, x′).

Now, applying [34, theorem 1], withp(u, x′) = p(u)p(x′), we
have that (see also [32])

R2 ≤ min {I(U,X ′;Y2, Y
′), I(U ;Y1|X

′)}

= min {I(U,X ′;Y ′) + I(U,X ′;Y2|Y
′), I(U ;Y1)}

= min {I(X ′;Y ′) + I(U ;Y ′|X ′) + I(U ;Y2|Y
′)

+I(X ′;Y2|Y
′, U), I(U ;Y1)}

= min {C12 + I(U ;Y2), I(U ;Y1)} .

Next, consider the rate toRx1. From the proof of [34, theorem
1] we have thatRx1 decodesW2. Therefore,Rx1 can now use
successive decoding similar to the decoding atRx1 in [43, Ch.
14.6.2], which imply that the achievable rate toRx1 is given
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by R1 ≤ I(X ;Y1|U). Combining both bounds we get the rate
constraints of theorem1.

B. Converse Proof

In this section we prove that forP (n)
e → 0, the rates must

satisfy the constraints in theorem1. First, note that for the case
of the physically degraded broadcast channel with cooperating
receivers we have the following Markov chain:

Xn − Y n1 −
(
W12(Y

n
1 ), Y n2

)
. (11)

Considering the definition of the decoders in (1) and (2),
and the definition of the probability of error for each of the
receivers in (3) and (4), we have from Fano’s inequality ([43,
Ch. 2.11]) that

H(W1|Y
n
1 )≤P

(n)
e1 log2

(
2nR1 − 1

)
+ h(P

(n)
e1 )(12)

, nδ(P
(n)
e1 ),

H(W2|Y
n
2 ,W12(Y

n
1 ))≤P

(n)
e2 log2

(
2nR2 − 1

)
+ h(P

(n)
e2 )(13)

, nδ(P
(n)
e2 ),

whereh(P ) is the entropy of a Bernoulli RV with parameter
P . Note that whenP (n)

e1 → 0 then δ(P (n)
e1 ) → 0 and when

P
(n)
e2 → 0 thenδ(P (n)

e2 ) → 0.
Now, for Rx1 we have that

nR1 = H(W1) = I(W1;Y
n
1 ) +H(W1|Y

n
1 ).

Applying inequality (12), and then proceeding as in [4] we
get the bound onR1 as

nR1 ≤

n∑

k=1

I(Xk;Y1,k|Uk) + nδ(P
(n)
e1 ),

whereUk , (Y1,1, Y1,2, ..., Y1,k−1,W2).
For Rx2 we can write

nR2 = H(W2)
(a)

≤ I(W2;Y
n
2 ,W12(Y

n
1 )) + nδ(P

(n)
e2 ) (14)

= I(W2;Y
n
2 ) + I(W2;W12(Y

n
1 )|Y n2 ) + nδ(P

(n)
e2 ),

where the inequality in (a) is due to (13). Proceeding as in [4],
we boundI(W2;Y

n
2 ) ≤

∑n
k=1 I(Uk;Y2,k). Next, we bound

I(W2;W12(Y
n
1 )|Y n2 ) as follows:

I(W12(Y
n
1 );W2|Y

n
2 ) ≤ H(W12(Y

n
1 )|Y n2 )

≤ H(W12(Y
n
1 ))

≤ nC12, (15)

where the first inequality follows from the definition of mutual
information, the second is due to removing the conditioning
and the third is due to the admissibility of the conference.
Combining both bounds we get that

nR2 ≤

n∑

k=1

I(Uk;Y2,k) + nC12 + nδ(P
(n)
e2 ). (16)

The bound onR2 can be developed in an alternative way.
Begin with (14):

nR2 ≤ I(W2;Y
n
2 ,W12(Y

n
1 )) + nδ(P

(n)
e2 )

(a)

≤ I(W2;Y
n
2 , Y

n
1 ) + nδ(P

(n)
e2 )

=

n∑

k=1

I(W2;Y1,k, Y2,k|Y
k−1
1 , Y k−1

2 ) + nδ(P
(n)
e2 ),(17)

where (a) follows from the fact that(W1,W2)− (Y n1 , Y
n
2 )−

(W12, Y
n
2 ) is a Markov relation and from the data processing

inequality. Next, we can write

I(W2;Y1,k, Y2,k|Y
k−1
1 , Y k−1

2 )
(a)
= I(W2;Y1,k|Y

k−1
1 , Y k−1

2 )

= H(Y1,k|Y
k−1
1 , Y k−1

2 )−H(Y1,k|Y
k−1
1 , Y k−1

2 ,W2)
(b)

≤ H(Y1,k)−H(Y1,k|Y
k−1
1 , Y k−1

2 ,W2)
(c)
= H(Y1,k)−H(Y1,k|Y

k−1
1 ,W2)

= I(Y1,k;Y
k−1
1 ,W2)

= I(Y1,k;Uk), (18)

where the equality in (a) is due to the physical degradedness
and memorylessness of the channel, (b) is due to removing the
conditioning, and (c) is because the Markov chain makesY1,k
independent ofY k−1

2 givenY k−1
1 . Plugging this into (17), we

get a second bound onR2:

nR2 ≤
n∑

k=1

I(Uk;Y1,k) + nδ(P
(n)
e2 ).

Collecting the three bounds we have:

R1 ≤
1

n

n∑

k=1

I(Xk;Y1,k|Uk) + δ(P
(n)
e1 ), (19)

R2 ≤
1

n

n∑

k=1

I(Uk;Y2,k) + C12 + δ(P
(n)
e2 ), (20)

R2 ≤
1

n

n∑

k=1

I(Uk;Y1,k) + δ(P
(n)
e2 ). (21)

Using the standard time-sharing argument as in [43, Ch. 14.3],
we can write the averages in (19) - (21) by introducing
an appropriate time sharing variable, with cardinality upper
bounded by4. Therefore, ifP (n)

e1 → 0 and P (n)
e2 → 0 as

n → ∞, the convex hull of this region can be shown to be
equivalent to the convex hull of the region defined by

R1 ≤ I(X ;Y1|U), (22)

R2 ≤ I(U ;Y2) + C12, (23)

R2 ≤ I(U ;Y1). (24)

Finally, the bound on the cardinality ofU follows from the
same arguments as in the converse for the non-cooperative
case in [4]. Note however, that||Y2|| is absent from the
minimization on the cardinality (cf. equation (7) for the non-
cooperative case). The reason is that even when||Y2|| = 1,
information toRx2 (represented by the random variableU ),
can be sent through the conference link between the two
receivers. �
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C. Discussion

To illustrate the implications of theorem1, consider the
physically degraded binary symmetric broadcast channel
(BSBC) depicted in figure2. For this channel, theorem1

p
1
 p
2


U
 X
 Y
1
 Y
2


p
U


Fig. 2. The physically degraded BSBC.pU , p1 andp2 are the transi-
tion probabilities at the left, middle and right segments respectively.

implies that||U|| = 2. Due to the symmetry of the channel, the
probability distribution ofU which maximizes the rates, is a
symmetric binary distribution,Pr(U = 0) = Pr(U = 1) = 1

2 .
The resulting capacity region for this case is depicted in figure
3 for the case whereR0 = 0. In the figure, the bottom line
(dash) is the non-cooperative capacity region, and the top line
(dash-dot) is the maximum possible sum rate, which requires
thatC12 ≥ h(p12)− h(p1), where

h(p) = −p log2(p)− (1− p) log2(1− p),

p12 = p1(1− p2) + p2(1− p1).

