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Asymptotically Optimal Multiple-access
Communication via Distributed Rate Splitting
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Abstract—We consider the multiple-access communication these improved schemes, however, are not optimal from the
problem in a distributed setting for both the additive white viewpoint of information theory. In the information theory
Gaussian noise channel and the discrete memoryless Cha“”EIIiterature the capacity regions of various multiple-asce

We propose a scheme called Distributed Rate Splitting to acave .
the optimal rates allowed by information theory in a distributed ch@nnel (MAC) models have been characterized (see [10],

manner. In this scheme, each real user creates a number of [11], [12], [13], [14], [15]). Rate splitting multiple-aess
virtual users via a power/rate splitting mechanism in theM-user techniques (or generalized time-sharing) are presentgdbin
Gaussian channel or via a random switching mechanism in the [17], [18], [19] to achieve every point in the Gaussian or the
M-user discrete memoryless channel. At the receiver, all viual discrete memoryless MAC capacity region using only single-
users are successively decoded. Compared with other multg . .
access techniques, Distributed Rate Splitting can be impheented user C_odes. These_ schemes, hovyever, r_equwe a pr_e-def_lned
with lower complexity and less coordination. Furthermore,in a  decoding order, which makes distributed implementatidn di
symmetric setting, we show that the rate tuple achieved by s ficult. Finally, in the spread spectrum community, CDMA
scheme converges to the maximum equal rate point allowed by techniques are adopted. Here, users are decoded regarding

the information-theoretic bound as the number of virtual users | gther users’ signals as interference. This, howevenois
per real user tends to infinity. When the capacity regions are timal f the inf tion th tic vi int
asymmetric, we show that a point on the dominant face can optmal from the information theoretic viewpoint.

be achieved asymptotically. Finally, when there is an unecl To address some of the shortcomings mentioned above
number of virtual users per real user, we show that differental ’

user rate requirements can be accommodated in a distributed Medard et_ al. [20] u;e |nf0rmat|<)_n—theoret|c techniques to
fashion. analyze different notions of capacity for time-slotted AH®
. - . systems. A coding/decoding scheme which combines rate

Index Terms— Multiple access, rate splitting, successive decod- "~ 7. "~ o o
ing, stripping, interference cancellation, ALOHA. splitting and su_perp05|t|0n_cod|ng is ponstructed. Thhesn:_e _
allows some bits to be reliably received even when collision
occurs, and more bits to be reliably received in the absence
of collisions. Shamai [21] proposes a similar scheme toyappl

We consider the basic multiple-access communication prab-broadcast strategy to multiple-access channel undéc stat
lem in a distributed setting. In Gallager's survey paper, [{ading where the fading coefficients are not available to
it is pointed out that the multiple-access problem has begie transmitters or the receiver. To implement the scheme
studied from a number of different perspectives, each lgavifh [20], however, a pre-defined decoding order is required, a
its own advantages and shortcomings. In the data networkiaq16], [17], [18], [19]. In [22], Cheng proposes a distrtked
community, a well-known distributed multiple access schengcheme called “stripping CDMA’ for thé out of K Gaussian
is ALOHA [2], [3]. In ALOHA, itis assumed that a “collision” MAC. Here, no pre-defined decoding order is required. It is
happens whenever more than one user transmit simultayeousthown in [22] that stripping CDMA is asymptotically optimal
Those packets involved in a collision are discarded and rgithough the optimal operating parameters are not specified
transmitted according to some retransmission probabilitg . . . o .
collision channel model, however, does not accuratelyritgsc N this paper, we investigate distributed multiple-access
the underlying physical multiple-access channel. It islwetcheémes based on the idea of rate splitting for both the
known that there exist coding techniques which can decodéuser additive white Gaussian noise MAC and the-
multiple users’ messages when simultaneous transmissidiF€" discrete memoryless MAC. We characterize the optimal
occur. Indeed, more sophisticated models such as signal c3perating parameters as well as the asymptotic optimality
ture [4], [5], spread ALOHA [6], and multi-packet receptior? these schemes from the viewpoint of information theory.

[7], [8], [9] have been developed to enhance ALOHA. Evefssume that every user has an infinite backlog of bits to send,
T and that every user knows the total number of usersWe
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schemes such as joint codingnd less coordination when R,
compared with time-sharing and rate splitting.

