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Abstract—We characterize the rate distortion function for the
source coding with decoder side information setting when the ith
reconstruction symbol is allowed to depend only on the first i + `

side information symbols, for some finite look-ahead `, in addition
to the index from the encoder. For the case of causal side informa-
tion, i.e., ` = 0, we find that the penalty of causality is the omis-
sion of the subtracted mutual information term in the Wyner–Ziv
rate distortion function. For ` > 0, we derive a computable “infi-
nite-letter” expression for the rate distortion function. When spe-
cialized to the near-lossless case, our results characterize the best
achievable rate for the Slepian–Wolf source coding problem with
finite side information looka-head, and have some surprising im-
plications. We find that side information is useless for any fixed `

when the joint probability mass function (PMF) of the source and
side information satisfies the positivity condition P (x; y) > 0 for
all (x; y). More generally, the optimal rate depends on the distri-
bution of the pair X;Y only through the distribution of X and
the bipartite graph whose edges represent the pairs x; y for which
P (x; y) > 0. On the other hand, if side information look-ahead is
allowed to grow faster than logarithmic in the block length, then
H(X jY ) is achievable. Finally, we apply our approach to derive
a computable expression for channel capacity when state informa-
tion is available at the encoder with limited look-ahead.

Index Terms—Causal source codes, delay-constrained coding,
Gel’fand–Pinsker channel, rate distortion function, Slepian–Wolf
coding, Wyner–Ziv coding.

I. INTRODUCTION

CONSIDER the problem of source coding with side in-
formation at the decoder, as depicted in Fig. 1. The

source and side information are generated as independent
drawings of the pair . The en-
coder maps the sequence into an index

, while the decoder is allowed to depend on
the side-information sequence in addition to the index
to produce the estimate . Note that can be considered
a noisy observation of and, hence, the decoder can be
thought of as a denoiser that is allowed to base its estimate
on information conveyed to it by the encoder, in addition to its
noisy observation of the source. The problem is to find the rate
distortion function , which is the smallest rate needed
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to achieve expected per-symbol distortion with respect to
some distortion measure .

In their seminal 1976 paper [42], Wyner and Ziv solved this
problem when can depend on in an arbitrary manner.
In this paper, we characterize the rate distortion function for the
Wyner–Ziv setting when the decoder is constrained to look at
no more than future side-information symbols to produce
the th reconstruction symbol, i.e., .

Since the scenario where the encoder has access to the en-
tire source sequence while the decoder is restricted in its
side information look-ahead may seem contrived, we first pro-
vide motivation for considering it. We first argue that it is well
motivated by the more practical problem of delay-constrained
sequential source coding with side information at the decoder.
There are various ways of formalizing the notion of sequential
zero-delay and delay-constrained source coding, e.g., [10], [11],
[38], [34], [20], [24], [33], [35], [22]. Perhaps the most gen-
eral formulation, encompassing all of these as special cases and
accommodating the availability of side information at the de-
coder is the following: A source code is specified by an encoder
and a decoder. The encoder is a sequence of mappings ,
where produces a code symbol in some finite alphabet
based on observation of the source with some look-ahead , i.e.,

. The decoder is a sequence of mappings ,
where produces the th reconstruction symbol based on some
look-ahead in the code symbols and some look-ahead in the
side-information symbols, i.e., . The in-
stantaneous rate of the code is , so that the overall rate in
encoding the first source symbols is . It
is easy to see that any source code with this structure fits within
the setting we consider. More precisely, the performance of any
code with look-ahead parameters can be attained ar-
bitrarily closely by a block code in the form of Fig. 1, with
a reconstruction of the form , for some taking
values in a set of size . To see this concretely, given a se-
quential code with look-ahead parameters , construct
a block code that emulates it as follows: Given , the en-
coder produces the code symbols just as a
sequential encoder would. It then losslessly describes the se-
quence to the decoder using an index in the
set , which can be done since

The decoder, knowing and having access to
the side-information sequence produces just as the
sequential decoder would. Thus, the resulting block code uses

0018-9448/$20.00 © 2006 IEEE

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2010 at 17:18:41 EST from IEEE Xplore.  Restrictions apply. 



WEISSMAN AND EL GAMAL: SOURCE CODING WITH LIMITED-LOOK-AHEAD SIDE INFORMATION AT THE DECODER 5219

Fig. 1. Source coding with decoder side information.

the same rate for encoding the first source symbols as the se-
quential code and incurs an overall cumulative distortion that
exceeds that of the sequential code by no more than

. When normalized by the block length, this excess dis-
tortion is negligible in the (assumed) regime of fixed and
increasing . Note that using a similar approach, one could al-
ternatively construct a block code incurring exactly the same
distortion on the first source symbols as the sequential code
with description rate that is higher than that of the sequential
code by a diminishing amount. Consequently, our negative (con-
verse) results immediately apply to all source coding scenarios
that comply with this “delay-constrained sequential coding” for-
mulation. On the positive side, it will be seen that, in some cases,
optimum performance within the large family of schemes that
we allow is attained by simple schemes from the more limited
family of sequential codes.

Another motivation for our problem is denoising systems
with side information. As mentioned, given the index from the
encoder, the decoder can be viewed as a denoiser. The case

then corresponds to filtering (sequential denoising),
while to fixed-lag smoothing [8]. For example, if
denotes the location at time of a moving target whose tra-
jectory is known to an encoder, our problem can be viewed as
characterizing the best performance of a (sequential) tracker
of this target (based on its noisy trajectory) for a given rate at
which the encoder can convey information about the target’s
(noiseless) trajectory to the tracker.

Our work is also motivated by an attempt to better understand
the duality between channel coding and source coding. If the
Wyner–Ziv problem [42] is the source coding analogue of the
Gel’fand–Pinsker setting of channel coding with noncausal state
information at the transmitter [12], [15], then the problem we
consider here, for the case , is the source coding analogue
of channel coding with causal state information at the trans-
mitter, as considered by Shannon [31]. The relationship between
the noncausal and causal versions of the source coding problem
will be seen to have similarities to the relationship between the
noncausal and causal channel coding problems. In the other di-
rection, this duality will allow us to use our approach to char-
acterize the rate distortion function for general to obtain
a computable expression for channel capacity when state infor-
mation is available to the sender with a limited look-ahead.

Finally, our work complements the recent study in [36],
which examined the effect of the introduction of side infor-
mation into the causal source coding framework of Neuhoff
and Gilbert [26] (cf. also [21]). As was pointed out, the
Neuhoff–Gilbert notion of a causal source code is not
well-matched to most scenarios involving side information
at the decoder, and consequently, such scenarios were not

considered in [36]. We believe that our setting with is
the closest in spirit to Neuhoff and Gilbert’s causality notion in
that the constraint is imposed only on the reconstruction, rather
than directly on the delay introduced by the code.