This maximum sum-rate ofI(X ;Y1) is obtained by summing
the rate toRx1 given by (22) and the maximum possible rate
for Rx2 given by (24), and using the Markov chain relation
U −X−Y1. The middle line (solid) is the capacity region for

1I(X;Y )

2I(X;Y )

2I(X;Y )+C

1I(X;Y )

R2

R1

C12

12

Fig. 3. The capacity region for the physically degraded BSBC. Top,
middle and bottom lines correspond to maximum possible coopera-
tion, partial cooperation and no-cooperation scenarios respectively.

the partial cooperation case where0 < C12 < h(p12)−h(p1).
As can be seen from this example, the capacity region

derived in this section is strictly larger than the capacityregion
for the non-cooperation case. Indeed, summing the constraints
on R0, R1 andR2 without cooperation (equations (5), (6)),
results in a maximum achievable sum-rate of

R0 +R1 +R2 ≤ I(X ;Y1)− (I(U ;Y1)− I(U ;Y2)), (25)

where the second term is always positive due to the Markov
chainU −X − Y1 − Y2 (assuming the degrading channel is

non-invertible1). In this setup, the maximum possible sum-
rate, I(X ;Y1), is achieved only whenU is a constant, and
thus no information is sent toRx2. When R0 + R2 > 0,
because of the relationshipR0 + R2 ≤ I(U ;Y2) < I(U ;Y1),
we cannot achieve the maximum sum-rate ofI(X ;Y1) to
Rx1. However, summing (23) or (24) with (22), results in a
maximum achievable sum-rate with cooperating receivers of

R0 +R1 +R2 ≤ I(X ;Y1)

+ min {0, C12 − (I(U ;Y1)− I(U ;Y2))} .(26)

Comparing this to non-cooperative sum-rate given by (25), it
is clear that cooperation allows a net increase in the sum-rate,
by at mostC12.

IV. A CHIEVABLE RATES FOR THEGENERAL BROADCAST

CHANNEL WITH COOPERATINGRECEIVERS

For the classic general BC scenario, the best achievability
result was derived by Marton in [14]. This result states that
for the general BC, any rate pair(R1, R2) satisfying

R1 ≤ I(U ;Y1), (27)

R2 ≤ I(V ;Y2), (28)

R1 +R2 ≤ I(U ;Y1) + I(V ;Y2)− I(U ;V ), (29)

for some joint distribution p(u, v, x, y1, y2) =
p(u, v, x)p(y1, y2|x), is achievable.

We note that Marton’s largest region contains three auxiliary
RVs, (W,U, V ), whereW represents information decoded by
both receivers. Here we use a simplified version, whereW is
set to a constant.

We now consider cooperation between the receivers. We
begin with a statement of the theorem:

Theorem 2: Let(X , p(y1, y2|x),Y1 × Y2) be any discrete
memoryless broadcast channel, with cooperating receivers
having noiseless conference links of finite capacitiesC12 and
C21, as defined in SectionII . Then, for sending independent
information, any rate pair(R1, R2) satisfying

R1 ≤ R(U),

R2 ≤ R(V ),

R1 +R2 ≤ R(U) +R(V )− I(U ;V ),

subject to,

C21 ≥ I(Û ;Y2)− I(Û ;Y1), (30)

C12 ≥ I(V̂ ;Y1)− I(V̂ ;Y2), (31)

where,

R(U) = I(U ;Y1, Û), (32)

R(V ) = I(V ;Y2, V̂ ), (33)

for some joint distribution p(u, v, x, y1, y2, û, v̂) =
p(u, v, x)p(y1, y2|x)p(û|y2)p(v̂|y1), is achievable, with
u ∈ U , v ∈ V , û ∈ Û , v̂ ∈ V̂ , ||Û || ≤ ||Y2|| + 1 and
||V̂ || ≤ ||Y1||+ 1.
In the next subsections we provide the proof of this theorem.

1It can be shown thatI(U ;Y1)− I(U ;Y2) = 0 for the degraded channel
setup implies that ifR0 + R2 > 0 then H(Y1|Y2) = 0, i.e. the channel
from Rx1 to Rx2 is invertible. Under these circumstances, this setup can be
replaced by an equivalent setup in which both receivers getY1, but such a
degenerate setup is not interesting.
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A. Overview of Coding Strategy

As in the achievability part of theorem1, the proposed
code is a hybrid broadcast-relay code. Here, we combine the
relay code construction of [34, theorem 6] and the broadcast
code construction of [15]. The fact that in these two theorems
the channel encoding and the relay operation are performed
independently, allows to easily combine them into a hybrid
coding scheme. The encoder generates broadcast codewords,
each selected from a codebook constructed similarly to the
construction of [15]. This codebook splits the rate between
the two users. Next, each relay (Rx1 acts as a relay for
Rx2 and vice-versa) generates its codebook according to the
construction of [34, theorem 6]. In the decoding step, using
the received signal (Y n1 atRx1 andY n2 atRx2), each receiver
generates a list of the possible transmitted relay messages
and uses the conference message from the next time interval
to resolve for the relay massage. Then, each receiver uses
the decoded relay message and its received channel output to
decode its own message.

B. Encoding at the Transmitter

1) Let ǫ > 0 andn ≥ 1 be given. Fixp(u, v, x), p(û|y2)
andp(v̂|y1), and letδ > 0 be a positive number, whose
selection is described in the next item. LetA∗(n)

δ (U)
denote the set of strongly typical i.i.d. sequences of
length n, u ∈ Un, as defined in [43, Ch. 13.6].
Let A∗(n)

δ (V ) denote the set of strongly typical i.i.d.
sequences of lengthn, v ∈ Vn. Let S(n)

[U ]δ denote the set

of all sequencesu ∈ A
∗(n)
δ (U), such thatA∗(n)

δ (V |u)
is nonempty as defined in [47, corollary 5.11], and
similarly defineS(n)

[V ]δ for the sequencesv ∈ A
∗(n)
δ (V ).

2) Select2n(R(U)−ǫ) strongly typical sequencesu in an
i.i.d. manner, according to the probability

p (u) =

{
1

||S
(n)

[U]δ
||
,u ∈ S

(n)
[U ]δ

0 , otherwise.

Label these sequences byu(k), k ∈
[
1, 2n(R(U)−ǫ)

]
.

Select2n(R(V )−ǫ) strongly typical sequencesv in an
i.i.d. manner, according to the probability

p (v) =

{
1

||S
(n)

[V ]δ
||
,v ∈ S

(n)
[V ]δ

0 , otherwise.

Label these sequences byv(l), l ∈
[
1, 2n(R(V )−ǫ)

]
.

Note that from [47, corollary 5.11] we have that
||S

(n)
[U ]δ|| ≥ (1−δ)2n(H(U)−ψ), whereψ → 0 asn→ ∞

and δ → 0, so for anyǫ > 0 we can always find0 <
δ ≤ ǫ such that forn large enough we obtain||S(n)

[U ]δ|| >

2n(I(U ;Y1,Û)−ǫ) and ||S(n)
[V ]δ|| > 2n(I(V ;Y2,V̂ )−ǫ).

3) Define the cells Bi =[
(i− 1)2n(R(U)−R1−ǫ) + 1, i2n(R(U)−R1−ǫ)

]
,

i ∈
[
1, 2nR1

]
. This is a partition of theu sequences

into 2nR1 sets. Define the cells
Cj =

[
(j − 1)2n(R(V )−R2−ǫ) + 1, j2n(R(V )−R2−ǫ)

]
,

j ∈
[
1, 2nR2

]
, which form a partition of thev sequences

into 2nR2 sets.
4) For every pair of integers(w1, w2) ∈

[
1, 2nR1

]
×[

1, 2nR2
]
, define the setDw1,w2 =

{
(u(k),v(l)) :

k ∈ Bw1 , l ∈ Cw2 , (u(k),v(l)) ∈ A
∗(n)
ǫ (U, V )

}
. Here,

A
∗(n)
ǫ (U, V ) denotes the strongly typical set for the

random variablesU andV as defined in [43, Ch. 13.6].
In the following we may omit the random variables when
referring to the strongly typical set, when these variables
are clear from the context. We now have the following
(slightly modified) lemma from [15]:
Lemma 1: For any 2-D cellBi×Cj , ǫ > 0, andn large
enough, we have that Pr(||Dij || = 0) ≤ ǫ, provided that

R1 +R2 < R(U) +R(V )− I(U ;V )− 2ǫ− ǫ1, (34)

whereǫ1 → 0 as ǫ→ 0 andn→ ∞.
Proof: The proof of this lemma is obtained by

direct application of the technique used to prove [15,
Lemma in pg. 121], and therefore will not be repeated
here.

5) For each message pair(w1, w2), select one pair
(u(kw1,w2),v(lw1,w2)) ∈ Dw1,w2 . For each of the
selected pairs (one pair for each message pair),
generate a codeword according tox(w1, w2) ∼∏n
i=1 p (xi|ui(kw1,w2), vi(lw1,w2)).