In Sectiongdl an@Tll, we focus first on symmetric situations
where the channel capacity regions are symmetric and every R A

max

Maximum Equal

real user creates the same number of virtual users. In this Rate Point
case, the DRS scheme entails the following. Each user
creates virtual users indexed byy, £k = 1,2,..., L. The
virtual user clasg/; consists of userg§1,..., My} (i.e. we
have altogethef. virtual user classes and there dvevirtual
users in each class). In th&-user Gaussian MAC, virtual
users are created via a power/rate splitting mechanism. The
signal transmitted by a real user is the superposition of all Roin Rinae
its virtual users’ signals. The receiver receives the sum of
the virtual users’ signals plus noise. All virtual users #ren Fig. 1.  Two-user Gaussian multiple-access capacity regidnmere the
successively decoded in increasing order of their clasat THominant face has been highlighted.
is, all virtual users in clas¥%, k¥ = 1,...,L, are decoded
before any virtual user iV;, wherej > k, is decoded. In
contrast to [22], the optimal operating parameters, such @gise varianceV. The capacity regiot€ is the set ofR =
power and rate, are explicitly specified for any finite In (Ry,...,Ry) € Rf satisfying
the M-user discrete memoryless MAC, virtual users with the
same i_nput d_istribution as the rea_l users are created, and th ZRi < llog <1 T w> VS C{1,..,M}, (1)
transmitted signal of a real user is determined by a random v 2 N
switch. The receiver successively decodes all virtualuger
increasing order of their class given the side information §/here|S| is the cardinality of the se. The dominant face
already decoded virtual users. The optimal switch is fourfd is the subset of rate tuples which gives equalitylih (1) for
for any finite L for the 2-user case. Finally, it is shown thatS = {1, ..., M}. For this symmetric setting, it is easy to see
for both channel models, the rate tuple achieved by the DRt the maximum common rate that every user can achieve
scheme converges to the maximum equal rate point allowdd?* = 537 log(1 + 45F).
by the information-theoretic bound as the number of virtual It is well-known that rate tuples on the dominant face
users per real user tends to infinity. other than the vertices cannot be achieved via standard
Next, in Sectior[ IV, we consider more general situatioriiccessive decoding [11]. Note that the optimal rate tuple
where the capacity regions can be asymmetric and real usBis= (", ..., "), called themaximum equal rate point, is
may generate different numbers of virtual users. For the ca#ich a point. For the two-user Gaussian MAC, the maximum
of asymmetric capacity regions, new operating parameters g§qual rate point is shown in Figl 1. Currently, three methods
specified for any finite number of virtual users per real uséi€ known to achieve general points on the dominant face:
We show that the DRS scheme still can achieve a point #int encoding/decoding, time-sharing, and rate-splittiJoint
the dominant face as the number of virtual users per real u§gcoding/decoding is not practical because of its high com-
tends to infinity. For the case of unequal number of virtud@lexity [1]. In time-sharing, allM users need to coordinate
users per real user, we present a variation of DRS Wh|HPﬁ|r transmissions. Therefore, some communication @asth
supports differential user rate requirements in a disteibu IS required. The rate-splitting method in [16] achievesrgve
manner. In this new scheme, each usdndependently from point in C via a generalized successive decoding scheme. For
other users, generatds virtual users according to its ownthe two-user case, user creates two virtual users, saly
rate requirement. All virtual users are then decoded riliakgnd 1b, by splitting its powerF into 6 and P — ¢ and setting
at the receiver. Furthermore, as each real user generates rfio: = 3 108(1+ 55575 ), 716 = 3 log(1+£52). User2 does
virtual users, the rate tuple achieved under this variatibn not split its power and sets its rate & = 3 log(1+ =5 )-
DRS converges the maximum equal rate point on the domindrte decoding order igla,2,1b). In order to achieve the
face. maximum equal rate point, we sol& = ry, + 713, Yielding
§ = 3(N + 2P — /N(N +2P)). Thus, both time-sharing
and rate splitting require some coordination among users.
In this paper, we focus ordistributed multiple-access
We first examine a Gaussian MAC with a symmetric ca&sommunication schemes. In particular, we introduce Dine
pacity region. Later in Sectioi ]V, we consider the asyniributed Rate Splitting (DRS) scheme. The DRS scheme offers
metric case. Consider al-user Gaussian MAC where eachthe possibility of multiple-access communication with &w
transmitter has transmission powé&r and the receiver has complexity when compared with joint coding, and communi-

Rin B

Ry

II. M-USERGAUSSIAN MULTIPLE-ACCESSCHANNEL

1The lower complexity comes from the fact that the DRS schesesu 2We useR to denote(Ry, ..., Rys) throughout.
single-user codes instead of multi-user codes. As we shtev, lthe DRS 3R is achievable if for anyg > 0, there exists an, Ry — ¢, ..., Ry — €)
scheme with a reasonable number of virtual users per realalisas us to multiple-access code with overall error probabili: < e, wheren is the
get close to the optimal operating rates. block length.