Organization of Paper and Main Results

In Section II, we characterize the rate distortion function for
source coding with causal side information, i.e., when .
We find that the penalty of causality is the omission of the
second (subtracted) mutual information term in the Wyner–Ziv
rate distortion function. This implies that binning, which re-
duces the rate required to describe the auxiliary codeword in
the direct proof of the Wyner–Ziv problem, is no longer vi-
able when restricting the reconstruction to causal dependence
on the side information. In Section III, we characterize the best
achievable rate again for when the reconstruction of the
source is required to be perfect (with high probability). This
characterization will be seen to have some surprising implica-
tions. For example, we find that side information is useless when
the source and side information satisfy the positivity condition

for all . More generally, the best achievable
rate will be seen to depend on the distribution of the pair
only through the distribution of and the bipartite graph whose
edges represent the pairs for which .

Sections IV and V address the case of . Specifi-
cally, in Section IV, we obtain a characterization of the rate dis-
tortion function for any delay , which, although does not
have a “single-letter” form, is computable in a sense that will be
explained. Section V will give a computable characterization for
the lossless case. Here too, the achievable rate in the general case
depends on the distribution of the pair only through the
distribution of and the bipartite graph whose edges represent
the pairs for which . Furthermore, this charac-
terization will be shown to imply, under the positivity condition
mentioned, that the side information is useless not only when

, but for any value of . This is in stark contrast to the
case with no constraint on the look-ahead, where the conditional
entropy is achievable [32]. Bridging these regimes,
we will show that any rate in the interval
is achievable when is allowed to grow with the block length as

, where is an -dependent constant. In partic-
ular, itself is achievable when increases faster than
logarithmic. Thus, the Slepian–Wolf theorem applies when the
decoder at time is of the form , where grows
super-logarithmically.

In Section VI, we consider the channel coding dual to the
source coding problem of Section IV. We obtain a computable
characterization of the capacity of the memoryless channel in
the presence of state information with limited look-ahead at the
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encoder, which parallels the one obtained for the rate distortion
problem in Section IV. We conclude in Section VII with a dis-
cussion of related open questions.

II. RATE DISTORTION FUNCTION WITH CAUSAL

SIDE INFORMATION

We assume throughout a source and side information that are
generated as independent drawings of the generic pair

, where and denote the alphabet of the source,
the side information, and the reconstruction, respectively. The
alphabets, unless otherwise indicated, are assumed to be finite.
Without loss of generality, we assume that for all

, and for all . Note that we use to
denote probabilities in general, as well as specific PMFs. Thus,
when is an event, will denote its probability, while, for

and and denote probabil-
ities of the events ,
respectively. Similarly, will denote the probability of

conditioned on .
A coding scheme for block length and rate consists of an

encoder, which is a mapping , and a
decoder, which is a sequence of mappings , where

. The scheme operates as follows:
the encoder maps the source sequence into
an index , and the decoder generates a reconstruc-
tion , where and

, i.e., the decoder can use the side information, but
only causally. The performance of a scheme is measured by its
expected per symbol distortion , where

is a distortion measure. A rate distortion
pair is achievable if for every and sufficiently
large there exists a scheme for block length and rate with

. The rate distortion function
is the infimum of rates such that is achievable.

Letting , it is clear that
is not achievable for any rate . We are thus interested in the
characterization of for . The following the-
orem establishes .

Theorem 1: The rate distortion function for the case of causal
side information at the decoder and is given by

(1)

where the minimum is over all functions

and such that

(2)

Proof of Theorem 1: The direct part follows from a
standard random coding argument. Fix and
that achieve the minimum in (1). Let and
generate independent and identically distributed (i.i.d.)
codewords , with components that
are i.i.d. . Given a source sequence , the encoder
looks for a codeword such that are jointly
typical, and sends to the decoder (setting say if no such
codeword is found). The decoder creates its reconstruction
by letting . The Markov lemma [14, Lemma

14.8.1] guarantees that, for sufficiently large ,
are jointly typical with probability arbitrarily close to one. The
distortion between and , for suffficiently large , is
thus arbitrarily close to with probability
arbitrarily close to one.

For the converse part, denote (until the end of the proof) the
minimum in (1) by . We need to show for that
if is an achievable pair, then . To this end, fix

and a scheme for block length and rate satisfying

(3)

Then

(4)

where

follows from the Markovian structure

follows by denoting ;

follows by the fact that ,
the Markovian structure , the definition
(as given in (1)) of , and the fact that the restriction

does not change the minimum which fol-
lows from a standard application of Carathéodory’s the-
orem (as stated in, e.g., [4, Theorem 14.3.4]);
follows from the convexity of , which can be estab-
lished in the same way as the convexity of the Wyner–Ziv
rate distortion function, and given for completeness in the
Appendix; and
follows by (3) and the monotonicity of .

The proof is concluded by the arbitrariness of and the
continuity from the right of at all . This con-
tinuity follows, for , directly from the convexity of

, while at , it follows from an argument similar
to that in the proof of [5, Lemma 2.2].

Remarks:
1) The rate distortion function in Theorem 1 can be expressed

as an ordinary rate distortion function with an appropri-
ately defined distortion measure. Concretely, consider a
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new alphabet of size consisting of all mappings
. Define a new distortion measure as

of Theorem 1 is then seen to be the ordinary rate
distortion function under distortion measure . Note that
this is analogous to Shannon’s capacity for memoryless
channels with states known causally at the transmitter [31],
which he expressed as the capacity of a discrete memorless
channel whose channel input symbols are mappings from
the set of channel states to the set of channel inputs (in the
original channel).

2) Note that the only difference between the rate distortion
function in Theorem 1 and the Wyner–Ziv rate distortion
function

(5)

which is minimized over exactly the same set as in (1),
is the subtracted term . This term arises in the
achievability part of the Wyner–Ziv theorem as a conse-
quence of binning, which allows the encoder to convey the
index of the bin of , rather than itself. Theorem 1
implies that the noncausal availability of the side informa-
tion is crucial for binning.

3) There is a certain similarity to channel coding with state
information available at the encoder. The capacity when
the state information is noncausally available was shown
by Gel’fand and Pinsker [12] and Heegard and El Gamal
[15] to be given by

(6)

while in [31], Shannon showed that when the state informa-
tion is only causally available at the encoder, the capacity
is given by

(7)

Here too, there is a subtracted mutual information term
that disappears in the causal case. Unlike the rate distortion
functions, however, here the maximization sets for the non-
causal and causal settings are different, since in the latter
case and are restricted to be independent. Since under
this independence anyway, the penalty for
causality in this setting can be regarded as due to the in-
dependence requirement. Here the analogy with our rate
distortion problem breaks, since in general, the achieving
distribution in (1) yields .

4) Note that the scheme in the achievability part of the proof
is of the form , that is, the th reconstruction uses
only the th side-information symbol and not the past sym-
bols . This phenomenon where “if the future is not
allowed to be looked into, the past is useless” occurs also
in zero-delay [10], [11] and in causal [26] source coding.

