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Abstract

For integers n, r ≥ 2 and 1 ≤ k ≤ r, a family F of subsets of [n] = {1, . . . , n} is called k-out-
of-r multiple user tracing if, given the union of any ` ≤ r sets from the family, one can identify at
least min(k, `) of them. This is a generalization of superimposed families (k = r) and of single user
tracing families (k = 1). The study of such families is motivated by problems in molecular biology
and communication. In this paper we study the maximum possible cardinality of such families,
denoted by h(n, r, k), and show that there exist absolute constants c1, c2, c3, c4 > 0 such that
min( c1

r , c2
k2 ) ≤ log h(n,r,k)

n ≤ min( c3
r , c4 log k

k2 ). In particular, for all k ≤
√

r, log h(n,r,k)
n = Θ(1/r).

This improves an estimate of Laczay and Ruszinkó.

1 Introduction

Let [n] = {1, 2, . . . , n}, and let F ⊆ 2[n] be a family of subsets of [n]. F is called r-superimposed if
given the union of up to r sets from F , one can identify all those sets. The problem of determining
or estimating f(n, r) - the maximum possible cardinality of an r-superimposed family of subsets of
[n] has been considered in various papers [3, 4, 5, 6, 7, 9]. This problem can be posed as a group
testing problem, which is motivated by practical problems in molecular biology. Examples include
the quality control of DNA chips, closing the remaining gaps in the genome at the end of a sequencing
project and clone library screening. For more details see [2] and its references. As shown in [3, 9, 5],

c1

r2
≤ log f(n, r)

n
≤ c2 log r

r2
,

where c1, c2 > 0 are absolute constants.
A weaker requirement is that, given the union of up to r sets, one will be able to identify at least

one of those sets. Such families are called r-single-user tracing superimposed (r-SUT), and were
introduced by Csűrös and Ruszinkó [2]. This problem is also motivated by applications in molecular
biology, where, for example, a group of DNA sequences that carry relevant genomic information is
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under study, and the objective is to find at least one sequence with this information. Let g(n, r)
denote the maximum possible cardinality of an r-SUT family of subsets of [n]. The rate of such
families is

log g(n, r)
n

= Θ
(

1
r

)
.

The upper bound was proved in [2] and the lower bound in [1].
Laczay and Ruszinkó introduced in [8] the notion of multiple user tracing families. This is

a generalization of both r-superimposed and r-SUT families. For r ≥ 2 and 1 ≤ k ≤ r, a family
F ⊆ 2[n] is called k-out-of-r Multiple User Tracing (MUTk(r)) if given the union of any ` ≤ r sets from
F , one can identify at least min(`, k) of them. This problem also has applications in communication,
search problems and molecular biology. See [8] for further discussion of such applications.

Let h(n, r, k) denote the maximum possible cardinality of a MUTk(r) family of subsets of [n].
Laczay and Ruszinkó [2] have shown that

1
5k(8e)kr

≤ log h(n, r, k)
n

≤ 2
r
.

In this paper we improve their result and show that there exist absolute constants c1, c2, c3, c4 > 0
such that

min
(

c1

r
,
c2

k2

)
≤ log h(n, r, k)

n
≤ min

(
c3

r
,
c4 log k

k2

)
.

Note that this determines the maximum possible rate of MUTk(r) families for all k ≤
√

r up to a
constant factor, and that, somewhat surprisngly, in all this range the rate is Θ(1

r ), independently of
k.

Throughout the paper log stands for the binary logarithm, and we omit all floor and ceiling signs
whenever these are not crucial.

2 The Rate of Multiple User Tracing Families

Definition 1 Let r ≥ 2, 1 ≤ k ≤ r. A family F of subsets of [n] is called k-out-of-r multiple-
user tracing superimposed (MUTk(r)) if given the union of ` ≤ r sets from F one can identify at
least min(k, `) of these sets. That is, for all t ≥ 2 and all choices of distinct F1, . . . ,Ft ⊆ F with
1 ≤ |Fi| ≤ r for all 1 ≤ i ≤ t, the equality⋃

A∈F1

A =
⋃

A∈F2

A = . . . =
⋃

A∈Ft

A

implies ∣∣∣∣∣
t⋂

i=1

Fi

∣∣∣∣∣ ≥ k

Let h(n, r, k) denote the maximum possible cardinality of a MUTk(r) family of subsets of [n].
We prove the following bounds on h(n, r, k).
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Theorem 1 There exist absolute constants c1, c2, c3, c4 > 0 such that for any r ≥ 2, 1 ≤ k ≤ r and
n ≥ max(100r, 8k2),

min
(

c1

r
,
c2

k2

)
≤ log h(n, r, k)

n
≤ min

(
c3

r
,
c4 log k

k2

)
.

