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Decoding of Expander Codes
at Rates Close to Capacity

Alexei Ashikhmin and Vitaly Skachek

Abstract— The decoding error probability of codes is studied as a
function of their block length. It is shown that the existence of codes with
a polynomially small decoding error probability implies the existence of
codes with an exponentially small decoding error probability. Specifically,
it is assumed that there exists a family of codes of lengthN and
rate R = (1 − ε)C (C is a capacity of a binary symmetric channel),
whose decoding probability decreases polynomially in1/N . It is shown
that if the decoding probability decreases sufficiently fast, but still only
polynomially fast in 1/N , then there exists another such family of codes
whose decoding error probability decreases exponentiallyfast in N .
Moreover, if the decoding time complexity of the assumed family of
codes is polynomial inN and 1/ε, then the decoding time complexity of
the presented family is linear in N and polynomial in 1/ε. These codes
are compared to the recently presented codes of Barg and Zémor, “Error
Exponents of Expander Codes,”IEEE Trans. Inform. Theory, 2002, and
“Concatenated Codes: Serial and Parallel,”IEEE Trans. Inform. Theory,
2005. It is shown that the latter families can not be tuned to have
exponentially decaying (inN ) error probability, and at the same time to
have decoding time complexity linear inN and polynomial in 1/ε.

Index Terms— Concatenated codes, decoding complexity, decoding
error probability, error exponent, expander codes, IRA codes, iterative
decoding, LDPC codes, linear-time decoding.

I. I NTRODUCTION

A classical work of Shannon states that reliable communications
over a communication channel can be achieved for all information
rates which are less than the certain threshold rate, capacity, which
is a function of the channel characteristics. Codes and decoding
algorithms that attain the channel capacity were extensively studied
over the last decades. For such codes with respective decoding
algorithms, at rates less than the capacity, the probability of decoding
error approaches zero, as the code length grows.

Fastness of decrease of the decoding error probability as a function
of the code length,N , is a characteristic of capacity-approaching
codes, which was widely studied for many code families. However,
this probability depends also on ratio between the channel capacity
and an actual code rate. Namely, let the code rate beR = (1− ε)C,
whereC is the channel capacity. It is an interesting question to ask
is how the decoding error probability depends onε.

Another characteristic of (decoding algorithms of) codes is a
time complexity of decoding. As of yet, there are known families
of capacity-achieving codes (over various channels) with decoding
algorithm time complexity only linear inN . However, one might
look onto the decoding time complexity of code families in terms of
ε. In the next two paragraphs we discuss these characteristics for two
code families.

It is known that LDPC-type codes can attain a capacity of a binary
erasure channel (BEC), the reader can refer to [11], [13], [15]. It is
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generally believed that LDPC-type codes can approach capacity of a
variety of other communication channels. However, it is also believed
that the decoding error probability decreases only polynomially with
the code length. As to the decoding time complexity, it was con-
jectured in [9] that per-bit complexity of message-passingdecoding
(e.g. [6], [16]) of LDPC or irregular repeat accumulative (IRA) codes
over any ‘typical’ channel isO

`

log 1
π

´

+O
`

1
ε
log 1

ε

´

, whereπ is a
decoded error probability. Lately, for LDPC-type codes with message-
passing decoding over the BEC, the time complexity was shownto
be linear in a code length and sub-linear in1/ε. More specifically,
it was shown in [11] and [13] that the decoding complexity perbit
for some sub-families of LDPC-type codes behaves asO(log(1/ε)).
Recently, in [14], IRA codes with bounded decoding complexity per
bit were constructed.

In contrast, modifications of expander codes presented in [1],
[2], [3], [17], [18] also attain the capacity of the memoryless q-
ary symmetric channel, and the error probability decreasesex-
ponentially with the code length. Several recent works werede-
voted to analysis of fraction of errors that expander codes can
correct (e.g. [4], [20], [21], [22]) and their rate-distance trade-offs
(see [3], [8], [18]). While it is well known that there are decoders for
expander codes having linear-time (in the code length) complexity,
the dependence of this complexity on1/ε was not studied. In the
present work, we aim at studying this dependence. We investigate
time complexity of decoding algorithms of expander codes interms
of ε, in particular for the codes in [1], [3]. We show that these specific
codes have time complexity that is exponential in1/ε2.

In this work, we study capacity-achieving codes over a binary sym-
metric channel (BSC). We show that if there exists a family ofcodes
Cin of lengthN and rateR = (1− ε)C (C is a BSC capacity), with
the decoding probability vanishing inverse polynomially in N and
ε (under conditions of our theorem), then there exists another such
family of codesCcont with the decoding error probability vanishing
exponentially inN . Moreover, if the decoding time complexity of
the codesCin is polynomial inN and 1/ε, then the decoding time
complexity of the codesCcont is linear inN and polynomial in1/ε.

The structure of this paper is as follows. In Section II, we describe
the basic ingredients in our construction. The main result of our paper
appears in Section III: we present a sufficient condition forexistence
of a family of codes with the decoding error probability vanishing
exponentially fast. We also analyze the decoding time complexity of
the presented codes. Finally, in Sections IV and V, we show that
the codes in [1], [3] with their respective algorithms cannot be tuned
to have decoding error probability that decreases exponentially fast
(in terms ofN ), while the respective decoding algorithms have time
complexity linear inN and polynomial in1/ε.

II. PRELIMINARIES

A. Capacity-achieving codes with fast decoding

In this subsection we assume existence of some (family of) linear
codeCin, which achieves the capacityC of the BSC, and which has
fast decoding algorithm. We denote its rateRin = (1− ε)C, and its
lengthnin (constant for a fixedε). Below, we discuss the parameters
of this code.

Decoding complexity: we assume that the decoding complexity of
Cin over the BSC is given by

O

„

ns

in ·
1

εr

«

, (1)

wheres, r ≥ 1 are some constants. LetDin be a decoder that have
a time complexity as in (1).
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Based on the results in [11], [13], [14], several LDPC-type code
families (with respective message-passing decoding algorithms) do
have such decoding complexity over the BEC (fors = 1). There
are no such results known for the BSC, although in the light ofthe
surveyed works, this assumption sounds reasonable for LDPC-type
codes over the BSC.
Decoding error probability: as of yet, there are no satisfying results
on asymptotical behavior of the decoding error probabilityof LDPC-
type codes over the binary erasure channel under the message-passing
decoding, for rates near capacity of the BEC. The behavior ofthe
decoding error probability of LDPC-type codes over other channels is
even less investigated. In this work, we obtain a sufficient condition
on the probability of the decoding errorProbe(Cin) of the decoder
Din (for the Cin) to guarantee the existence of a code with an
exponentially-fast decreasing error probability.
Note: the results presented in the sequel are valid for any codeCin
whose decoding time complexity and error probability are asstated
above. However, LDPC-type codes are very promising candidates to
meet these conditions, and in fact we do not see any other candidate
at the present moment. Since there is no such candidate, it makes
sense to speak about LDPC-type codes in this context.