5) In the spirit of the observations in [25], here too we ob-
serve that feedforward does not improve the rate–distor-
tion tradeoff. In this context, feedforward means that is

allowed to depend not only on , but also on .
The converse part of the proof of Theorem 1 would then
carry through by adding to the definition of ,
i.e., setting . The chain of equal-
ities and inequalities leading to (4) remains valid by re-
placing the line of inequality by

.
6) Consider the case where the encoder has access to the side

information, i.e., the index conveyed to the decoder is of
the form . The reconstruction is restricted,
as in our problem, to be of the form . We note
that the conditional rate distortion function associated with
the presence of side information at both encoder and de-
coder (cf., e.g., [2]) can be achieved indepen-
dent of this restriction. Indeed, the original achievability
argument carries over to this case. The sequence to be en-
coded is partitioned into subsequences according to the
value of . The subsequence consisting of the indices
for which is separately encoded using an optimal
rate distortion code for the source . To produce the
th reconstruction symbol, it is clear that the decoder only

needs to know the subsequence that belongs to, in ad-
dition to the index , i.e., its reconstruction is of the form

(which, in particular, satisfies the causality con-
straint). Thus, when side information is available at the en-
coder too, restricting the reconstruction to depend causally
on the side information entails no performance loss. This
is in contrast to our problem setting with side information
available only at the encoder, where, as Theorem 1 and the
following examples show, the causality restriction can ad-
versely impact the rate–distortion tradeoff.

Example: Doubly Symmetric Binary Source

Consider the case where is the unbiased input to a
BSC , and is the corresponding output, and
the distortion measure is the Hamming loss. The rate distortion
function in this case is given by

(8)

where is the binary entropy function, is its derivative, and
is the solution to the equation

. Thus, coincides with the rate distortion function
for , for , and is otherwise given by the
straight-line tangent to the graph of that passes through
the point for . In other words, the optimum
performance is achieved by time sharing between rate distor-
tion coding with no side information and zero-rate decoding that
uses only the side information. For small enough distortion, this
performance is attained by simply ignoring the side information.
The function is plotted in Fig. 2 for .

To arrive at (8) from Theorem 1, note first that time sharing
between rate distortion coding with no side information and
zero-rate decoding that uses only the side information, i.e., using
the former for a fraction of the time and using the latter for
the remainder of the time at distortion level , achieves a rate

and distortion level . Thus,
since the right-hand side of (8) corresponds to optimum time
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Fig. 2. Rate distortion curves for the doubly symmetric binary source and Hamming loss with � = 1=4. Curves are (from top to bottom): R (D) = 1� h(D)
(dashed), R(D) (solid), R (D) (dotted), R (D) = h(�)� h(D) (dot-dashed). We see that R(D) = R (D) for D � D . For D � D � �, the graph
of R(D) is the straight line which is tangent to the graph of R (D) and which passes through the point (�; 0). The point of tangency is (D ;R (D )). Thus,
D is the solution to = �h (D ). In this particular case of � = 1=4; D can be explicitly computed and is given by D = (5�4(19�3

p
33) �

(19 � 3
p
33) )=6 � 0:0803566.

sharing between rate distortion coding with no side information
and zero-rate decoding that uses only the side information, it
can be expressed in the alternative form

for (9)

where the infimum is with respect to both the time sharing frac-
tion and the distortion (incurred in the
fraction of the time where rate distortion with no side informa-
tion is employed), such that

(10)

Thus, in this representation, corresponds to the fraction of time
rate distortion coding with no side information is used, and
corresponds to the distortion level at which this coding oper-
ates. Assuming achieve the minimum
in (1) for distortion level , it remains to show that

. To do so, define the sets

and

(11)

and note that by law of total expectation

(12)

Also, the inequality

(13)

can be proved in the same way as equality (36) in [42]. There-
fore, using

(12) and (13) yield

(14)

where , and

. Note that for , defining

so that . It follows that

where the inequality before last follows from the concavity
of , and the last inequality follows from the definition of

in (9) and the fact that, by (14), .

Example: Jointly Gaussian

As in [42], [41], the results from the finite-alphabet setting
and the form of the rate distortion function carry over to
taking values in general alphabets. Consider the case of

and , where and is
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independent of ,1 and is the squared error distortion. We
obtain an upper bound on by taking , where

is independent of .2

Assume first that . The optimal estimate of based
on and is , where, by the orthogonality
principle, are the solutions to the linear equation

(15)

and are given by

(16)

The resulting mean-square error (MSE) is

(17)

Also

(18)

This shows that the distortion in (17) is achievable at the rate
in (18). In other words, if , or equivalently,

, an upper bound on the distortion rate func-
tion when is

(19)

For , the solution is obtained by considering the equiv-
alent side information . It is clear that
the distortion rate function is given by multiplying the function
for the case by , and substituting in it for

. We thus obtain

(20)

Inverting the function, we obtain the equivalent bound on the
rate distortion function

(21)

1Note that the seemingly more general situation of zero-mean jointly
Gaussian random variablesX;Y that satisfy the relation Y = �X+N , where
� is a deterministic constant, is subsumed by our setting by letting X = �X
and X̂ = � X̂ , where X̂ is the reconstruction of X .

2Note that there is no benefit in considering a more general W of the form

X+Z; 
 6= 0, as this contains the same information asX+Z=
 = X+Z ,
which is the W of the form we are considering (at a different value of � ).

Note that is not necessarily convex, and hence this
bound can be improved by convexification. Differentiating in
the region gives

(22)

and

(23)

We see that is positive or negative depending
on whether or , provided of
course that lies in the relevant distortion region

, i.e., that . We thus have
the following.

Lemma 1:
1) For , as given in (21), is convex.
2) For has an inflection point at

: It is convex for and concave for
.

For , we can improve on of (21) by taking
its lower convex envelope . More explicitly, the enve-
lope coincides with for , where

is the solution of the equation

(24)

For , the graph of
is the straight-line tangent to that connects the
point to the point .
Fig. 3 shows examples of these curves. Whether or not

remains to be determined.
For comparison, we recall the Wyner–Ziv rate distortion func-

tion, which in the Gaussian case coincides with the conditional
rate distortion function

(25)

In particular

(26)

So, for example, when , the penalty of causal depen-
dence of the reconstruction on the side information is no more
than a bit per source symbol, independent of the distortion
level.

Alternative Characterization of

Denote by the undirected graph with vertex set , where
an edge exists if and only if there exists such
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Fig. 3. Plots of R (D) (upper dashed), R (D) (dotted), its lower convex envelope R (D) (solid), and R (D) (lower dashed). Top graph shows curves
for the case � = � = 1, where by Lemma 1, R (D) = R (D). Bottom graph shows curves for � = 1; � = 1=6. Lemma 1 implies that R (D) is
not convex (and is therefore improved by R (D)). The solution to (24) in this case is D = 5:352215� 10 . The inflection point of R (D), as stated in
Lemma 1, is at D = � =2.

that both and .3 Let
be a partition of into the vertex sets associated with

maximally connected components of , and let denote
the index of the set for which . As in [39], we define
the common information random variable as

(27)

Note that for every such that both and
. Thus, is a deterministic func-

tion both of and of . Furthermore, any other random vari-
able for which there exist (deterministic) functions and
such that almost surely (a.s.) is a deter-
ministic function of . To see this, consider any such
that , and for which both and

(the fact that guarantees the existence
of at least one such ). Then we must have both
and , since otherwise .