6) To transmit the message pair(w1, w2) the transmitter
outputsx(w1, w2).

C. Encoding the Relay Messages

Consider first the relay encoding atRx2, which acts as a
relay forRx1.

1) Rx2-relay has a set of2nC21 relay messages indexed by
s′ ∈

[
1, 2nC21

]
. For each indexs′, generate2nR

′

i.i.d.
sequenceŝu, each with probabilityp(û) =

∏n
i=1 p(ûi),

p(û) =
∑

X ,Y1,Y2
p(û|y2)p(y1, y2|x)p(x), and p(x) =∑

U ,V p(u, v, x). Label these codewordŝu(z′|s′), s′ ∈[
1, 2nC21

]
, z′ ∈ [1, 2nR

′

].
2) Randomly and uniformly partition the message set

[1, 2nR
′

] into 2nC21 setsS′
s′ , s

′ ∈
[
1, 2nC21

]
.

3) Encoding: Assume that after receivingy2(i − 1) we

have atRx2 that
(
û(z′i−1|s

′
i−1),y2(i − 1)

)
∈ A

∗(n)
ǫ ,

and thatz′i−1 ∈ S′
s′
i

(s′i−1 is known from the previous
transmission ofz′i−2). Then, at thei’th transmission
interval the relay transmits the indexs′i to Rx1.

Relay encoding atRx1 is performed in a symmetric manner
to the relay encoding atRx2. The corresponding variables for
Rx1 areS′′

s′′ and v̂(z′′|s′′), s′′ ∈
[
1, 2nC12

]
, z′′ ∈ [1, 2nR

′′

].

D. Decoding the Relay Messages at the Relays

Consider decoding the relay message atRx2. The relay
decoder atRx2 uses its channel inputy2(i), and its previously
decodeds′i to generate the relay messagez′i as follows: upon
receivingy2(i), the relayRx2 decides that the messagez′i was
received at timei if (û (z′i|s

′
i) ,y2(i)) ∈ A

∗(n)
ǫ . Following the

argument in [34, theorem 6] (see also the proof in [43, Ch.
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13.6]), there exists suchz′i with probability that is arbitrarily
close to one as long as

R′ ≥ I
(
Û ;Y2

)
, (35)

andn is sufficiently large. Relay decoding atRx1 is done in
a symmetric manner to the relay decoding atRx2.

E. Decoding at the Receivers

We first find the rate constraint for decoding atRx1. Rx1
decodes its messagew1,i−1 based on its channel inputy1(i−1)
and the relay indicess′i ands′i−1:

1) From knowledge ofs′i−1 andy1(i− 1), Rx1 calculates
the setL1(i − 1) such that

L1(i − 1) =
{
z′ ∈ [1, 2nR

′

] :

(
û
(
z′|s′i−1

)
,y1(i− 1)

)
∈ A∗(n)

ǫ

}
.

2) At the time interval of thei’th codeword,Rx1 receives
the relayeds′i. Since s′i is selected from a set of
2nC21 possible messages, it can be transmitted over the
noiseless conference link without error.

3) Rx1 now chooseŝz′i−1 as the relay message at timei−1
if and only if there exists a uniquêz′i−1 ∈ S′

s′
i

⋂
L1(i−

1). Again, following the reasoning in [34, theorem 6],
this can be done with an arbitrarily small probability of
error as long as

R′ ≤ I(Û ;Y1) + C21, (36)

andn is large enough. Combining this with inequality
(35) we get the constraint on the relay information rate:

C21 ≥ I(Û ;Y2)− I(Û ;Y1). (37)

This expression is similar to the Wyner-Ziv expression
for the rate required to transmitY2 to receiverRx1 up to
a given distortion, determined byp(û|y2) and a decoder.
Here the performance of the decoder are implied in the
mutual informationI(U ;Y1, Û). The compressedY n2 is
then used byRx1 to assist in decodingW1.

4) Lastly, Rx1 decodes w1,i−1 (or, equivalently
u(kw1,i−1,w2,i−1)) by choosingu(kŵ1,i−1,ŵ2,i−1) such
that

(
u(kŵ1,i−1,ŵ2,i−1),y1(i− 1), û

(
ẑ′i−1|s

′
i−1

))
∈

A
∗(n)
ǫ . From the point-to-point channel coding theorem

(see [15]) we have that̂w1,i−1 = w1,i−1 with probability
that is arbitrarily close to one, as long asz′i−1 was
correctly decoded atRx1 and

R1 ≤ R(U) , I
(
U ;Y1, Û

)
, (38)

for sufficiently largen. Combining this with equation
(37) yields the rate constraint onR1:

R1 ≤ R(U), (39)

as long asC21 ≥ I(Û ;Y2)− I(Û ;Y1). (40)

Using symmetric arguments to those presented for decoding
at Rx1 we find the rate constraint forRx2 to be

R2 ≤ R(V ), (41)

as long asC12 ≥ I(V̂ ;Y1)− I(V̂ ;Y2). (42)

Combining equations (34), (39), (40), (41) and (42), gives
the conditions in theorem2.

F. Error Events

In the scheme described above we have to account for the
following error events for decoding(w1,i−1, w2,i−1):

1) Encoding at the transmitter fails:
ED,i =

{
||Dw1,i−1,w2,i−1 || = 0

}
.

2) Joint typicality decoding fails:
E0,i =

{(
u(kw1,i−1,w2,i−1),v(lw1,i−1,w2,i−1),

x(w1,i−1, w2,i−1),y1(i−1),y2(i−1)
)
/∈ A

∗(n)
ǫ

}
.

3) Decoding at the relays fails:E1,i = E11,i

⋃
E12,i,

E11,i =
{
∄z′ ∈ [1, 2nR

′

] s.t.
(
û

(
z′|s′i−1

)
,y2(i− 1)

)
∈ A

∗(n)
ǫ

}
,

E12,i =
{
∄z′′ ∈ [1, 2nR

′′

] s.t.
(
v̂
(
z′′|s′′i−1

)
,y1(i− 1)

)
∈ A

∗(n)
ǫ

}
.

4) Decoding the relay message at the receivers fails:E2,i =
E21,i

⋃
E22,i, whereE21,i = E′

21,i

⋃
E′′

21,i andE22,i =
E′

22,i

⋃
E′′

22,i,

E′
21,i =

{
z′i−1 /∈ S′

s′
i

⋂
L1(i − 1)

}
,

E′′
21,i =

{
∃z̃′ 6= z′i−1 s.t. z̃′ ∈ S′

s′i

⋂
L1(i − 1)

}
,

E′
22,i =

{
z′′i−1 /∈ S′′

s′′
i

⋂
L2(i− 1)

}
,

E′′
22,i =

{
∃z̃′′ 6= z′′i−1 s.t. z̃′′ ∈ S′′

s′′
i

⋂
L2(i− 1)

}
,

L2(i − 1) ,
{
z′′ ∈ [1, 2nR

′′

] :
(
v̂
(
z′′|s′′i−1

)
,y2(i− 1)

)
∈ A

∗(n)
ǫ

}
.

5) Final decoding at the receivers fails:
E3,i = E31,i

⋃
E32,i, where,

E31,i =
{(

u(kw1,i−1,w2,i−1),y1(i − 1),

û(z′i−1|s
′
i−1)

)
/∈ A

∗(n)
ǫ

} ⋃{
∃w1 6= w1,i−1 s.t.

(
u(kw1,w2),y1(i− 1), û(z′i−1|s

′
i−1)

)
∈ A

∗(n)
ǫ

}
,

E32,i =
{(

v(lw1,i−1,w2,i−1),y2(i − 1),

v̂(z′′i−1|s
′′
i−1)

)
/∈ A

∗(n)
ǫ

} ⋃{
∃w2 6= w2,i−1 s.t.

(
v(lw1,w2),y2(i− 1), v̂(z′′i−1|s

′′
i−1)

)
∈ A

∗(n)
ǫ

}
.