B. Nearly-MDS expander codes

In this section, we consider linear-time decodable codes ofrate
1 − ǫ (for small ǫ > 0) that can correct a fractionϑǫb of errors,
whereϑ > 0, b > 0 are constants. There are several code families
known to date that can be shown to have the above property, andat
the same time allow a linear-time (in a code length) decoding. In this
connection, the reader can refer to [1], [3], [8], [20], [22]. However,
as of yet, the codes in [17], [18] have the best relations between
their rate, distance and alphabet size among all known expander-based
linear-time decodable codes. Moreover, unlike the codes in[17], [18],
not all aforementioned codes have decoding time complexity, which
is polynomial in1/ǫ.

Below, we recall the construction in [17], [18]. LetG = (A : B,E)
be a bipartite∆-regular undirected connected graph with a vertex set
V = A ∪ B such thatA ∩ B = ∅ and |A| = |B| = n, and an edge
setE of sizeN = ∆n such that every edge inE has one endpoint
in A and one endpoint inB. For every vertexu ∈ V , denote by
E(u) the set of edges incident withu, and assume some ordering
onE(u), for everyu ∈ V . Let F = GF(q) be some finite field, and
q ≥ ∆.

Take CA and CB to be Generalized Reed-Solomon codes with
parameters[∆, rA∆, δA∆] and [∆, rB∆, δB∆] overF, respectively.
(We use notation[n, k, d] for a linear code of lengthn, dimension
k, and minimum distanced.) We define the codeC = (G, CA : CB)
as in [18], namely

C =
n

c ∈ F
N : (c)E(u) ∈ CA for everyu ∈ A

and (c)E(u) ∈ CB for every u ∈ B
¯

, (2)

where(x)E(u) denotes the sub-word ofx = (xe)e∈E ∈ F
N that is

indexed byE(u). The produced codeC is a linear code of lengthN
over F.

Let Φ denote the alphabetFrA∆. Taking some linear one-to-one
mappingEA : Φ→ CA overF, and the mappingψ : C→ Φn given
by

ψ(c) =
`

E−1
A

`

(c)E(u)

´´

u∈A
, c ∈ C ,

the authors of [18] define the codeCΦ of lengthn over Φ by

CΦ = {ψ(c) : c ∈ C} .

Definition. An infinite sequence{ai}∞i=1, ai
i→∞−→ +∞, ai ∈ R, is

calleda dense sequence of valuesif a1 ≤ 100 andai+1−ai = o(ai)
(for i → ∞). (The number100 is a large absolute constant, the
conditiona1 ≤ 100 ensures that not all elements in the sequence are
exponentially large.)

Let λG be the second largest eigenvalue of the adjacency matrix
of G and denote byγG the valueλG/∆. WhenG is taken from a
family of ∆-regular bipartite Ramanujan graphs (e.g. [10], [12]), we
have

λG ≤ 2
√
∆− 1 . (3)

There are explicit constructions for such∆-regular Ramanujan graph
families for dense sequences of values∆ ([10], [12]).

It was shown in [18], that the codeCΦ has the relative minimum
distance

δΦ ≥
δB − γG

p

δB/δA

1− γG
. (4)

It is also known that the rate ofCΦ is

RΦ ≥ rA + rB − 1 .

The linear-time decoding algorithmDΦ in Figure 1 was proposed
in [18]. It corrects any pattern ofµ errors andρ erasures such that
µ+ 1

2
ρ < βn, whereβ is given by

β =
(δB/2) − γG

p

δB/δA

1− γG
. (5)

The number of iterationsm in the algorithm was established in [18]
such thatm = O(log n). The notation “?” is used for erasures, and
the notationsDA andDB are used for decoders of the codesCA and
CB, respectively.

Input: received wordy = (yu)u∈A in (Φ ∪ {?})n.

For u ∈ A do (z)E(u) ←


EA(yu) if yu ∈ Φ
?? · · ·? if yu =?

.

For i← 1, 2, . . . ,m do {
If i is eventhen X ≡ A, D ≡ DA,

elseX ≡ B, D ≡ DB .
For u ∈ X do (z)E(u) ← D((z)E(u)).

}
Output: ψ(z) if z ∈ C (and declare ‘error’ otherwise).

Fig. 1. DecoderDΦ of Roth and Skachek for the codeCΦ.

The proof in [18] requires that the decoderDA is a mappingF∆ →
CA that recovers correctly any pattern of less thanδA∆/2 errors
over F, and the decoderDB is a mapping(F ∪ {?})∆ → CB that
recovers correctly any pattern ofθ errors andν erasures, provided
that 2θ + ν < δB∆. The decodersDA and DB are polynomial-
time, for example Berlekamp-Massey decoder can be used for both
of them. It can be implemented then inO(∆2) time (or less).

In the next proposition, we show that the parameters of the codes
in [18] of rate1− ǫ can be tuned to correctϑǫ errors for a constant
ϑ > 0.

Proposition 1: For any ǫ ∈ (0, 1), and for a sequence of
alphabets{Φi}∞i=1 such that the sequence{log2 |Φi|}∞i=1 is dense,
the codesCΦ (as above) of rateRΦ ≥ 1− ǫ (with decoderDΦ) can
correct a fractionϑǫ of errors, whereϑ > 0 is some constant.

Proof. There is a dense sequence of values∆ ∈ {∆i}∞i=1 such
that there exists a family of∆-regular bipartite Ramanujan graphsG
(see [10], [12]). For any such value∆, we can take both codesCA
andCB to be GRS codes of length∆ over alphabet of size∆, rate
rA = rB = 1− ǫ/2 and relative minimum distanceδA = δB = ǫ/2.
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Consider a codeCΦ defined with respect to theseCA andCB . The
rateRΦ of CΦ satisfiesRΦ ≥ rA + rB − 1 = 1− ǫ. From (5), the
fraction of errors that the decoderDΦ can correct is given by

β =
δB/2− γG

p

δB/δA

1− γG
≥ ǫ/4− γG
= ǫ/4− 2

√
∆− 1/∆

≥ ǫ/4− 2/
√
∆ .