3When convenient, we identify G with its set of edges.

Clearly, implies that or, in other
words, depends on only through . But
and , so is a deterministic function of . Thus,
of all random variables with the property that there exist
such that a.s., the common information

is the most informative one. Fig. 4 gives an example of
and its associated . An equivalent characterization of the rate
distortion function that explicitly includes is as follows.

Proposition 1: The rate distortion function of Theorem 1 is
equivalently given by

(28)

where is the common information between and , and the
minimum is over the same set as the minimum in (1), namely,
over all functions , and
such that

(29)
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Fig. 4. Example for jX j = 7 and jYj = 5. The bipartite graph associated
with the jointly distributed X;Y has an edge between x and y if and only if
P (X = x ; Y = y ) > 0.G is the graph whose nodes are the elements ofX
with an edge between x and x if and only if there is a y such that both (x ; y)
and (x ; y) are edges in the bipartite graph. The graph G in this example
consists of two maximally connected components, soZ is binary, assuming one
value on fx ; x ; x g and another value on fx ; x ; x ; x g.

The characterization in (28) is useful when has more than
one maximally connected component. In such cases, the min-
imum in (28) decomposes to a computation of the rate distortion
functions of the simpler sources (corresponding
to the maximally connected components of ). Such decom-
position will be exploited in some computations in Section III.

Proof of Proposition 1: Denote the right-hand side of
(28) by . We need to show that . The
achievability argument we outline is similar to that in the proof
of Theorem 1: The sequence to be encoded can be partitioned
into subsequences according to the value of (which both
encoder and decoder know). The subsequence consisting of
the indices for which will appear times,
and encoding the corresponding subsequence of s will take

bits. Hence, the overall number of
bits used will be

Reconstructing according to will yield cumu-
lative distortion on the sub-
sequence corresponding to , and thus overall cumulative dis-
tortion

Thus, . On the other hand, under any distribu-
tion in the feasible set (over which the minimum in (1) and (28)
is taken)

(30)

(31)

(32)

where the inequality follows since and
(as is a deterministic function of

). Thus, .

Recapping the above proof: im-
plies that the right-hand side of (1) is lower-bounded by that
of (28), while the reverse inequality is implied by the achiev-
ability of and the converse part of Theorem 1. It is
useful to verify that the right-hand side of (1) equals that of (28)

without appealing to Theorem 1. This is done in the following
alternative proof.

Alternative Proof of Proposition 1: Denote the minimum
in (1) by and that in (28) by . As argued,

is immediate since the minimized ex-
pression in is lower-bounded by that in .
To prove that , assume that
achieve the minimum in (28) and let be the
alphabet for . Note that satisfy the Markov
relation . Now construct such that

according to

(33)

where denotes the uniform distribution on . Note
the following.

1) By construction, for all . Thus,
is independent of .

2) There exists a (deterministic) function such that
a.s. Specifically, the following is

readily seen to have this property:

where denotes the indicator function.
Hence,

(34)

where follows from the independence of and , from
the fact that is determined by , and follows from
the Markov relation .

Letting denote the function satisfying a.s. and
defining , we have

The Markov relation holds (due to the relation
).

These arguments imply that the minimum in (1), when the
cardinality of is not restricted, is upper-bounded by .
But, as already argued in the proof of Theorem 1, this restriction
does not affect the minimum.

Remarks:
1) Note that the independence of and in the above proof

implies that the minima in (1) and (28) are not affected by
imposing the additional condition of independence of
and when the constraint on the cardinality of is not
imposed.
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2) Note that under the Markov relation

where the second equality follows since is a determin-
istic function of . That is, unlike in our case above, condi-
tioning on is inconsequential for the Wyner–Ziv setting
(i.e., for simplifying the minimization in (5)).

III. LOSSLESS SOURCE CODING WITH CAUSAL

SIDE INFORMATION

Consider the lossless source coding version of our problem.
As in the previous section, the encoder maps the sequence

into , and reconstruction is of the form
. A rate is achievable if there exists a sequence of

schemes of rate for which . Let
(subscript standing for “lossless source coding with causal side
information”) denote the infimum over achievable rates for this
problem.

Clearly, , where the lower
bound is known to be achievable when causal dependence on the
side information is not imposed [32], and the upper bound can be
achieved without side information. So, where does lie
in the interval ? First consider the following
three cases:

1) a.s.: ;
2) and independent: ;
3) and independent, and

.
In these cases, it is trivial to see that .

This, however, turned out to be the exception. The following
result shows that, under weak conditions on , causal side
information is useless.

Theorem 2:

(35)

where (in both minima) the minimization is over all
, such that .

Theorem 2 is not surprising when noting that the expression
in the right-hand side of (35) is the value of ,
where is the rate–distortion function in Theorem 1 under
Hamming loss. Showing that this limit is a lower bound on

is trivial. Proving that it is achievable is not entirely im-
mediate because the definition of an achievable rate in the loss-
less setting requires diminishing block error probability, while
in Theorem 1 achievability requires only diminishing symbol
error probability. In the proof that follows, we use the method
of types to prove achievability.

We will use when we wish to make the depen-
dence of on the distribution of explicit. Note that
Theorem 2 implies the relationship

(36)

where denotes the joint pmf of conditioned on
. Thus, when has more than one maximally con-

nected component, finding reduces to a compu-
tation of the associated with each component.

Proof of Theorem 2: Consider the setting of Section II
with and being the Hamming loss. Note that the
two minima in (35) are those in (1) and in (28) evaluated at

, respectively. Thus, by Proposition 1, they are
equal, and by the converse part of Theorem 1, they lower-bound

. Letting denote these minima, it remains to
show that . Note that this does not directly
follow from the direct part of Theorem 1, since the setting of
Theorem 1 (and, hence, the argument used in proving its achiev-
ability part) under Hamming loss at corresponds to van-
ishing symbol error rate rather than the block error probability
under which is defined. To account for this, assume that

achieve the (first) minimum in (35), as well as the as-
sociated that satisfies , or equivalently

for all and

(37)

Proposition 1 of [7] implies the existence of a mapping
satisfying

(38)

and

(39)

where we here use the notation and conventions of [5] for typical
and jointly typical sets, and . Now consider a coding
scheme where the encoder conveys the index of when

(according to some arbitrary indexing of the set on
the left side of (39)), otherwise, it outputs an arbitrary member
of . The decoder then produces

(40)

where denotes the th component of the -tuple
. Note that, by the definition of (which,

in particular, implies that if then
for ), for all suffi-

ciently large , every and

(41)

The combination of (37), (40), and (41) implies that

(42)

and consequently

(43)

We have thus constructed a code of rate with van-
ishing probability of block reconstruction error. This concludes
the proof of the direct part.