The upper bound simply follows from the known bounds on the maximum possible cardinalities
of SUT and superimposed families, since every MUTk(r) family is also r-SUT and k-superimposed.
In the rest of this section we prove the lower bound.

Fix r ≥ 2, 1 ≤ k ≤ r and n ≥ max(100r, 8k2). It is known that for every r′ and n′ > r′2, there

exists an r′-superimposed family of subsets of [n′] of size 2c n′
r′2 , where c > 0 is an absolute constant.

Let m = min(2
n

40r , 2
cn
8k2 ), and let X = {1, . . . , bn

2 c} and Y = {bn
2 c+ 1, . . . , n}. Let C = {C1, . . . , Cm}

be a 2k-superimposed family of subsets of X. Now let p = 1
r , and choose a family D = {D1, . . . , Dm}

of subsets of Y at random, where the subsets Di are chosen independently as follows. Every y ∈ Y

is chosen to be in Di independently with probability p.
Define Fi = Ci ∪Di for all 1 ≤ i ≤ m, and F = {F1, . . . , Fm}. We next show that with positive

probability the family F is MUTk(r). Thus, we show that, with positive probability, for all choices
of F1, . . . ,Ft ⊆ F such that 1 ≤ |Fi| ≤ r for all 1 ≤ i ≤ t and | ∩t

i=1 Fi| < k, the unions ∪A∈FiA for
1 ≤ i ≤ t are not all equal. To prove this we need the following Propositions.

Proposition 2 The following holds with probability greater than 1
2 . For all 2k ≤ s < 2r, and for all

distinct A1, . . . , Ak−1, B1, . . . Bs−k+1 ∈ D, there exists an element y ∈ Y that belongs to none of the
sets Ai, 1 ≤ i ≤ k − 1, and to exactly one of the sets Bi, 1 ≤ i ≤ s− k + 1.

Proof: Fix 2k ≤ s < 2r and distinct A1, . . . , Ak−1, B1, . . . Bs−k+1 ∈ D. The probability that there
is no element y ∈ Y that belongs to none of the sets Ai, 1 ≤ i ≤ k− 1, and to exactly one of the sets
Bi, 1 ≤ i ≤ s− k + 1, is

[
1− (s− k + 1)p(1− p)s−1

]n
2 ≤

[
1− s− k + 1

r

(
1− 1

r

)2r−2
]n

2

≤
(

1− s− k + 1
r

e−2
)n

2

≤ e−e−2 (s−k+1)n
2r

< 2−
3(s−k+1)n

40r .

Thus, the expected number of choices of distinct A1, . . . , Ak−1, B1, . . . Bs−k+1 ∈ D, 2k ≤ s < 2r, for
which there is no element y ∈ Y that belongs to none of the sets Ai, 1 ≤ i ≤ k − 1, and to exactly
one of the sets Bi, 1 ≤ i ≤ s− k + 1, is at most

2r−1∑
s=2k

ms2−
3(s−k+1)n

40r =
2r−2k−1∑

i=0

mi+2k2−
3(i+k+1)n

40r
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= m2k2−
3n(k+1)

40r

2r−2k−1∑
i=0

mi2−
3in
40r

≤ 2
nk
20r · 2−

3nk
40r

2r−2k−1∑
i=0

2
in
40r · 2−

3in
40r

= 2−
nk
40r

2r−2k−1∑
i=0

(
2−

n
20r

)i

< 2−
nk
40r · 1

1− 2−
n

20r

<
1
2
,

where the last inequality holds since n ≥ 100r. Therefore, by Markov’s inequality, the probability
that there is no choice of A1, . . . , Ak−1, B1, . . . Bs−k+1 ∈ D as above is greater than 1

2 . 2

Proposition 3 The following holds with probability greater than 1
2 . For all distinct A1, . . . , Ar,

B1, . . . Br ∈ D,
r⋃

i=1

Ai 6⊆
r⋃

i=1

Bi.