Take any∆ such that∆ > (16/ǫ)2: for such∆,

β > ϑǫ , whereϑ = 1/8 .

Next, we observe that|Φi| = ∆∆irA
i . Based on the density

of {∆i}∞i=1, we show the density of the sequence{log2 |Φi|}∞i=1.
Indeed, for anyi ∈ N,

lim
i→∞

log2 |Φi+1| − log2 |Φi|
log2 |Φi|

= lim
i→∞

∆i+1 log2 ∆i+1 −∆i log2 ∆i

∆i log2 ∆i

= lim
i→∞

 

∆i+1 log2 ∆i+1

∆i log2 ∆i

!

− 1

= lim
i→∞

 

∆i + o(∆i)

∆i
· log2(∆i + o(∆i))

log2 ∆i

!

− 1

= 1 − 1 = 0 .

Finally, from [10] and [12],∆1 can be taken small enough, such that
log2 |Φ1| < 100, as required.

C. Concatenated codes

In this subsection, we revisit the definition of concatenated codes.
The following ingredients will be used:

• A linear [nin, kin=Rinnin] codeCin over F (inner code).
• A linear codeCΦ of lengthn and rateRΦ overΦ = F

kin (outer
code).

• A linear one-to-one mappingE0 : Φ→ Cin.

The respective concatenated codeCcont is defined as

Ccont =
n

(c1|c2| · · · |cn) ∈ F
n·nin : ci = E0(Ξi) ,

for i ∈ 1, 2, · · · , n, and (Ξ1Ξ2 · · ·Ξn) ∈ CΦ

o

.

The rate ofCcont is known to beRcont = Rin · RΦ.
Let Din : Fnin → Cin andDΦ : Φn → CΦ be decoders for the

codesCin andCΦ, respectively. A simple decoderDcont for the code
Ccont is presented in Figure 2. There exist more advanced decoders
for the codeCcont (e.g. GMD decoding, [5]) that can correct more
errors, but we consider the decoderDcont due to its simplicity.

Input: received wordy = (y1 y2 · · · yn·nin) in F
n·nin .

For i ∈ 1, 2, · · · , n do
ui ← E−1

0

`

Din

`

(yj+(i−1)·nin )
nin

j=1

´´

.
Let (z1z2 · · · zn)← DΦ ((u1u2 · · ·un)).
Output: (E0(z1)|E0(z2)| · · · |E0(zn)).

Fig. 2. DecoderDcont for the codeCcont.

III. M AIN RESULTS

A. General settings

Consider a memoryless binary symmetric channel with crossover
probabilityp. Its capacity is given byC = 1−H2(p), whereH2(χ) =
−χ log2 χ− (1−χ) log2(1−χ) is the binary entropy function. Let
R = C(1− ε) be a design rate.

Take F to be GF(q), q = 2ℓ, ℓ ∈ N. Let Cin be a binary code
of length nin assumed in Section II-A. It can also be seen as an
additive linear code of lengthnin = nin/ℓ over F. Let CΦ be a
linear code of lengthn and rateRΦ over an alphabetΦ = F

Rinnin .
Pick some linear one-to-one mappingE0 : Φ → Cin. Let Ccont

be a code, corresponding to a concatenation of the codeCin (as
an inner code) with the codeCΦ (as an outer code), as defined in
Section II-C. SupposeRcont ≥ R is a rate of the (binary) codeCcont

andNcont = n · nin is its length. Denote byProbe(Ccont) its error
probability, under the decoding byDcont.

The following lemma is based on the result in [5, Chapter 4.2].
Lemma 2:The error probability of the codeCcont (as defined in

this section) under the decoding byDcont, when the error probability
of the decoderDin for the codeCin is Probe(Cin), and the decoder
DΦ corrects any pattern of less thanβn errors, is bounded by

Probe(Ccont) ≤ exp{−n ·E} = exp



−Ncont · E
nin

ff

,

whereE is a constant given by

E = −β ln (Probe(Cin))− (1− β) ln (1− Probe(Cin))
+β ln (β) + (1− β) ln (1− β) . (6)

If a right-hand side of (6) is negative, we assume thatE is zero.
The proof of this lemma appears in Appendix A.
Remark. It is possible to improve an error exponent by a constant

factor if allowing the decoder for the codeCin to put out an “erasure”
message in a case of unreliable decoding of the codeCin. See [5,
Chapter 4.2] for details. We omit this analysis for the sake of
simplicity.

B. Sufficient condition

In this subsection, we derive a sufficient condition on the proba-
bility of decoding error of the codeCin for providing a positive error
exponent for the codeCcont as defined in subsection III-A. Below,
we use the notationCin [Rin, nin] for the codeCin of rateRin and
lengthnin.

Theorem 3:Consider the BSC, and letC be its capacity. Sup-
pose that the following two conditions hold:

(i) There exist constantsb > 0, ϑ > 0, ε1 ∈ (0, 1), such that for
any ǫ, 0 < ǫ < ε1, and for a sequence of alphabets{Φi}∞i=1

where the sequence{log2 |Φi|}∞i=1 is dense, there exists a family
of codesCΦ of rate1− ǫ (with their respective decoders) that
can correct a fractionϑǫb of errors.

(ii) There exist constantsε2 ∈ (0, 1) andh0 > 0, such that for any
ǫ, 0 < ǫ < ε2 , the decoding error probability of a family of
codesCin satisfies

Probe

„

Cin
»

(1− ǫ)C, 1

ǫh0

–«

< ǫb .

Then, for any rateR < C, there exist a family of the codesCcont

as defined in subsection III-A (with respective decoder) that has an
exponentially decaying (inNcont) error probability.
Proof. Let R = (1 − ε)C be a design rate of the codeCcont, and
ε > 0 be small (namely,ε < min{ε1, ε2}). Let κ be a constant,

3



0 < κ < 1, which will be defined later, and let the rate of the code
Cin beRin = (1− κ ε)C. We set the rate ofCΦ as

RΦ =
R

Rin
=

1− ε
1− κε = 1− (1− κ)ε−Θ(ε2) .

Then, by condition (i), the fractionβ of errors correctable by the
codeCΦ is at leastβ ≥ ϑ((1− κ) · ε)b.

For an alphabetΦ, the lengthnin of the codeCin is given by

nin =
log2 |Φ|
Rin

.