The that achieves the minimum in (35) must satisfy
the following constraints.
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Fig. 5. Illustration of the condition in Lemma 2: (x; x ) 2 G implies that
x and x are connected by some y for which P (x; y) and P (x ; y) are posi-
tive. Then Y cannot completely distinguish between x and x . Therefore, W
will need to have this property, i.e., to satisfy N (x) \ N (x ) = ;. In the
illustration, N (x) = fw ;w ;w g and N (x ) = fw ;w ;w g, and the
condition is that no w symbol be connected to both x and x .

Lemma 2: Let be discrete random variables with the
Markov relation . For each , define

(44)

Then if and only if

whenever (45)

The idea behind the proof of Lemma 2 is illustrated in Fig. 5
and the proof is given in Appendix II. When combined with The-
orem 2, Lemma 2 implies that , where
the minimum is over satisfying (45). In particular, we
observe that depends only on the distribution of and
on . The dependence on is only through its effect
on . For example, when is complete, the condition (45),
which becomes for all implies
that , and when combined with Theorem 2 gives
the following.

Corollary 1: whenever is complete.

Remarks:
1) It is interesting to note that , as characterized in

Theorem 2, coincides with Körner’s “graph entropy” [17],
[18] (also known as “Körner’s entropy,” cf. [1, Sec. III]),
which arises as the exponential rate of growth of the
“ -chromatic” number of the th power of the graph
with the product distribution induced by . Indeed,
Corollary 1 and Corollary 2 (below) can also be seen to
follow from properties of this graph entropy that were
proved in [18].

2) Note that is complete whenever satisfy the pos-
itivity condition for all .
Corollary 1 implies that in such cases, the restriction to
causality in the side information not only precludes achiev-
ability of the conditional entropy of [32], but
in fact renders the side information useless. On the other
hand, as examples 1 and 3 preceding Theorem 2 show,
when this positivity condition does not hold, can
be strictly smaller than and, in fact, can be as small

as . Clearly, Corollary 1 and the aforementioned
examples show that in the in-
terior of the simplex of distributions on with a
discontinuity at its boundary. While discontinuities of this
type are well known to arise in problems such as zero-
error channel coding [30] and the zero-error Slepian–Wolf
problem [40], [1], [19], it is interesting to see it arise in our
setting, which assumes the standard “near-lossless” formu-
lation. This discontinuity was observed also in [18], whose
“ -chromatic” number is also defined through a near-loss-
less source coding problem.

3) Consider our lossless source coding when the encoder also
has access to the side information, i.e., the index from the
encoder is allowed to be of the form , while the
reconstruction is still restricted to be of the form .
An argument similar to that of partitioning to subsequences
indexed by the -alphabet given in the last of the remarks
following the proof of Theorem 1 shows that
is achievable. Furthermore, if variable-rate encoding is al-
lowed, the same argument implies that is achiev-
able even under the requirement for strictly lossless (as op-
posed to near-lossless) reconstruction, regardless of the re-
striction to causal decoder side information. Therefore, in
the presence of encoder side information, the restriction
to causal side information at the decoder entails no loss.
This is in stark contrast to the case when side information
is not available at the encoder where, as discussed in the
previous item, the causal dependence requirement entails
a severe penalty. Viewed alternatively, whereas availability
of encoder side information does not improve on the com-
pression limit in the absence of a causality requirement on
decoder side information, when such causality is imposed,
availability of encoder side information can mean the dif-
ference between a minimum rate of and a minimum
rate of .

Theorem 2 and Lemma 2 also imply the following mono-
tonicity of .

Corollary 2: Let and be pairs of jointly dis-
tributed random variables with . Let
denote the respective optimal rates. If then

.
Proof: By the remark following Lemma 2, and

are both given as a minimum of the same mutual infor-
mation but, since , the set over which the minimum
defining is taken is less constrained (larger) than that
associated with .

Theorem 2 characterizes as a solution to a simple fi-
nite-dimensional optimization problem. The conditioning on
in (35), Lemma 2, Corollary 1, and Corollary 2 can be used to
simplify the optimization. Also often useful for these computa-
tions is the representation of the rate distortion function as an
ordinary rate distortion function, as detailed in the first remark
following Theorem 1. The computation of , which is the
limit of that function as , is then equivalent to the mini-
mization of the Lagrangian
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Fig. 6. Possible forms of G for jX j = 1; 2; 3; 4.

Fig. 7. R for the uniform quaternary source. The x-axis corresponds to
the category that G belongs to, as enumerated in Fig. 6. The two points in the
sixth category correspond to the upper and lower bounds given in Table I (which
follow from Corollary 2). Corollary 2 implies that the graph is monotone on
subsequences of increasing configurations.

as , where is induced by the Hamming distortion
measure . The explicit expressions of that such opti-
mizations yield, for the various possible forms of the graph ,
as enumerated in Fig. 6 for alphabet sizes , are
given in Table I. A plot of the values of corresponding
to the various configurations when is a uniform quaternary
source is given in Fig. 7.

IV. RATE DISTORTION WITH LIMITED SIDE INFORMATION

LOOK-AHEAD

Consider the setting of Section II when the causality require-
ment is relaxed to a look-ahead of . Specifically, the
th reconstruction this time is of the form . Let

denote the associated rate distortion function. Note that
, which is the rate distortion function of Sec-

tion II. For any integer , define

(46)

where the minimum is over all functions
, and such that

(47)

For , define as

(48)

where the minimum is over all functions
, and such that

(49)

The main result of this section is as follows.

Theorem 3: The rate distortion function for look-ahead
is bounded for any and ,

as follows:

(50)

Consequently

(51)

Remarks:
1) Note that , thus, (50) implies that

(52)

which only slightly increases the upper bound when is
moderately larger than and there is no need to evaluate

.
2) Although the exact form of is given by the limit in

(51), the more significant point of Theorem 3 is the bounds
in (50), or the implied bounds in (52), which enable the
computation of to any desired accuracy. Specifi-
cally, given any is guaranteed to be within

of provided is taken to satisfy .
for a fixed value of is then the solution to an

optimization problem over real variables, since for
each value of , the conditional distribution of is an
element of the -dimensional simplex. This optimiza-
tion problem can be further simplified by searching only
for an -optimal solution, yielding an overall approxima-
tion guaranteed of being within from . Note that
the minimization in (46) that defines , though pre-
sented as involving a minimization over the set of possible
functions , in addition to , is in effect a mini-
mization only with respect to . The reason is that
the optimum associated with a given is readily
found as

This “computability” is in contrast to other instances of
both source and channel coding settings where characteri-
zations that are given as limits of finite-dimensional opti-
mization problems offer little guidance on the rate at which
the solutions to these problems approach their limits and,
hence, do not provide computable approximation proce-
dures of the type implied by Theorem 3.
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TABLE I
R FOR QUARTERNARY X