Proof: Fix distinct A1, . . . , Ar, B1, . . . Br ∈ D. For y ∈ Y , the probability that y ∈ ∪r
i=1Ai and

y /∈ ∪r
i=1Bi is [

1−
(

1− 1
r

)r](
1− 1

r

)r

≥ 1
2
e−1(1− e−1) > 0.1

Therefore,

Pr

(
r⋃

i=1

Ai ⊆
r⋃

i=1

Bi

)
< 0.9

n
2 ,

and hence the expected number of choices of distinct A1, . . . , Ar, B1, . . . Br ∈ D, such that

r⋃
i=1

Ai ⊆
r⋃

i=1

Bi.

is at most
m2r0.9

n
2 ≤ 2

n
20 0.9

n
2 <

1
2
,

for n ≥ 100r ≥ 200. Therefore, by Markov’s inequality, the probability that there is no choice of
A1, . . . , Ar, B1, . . . Br ∈ D as above is greater than 1

2 . 2

Proposition 4 If D satisfies the properties in Propositions 2 and 3 then F is MUTk(r). Therefore,
with positive probability, the family F is MUTk(r).
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Proof: Suppose D satisfies the properties in Propositions 2 and 3. We have to show that for all
F1, . . . ,Ft ⊆ F such that 1 ≤ |Fi| ≤ r for all 1 ≤ i ≤ t and | ∩t

i=1 Fi| < k, the unions ∪A∈FiA for
1 ≤ i ≤ t are not all equal. Consider first all such F1, . . . ,Ft for which

|
t⋃

i=1

Fi| < 2k.

For all 1 ≤ i ≤ t, let Ci = {A ∩X | A ∈ Fi}. Since C is 2k-superimposed, and since |Ci| < 2k for all
1 ≤ i ≤ t, all the unions ∪A∈CiA, 1 ≤ i ≤ t, are distinct, and hence all the unions ∪A∈FiA are also
distinct.

Next consider all F1, . . . ,Ft as above for which

2k ≤ |
t⋃

i=1

Fi| = s < 2r.

Let A1, . . . , Ak−1 denote the sets in ∩t
i=1Fi, with addition of arbitrary sets from ∪t

i=1Fi, if there
are less than k − 1 sets in ∩t

i=1Fi. Let B1, . . . , Bs−k+1 be all other sets in ∪t
i=1Fi \ {A1, . . . Ak−1}.

For all 1 ≤ i ≤ k − 1, let A′
i = Ai ∩ Y , and for all 1 ≤ i ≤ s − k + 1, let B′

i = Bi ∩ Y . Since
A′

1, . . . , A
′
k−1, B

′
1, . . . B

′
s−k+1 are sets in D, and since D satisfies the property in Proposition 2, there

is an element y ∈ Y that belongs to none of the A′
i’s, and to exactly one of the B′

i’s, and thus to none
of the Ai’s and to exactly one of the Bi’s. Since the Bi’s are not in ∩t

j=1Fj , there exists 1 ≤ ` ≤ t

such that F` does not contain this set, and hence y /∈ ∪A∈F`
A. On the other hand, there is some

1 ≤ `′ ≤ t for which F`′ contains this set. Therefore, y ∈ ∪A∈F`′A, and hence ∪A∈F`
A 6= ∪A∈F`′A,

as needed.
Now consider the choices of F1, . . . ,Ft for which

|
t⋃

i=1

Fi| ≥ 2r.

Let B1, . . . , Br denote the sets in F1, with addition of arbitrary sets from ∪t
i=1Fi if |F1| < r. Let

A1, . . . , Ar be distinct sets in (∪t
i=1Fi) \ {B1, . . . , Br}. For all 1 ≤ i ≤ r, let A′

i = Ai ∩ Y and let
B′

i = Bi ∩ Y . If all the unions ∪A∈FiA for 1 ≤ i ≤ t were equal, then we would have
r⋃

i=1

A′
i ⊆

r⋃
i=1

B′
i.

But as A′
1, . . . , A

′
r, B

′
1, . . . , B

′
r are distinct sets in D, and D satisfies the property in Proposition 3, the

above cannot hold. Thus, no choice of F1, . . . ,Ft with | ∪t
i=1 Fi| ≥ 2r violates the desired property.

The assertion in each of the two propositions holds with probability exceeding 1/2, hence they
hold simultaneously with positive probability. This completes the proof of Theorem 1. 2

Note that by Theorem 1, the rate of MUTk(r) families for k ≤
√

r is determined up to a constant
factor, and is independent of k.

Corollary 5 There are absolute positive constants c1, c2 such that for any r ≤ 2, 1 ≤ k ≤
√

r and
n ≥ 100r,

c1

r
≤ log h(n, r, k)

n
≤ c2

r
.
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