We now bound the probability of the error events at time
i. Note that at timei both Rx1 and Rx2 share the same
s′i−1 and s′′i−1 irrespective whether the decoding at the re-
lays was correct at timei − 1. Hence, a decoding error at
time i − 1 does not affect the decoding at timei. Now,
from lemma1 it follows that by takingn large enough the
probability ofED,i can be made arbitrarily small, as long as
(34) is satisfied. Additionally, by takingn large enough, the
probabilityPr(E0,i

⋂
EcD,i) can be made arbitrarily small by

the properties of strongly typical sequences, see [43, lemma
13.6.2]. The probabilityPr(E1,i) can be made arbitrarily
small as long as (40) and (42) are satisfied, as explained is
sectionIV-D. Next, the Markov lemma [50, lemma 4.2] and
the Markov chainsY1 − Y2 − Û and Y2 − Y1 − V̂ , imply
thatPr(E′

21,i

⋂
Ec1,i

⋂
Ec0,i) andPr(E′

22,i

⋂
Ec1,i

⋂
Ec0,i) can

be made arbitrarily small by takingn large enough, and
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Pr(E′′
21,i

⋂
Eci,1) andPr(E′′

22,i

⋂
Eci,1) can be made arbitrarily

small by takingn large enough as long as (40) and (42) are
satisfied. Finally,Pr(E31,i

⋂
Ec2,i

⋂
Ec1,i

⋂
Ec0,i

⋂
EcD,i) and

Pr(E32,i

⋂
Ec2,i

⋂
Ec1,i

⋂
Ec0,i

⋂
EcD,i) can be made arbitrarily

small by takingn large enough by the Markov lemma and the
chainsU, Y1 − Y2 − Û and V, Y2 − Y1 − V̂ , and as long as
(39) and (41) are satisfied.

This concludes the proof of theorem2. �

G. An Upper Bound

Proposition 1: Assume the broadcast channel setup of theo-
rem2. Then, for sending independent information, any achiev-
able rate pair(R1, R2) must satisfy

R1 ≤ I(X ;Y1) + C21,

R2 ≤ I(X ;Y2) + C12,

R1 +R2 ≤ I(X ;Y1, Y2),

for some distributionp(x) on X .

Proof: The proof uses the cut-set bound [43, theorem
14.10.1]. First we define an equivalent system by introducing
two orthogonal channelsX ′

2−Y
′
1 fromRx2 toRx1 andX ′

1−Y
′
2

from Rx1 to Rx2. The joint probability distribution function
then becomes

p ((y1, y
′
1), (y2, y

′
2)|x, x

′
1, x

′
2) = p(y1, y2|x)p(y

′
1|x

′
2)p(y

′
2|x

′
1),

where the signal received atRx1 is (Y1, Y
′
1) and the signal

received atRx2 is (Y2, Y
′
2). As in the proof in section

III-A.3 , we selectX ′
1, X ′

2, Y ′
1, Y ′

2, p(x′1), p(x
′
2), p(y

′
1|x

′
2) and

p(y′2|x
′
1) such that the capacities of the channelsX ′

2 − Y ′
1

and X ′
1 − Y ′

2 are C21 and C12 respectively. Additionally,
the codewords for the conference transmissions are deter-
mined independently from the source codebook so we set
p(x, x′1, x

′
2) = p(x)p(x′1)p(x

′
2). Now, from the cut-set bound,

letting the transmitter andRx2 form one group andRx1 the
second group, we have

R1 ≤ I(X,X ′
2;Y1, Y

′
1 |X

′
1)

= I(X ′
2;Y1, Y

′
1 |X

′
1) + I(X ;Y1, Y

′
1 |X

′
1, X

′
2)

= I(X ′
2;Y

′
1 |X

′
1) + I(X ′

2;Y1|X
′
1, Y

′
1)

+ I(X ;Y ′
1 |X

′
1, X

′
2) + I(X ;Y1|X

′
1, X

′
2, Y

′
1)

= I(X ′
2;Y

′
1) + I(X ;Y1)

= C21 + I(X ;Y1),

where I(X ′
2;Y1|X

′
1, Y

′
1) = I(X ;Y ′

1 |X
′
1, X

′
2) = 0 follows

from direct application of the distribution function. Similarly
we obtain the rate constraint onR2. Lastly, for the sum-rate
consider the transmitter in one group and the receivers in the
second. Then, the cut-set bound results in

R1 +R2 ≤ I(X ;Y1, Y2, Y
′
1 , Y

′
2 |X

′
1, X

′
2)

= I(X ;Y1, Y2|X
′
1, X

′
2)

+ I(X ;Y ′
1 , Y

′
2 |X

′
1, X

′
2, Y1, Y2)

= I(X ;Y1, Y2),

yielding the last constraint in the proposition.

H. Remarks

Comment 4.1:Observing the rate constraints in theorem2
we can see that when (30) and (31) are satisfied then the
cooperative rates are greater than the non-cooperative rates
due to the (generally) positive terms adding toI(U ;Y1) and
I(V ;Y2).

Comment 4.2:We note that although we present a single
letter characterization of the rates, we are not able to apply
standard cardinality bounding techniques such as those used
in [48] or [49] for bounding||U|| and ||V||. The method of
[48] cannot be applied since it relies on the fact that the
auxiliary random variables are independent, which is not the
case here. The method of [49] cannot be applied as explained
in the comment for theorem 2 in [20]. The cardinality bounds
on ||Û || and ||V̂ || are trivial since they are transmitted over
noiseless links.

Comment 4.3:The relay strategies can be divided into two
general classes. The first class is referred to asdecode-and-
forward (DAF). In this strategy, the relay first decodes the
message intended for the destination and then generates a
relay message based on the decoded information. The second
class is referred to asestimate-and-forward(EAF). In this
class the relay does not decode the message intended for the
destination but transmits an estimate of its channel input to the
destination. For the physically degraded BC we used DAF,
based on [34, theorem 1], to derive theorem1, and for the
general BC we used the EAF scheme of [34, theorem 6],
to derive theorem2. Of course, one can also combine both
strategies and perform partial decoding at each receiver ofthe
other receiver’s message before conferencing, following [34,
theorem 7]. This combination will, in general, result in an
increased achievable rate region.

I. Special Cases

1) No Cooperation:C12 = C21 = 0: Consider first
cooperation fromRx2 to Rx1. SettingC21 = 0 in theorem
2 implies that

H(Û |Y1) = H(Û |Y2). (43)

From equation (32), the constraint onR1 can be written in the
form

R1 ≤ I(U ;Y1) + I(U ; Û |Y1).

Now we findI(U ; Û |Y1):

I(U ; Û |Y1) = H(Û |Y1)−H(Û |Y1, U)
(a)
= H(Û |Y2)−H(Û |Y1, U)
(b)
= H(Û |Y2, Y1, U)−H(Û |Y1, U) (44)

= −I(Û ;Y2|Y1, U).

where (a) is due to (43), and (b) is due to the Markov chain
U−(U, V )−X−(Y1, Y2)−Y2−Û , which implies that givenY2,
Û is independent ofY1 andU . Now, since mutual information
is non-negative, we conclude thatI(U ; Û |Y1) = 0. Hence, the
rate constraint onR1 becomes

R1 ≤ I(U ;Y1).
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Similarly, the maximum rateR2 is given byI(V ;Y2), and in
conclusion whenC12 = C21 = 0 we resort back to the rate
region without cooperation derived in [14] (with a constant
W ).

2) Full Cooperation:C12 = H(Y1|Y2), C21 = H(Y2|Y1):
WhenC12 = H(Y1|Y2), we get from (31) that

H(Y1|Y2) = C12 ≥ I(V̂ ;Y1)− I(V̂ ;Y2)

= H(V̂ |Y2)−H(V̂ |Y1),

which is satisfied when̂V = Y1. Plugging this into (33), we
get that when full cooperation fromRx1 to Rx2 is available,
the rate constraint forRx2 becomes

R2 ≤ I(V ;Y2, Y1).

Using the same reasoning we conclude that when full coop-
eration fromRx2 to Rx1 is available, the rate constraint for
Rx1 becomesR1 ≤ I(U ;Y1, Y2).