We select the smallestΦ ∈ {Φi}∞i=1 such that

log2 |Φ| ≥
1

(κε)h0
,

and, so,

nin >
1

(κε)h0
, (7)

Next, we use Lemma 2 to evaluate the decoding error probability
of the codeCcont. It holds for small positive values ofβ that

(1− β) ln(1− β) > −β ,
and thus, from Lemma 2 we obtain (by ignoring the positive term
−(1− β) ln(1− Probe(Cin)) in (6)),

Probe (Ccont)

< exp {−n · (−β ln (Probe(Cin)) + β ln β − β)}

= exp



−Ncont
β

nin
(lnβ − ln (Probe(Cin))− 1)

ff

.

In order to have a positive error exponent, we require that

ln β − ln (Probe(Cin))− 1 > 0 ,

or, equivalently,
β > e · Probe(Cin) . (8)

The decoding error probability of the selected codeCin satisfies:

Probe (Cin [(1− κε)C, nin])

< Probe

„

Cin
»

(1− κε)C, 1

(κε)h0

–«

< (κε)b ≤ ϑ((1− κ)ε)b
e

, (9)

where the first inequality is due to (7), the second inequality follows
from condition (ii), and the third inequality can be satisfied by a
selection of a small constantκ such thatκb ≤ ϑ(1− κ)b/e.

The inequality (9) implies (8), as required.

Example. Suppose that the decoding error probability of the code
Cin of rateRin = (1 − ε)C and lengthnin (for some decoder) is
bounded by

Probe(Cin) < 1

nin
· 1
ε4

.

We chooseh0 = b+5 (whereb is as in condition (i) of Theorem 3).
There obviously existsε2 such that for every0 < ǫ < ε2, for the
codeCin of lengthnin = 1/ǫh0 and rateRin = (1− ǫ)C,

Probe(Cin) < 1

nin
· 1
ǫ4

= ǫh0 · 1
ǫ4

= ǫb+1 < ǫb . (10)

From the expression (10) we see that condition (ii) of Theorem 3
is satisfied. This selection guarantees existence of a positive error
exponent for the codeCcont.

Example. Suppose that the decoding error probability of the code
Cin (of rateRin = (1− ε)C and lengthnin) is bounded by

Probe(Cin) < e
−ninε2 .

We chooseh0 = 3. There obviously existsε2 such that for every
0 < ǫ < ε2, for the codeCin of length nin = 1/ǫh0 and rate
Rin = (1− ǫ)C, and for everyb > 0,

Probe(Cin) < e
−ninǫ2 = e

−(ǫ2/ǫ3) = e
−(1/ǫ) < ǫb ,

and therefore Theorem 3 yields existence of a positive errorexponent
for the codeCcont.

C. Example

In this subsection, we consider a specific case of decoding error
probability for the codeCin. Theorem 3 can be directly applied
in this case. However, we conduct a direct minimization of the
decoding error probability of the codeCcont, which is obtained by
concatenation of the codeCΦ in [18] with the assumed codeCin,
and obtain an analytical expression on the error exponent. We show
that the overall decoding error probability for this codeCcont has a
positive error exponent.

Suppose that the decoding error probability for some inner code
Cin over the binary symmetric channel with crossover probability
p < H

−1
2 (1−Rin) and some polynomial decoder is given by:

Probe(Cin) ≤ 1

nt
in

,

wheret is a constant,t ≥ 1.
Below, we make a selection of parameters for the codeCcont.

This selection allows us to estimate a decoding error exponent as a
function of ε.

Let R = (1− ε)C be a design code rate. Pick the rate ofCin to
beRin = (1− κ ε)C, whereκ ∈ (0, 1) is a constant. Then, we can
write

R

Rin
=

C(1− ε)
C(1− κ ε) ≥ 1− (1− κ)ε−Θ(ε2) .

Next, we select the parameters of the codeCΦ in [18], which serves as
an outer code. TakeCA andCB as GRS codes overF, with |F| = ∆.
We fix δB = 1 − R/Rin − δA = η(1 − R/Rin), whereη ∈ (0, 1)
(and thus,δA = (1 − η)(1 − R/Rin)), and select the degree∆ of
the graphG as∆ = ̺/ε2, where̺ is a constant, such that

̺ >
16

η(1− η)(1− κ)2 .

We have,

RΦ ≥ rA + rB − 1 = 1− δA − δB = R/Rin .

By our selection (see (3)),

γG ≤ 2√
∆

=
2ε√
̺
.

We obtain from (4),

β > (δB/2) − γG
p

δB/δA > ϑε+ o(ε) , (11)

where

0 < ϑ =
η(1− κ)

2
− 2

r

η

̺(1− η)
is a constant which depends only onκ, η and̺.

The number of bits needed to represent each symbol ofΦ is
log2 |Φ| = rA∆ · log2 |F|. Recall thatrA = 1−O(ε). Therefore, the
lengthnin of the binary codeCin is given by

nin =
rA∆

Rin
· log2(∆)

=
(1−O(ε))̺

Rin ε2
· log2

“ ̺

ε2

”

=
̺ log2(̺/ε

2)

Rin ε2
+ o

„

̺ log2(̺/ε
2)

Rin ε2

«

, (12)
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and thus, by ignoring the small term, the decoding error probability
of Cin is

Probe(Cin) ≤
„

ε2Rin

̺ log2(̺/ε
2)

«t

. (13)

We substitute the expressions in (11) (only the main term) and (13)
into the result of Lemma 2 to obtain

Probe(Ccont) <

exp

(

− n
 

− ϑε · t ln
„

ε2Rin

̺ log2(̺/ε
2)

«

− (1− ϑε) ln
 

1−
„

ε2Rin

̺ log2(̺/ε
2)

«t
!

+ ϑε ln (ϑε) + (1− ϑε) ln (1− ϑε)
!)

. (14)

Note that for smallε > 0,

ln(1− ϑε) = −ϑε+O(ε2) ,

and

ln

 

1−
„

ε2Rin

̺ log2(̺/ε
2)

«t
!

= −o(ε2t) .

Hence, the equation (14) (when neglectingo(ε) terms) becomes

Probe(Ccont) <

exp



− nϑε
„

− t ln
„

ε2Rin

̺ log2(̺/ε
2)

«

+ ln (ϑε)− 1

«ff

= exp



−Ncontϑε

nin
· ln
„

ϑε · ̺t(log2(̺/ε2))t
e · ε2tRt

in

«ff

.