Proof of Theorem 3: We simplify the exposition by as-
suming . The proof extends to general with obvious
modifications. Thus, we prove the bounds

(53)

where is the rate distortion function of Section II and

(54)

where the minimum is over all functions
, and such that

(55)

The upper bound is established
using a scheme that encodes successive blocks. Viewing a

-block as a symbol of the -super-alphabet, an achievability ar-
gument similar to that in the proof of Theorem 1 yields a scheme
with look-ahead , expected distortion upper-bounded by

per symbol on the first symbols of each block, and
rate of per -block. The subsequence consisting of
the last symbol in each block is encoded separately at distortion

and rate (per -block) using the optimal scheme for the
causal case. The outcome is a bona fide scheme for look-ahead

that achieves distortion at rate . To

prove the lower bound, fix any scheme with block length and
rate satisfying

(56)

Then
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where
follows when interpreting a summation running from

to as a null summation whenever ,
or . Similarly, when , the second summation
from to is to be understood as ;
follows since for ;

follows by setting , as in the proof of
Theorem 1, and using the Markov relation

;
follows from i) , for
and (where arbi-
trarily), ii) the Markov relation ,
(iii) the definition of , and (iv) the fact that, by
Carathéodory’s theorem, the restriction to
does not affect the minimum in (54);

follows from the convexity of , which can be
proved in the same way as the proof of convexity of
given in the Appendix;
follows from the monotonicity of by denoting

;
follows from the monotonicity of and (56).

Thus, we have for all , which
implies that by the continuity of (which
follows by a similar argument to that for in Section II).

A. Process Characterization of

For jointly stationary processes and
let denote the mutual information rate

(57)

The following theorem gives a “process characterization” for
.

Theorem 4:

(58)
where the infimum is over jointly stationary with the
Markov relation (consistent with the given dis-
tribution of ), and is the optimum estimate
of based on , namely

(59)
It will be clear from the proof, given in Appendix III, that the
alphabet of the components of the process can be restricted
to without affecting the infimum in (58). Our
proof will apply to any . Also, if we let be
the function defined in (58) with replaced by , we obtain

(60)

This result can be proved by a simple generalization of the
arguments used to prove the analogous characterization for the
classical rate distortion function [13], [14].

Gaussian is Ineffectual for Gaussian

Though the expression in (58) is no more explicit than the
limit in (51), it may be useful for deriving upper bounds on

by considering specific processes from the fea-
sible set for the infimum in (58). In particular, consider the case
where are i.i.d. drawings of the Gaussian pair and
is the squared error distortion, as described in Section II. Moti-
vated by Theorem 4 (and the fact that it can be shown to hold for
general alphabets via the tools of [41]), consider the following
upper bound on :

(61)
where the infimum is over jointly stationary and Gaussian

with the Markov relation , and
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is the optimum (linear) estimate of based
on . Perhaps somewhat surprisingly, is trivial
in the following sense.

Theorem 5: For every

(62)

where is the lower convex envelope of , the
upper bound on derived in Section II.

Thus, for , in order to obtain upper bounds on
that are better (smaller) than our upper bound for the case

, one must search outside the set of jointly stationary
and Gaussian . The proof of Theorem 5 is given in
Appendix IV.

V. LOSSLESS SOURCE CODING WITH SIDE INFORMATION

LOOK-AHEAD

Consider the same case as in the previous section when en-
coding is performed by mapping the sequence into

, and reconstruction is of the form . A
rate is achievable if there exists a sequence of schemes of rate

for which . Let be the infimum
over achievable rates for this problem. Thus, ,
which we characterized in Section III.

As we have seen in Section III, under the positivity condition,
(and not ), which is achievable when

no delay constraint is imposed. Thus, it is perhaps natural to
expect to decrease with increasing toward .
This will turn out to be false. In fact, we will show, under the pos-
itivity condition, that not only is
in general, but it is equal to for all . That is,
side information for any is useless.

We first give a general characterization of . Let

(63)

where the minimum is over all , such
that

for all (64)

Theorem 6: For every and

(65)

So, in particular

(66)

Proof of Theorem 6: Considering of the previous
section with Hamming loss, it is clear that , as defined
in (63), is nothing but . The fact that

follows by Theorem 3. To prove the right-hand side inequality,
define

(67)

where the minimum is over all , such
that

for all (68)

and

(69)

Achievability of follows via a typical sequence argu-
ment similar to that used in the proof of Theorem 2 applied
to -block super symbols. Thus, it only remains to establish
that , which is proved in Ap-
pendix V.

In Appendix VI we prove the following simple fact.

Lemma 3: Let be discrete random variables with
the Markov relation , and assume that
the pairs and have the same bipartite graphs, that
is, for every if and only if

. Then, for any (deterministic) function
if and only if .

Lemma 3 combined with Theorem 6 imply the following.

Proposition 2: depends on the distribution of the pair
only through the distribution of and the bipartite graph

whose edges are the pairs for which .
Proof: Consider as defined in (63). Applying

Lemma 3 for each after replacing by
by , and by , implies that whether or not the
constraint (64) is satisfied depends solely on the distribution
of and on the bipartite graphs associated with the pairs

and . The latter graphs, however, are
determined by the original bipartite graph of . Thus, for
every depends on the distribution of the pair
only through the distribution of and the latter graph, which
when combined with Theorem 6 completes the proof.

Note that although Theorem 3 yields a computable charac-
terization of , it does not lead to a “single-letter” char-
acterization for the general case. However, under the positivity
condition and when combined with Proposition 2, it reduces to
such a characterization.

Corollary 3: Assume that satisfy the positivity condi-
tion, i.e., for all . Then, for any

.
Proof: Assume that , instead of being generated

i.i.d. according to , are generated according to ,
where is independent of and satisfies . Clearly,

. On the other hand, by Proposition 2,
, since and have

Authorized licensed use limited to: Stanford University. Downloaded on March 02,2010 at 17:18:41 EST from IEEE Xplore.  Restrictions apply. 



5232 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 12, DECEMBER 2006

the same -marginal and both satisfy the positivity condition
(so, in particular, induce the same bipartite graph).

Block-Length-Dependent Look-Ahead

For a look-ahead sequence , let denote the in-
fimum over achievable rates when , i.e., allowing the
look-ahead to depend on the block length . As we have seen,
under the positivity condition, if for all

. On the other hand, corresponds to the setting
of [32], so in this case . As it turns out,

remains true so long as the rate of in-
crease of with is faster than logarithmic. Furthermore, any
rate is achievable so long as ,
for a sufficiently large constant . To this end, define

(70)

where denotes the distribution of and
is the conditional entropy under . As is implied by [5,
Example 3.1.5, p. 264], this can be considered a “random coding
error exponent” for the Slepian–Wolf problem.