3) Partial Cooperation: When 0 < C12 < H(Y1|Y2) and
0 < C21 < H(Y2|Y1), we get that

C21 ≥ H(Û |Y1)−H(Û |Y2)

⇒ H(Û |Y1) ≤ C21 +H(Û |Y2). (45)

Hence, the achievable rate toRx1 is upper bounded by

R1 ≤ I(U ;Y1, Û)

= I(U ;Y1) + I(U ; Û |Y1)

= I(U ;Y1) +H(Û |Y1)−H(Û |U, Y1)
(a)

≤ I(U ;Y1) +H(Û |Y2)−H(Û |U, Y1) + C21

(b)
= I(U ;Y1) +H(Û |Y2, Y1, U)−H(Û |U, Y1) + C21

R1 ≤ I(U ;Y1) + C21 − I(Û ;Y2|U, Y1). (46)

where (a) is due to (45) and (b) follow from the same reasoning
leading to equation (44). Similarly, R2 ≤ I(V ;Y2) + C12 −
I(V̂ ;Y1|V, Y2).

Note that there exist negative terms−I(Û ;Y2|U, Y1)
and −I(V̂ ;Y1|V, Y2) in the achievable rate upper bounds.
This can be explained as follows: the mutual information
I(Û ;Y2|U, Y1) can be considered as a type of “ancillary”
information thatÛ contains, since this information is con-
tained in Û while U and Y1 are already known - therefore,
this information is a “noise” part ofY2 which does not
include any helpful information for decodingU atRx1. Thus,
for cooperating in the optimal way,̂U has to be a type of
“sufficient and complete” cooperation information.

V. THE GENERAL BROADCAST CHANNEL WITH A SINGLE

COMMON MESSAGE

We now consider the case where only a single message,
rather than two independent messages, is transmitted to both
receivers. The main motivation for considering this case is
that in the two independent messages case it is difficult to
specify an explicit cooperation scheme, and we therefore have
to represent cooperation through auxiliary random variables.
Hence, we cannot identify directly the gain from cooperation,
except in the case of full cooperation, and we also cannot

evaluate the achievable region. For the single common mes-
sage case, we are able to derive results for partial cooperation
without auxiliary variables,which make this region explicitly
computable. This scenario is depicted in figure4.

W
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 X
n


Broadcast Channel


p(y
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,y
2
|x)
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n


Y
2

n


Receiver 1


Receiver 2
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^


W
^


C
12
 C
21


^


Fig. 4. The single message broadcast channel with cooperating

receivers.Ŵ and ˆ̂
W are the estimates ofW at Rx1 and Rx2

respectively.

For this scenario we need to specialize the definitions of a
code and the average probability of error as follows:

• A
(
2nR, n, (C12, C21)

)
code for sending a common

message over the broadcast channel with cooperating
receivers having conference links of capacitiesC12 and
C21 between them, is defined in a similar manner to
definition 6 with W1, W2 and W1 × W2 all replaced
with W =

{
1, 2, ..., 2nR

}
.

• The average probability of erroris defined similarly to
definition 7 with W1 andW2 replaced withW .

The capacity for the non-cooperative single message sce-
nario is given in [5] by

C = sup
p(x)

{
min

(
I(X ;Y1), I(X ;Y2)

)}
. (47)

In the following we consider two cooperation schemes, re-
ferred to as a single-step scheme and a two-step scheme. These
schemes are described in figure5. In the single-step scheme,
after reception each receiver generates a single cooperation
message based on its channel input. In the two-step scheme,
after reception one receiver generates a cooperation message
based only on its channel input, as in the previous case, but
the second receiver generates its cooperation message only
after decoding (which is done with the help of the conference
message from the first receiver). In both cases each receiver
generates a single conference message, however in the single-
step conference the emphasis is on low delay, while in the
two-step conference we sacrifice delay in order to gain rate.
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Fig. 5. Schematic description of the single-step and the two-step
conference schemes.
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A. Decoding with a Single-Step Cooperation

In this section we constrain both decoders to output their
decoded messages after a conference that consists of a single
message from each receiver, based only on its received channel
input. For this case, we can specialize the derivation of theo-
rem 2 and get the following achievable rate for the broadcast
channel with partially cooperating receivers:

Theorem 3: Let(X , p(y1, y2|x),Y1 × Y2) be any discrete
memoryless broadcast channel, with cooperating receivers
having noiseless conference links of finite capacitiesC12 and
C21, as defined in sectionII . Then, for sending a common
message to both receivers, any rateR satisfying

R ≤ sup
p(x)

{
min

{
I(X ;Y1, Û), I(X ;Y2, V̂ )

}}
,

subject to

C21 ≥ I(Û ;Y2)− I(Û ;Y1),

C12 ≥ I(V̂ ;Y1)− I(V̂ ;Y2),

for some joint distribution p(x, y1, y2, û, v̂) =
p(x)p(y1, y2|x)p(û|y2)p(v̂|y1) is achievable, with
||Û || ≤ ||Y2||+ 1 and ||V̂ || ≤ ||Y1||+ 1.

The proof of theorem3 follows the same lines of the proof
of theorem2 and will not be repeated here. We next show
how we can increase the rates by introducing the two-step
conference.

B. Decoding with a Two-Step Cooperation

We consider a two-step conference: at the first step only one
receiver decodes the message. The second receiver decodes
after the second step. Therefore, after the first receiver decodes
the message, relaying to the second receiver reduces to the
decode-and-forward relay situation of [34, theorem 1]. The
rates achievable with a two step conference are given in the
following theorem:

Theorem 4: Assume the broadcast channel setup of theorem
3. Then, for sending a common message to both receivers, any
rate R satisfying

R ≤ sup
p(x)

[
max

{
R12(p(x)), R21(p(x))

}]

R12(p(x)) , min

(
I(X ;Y1) + C21,

I(X ;Y2)− I(V̂ ;Y1|Y2, X)

+min
(
C12, H(V̂ |Y2)−H(V̂ |Y1)

))
,

R21(p(x)) , min

(
I(X ;Y2) + C12,

I(X ;Y1)− I(Û ;Y2|Y1, X)

+min
(
C21, H(Û |Y1)−H(Û |Y2)

))
,

for some joint distribution p(x, y1, y2, û, v̂) =
p(x)p(y1, y2|x)p(û|y2)p(v̂|y1) is achievable, with
||Û || ≤ ||Y2|| + 1 and ||V̂ || ≤ ||Y1|| + 1, and with the

appropriateC12 ≥ I(V̂ ;Y1|Y2, X) or C21 ≥ I(Û ;Y2|Y1, X)
(the one used for the first cooperation step).

Proof:
1) Overview of Coding Strategy:The scheme described in

theorem3 uses a single-step conference for both decoders.
However, if we let one receiver use a two-step conference, then
that receiver, instead of using conference information derived
from the raw input of the other receiver, can use information
generated by the second receiver after it already decoded the
message. This conference information is less noisy, and thus
the rate to the first receiver can be increased.

To put this in more concrete terms, assume that at timei+1,
Rx1 sends toRx2 the indexs′i+1 of the partition into which
its relay message at timei, denotedzv̂,i, belongs. In appendix
B we show thatRx2 can decode the messagew0,i with an
arbitrarily small probability of error as long as

R ≤ I(X ;Y2)− I(V̂ ;Y1|Y2, X)

+min
(
C12, H(V̂ |Y2)−H(V̂ |Y1)

)
, (48)

and

C12 ≥ I(V̂ ;Y1|Y2, X). (49)

We now introduce the following modifications to the scheme
used in theorem3:

2) Relay Sets Generation atRx2: Rx2 partitions the mes-
sage setW into 2nC21 subsets in a uniform and independent
manner. Denote these subsets withS̃′′

s̃′′ , s̃
′′ ∈

[
1, 2nC21

]
.

3) Relay Encoding atRx2: Rx2 has an estimatê̂w0,i of
the messagew0,i. Now,Rx2 looks for the partition into which
ˆ̂w0,i belongs and sends the index of this partition, denoted
s̃′′i+2, to Rx1 at time i+ 2.

4) Decoding at Rx1: Upon reception
of y1(i), Rx1 generates the set L1(i) ={
w ∈ W : (x(w),y1(i)) ∈ A

∗(n)
ǫ (X,Y1)

}
. At time i + 2,

upon reception of̃s′′i+2, Rx1 looks for an indexw such that
w ∈ L1(i)

⋂
S̃′′
s̃′′
i+2

. If a unique suchw exists thenRx1 sets
ŵ0,i = w, otherwise an error is declared.