Using substitution of the expression (12) fornin, the latter equation
can be rewritten as

Probe(Ccont) <

exp



− Ncontϑε · ε2Rin

2̺ (log2(1/ε) + Θ(1))

·
„

(2t− 1) ln(1/ε) + t ln(1/Rin)

+ t ln ln(1/ε) + Θ(1)

«ff

. (15)

The dominating term in the expression

(2t− 1) ln(1/ε) + t ln(1/Rin) + t ln ln(1/ε) + Θ(1)

is (2t−1) ln(1/ε). By taking into account thatRin = C(1−O(ε)),
the equation (15) can be rewritten, when ignoring all but themain
term, as

Probe(Ccont) <

exp



−Ncont ·
„

(2t− 1)ϑ ε3 C

2̺ · log2 e
+ o(ε3)

«ff

.

Thus, the decoding error probability is given by

Probe(Ccont) < exp{−Ncont · E(C, ε)} ,
where

E(C, ε) = max
̺,ϑ



ϑ

̺

ff

· (2t− 1)C

2 · log2 e
· ε3

= max
κ, η, ̺



η(1− κ)
2̺

− 2

r

η

̺3(1− η)

ff

· (2t − 1)C

2 · log2 e
· ε3 , (16)

and the parameters(κ, η, ̺) are taken over

κ ∈ (0, 1) ; η ∈ (0, 1) ; ̺ >
16

η(1− η)(1− κ)2 . (17)

Next, we optimize the value of the constant

Υ = max
κ, η, ̺



η(1− κ)
2̺

− 2

r

η

̺3(1− η)

ff

.

It is easy to see that the maximum is received forκ → 0. We
substituteκ = 0 in expression (16) to obtain

Υ = max
η, ̺



η

2̺
− 2

r

η

̺3(1− η)

ff

. (18)

By taking a derivative ofΥ over ̺ and comparing it to zero, we
obtain that

̺ =
36

η(1− η) .

By substituting it back to the expression (18) and finding itsmaxi-
mum, we haveη = 2/3 and̺ = 162. These values obviously satisfy
condition (17). The appropriate value ofΥ is then

Υ =
η

2̺
− 2

r

η

̺3(1− η) =
2/3

2 · 162 − 2

s

2/3

1623 · (1/3)

=
1

1458
= 6.8587 · 10−4 .

Finally, we have

E(C, ε) =
(2t− 1)C

2916 · log2 e
· ε3 .

Figure 3 shows value of error exponentE(C, ε) in the example
for t = 1, 2 and3.
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Fig. 3. Error exponentE(C, ε) for the codeCcont.
Selection:Probe(Cin) = 1/nt

in; C = 0.8; t = 1, 2, 3 (bottom to top).

D. Decoding complexity

In this subsection, we show that under the assumption in Sec-
tion II-A on the decoding time complexity of the codeCin, and if
the parameters of the codes are selected as in the proof of Theorem 3,
then the decoding time complexity of the respective codeCcont is
linear in the overall lengthNcont and inverse polynomial in the gap
from capacityε.

Theorem 4:Consider the BSC, and letC be its capacity. Let
R = (1 − ε)C be a design rate. Suppose that the following two
conditions hold:

(i) Let CΦ be a (family of) code defined in Section II-B of rate
RΦ = (1 − ε)/(1 − κε), κ ∈ (0, 1) is a constant, over a

5



smallest alphabetΦ satisfying log2 |Φ| ≥ 1/(κε)h0 from a
dense sequence{log2 |Φi|}∞i=1, andh0 > 0 is a constant.

(ii) Let Cin be a code of rateRin = (1− κε)C with the decoding
complexity over the BSC of capacityC given by

O

„

ns

in ·
1

εr

«

,

wheres, r ≥ 1 are some constants.

Then, the time complexity of the respective codeCcont, when
decoded byDcont, is given by

Ncont · POLY(1/ε) .

Proof. Below we count the total number of operations when
decoding the codeCcont by the decoderDcont. There are two main
steps.

• Step 1:n applications of the decoderDin on the binary word
of lengthnin.

• Step 2: one application of the decoderDΦ on the word of length
n over Φ.

In addition, there aren applications of each of the mappingsE0 and
E−1
0 .
We separately count the number of operations during each step.

• Step 1: By the assumption on the decoding complexity ofDin,
n applications of this decoder result in time

O

„

n · ns

in ·
1

εr

«

= O

„

Ncont · ns−1
in ·

1

εr

«

. (19)

From the definition ofCcont, nin = log2 |Φ| /Rin, so, we have

nin =
log2 |Φ|

(1− κε)C .

By using the density of values oflog2 |Φ|, we havelog2 |Φ| ∈
POLY(1/ε), thus yieldingnin ∈ POLY(1/ε). By substitution
into (19), we obtain that the time complexity of Step 1 isNcont ·
POLY(1/ε).

• Step 2: it is shown in [18] that the number of applications of
decodersDA andDB on the word ofCΦ of lengthn overΦ is
bounded byω · n, where

ω = 2 ·

2

6

6

6

6

6

ln

„

∆β
√
σ

β − σ
«

ln

„

δAδB
4γ2

G

«

3

7

7

7

7

7

+
1 +

δA
δB

1−
„

4γ2
G

δAδB

«2
,

andσ is an actual number of errors in the word. Thus, if the ratio
σ/β is bounded away from1, andG is a Ramanujan graph, then
the value ofω is bounded from above by an absolute constant
(independent of∆).
The decodersDA andDB are applied on the words of length
∆ ∈ POLY(1/ε). When half minimum distance decoders for
GRS codes are used, their complexity is polynomial in1/ε.
Therefore, the decoding complexity in Step 2 is bounded by

n · POLY(1/ε) ≤ Ncont · POLY(1/ε) .

Each application of mappingE0 or E−1
0 is equivalent to multiplica-

tion of a vector by a matrix, where the number of rows and columns
in the matrix is POLY(1/ε). This can be done in time POLY(1/ε).

Summing up the decoding complexities of all steps of the decoder,
we obtain that the total number of operations is bounded by

Ncont · POLY(1/ε) .

Note. The result in Theorem 4 is still valid if the outer codeCΦ be
replaced by any other code of rate1 − Θ(ε), whose decoding time
complexity is linear inn and polynomial in1/ε, for a log-dense
sequence of alphabet sizes.