Theorem 7: For every pro-
vided and . In particular,

whenever the increase of is faster than logarithmic.
Proof: From [5, Example 3.1.5, p. 264], it follows that

when , not only does there exist a sequence
of schemes (for the Slepian–Wolf problem with no delay con-
straint on the side information) with , but also

, where is given by (70). In
particular, for any and sufficiently large

(71)

Consider now the probability of error of the rate scheme with
look-ahead for block length formed by concatenating
Slepian–Wolf schemes4 of block length . Choosing a good
scheme for -blocks, the probability of error for each of the
subblocks of length , by (71), can be upper-bounded by

. Hence, the probability of
error of the resulting -block scheme is upper-bounded
by , which converges to zero for

when, for example, .
This completes the proof by the arbitrariness of .

Remarks:
• From Theorem 7, for any where is strictly in-

creasing, for , that is,
can be taken to be . This follows from

the fact that, for any . Thus, The-
orem 7 implies that for ,
which implies that by the arbitrariness of .

4Neglecting the inconsequential edge effect when n=` is not an integer.

• Theorem 7 and its proof remain valid when is the
true error exponent (which is at least as large as the random
coding one) rather than the random coding error exponent
of (70). The former is unknown, however.

• Theorem 7 only addresses achievability. Whether or not a
logarithmic growth rate of is also necessary to achieve
rates (say under the positivity
condition) remains to be determined.

Bridging the Gap Between Lossless and Lossy Results

Let denote the rate distortion function for look-ahead
from Section IV, when is Hamming loss. Assuming

satisfy the positivity condition, we have seen in this section (in
proof of Theorem 6) that

for all (72)

whereas, as observed in [42]

(73)

On the other hand

for all (74)

To see this formally, consider the characterization in Theorem
4. Specifically, combining (58) and (60) with the fact that, by
the martingale convergence theorem (cf., in particular, [3, The-
orem 5.21])

for all and sufficiently large , we obtain for every
and

(75)

This implies (74) by the arbitrariness of and the continuity
of for (which is guaranteed by its convexity).
Note, in particular, that this implies a sensitivity to the order of
the limits

(76)

A sketch of this situation is given in Fig. 8.

VI. CHANNEL CODING WITH LIMITED LOOK-AHEAD STATE

INFORMATION AT THE ENCODER

Consider the problem of coding for a memoryless channel
with state information known at the encoder, as considered by
Shannon [31] for the case where the states are only causally
known, and by Gel’fand and Pinsker [12] and Heegard and
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Fig. 8. Sketch of the form of the rate distortion functions under Hamming distortion. The upper curve represents R(D) = R (D). The lower curve represents
R (D). The curves in between represent R (D) (approaching R (D) with increasing `). Though R (0) = H(X) for all 0 � ` < 1 and R (0) =
H(X jY ); lim R (D) = R (D) for all D > 0. In particular, H(X jY ) = lim lim R (D) < lim lim R (D) = H(X).

El Gamal [15] for the case where all the states are known in
advance. In this section, we consider the same problem when
the restriction to causality in the setting of [31] is relaxed to
some positive look-ahead (cf. [6], [9] and references therein for
the significance of this problem). We establish a computable
characterization of capacity in this case, which is analogous to
the characterization of given in Section IV.

Consider a memoryless channel with transition probability
, where is the input and is the state. To sim-

plify the derivation below, we assume that the alphabets of the
channel input , channel output , and state are finite. For
a message index , the th-channel input is
of the form , where are i.i.d. with
PMF . Decoding is based only on the channel output .
The following theorem provides a computable characterization
for the capacity of this channel.

Theorem 8: Let

(77)

where the is over all

and , such that . Then

(78)

In particular

(79)

Remarks:
1) The significant point here, as in Theorem 3, is not the limit

in (79), but rather the bounds in (78), which enable the
computation of to any desired accuracy.

2) The lower bound can be refined to obtain an expression
involving the capacity of the Shannon channel (with causal

state information) associated with a super-symbol, in lieu
of the term appearing in (78). Such a bound would
be useful for channels where is large or infinite.

Proof of Theorem 8: To simplify the exposition, we only
give the proof for . The proof extends to general with
obvious modifications. To recap, we let

(80)

where the is over all

and , such that . We need to
prove that

(81)

We first establish the achievability of .
Define

(82)

where the is over all and , such
that . Note that the difference between
and is that in the latter is allowed to depend on .
The achievability of follows from the same argument used
by Shannon in [31] to establish achievability of , applied to

-letter super-symbols. Thus, for every . On the
other hand, considering the joint distribution that achieves the
maximum in (80)

where the last inequality follows since and are
independent. Now, letting , it follows that
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is in the feasible set of the maximization
associated with . We thus have

which proves the left inequality in (81). Turning to the right
inequality in (81), we fix a scheme for block length and define

. Then

where

follows by defining arbitrarily (but deterministically)
for outside the range , e.g., by taking

for such ;
follows since, for any

follows by noting that, for
, and is independent of

(thus, is independent of ). However, and
can be dependent, since can depend on . Con-

sequently, satisfy the depen-
dence structure of over which the maxi-
mization in (80) is taken. It then only remains to note that
the constraint on the cardinality of does not affect the
value of the maximum. This follows by applying the argu-
ment that does not affect
the expressions of [31], [12], [15] to super-symbols.

We have thus obtained

which establishes the converse part of the proof by Fano’s in-
equality.

VII. CONCLUSION

We characterized the rate distortion function for the source
coding with decoder side information setting when the th re-
construction symbol is allowed to depend only on the first
side information symbols, for some finite look-ahead , in addi-
tion to the index from the encoder. For the case of causal side
information, we found that the penalty of causality is the omis-
sion of the subtracted mutual information term in the Wyner–Ziv
rate distortion function. For , we derived a computable
expression for the rate distortion function. When specialized to
the near-lossless case, our results were seen to characterize the
best achievable rate for the Slepian–Wolf source coding problem
with limited look-ahead side information. We found that for any
, side information is useless when the joint pmf of the source

and side information satisfy the positivity condition
for all . On the other hand, we have seen that

is achievable provided side information look-ahead is al-
lowed to grow faster than logarithmic in the block length .
Finally, we applied our approach to derive a computable expres-
sion for channel capacity when state information is available to
the sender with limited look-ahead.

Following are some open questions related to the work pre-
sented in this paper.

• For Gaussian and (i.e., causal side informa-
tion), is the rate distortion function given by the convexi-
fied version of , the bound attained when consid-
ering jointly Gaussian ? Note that is, in
general, not convex (recall Lemma 1), so we already know
that jointly Gaussian do not always attain the rate
distortion function. Theorem 5 is perhaps another hint for
the suboptimality of the Gaussian distribution in this con-
text.

• Recall from Section V that
for , under Hamming loss. The argument used is
readily seen to imply that this is true under any distortion
measure, provided . It would be interesting to
study the rate of this convergence. The techniques for com-
puting the redundancy of rate distortion codes [27], [23],
[43] should be extendable to Wyner–Ziv codes, leading to
an upper bound , since
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the redundancy of a Wyner–Ziv block code of length
upper-bounds the difference . Proving a
lower bound of matching order may be more challenging.