5) Bounding the Probability of Error:Using the proof tech-
nique in [34, theorem 1], it can be easily shown that assuming
correct decoding atRx2, then any rateR ≤ I(X ;Y1) + C21

is achievable toRx1.
Combining the bounds derived above, we conclude that with

a two-step conference atRx1, any rate satisfying

R ≤ min

(
I(X ;Y1) + C21, I(X ;Y2)− I(V̂ ;Y1|Y2, X)

+min
(
C12, H(V̂ |Y2)−H(V̂ |Y1)

))
,

C12 ≥ I(V̂ ;Y1|Y2, X),

ia achievable. Repeating the same derivation whenRx2 uses
a two-step conference, and combining with the previous case
proves theorem4.

Setting Û = Y2, V̂ = Y1 in theorem4 we obtain the
following achievable region:
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Corollary 1: Assume the broadcast channel setup of theo-
rem3. Then, for sending a common message to both receivers,
any rateR satisfying

R ≤ sup
p(x)

[
max

{
R12(p(x)), R21(p(x))

}]

R12(p(x)),min

(
I(X ;Y1) + C21, I(X ;Y2)−H(Y1|Y2, X)

+ min
(
C12, H(Y1|Y2)

))
,

R21(p(x)),min

(
I(X ;Y2) + C12, I(X ;Y1)−H(Y2|Y1, X)

+ min
(
C21, H(Y2|Y1)

))
,

with the appropriateC12 > H(Y1|Y2, X) or C21 >
H(Y2|Y1, X) (the one used for the first cooperation step), is
achievable.
This gives a partial cooperation result without auxiliary ran-
dom variables.

C. An Example for Corollary1

Consider two independent, identical, BSBCs with transition
probabilityp, and cooperation links of capacitiesC12 = C21 =
C. For this case, corollary1 gives the following maximum
achievable rate:

R = sup
p0

{
min

[
H(Y1)− h(p) + C,

min (H(Y1) + C,H(Y1, Y2))− 2h(p)
]}
,

= sup
p0

{
min

[
H(Y1)− 2h(p) + C,H(Y1, Y2)− 2h(p)

]}
,

for C ≥ h(p), whereY1 = Y2 = X = {0, 1}, p0 = Pr(X =
0), and

Pr(y1, y2) =





(1− p)2p0 + p2(1− p0), y1 = y2 = 0
p(1− p), y1 6= y2

p2p0 + (1 − p)2(1− p0), y1 = y2 = 1

Pr(y1) =

{
(1 − p)p0 + p(1− p0), y1 = 0
pp0 + (1− p)(1− p0), y1 = 1.

Solving for the supremum for each value ofC, we get the
achievable rates depicted in figure6. Note the linear increase
in the achievable rate forH(Y2|Y1, X) < C < H(Y2|Y1).

D. An Upper Bound

The upper bound for the single common message case can
be obtained from the bound for the two independent messages
case in proposition1:

Corollary 2: Let (X , p(y1, y2|x),Y1 × Y2) be any discrete
memoryless broadcast channel, with cooperating receivers
having noiseless conference links of finite capacitiesC12 and
C21, as defined in sectionII . Then, for sending a common
message to both receivers, any rateR must satisfy

R ≤ sup
p(x)

{
min

(
I(X ;Y1) + C21, I(X ;Y2) + C12,

I(X ;Y1, Y2)
)}
.

C


R


0
 H(Y 
|
Y 
,X)
1
2


I(X;Y 
)
1


I(X;Y 
,Y 
 )
2
1


H(Y 
|
Y 
)
1
2


Fig. 6. Achievable rate vs. C, for the two independent, identical,
BSBCs with a single common message, resulting from corollary 1.

Proof: Follows directly from proposition1 by noting
that the common rate has to satisfy all three constraints: the
individual rates and the sum rate.

E. Remarks

Comment 5.1:Note that there are special cases where the
lower bound of corollary1 coincides with the upper bound of
corollary2, yielding the capacity for these cases. For example,
assume a strong version of the “more capable” condition of
[5]: I(X ;Y1) >> I(X ;Y2)

2 for all input distributionsp(x) on
X . Assume also thatH(Y2|Y1, X) < C21 < H(Y2|Y1) and
H(Y1|Y2, X) < C12 < H(Y1|Y2). Under these conditions, we
have thatI(X ;Y1) + C21 > I(X ;Y2) + C12 −H(Y1|Y2, X).
Thus, if Rx1 is helping Rx2 first, the achievable rate is
I(X ;Y2) + C12 − H(Y1|Y2, X). If Rx2 is helpingRx1 first,
then the achievable rate isI(X ;Y2) + C12. Since C12 −
H(Y1|Y2, X) < C12, this cooperation scheme achieves the
upper boundR = supp(x) {I(X ;Y2) + C12}.

Comment 5.2:Note that the capacity region for the deter-
ministic broadcast channel with cooperating receivers follows
from corollary1 and corollary2. This region was derived in
[51]. For this case we have thatH(Y1|X) = H(Y2|X) = 0
henceI(X ;Yi) = H(Yi), i = 1, 2. The achievable rate (from
corollary 1) is given by

R ≤ min {H(Y2) + C12, H(Y1) + min (C21, H(Y2|Y1))}

= min {H(Y2) + C12, H(Y1) + C21, H(Y1, Y2)} ,

and the same from corollary2.
Comment 5.3:We note that although the expressions

in (48) and (49) seem different from the EAF expres-
sion of [34, theorem 6], given in theorem3 (cf. R ≤
I(X ;Y2, V̂ ), subject toC12 ≥ I(V̂ ;Y1)−I(V̂ ;Y2)), this does
not improve on the achievable rate of the standard EAF. The
reason is that every rate achievable according to (48)-(49)
can also be achieved with the standard EAF using the same
mapping of the auxiliary RV and an appropriate time-sharing3.

2The precise condition requires thatI(X;Y1) > I(X; Y2)+C12−C21+
H(Y2|Y1,X) for all input distributionsp(x).

3This observation is due to Shlomo Shamai and Gerhard Kramer.
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However, when consideringa specific, fixed assignment of the
auxiliary random variable(such as in corollary1) then the
rate achievable with (48)-(49) is indeed greater than the classic
EAF with the same assignment.

VI. CONCLUSIONS

In this paper we investigated the effect of cooperation
between receivers on the rates for the broadcast channel. As
communication networks evolve, it can be expected that in
future networks, nodes that are close enough to be able to
communicate directly, will use this ability to help each other
in reception. Accommodating this characteristic, we extended
the traditional broadcast scenario, in which each decoder is
assumed to operate independently, into a scenario where the
receivers have finite capacity links used for cooperation. We
analyzed three related scenarios: the physically degradedBC
- for which we derived the capacity region, the general BC
for which we presented an achievability result, and the single
common message case. For the last case we identified a special
case where capacity can be achieved. We note that it is not
trivial to extend these results to more than two steps, since
the intermediate steps need to extract information from partial
relay information. Although this can be done by introducing
additional auxiliary variables, obtaining a computable region is
not a simple task. This study is an initial step in this investiga-
tion and future work includes several extensions: a naturalfirst
extension is to consider a fully wireless system, and extendthe
analysis to the Gaussian case. Another extension is to consider
the interaction between the Wyner-Ziv compression and the
achievable rates for the general channel.
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APPENDIX A
BACKGROUND RESULTS

Consider the construction in sectionIII-A . Let L(i −

1) =
{
w2 : (y2(i − 1),u(w2|si−1)) ∈ A

(n)
ǫ

}
. We bound

Ey2 {||L(i − 1)||}. Let,

ψ (w2 |y2(i− 1)) =

{
1, (u(w2|si−1),y2(i− 1)) ∈ A

(n)
ǫ

0, otherwise.

Hence, as in [34, theorem 1], we can write the random variable
||L(i − 1)|| as a sum of random variables:

||L(i − 1)|| =

2nR2∑

w2=1

ψ (w2 |y2(i− 1)) ,

and therefore

Ey2

{
||L(i− 1)||

}
= Ey2 {ψ (w2,i−1 |y2(i − 1))}

+

2nR2∑

w2=1
w2 6=w2,i−1

Ey2 {ψ (w2 |y2(i − 1))} .