IV. T IME COMPLEXITY OF DECODER IN[1]

Similarly to Section III, assume in this and the next sections thatC
is the capacity of the BSC with crossover probabilityp, and the design
code rate isR = (1−ε)C. Our purpose is to compare the parameters
of the codes from Section III with codes presented by Barg and
Zémor in [1] and [3] (with their respective decoding algorithms). In
the sequel we show that the parameters of the codes from [1] and [3]
cannot be modified such that the decoding time complexity would be
only sub-exponential in1/ε while keeping a non-zero error exponent.
The reason is this: both decoding algorithms in [1] and [3] make use
of sub-routines (decoders for small constituent codes) that have time
complexity exponential in a degree of underlying expander graph.
This degree, in turn, depends (at least) polynomially on1/ε.

A. Construction

We briefly recall the construction and the decoder in [1]. LetG =
(A : B,E) be a bipartite∆-regular undirected connected graph with
a vertex setV = A ∪ B such thatA ∩ B = ∅ and |A| = |B| = n,
and an edge setE of sizeN = ∆n such that every edge inE has
one endpoint inA and one endpoint inB.

Let the size of the finite fieldF be a power of2. Let CA andCB be
two randomcodes of length∆ over F. The codeCBZ2 = (G, CA :
CB) is defined similarly to the definition ofC in (2), with respect to
CA andCB as defined in this paragraph.

B. Decoding

Let us submit a wordc = (ce)e∈E ∈ CBZ2 to the BSC. Assume
thaty = (ye)e∈E is a received (erroneous) word. A formal definition
of the decoderDBZ2 appears in Figure 4. The number of iterationsm

Input: Received wordy = (ye)e∈E in F
N .

Let z ← y.
For i← 1, 2, . . . ,m do {

If i is odd then X ≡ A, D ≡ DA,
elseX ≡ B, D ≡ DB .

For u ∈ X do (z)E(u) ← D((z)E(u)).

}
Output: z if z ∈ CBZ2 (and declare ‘error’ otherwise).

Fig. 4. DecoderDBZ2 of Barg and Zémor for the codeCBZ2.

is taken to beO(log n). The decodersDA andDB are themaximum-
likelihood decoders for the codesCA andCB, respectively.

The analysis of codes in [1] is divided into two cases. In the first
case, the codesCA andCB over F = GF(2) are considered. In the
second case, the analysis is generalized toward field sizes,which are
large powers of 2. We analyze these two cases separately.

C. Analysis: binary codes

In the binary case, following the analysis of [1] it is possible to
show that for the codeCBZ2 with the decoderDBZ2, the decoding
error probability,Probe(CBZ2), is bounded by

Probe(CBZ2, p) ≤ exp{−αNf3(R,p)} ,
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where0 < α < 1, and the main term off3(R,p) is less or equal to

max
R≤R0<C



E0(R0, p)

„

H
−1
2 (R0−R)

2
−Θ

“

1√
∆

”

«ff

, (20)

andE0(R0, p) is the random coding exponentfor rateR0 over the
BSC with a crossover probabilityp.

Proposition 5: If the codesCBZ2 (binary, as assumed in this
subsection), have a positive error exponent under the decoding by
DBZ2, then∆ = Ω

`

1/(H−1
2 (ε))2

´

.
Proof. In order to have a positive error exponent it is needed that

H
−1
2 (R0 −R)

2
−Θ

„

1√
∆

«

> 0 .

Observe thatR0 − R ≤ C − R = Cε ≤ ε. It follows from (20)
that

1
2
H

−1
2 (ε) ≥ 1

2
H

−1
2 (R0 −R) > Θ

“

1/
√
∆
”

,

and thus∆ = Ω
`

1/(H−1
2 (ε))2

´

.

It is suggested in [1] to use the maximum-likelihood decoding
for random codesCA and CB. This decoding, however, has time
complexity at least

exp{Ω(∆)} = exp{Ω
`

1/(H−1
2 (ε))2

´

} .

D. Analysis: codes over large fields

Suppose that the size of the fieldF is a large power of 2. In this
case, for the codeCBZ2 under the decoding byDBZ2, the decoding
error probabilityProbe(CBZ2) is bounded by

Probe(CBZ2, p) ≤ exp{−αNf2(R, p)} ,

and the main term off2(R, p) is less or equal to

max
R≤R0<C

n

E0(R0, p)
“

R0−R
2
−Θ

“

1√
∆

””o

.

In this case, Proposition 5 can be rewritten as
Proposition 6: If the codesCBZ2 (over largeF, as assumed in

this subsection) have a positive error exponent under the decoding
by DBZ2, then∆ = Ω

`

1/ε2
´

.
The proof is very similar to that of Proposition 5.
When using the maximum-likelihood decoder forrandom codes
CA andCB, the decoding time complexity is at least

exp{Ω(∆)} = exp{Ω
`

1/ε2
´

} .

V. T IME COMPLEXITY OF DECODER IN[3]

A. Construction

Recall the construction of expander codes presented in [3].Let
G = (V,E) be a bipartite graph withV = V0 ∪ (V1 ∪ V2), such
that each edge has one endpoint inV0 and one endpoint in eitherV1

or V2. Let |Vi| = n for i = 0, 1, 2. Let the degree of each vertex
in V0, V1, andV2 be ∆, ∆1, and∆2 = ∆ − ∆1, respectively. In
addition, let the subgraphG1 induced byV0∪V1 be a regular bipartite
Ramanujan graph and denote byE1 its edge set. Letλ1 be a second
largest eigenvalue of the adjacency matrix ofG1.

Let CA be a [l∆, R0l∆, d0 = l∆δ0] linear binary code of rate
R0 = ∆1/∆. Let CB be q-ary [∆1, R1∆1, d1 = ∆1δ1] additive
code, and letq = 2l. Let Caux be q-ary code of length∆1. The
codeCBZ3 is defined as the set of vectorsx = {x1, x2, · · · , xN},
indexed by the setE of sizeN = ∆n, such that

1) For every vertexv ∈ V0, the subvector(xj)j∈E(v) is a q-
ary codeword ofCA and the set of coordinatesE1(v) is an
information set for the codeCA.

2) For every vertexv ∈ V1, the subvector(xj)j∈E(v) is a q-ary
codeword ofCB.

3) For every vertexv ∈ V0, the subvector(xj)j∈E1(v) is a
codeword ofCaux.