• Consider the lossless case. Assuming for simplicity
the positivity condition, we have seen that

for all , while, for every
provided

for a sufficiently large -dependent constant . It
would be interesting to determine whether or not a loga-
rithmic growth rate is also necessary to achieve rates in

and, if so, to characterize the function
for which when .

• The fourth remark following the proof of Theorem 1 to-
gether with the observations in [25] establish that feedback/
feedforward does not improve on the fundamental limits
for the Gel’fand–Pinsker channel, the Shannon channel
[31], the Wyner–Ziv source, and source coding with causal
decoder side information (as considered in Section II). It
would be interesting to determine whether the presence
of feedback/feedforward can improve on the fundamental
limits in the respective settings of Section VI and Sec-
tion IV for positive . A negative answer would allow us
to use finite-look-ahead adaptations of the schemes in [25]
(in particular, for the Gaussian case, those based on the
Schalkwijk–Kailath scheme [29], [28]) to deduce respec-
tive lower bounds on the capacity of Section VI and
upper bounds on the rate distortion function of Sec-
tion IV.

APPENDIX I
CONVEXITY OF

To prove convexity of in (1) we use the same approach
as that used in [4, Lemma 14.9.1] for the the Wyner–Ziv func-
tion.

Let and be two distortion values and let
and be the corresponding achievers of the minima in

and . Let be independent of ,
taking on the value with probability and the value
with probability . Define and let

. Then

Thus,

APPENDIX II
PROOF OF LEMMA 2

Condition (45) implies that for each and any with
, if then for any other

with . Thus, and uniquely determine
and hence . For the reverse implication, take

satisfying , and satisfying
and , then

(A1)

and

(A2)

Now implies by (A1) that
, Thus, by (A2), , which implies

that . But

thus implies, by the positivity of and
, that . Thus we have shown that for

a pair if , then , or
equivalently, .

APPENDIX III
PROOF OF THEOREM 4

We have established already that is given by (51),
where is given in (46). Denoting (until the end of the
proof) the right-hand side of (58) by , we need to show
that . Note first that an equivalent form of

is

(A3)

where the minimum is over all functions
, and such that

(A4)

The equivalence follows by identifying in (A3) as
of (46). We first prove that . Assume that

jointly achieve the minimum in (A3). We form
the stationary triple by concatenating i.i.d. -triplets
distributed as , followed by a random time-shift, ,
uniformly distributed on . Letting , we
note that are jointly stationary and satisfy the Markov
relation (since when conditioning only on , or
on both and , the components of are independent, the
distribution of depends only on ). Now, for any

implying

(A5)
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On the other hand, letting denote the optimal
estimate of based on , and taking to be
the achievers in (A4) while defining arbitrarily

(A6)

where follows by considering a suboptimal estimator, in lieu
of , which employs the corresponding to the
value of the shift (which belongs to ) on the corresponding
components of , and follows from (A4). The combi-
nation of (A5) and (A6) implies that

(A7)

By the arbitrariness of and the continuity of (which follows
from its easily verified convexity), this gives

(A8)

For the reverse direction, fix and assume that
achieve the infimum in (58). Let be sufficiently large such
that

(A9)

where denotes the optimal estimate of
based on (that such an exists follows from the
fact that

which is a consequence of martingale convergence [3, Theorem
5.21], cf. also [37, Lemma 4]). Now let be sufficiently large
so that

(A10)

and

(A11)

Letting , set

for

(A12)

and to be arbitrary, otherwise. Then

(A13)

where is due to the joint stationarity of and the
last inequality follows from (A9) and (A11). The combination
of (A10) and (A13) implies that ,
which, when combined with the fact that achieve the
infimum in (58), gives

(A14)

Finally, since (A14) holds for all sufficiently large

(A15)

which, by the arbitrariness of and the continuity of
(which follows from its convexity), implies .

APPENDIX IV
PROOF OF THEOREM 5

Trivially, , so it only remains
to prove that for every . Toward this end
define

(A16)

where the infimum is over jointly stationary and Gaussian
with the Markov relation . Clearly,

for every , so it suffices to show that
. Note that the most general scenario of

zero mean that are jointly Gaussian, jointly stationary,
and satisfy the Markov relation is when is
the output of a linear filter whose input is , “corrupted”
by additive Gaussian (not necessarily white) noise that is
independent of . However, neither the mutual information
rate nor the MSE are affected when considering instead
of , where is the output of the whitening filter for the
power spectral density (psd) of (since the transformation
from to is invertible). This implies that the infimum in
(A16) is not affected by restricting ourselves to that is the
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Fig. 9. The infimum in the definition of R (D) is not affected by restricting
to WWW;XXX;YYY that are generated as in the figure.

output of a linear filter “corrupted” by white Gaussian noise
independent of . This scenario is depicted in Fig. 9. As

is well know (cf., e.g., [16]), the minimum MSE estimate of
given is, in general, obtained by passing through

the filter through the filter , and adding the outputs (as
depicted in Fig. 10), where and are given in the spectral
domain by

(A17)

Substituting the simple forms of the psd and cross-psd in our
case gives

(A18)

Letting denote the respective outputs of the filters ,
the associated minimum mean-square error (MMSE) is readily
computed to be

(A19)

(A20)

The particular form of is not important here. The key point
is that the MMSE can be expressed as an integral of a function
that depends on only through the .

The mutual information rate is given by

(A21)

Here too, the mutual information can be expressed as an integral
of a function that depends on only through the value .
Thus, we have shown that every point on the curve is of
the form given by (A20) and (A21) or, equivalently, of the form

(A22)

for some probability measure . Specifically, to get from (A20)
and (A21) to (A22), let be the distribution of , where

. To conclude it suffices to show that, for every
is a point on the curve of Sec-

tion II (in other words, ). To see this, note
that the MMSE and mutual information corresponding to a point
on the curve are obtained in the setting of Fig. 10 by a
filter , which is constant , but the value of
this point, by (A20) and (A21), is given by . To
sum up, we have shown (by (A22)) that every point on the curve

is a convex combination of points on the curve ,
implying that .

APPENDIX V
PROOF THAT

Let and be the conditional
probability distributions that achieve , i.e., the min-
imum in ((63)), and , i.e., the minimum (in (35)),
respectively. Now, under the conditional distribution

distribution

(A23)

On the other hand, since under

for

and under

for all (A24)

and

(A25)
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Fig. 10. Form of WWW;XXX;YYY ; X̂XX associated with R (D).

Thus, for is in the feasible set as-
sociated with the minimization in (67), which by (A23) implies
that .

APPENDIX VI
PROOF OF LEMMA 3

We need to show that for any function , if
then . As-

sume that . This implies the existence of
an , or such that

and

(A26)

Since

and

the fact that and induce the same bipartite graph im-
plies that each summand in the first sum is positive if and only if
its corresponding summand in the second sum is positive. When
combined with (A26), this implies that

and, similarly,
, which in turn implies that .
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