Whenw2 6= w2,i−1 we get from the properties of independent
sequence ([43, theorem 8.6.1]) that

Ey2 {ψ (w2 |y2(i− 1))} = Pr {ψ (w2 |y2(i − 1)) = 1}

≤ 2−n(I(U ;Y2)−3ǫ),

thus,

Ey2

{
||L(i − 1)||

}
≤ 1 + 2nR22−n(I(U ;Y2)−3ǫ). (A.1)

Note that this result holds also when considering the strongly
typical set rather than the weakly typical set.

APPENDIX B
PROOF OF THEACHIEVABLE RATE TO THE FIRST

DECODER INTHEOREM 4 (EQUATIONS (48) AND (49))

A. Overview of Coding Strategy

The encoder generates a single codebook in a random
and independent manner. Next, the first relay partitions its
collection of relay codewords (Z(V̂ ) for Rx1) into disjoint
sets. When a channel input is received, the first relay finds
the index of the partition set which contains a relay codeword
jointly typical with its channel input, and transmits it over
the noiseless conference link to the second receiver. Then,the
second receiver looks for a unique source codeword that is
jointly typical with its channel input, and with at least oneof
the relay codewords in the set of possible codewords received
from the first relay.

In the following analysis we assume thatRx1 is the first
relay andRx2 decodes first.

B. Codebook Generation and Encoding at the Transmitter

Fix p(x) and generate2nR i.i.d. codewordsx, with
p(x(w)) =

∏n
i=1 p(xi(w)), w ∈ W =

{
1, 2, ..., 2nR

}
. For

transmitting the messagew0,i at timei, the transmitter outputs
x(w0,i) to the channel.

C. Relay Sets Generation

Fix p(v̂|y1).
• Consider the p.d.f. p(v̂) =∑

X ,Y1,Y2
p(v̂|y1)p(y1, y2|x)p(x) on V̂.

• Rx1 generates2nR
′
1 v̂ sequences in an i.i.d. manner

according top(v̂(zv̂)) =
∏n
i=1 p(v̂i(zv̂)), zv̂ ∈ Z(V̂ ) ={

1, 2, ..., 2nR
′
1

}
.

• Rx1 partitions the message setZ(V̂ ) into 2nC12 sets,
by assigning an index between

[
1, 2nC12

]
to eachzv̂ ∈

Z(V̂ ), in a random, independent and uniform manner
over

[
1, 2nC12

]
. Denote these sets byS′

s′ , s
′ ∈
[
1, 2nC12

]
.

D. Decoding and Encoding at the Relay (Rx1)

• Upon reception ofy1(i), the relayRx1 decides thatzv̂,i ∈
Z(V̂ ) was received if(v̂(zv̂,i),y1(i)) ∈ A

∗(n)
ǫ (V̂ , Y1).

Now,Rx1 finds the indexs′i+1 of the setS′
s′
i+1

s.t.zv̂,i ∈
S′
s′
i+1

. Then, at timei + 1, Rx1 transmitss′i+1 to Rx2
through the finite capacity noiseless conference link. If
there is nozv̂ ∈ Z(V̂ ) such thatv̂(zv̂) is jointly typical
with y1(i), an error is declared.
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E. Decoding the Source Message atRx2

At the i’th transmission intervalRx2 generates the set
L2(i) =

{
w ∈ W : (x(w),y2(i)) ∈ A

∗(n)
ǫ (X,Y2)

}
. At the

(i + 1)’th transmission interval,Rx2 receivess′i+1 from Rx1
through the noiseless conference link.Rx2 then looks for a
unique ŵ0 s.t. ŵ0 ∈ L2(i) and ∃zv̂ ∈ S′

s′
i+1

, for which

(x(ŵ0),y2(i), v̂(zv̂)) ∈ A
∗(n)
ǫ (X,Y2, V̂ ). If such uniqueŵ0

exists, thenŵ0 is the decoded message at timei. If there is
none, or there is more than one, an error is declared.

F. Analysis of the Probability of Error

1) Error Events:The error events for the scheme described
above, for decoding the messagew0,i, are:

1) Relay decoding fails:
E0,i =

{
∄zv̂ ∈ Z(V̂ ) s.t.

(v̂(zv̂),y1(i)) ∈ A
∗(n)
ǫ (V̂ , Y1)

}
.

2) Joint typicality decoding fails: LetE1,i = E′
1,i

⋃
E′′

1,i,
where
E′

1,i =
{
(x(w0,i),y1(i),y2(i)) /∈ A

∗(n)
ǫ (X,Y1, Y2)

}
,

E′′
1,i =

{
(x(w0,i), v̂(zv̂,i),y2(i)) /∈ A

∗(n)
ǫ (X, V̂ , Y2)

}
.

3) Decoding atRx2 fails: E2,i = E′
2,i

⋃
E′′

2,i,

E′
2,i =

{
∄zv̂ ∈ S′

s′
i+1

for which

(x(w0,i), v̂(zv̂),y2(i)) ∈ A
∗(n)
ǫ (X, V̂ , Y2)

}
,

E′′
2,i =

{
∃w 6= w0,i, w ∈ L2(i) s.t.∃zv̂ ∈ S′

s′
i+1
,

(x(w), v̂(zv̂),y2(i)) ∈ A
∗(n)
ǫ (X, V̂ , Y2)

}
.

Next, applying the union bound we get that

P (n)
e = Pr

(
2⋃

k=0

Ek,i

)

= Pr(E0,i) + Pr
(
E1,i

⋂
Ec0,i

)

+ Pr
(
E2,i

⋂
Ec1,i

⋂
Ec0,i

)
.

2) Bounding the Probabilities of the Error Events:Follow-
ing the same argument as in sectionIV-D, R′

1 ≥ I(V̂ ;Y1)
implies that takingn large enough, we can makePr(E0,i) ≤ ǫ.
Next, from the properties of strongly typical sequences (see
[43, lemma 13.6.1]), by takingn large enough, we can make
Pr(E′

1,i) ≤
ǫ
2 . Additionally, the Markov lemma, [50, lemma

4.2] implies that we can makePr(E′′
1,i

⋂
E′c

1,i

⋂
Ec0,i) ≤ ǫ

2
for any arbitraryǫ > 0 by takingn large enough. Therefore,
by the union bound,Pr(E1,i

⋂
Ec0,i) ≤ ǫ. We also have that

Pr(E′
2,i

⋂
Ec1,i

⋂
Ec0,i) = 0 because underEc1,i

⋂
Ec0,i we

have thatx(w0,i),y2(i) and v̂(zv̂,i) are jointly typical, and
by construction,zv̂,i ∈ S′

s′
i+1

. Hence, we need to show that
the probabilityPr(E′′

2,i

⋂
Ec1,i

⋂
Ec0,i) can be made arbitrarily

small. Note that due to the symmetry of the construction, the
probability of error does not depend on the specific message
w0,i transmitted.

3) BoundingPr(E′′
2,i

⋂
Ec1,i

⋂
Ec0,i): The probability of

E′′
2,i

⋂
Ec1,i

⋂
Ec0,i can be written as

Pr(E′′
2,i

⋂
Ec1,i

⋂
Ec0,i)

= Pr
({

∃zv̂ ∈ S′
s′
i+1
, ∃w 6= w0,i, w ∈ L2(i),

(x(w),y2(i), v̂(zv̂)) ∈ A∗(n)
ǫ (X,Y2, V̂ )

}⋂
Ec1,i

⋂
Ec0,i

)

(a)
= Pr

({
∃w 6= w0,i, w ∈ L2(i),

(x(w),y2(i), v̂(zv̂,i)) ∈ A∗(n)
ǫ (X,Y2, V̂ )

}⋂
Ec1,i

⋂
Ec0,i

)

+ Pr
({

∃w 6= w0,i, w ∈ L2(i), ∃zv̂ ∈ S′
s′
i+1
, zv̂ 6= zv̂,i,

(x(w),y2(i), v̂(zv̂)) ∈ A∗(n)
ǫ (X,Y2, V̂ )

}⋂
Ec1,i

⋂
Ec0,i

)

, Pr(E′′
2,1,i) + Pr(E′′

2,2,i),

where (a) is because the elements ofS′
s′
i+1

are selected in an
independent manner.