B. Decoding

The authors of [3] proposed decoding algorithm for the codeCBZ3.
In the first iteration, each subvectorz(v), v ∈ V0, is treated as
following: the decoder computes, for every symbolb of the q-ary
alphabet, and for every edgee ∈ E1 incident tov, the weight of the
edge as follows:

de,b(z) = min
a∈CA:ae=b

d(a, z(v)),

where ae denotes theq-ary coordinate of the codeworda that
corresponds to the edgee, andd(·, ·) is the binary Hamming distance.
This information is passed along the edgee to the corresponding
decoder on the right-hand side of the bipartite graph. In thesecond
iteration, for every vertexw ∈ V1 the right decoder associated to it
finds aq-ary codewordb = (b1, . . . , b∆1) ∈ CB that satisfies

b = arg min
x=(x1,...,x∆1

)∈CB

∆1
X

i=1

dw(i),xi
(z) ,

and writesbi on the edgew(i), i = 1, . . . ,∆1.
Then, the decoder continues similarly to the decoder in [1].

C. Analysis

Lemma 7:Let p satisfy0 < p < 1
2
, and let0 < ε≪ p. Then,

H
−1
2 (H2(p) + ε(1− H2(p))) = p+

ε(1− H2(p))

log2 ((1− p)/p)

− ε2(1− H2(p))
2 log2 e

2p(p− 1) (log2 ((1− p)/p))3
+O(ε3).

The proof of this lemma appears in the Appendix B.
Proposition 8: Let C be the capacity of the BSC. The decoding

error probability of a random code of rateR = (1 − ε)C, under
the maximum-likelihood decoding, behaves asexp{−Θ(ε2)} when
ε→ 0.
Proof. We start with the well-known expression for the probability
exponent of the decoding error of a random code under the maximum-
likelihood decoding [6], [7].

E0(R, p) =
8

>

<

>

:

T (δ, p) +R − 1 if Rcrit ≤ R < C

1− log2

“

1 +
p

4p(1− p)
”

−R if Rmin ≤ R < Rcrit

−δ log2
p

4p(1− p) if 0 ≤ R < Rmin ,

whereRmin andRcrit are some threshold rates,

δ = δGV (R) = H
−1
2 (1−R) ,

and
T (x, y) = −x log2 y − (1− x) log2(1− y) .

At the code ratesR which are close toC, the relevant expression for
random coding exponent becomes

E0(R,p) = T (δ, p) +R− 1 . (21)

Next, we express all terms of the relevant part of (21) in terms of
ε. We recall, thatR = (1− ε)(1− H2(p)) and, thus,

H
−1
2 (1−R) = H

−1
2 (ε+ H2(p)− εH2(p)) .

Thus, when disregardingO(ε3) term, the equation (21) becomes
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E0(R,p) =

(1− ε)(1− H2(p))− 1

+T
`

H
−1
2 (ε+ H2(p)− εH2(p)), p

´

(∗)
= −ε− (1− ε)H2(p) + T

 

p+
ε(1− H2(p))

log2((1− p)/p)

− ε2(1− H2(p))
2 log2 e

2p(p− 1) (log2((1− p)/p))3
, p

!

= −ε− (1− ε)H2(p)−
 

p+
ε(1− H2(p))

log2((1− p)/p)

− ε2(1− H2(p))
2 log2 e

2p(p− 1) (log2((1− p)/p))3

!

log2 p

−
 

1− p− ε(1− H2(p))

log2((1− p)/p)

+
ε2(1− H2(p))

2 log2 e

2p(p− 1) (log2((1− p)/p))3

!

log2(1− p)

= −ε(1− H2(p))

+
ε(1− H2(p))(− log2 p+ log2(1− p))

log2((1− p)/p)

+
ε2(1− H2(p))

2 log2 e(log2 p− log2(1− p))
2p(p− 1) (log2((1− p)/p))3

=
ε2(1− H2(p))

2 log2 e

2p(1− p) (log2((1− p)/p))2
= ε2 · cp ,

where cp > 0 is a constant that depends only on the crossover
probability p of the channel. Note that the transition(∗) follows
from Lemma 7.

Proposition 9: If the codesCBZ3 have a positive error expo-
nent, then∆ = Ω(1/ε2).
Proof. It is shown in [3] that the decoding error probability of the
codeCBZ3, Probe(CBZ3), satisfies

Probe(CBZ3) ≤ exp
˘

−n∆lδ1(1 + α)−1

·(E0(R0, p)−Mα)(1− o(1))} ,

whereα is a constant defined in [3] (in paritcular,1 > α > 2λ1/d1),
and

M = M(R,p) =

(

1
2
log2((1− p)/p) if R ≤ Rcrit

log2

“

δGV (R)(1−p)
(1−δGV (R))p

”

if R ≥ Rcrit
,

δGV (R) = H
−1
2 (1 − R) is the Gilbert-Varshamov relative distance

for the rate R, andRcrit = 1 − H2(ρ0) is a so-calledcritical rate,
whereρ0 =

√
p/(
√
p+
√
1− p) (see [3] for details).

We are interested in small values ofε, i.e.R ≥ Rcrit. In this case,
the value ofM(R, p) can be rewritten as

M(R, p) = log2

„

δGV (R)(1− p)
(1− δGV (R))p

«

= log2

„

H
−1
2 (1−R)(1− p)

(1− H
−1
2 (1−R))p

«

= log2

„

H
−1
2 (H2(p) + ε− εH2(p))(1− p)

(1− H
−1
2 (H2(p) + ε− εH2(p)))p

«

, (22)

where the last transition is due toR = (1 − H2(p))(1 − ε). Using

Lemma 7, the equality (22) becomes

M(R, p) =

log2

“

p+ ε(1−H2(p))
log2((1−p)/p)

− 1
2
· ε2(1−H2(p))

2 log2 e

p(p−1)(log2((1−p)/p))3

”

(1− p)
“

1− p− ε(1−H2(p))
log2((1−p)/p)

+ 1
2
· ε2(1−H2(p))2 log2 e

p(p−1)(log2((1−p)/p)))3

”

p

+O(ε3) .

When ignoring the terms ofε2 and highest powers ofε, and denoting
θ = ε(1−H2(p))

log2((1−p)/p)
, this equation becomes

M(R, p) = log2

„

p+ θ

1− p− θ ·
1− p
p

«

+O(θ2)

= log2

„

1 + θ/p

1− θ/(1− p)

«

+O(θ2)

= log2 ((1 + θ/p)(1 + θ/(1− p))) +O(θ2)

= log2 (1 + θ/p+ θ/(1− p)) +O(θ2) .

Using Taylor’s series forln(·) around1 we obtain

M(R, p) = log2 e ·
„

θ

p
+

θ

(1− p)

«

+O(θ2)

=
log2 e

p(1− p) · θ +O(θ2) ,

and switching back toε notation this becomes

M(R, p) =
log2 e

p(1− p) ·
ε(1− H2(p))

log2 ((1− p)/p)
+O(ε2) = Θ(ε) . (23)

Next, we evaluate the value ofα. Recall thatα > 2λ1/d1, and
d1 ≤ ∆1 ≤ ∆. We have

α >
2λ1

d1
≥ 4
√
∆1 − 1

∆1
≥ 4
√
∆− 1

∆
= Θ

„

1√
∆

«

.

In order to have a positive error exponent it is necessary that

E0(R0, p)−Mα > 0 ⇒ E0(R0, p)

M
> α

⇒ E0(R0, p)

M
> Θ

„

1√
∆

«

.

Using Proposition 8,E0(R0, p) = Θ(ε2), and thus from (23)

ε = Ω(1/
√
∆) ⇒ ∆ = Ω(1/ε2) .

Assuming that the first two decoding iterations are as suggested
in [3], we conclude that the time complexity of the decoding is
exp{Ω(∆)} = exp{Ω(1/ε2)}.

APPENDIX A

Proof of Lemma 2.
We analyze the error exponent, following the guidelines of the

analysis of Forney [5, Chapter 4.2]. Letςi, i = 1, · · · , n, be a random
variable which equals1 if no inner decoding error is made while
decodingi-th inner codeword, and−1 otherwise. The outer code
will fail to decode correctly if and only if

ς
△
=

1

n

n
X

i=1

ςi < (1− 2β) .

Denote

µ(−s) △
= ln

`

Probe(Cin) · es + (1− Probe(Cin)) · e−s´ .
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Using the Chernoff bound, we obtain

Probe(CΦ) = Prob

 

1

n

n
X

i=1

ςi < (1− 2β)

!

< e
−n(s(2β−1)−µ(−s)) .

Optimization of the exponent over values ofs yields that the
maximum of the expression

s(2β − 1)− µ(−s)

is achieved when

s = 1
2
ln

(1− Probe(Cin)) · 2β
Probe(Cin) · (2− 2β)

,

and the maximum is

s(2β − 1) − µ(−s) = − β ln (Probe(Cin))
− (1− β) ln (1− Probe(Cin))
+ β ln (β) + (1− β) ln (1− β) ,

thus completing the proof.

APPENDIX B

Proof of Lemma 7.
Consider the value of the binary entropy function at the point p+x

for small x > 0. Using Taylor series around pointp,

H2(p+ x) = H2(p) + H
′
2(p) · x+

1

2
H

′′
2 (p) · x2 +O(x3) .

By calculation of the derivatives of the entropy function, one obtains

H
′
2(χ) = − log2 χ− χ ·

1

χ
· log2 e+ log2(1− χ)

+ (1− χ) · 1

1− χ · log2 e = log2

„

1− χ
χ

«

;

and

H
′′
2 (χ) = log2 e ·

„

− 1

1− χ −
1

χ

«

=
log2 e

χ(χ− 1)
.

Therefore,

H2(p+ x) =

H2(p) + log2

„

1− p
p

«

· x+
log2 e

p(p− 1)

x2

2
+O(x3) .

By applying the inverse of the binary entropy function on both sides
of the equation,

p+ x = H
−1
2 (H2(p+ x))

= H
−1
2

„

H2(p) + log2

„

1− p
p

«

· x

+
log2 e

p(p− 1)
· x

2

2
+O(x3)

«

.

Denote byθ the value oflog2

“

1−p
p

”

·x+ log2 e

p(p−1)
· x2

2
, thus obtaining

p+ x = H
−1
2

`

H2(p) + θ +O(x3)
´

. (24)

By solving the quadratic equation

θ =

„

ln

„

1− p
p

«

· x+
1

p(p− 1)
· x

2

2

«

· log2 e ,

or equivalently

x2 + 2p(p− 1) ln

„

1− p
p

«

x− 2θp(p− 1)

log2 e
= 0 ,

we obtain two solutions for the intermediatex, namely

x =
1

2

 

− 2p(p− 1) ln

„

1− p
p

«

±
s

4p2(p− 1)2 ln2

„

1− p
p

«

+
8θp(p− 1)

log2 e

!

= −p(p− 1) ln

„

1− p
p

«

±
s

„

p(p− 1) ln

„

1− p
p

««2

+
2θp(p− 1)

log2 e
;

however, only one of these solutions is positive:

x = −p(p− 1) ln

„

1− p
p

«

+

s

„

p(p− 1) ln

„

1− p
p

««2

+
2θp(p− 1)

log2 e
.

The later equality can be rewritten as

x = p(p− 1) ln

„

1− p
p

«

·
 

− 1 +

s

1 +
2θ

p(p− 1) (ln ((1− p)/p))2 log2 e

!

.

Using Taylor series approximation

p

1 + χ = 1 +
1

2
χ− 1

8
χ2 +O(χ3) ,

for small values ofχ, this becomes

x = p(p− 1) ln

„

1− p
p

«

·
„

−1 + 1 +
θ

p(p− 1) (ln ((1− p)/p))2 log2 e

−1

2
· θ2

p2(p− 1)2 (ln ((1− p)/p))4 (log2 e)2
+O(θ3)

«

=
θ

log2 ((1− p)/p)

−1

2
· θ2 log2 e

p(p− 1) (log2 ((1− p)/p))3
+O(θ3) . (25)

We substitute the evaluation of value ofx in (25) into the equa-
tion (24). Thus, we obtain

H
−1
2

`

H2(p) + θ +O(θ3)
´

= p+
θ

log2 ((1− p)/p)

−1

2
· θ2 log2 e

p(p− 1) (log2 ((1− p)/p))3
+O(θ3) . (26)

If p < 1
2

is fixed andθ is small, then the value ofH2(p) + θ is
bounded away from1. In this case, the derivative ofH−1

2 (χ) at point
χ = H2(p) + θ is bounded, and, therefore

H
−1
2

`

H2(p) + θ +O(θ3)
´

= H
−1
2 (H2(p) + θ) +O(θ3) .

Then, the equality (26) becomes

H
−1
2 (H2(p) + θ) = p+

θ

log2 ((1− p)/p)

−1

2
· θ2 log2 e

p(p− 1) (log2 ((1− p)/p))3
+O(θ3) .

9



Finally, we substituteθ = ε(1− H2(p)) and receive that

H
−1
2 (H2(p) + ε(1− H2(p))) = p+

ε(1− H2(p))

log2 ((1− p)/p)

−1

2
· ε2(1− H2(p))

2 log2 e

p(p− 1) (log2 ((1− p)/p))3
+O(ε3) ,

thus completing the proof of the lemma.
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