We first boundPr
(
E′′

2,1,i

)
as follows:

Pr(E′′
2,1,i) =∑

L2(i)

Pr
({

∃w 6= w0,i, w ∈ L2(i), (x(w),y2(i), v̂(zv̂,i))

∈ A∗(n)
ǫ (X,Y2, V̂ )

}⋂
Ec1,i

⋂
Ec0,i

∣∣∣L2(i)
)
Pr (L2(i))

(a)

≤ Ey2

{
∑

w∈L2(i)
w 6=w0,i

Pr
({

(x(w),y2(i), v̂(zv̂,i)) ∈

A∗(n)
ǫ (X,Y2, V̂ )

}⋂
Ec1,i

⋂
Ec0,i

∣∣∣y2(i)
)}

= Ey2





∑

w∈L2(i)
w 6=w0,i

∑

v̂∈
A∗(n)

ǫ (V̂ |y2(i),x(w))

Pr (v̂|y2(i),x(w))





(b)
= Ey2






∑

w∈L2(i)
w 6=w0,i

∑

v̂∈A
∗(n)
ǫ (V̂ |y2(i),x(w))

Pr (v̂|y2(i))






≤ Ey2

{
∑

w∈L2(i)
w 6=w0,i

||A∗(n)
ǫ (V̂ |y2(i),x(w))|| ×

max
v̂:

(y2(i),v̂)∈A
∗(n)
ǫ (Y2,V̂ )

{
Pr (v̂|y2(i))

}}

(c)

≤ Ey2






∑

w∈L2(i)
w 6=w0,i

2n(H(V̂ |Y2,X)+2η)2−n(H(V̂ |Y2)−2η)






≤ Ey2 {||L2(i)||} 2
−n(H(V̂ |Y2)−H(V̂ |Y2,X)−4η),

where (a) is becauseL2(i) is a deterministic function ofy2(i)
and we also applied the union bound and (b) is becausev̂(zv̂,i)
is independent ofx(w) for w 6= w0,i. The bounds in (c) on
the size of the conditionally typical set and the maximum
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conditional probability follow from [47, theorem 5.2] with
η → 0 as ǫ → 0, assuming thatn is large enough. Lastly
we note that here

Pr(y2(i)) , Pr
(
y2(i) received

∣∣ x(w0,i) transmitted
)
.

Next, applying the same technique to bound the expectation of
||L2(i)|| as in [34, theorem 1] (see also derivation of equation
(A.1)), we get that forn large enough,

Ey2 {||L2(i)||} ≤ 1 + 2n(R−I(X;Y2)+3η). (B.1)

Plugging this back into the bound onPr
(
E′′

2,1,i

)
we get that

Pr
(
E′′

2,1,i

)
≤ 2−n(I(X;V̂ |Y2)−4η)

+2n(R−I(X;Y2)−H(V̂ |Y2)+H(V̂ |Y2,X)+7η),(B.2)

which can be made less than any arbitraryǫ > 0 by takingn
large enough, as long as4

R ≤ I(X ;Y2)−H(V̂ |Y2, X) +H(V̂ |Y2). (B.3)

For boundingPr(E′′
2,2,i) we begin essentially in the same

manner and get that

Pr(E′′
2,2,i)

(a)

≤ Ey2,v̂

{
Pr
({

∃w 6= w0,i, w ∈ L2(i), ∃zv̂ ∈ S′
s′
i+1
,

zv̂ 6= zv̂,i, (x(w),y2(i), v̂(zv̂)) ∈

A∗(n)
ǫ (X,Y2, V̂ )

}∣∣∣y2(i), v̂(zv̂,i)
)}

(b)

≤ Ey2,v̂

{
∑

zv̂∈S
′
s′
i+1

zv̂ 6=zv̂,i

∑

w∈L2(i)
w 6=w0,i

Pr
(
(x(w),y2(i), v̂(zv̂)) ∈

A∗(n)
ǫ (X,Y2, V̂ )

∣∣∣y2(i), v̂(zv̂,i)
)}

(c)
= Ey2,v̂

{
∑

zv̂∈S
′
s′
i+1

zv̂ 6=zv̂,i

∑

w∈L2(i)
w 6=w0,i

∑

v̂∈A
∗(n)
ǫ (V̂ |y2(i),x(w))

Pr (v̂)

}

(d)

≤ Ev̂

{
||S′

s′
i+1

||
}
Ey2 {||L2(i)||} 2

−n(H(V̂ )−H(V̂ |Y2,X)−3η)

(e)

≤
(
1 + 2n(R

′
1−C12)

)(
1 + 2n(R−I(X;Y2)+3η)

)
×

2−n(H(V̂ )−H(V̂ |Y2,X)−3η)

≤ 2−n(C12+H(V̂ )−R′
1−H(V̂ |Y2,X)−3η)

+ 2n(R−I(X;Y2)−I(V̂ ;Y2,X)+6η) + 2−n(I(V̂ ;Y2,X)−3η)

+ 2n(R−I(X;Y2)−C12+R
′
1−H(V̂ )+H(V̂ |Y2,X)+6η),

where (a) is because we dropped the intersection with
Ec1,i

⋂
Ec0,i, (b) is due to the union bound, (c) is becausev̂(zv̂)

4We assume thatI(X; V̂ |Y2) > 0 otherwise the relay message does not
help decoding the source message atRx2.

is independent ofx(w) andy2(i) whenzv̂ 6= zv̂,i, and (d) is
because

Ey2,v̂

{
||L2(i)|| · ||S

′
s′
i+1

||
}

= Ey2

{
Ev̂|y2

{
||L2(i)|| · ||S

′
s′
i+1

||
}}

(f)
= Ey2

{
||L2(i)||Ev̂|y2

{
||S′

s′
i+1

||
}}

(g)
= Ey2

{
||L2(i)||Ev̂

{
||S′

s′
i+1

||
}}

= Ey2

{
||L2(i)||

}
Ev̂

{
||S′

s′
i+1

||
}
,

where (f) is because the average size ofL2(i) does not depend
on v̂(zv̂,i) wheny2(i) is given, and (g) is because the average
size ofS′

s′
i+1

does not depend ofy2(i). The bounds onPr(v̂)

and ||A
∗(n)
ǫ (V̂ |y2,x)|| in (d) follow from [47, Ch. 5]. The

bound onEy2 {||L2(i)||} in (e) follows from equation (B.1).
We note that here

Pr(y2(i), v̂(zv̂,i)) , Pr
(
(y2(i), v̂(zv̂,i)) received

∣∣ x(w0,i)

transmitted
)
.

We conclude thatPr
(
E′′

2,2,i

)
can be made smaller than any

ǫ > 0 by takingn large enough, as long as

R ≤ I(X ;Y2)−H(V̂ |Y2, X) + C12 −R′
1 +H(V̂ ) (B.4)

R′
1 ≤ C12 −H(V̂ |Y2, X) +H(V̂ ) (B.5)

R ≤ I(X ;Y2) + I(V̂ ;Y2, X) (B.6)

R′
1 ≥ I(V̂ ;Y1), (B.7)

where (B.7) follows from appendixB-F.2.
Now note that makingPr(E′′

2,i

⋂
Ec1,i

⋂
Ec0,i) arbitrarily

small requires making bothPr(E′′
2,1,i) and Pr(E′′

2,2,i) arbi-
trarily small. Thus we also need to satisfy (B.3). Combining
with (B.6) we see that (B.3) guarantees (B.6) and we are left
with (B.3), (B.4), (B.5) and (B.7).

The maximum rate is achieved for the minimalR′
1, therefore

we plugR′
1 = I(V̂ ;Y1) in (B.4) and combining with (B.3) we

obtain the following achievable rate

R ≤ I(X ;Y2)−H(V̂ |Y2, X)

+min
(
C12 +H(V̂ |Y1), H(V̂ |Y2)

)
. (B.8)

From the combination of (B.5) and (B.7), we conclude that
this is achievable as long as

C12 ≥ I(V̂ ;Y1) +H(V̂ |Y2, X)−H(V̂ )

= H(V̂ |Y2, X)−H(V̂ |Y1)

= I(V̂ ;Y1|X,Y2). (B.9)

Equations (B.8) and (B.9) give the conditions for the message
W to be decoded atRx2 with an arbitrarily small probability
of error by takingn large enough. Note that the requirement in
(B.9) implies that whenC12 < I(V̂ ;Y1|Y2, X), Rx1 cannot
use this cooperation scheme, and the rate toRx2 is simply
I(X ;Y2). Combining this with equation (B.8) yields the rate
expression in (48) and (49).
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