Proof: The ¢ virtual user who is decoded first must have

Rate Splitti Distributed Rate Splitti . .
ate Splitting istributed Rate Spiitting r = 3log(1 + g52%57) (i.e. the virtual user regards all
la_y 5114 1, 5 other virtual users as interference) in order to be decoded
successfully. Due to symmetry, all othér\nrtualius.elrs must
B P-Sr e P-S have the same;. Then the problem of maximizing each
real user’s throughput reduces titax ro, subject to (i)r; =
1 5 o ; ;
. 3 log(1+ m), (i) one of thed virtual users is decoded
d:r first and (iii) (r1,r2, 71,72, ...,71,72) Must be decodable.
2 L pks Note thatrs is maximized when the interference plus noise
22 P-om faced by all the(P — §) virtual users is minimized, and the
Decoding order: (12.2.1b) Decoding order: ({1121).(12.22]) only way to minimize the interference plus noise faced by all

the (P — 0) virtual users is to decode all thevirtual users
before decoding anyP — §) virtual usef Therefore, the

Fig. 2.  Comparison of rate splitting with distributed ragiting. In the . . . .
g P P feiting minimum interference plus noise faced by d#y— 4) virtual

right-hand figure, the virtual user clad§ = {11,21} is decoded before

virtual user class’ = {12, 22}. user isMP—-M§—(P—-6)+ N=(M—-1)(P—-46)+ N.
Hence, the maximum rate associated witlifa— §) virtual

o P—6
user ISry = %10g(1 + m) O

cathn with less coo_eraﬂon when compared with the time- Using the DRS scheme with — 2, each user can strictly
sharing or rate spliting method. Moreover, we show th?p

DRS hi th : | rat int of the MA crease its throughput relative to the case where user®do n
can achieve the maximum equal rate point ot the lit their powers and decode against each other as noige. Th

capacity region asymptotically. _ is easily verified by observing that for ady< P,
We now formally present the DRS scheme. In this scheme,

each user create§ virtual users by splitting its poweP | 1 ) 1 P-4
into (p1, pe, -..,pr), Wherepy is the power allocated to the og |1+ MP—-0+N Hog |1+ (M-1)(P-96)+N
kth virtual user and)",_, pr = P. Each user then assigns P
transmission rate;, to virtual userk. Note that the proposed > log (1 + m) - (2
DRS scheme is symmetric, i.e. dlf users split their powers )
and set their rates in the same way. The signal transmitted\OW consider the case where each user creates more than
by a user is the superposition of its virtual users’ signas. WO virtual users(L > 2). Here, we show that each user's
defined in Sectiofl I, virtual user cla¥s consists of all virtual throughput increases further.
users indexed by. The receiver receives the sum of all virtual | emma 2: Given a DRS scheme with virtual users per
users’ signals plus noise. All virtual users are then sigieely real user, wherép, ..., p;,) are the virtual users’ powers, it
decoded in increasing order of their class. is possible to strictly increase the throughput via(@n- 1)

To illustrate the DRS scheme, consider the cése- 2. virtual user system with power®;, ...,pL_l,p'L,p',:), where
Each real user splits its powd? into 6 and P — §. Notice p, +p, = py.
there are two major differences between our scheme and th
traditional rate splitting scheme in [16]. First, in our sahe,

all real users split in the same way, whereas there is atdeast . ! . . _
is an arbitrary integer ang is the power ofkth virtual user.

user who does not split in the traditional rate splittingesole. . irtual i is decoded last. following th L
Second, virtual users in the same class, (i.e. with the szf%'gce virtual usetr. 1s decoded 1ast, fotlowing the reasoning in

?’roof: Suppose that every user splits its power intairtual
usersi(pi1,p2, ..., Pr—1, L) Subject t02£:1pk = P, whereL

_ 1 PL
indexk), are allocated the same rate in our scheme, wherea ¢ fi proof of Lemmal, we haver,, = 3 log(1 + (A'{*l)PL‘i’N).
virtual users have different rates according to the preaddfi

e now split the virtual user with powes;, into two new
decoding order in the traditional rate splitting schehichese V/tual users with powers, andp,, wherep, +p;, = pr.

differences are illustrated in Fifl 2. We set

Since we assume the receiver uses successive decoding N 110 14 Pr
method, some virtual user must be decoded first. Without loss LT 908 Mpr, —p; + N
of generality we assume one of thevirtual users is decoded .
first. For the casd. = 2, we show that there is a unique way oy = 110 1+ Pr

.. . .. . L g 1" .

for a real user to split its power in order to maximize its tota 2 (M —-1)pp +N
throughput.

Now each real user hak+ 1 virtual users. Notice that we
Lemma 1: For L = 2 and for a fixedd, each real user's do not change the power and decoding order of any of the

throughput is maximized by setting = %IOg(ler) other vir_tual users (i.e. yirtual usets..., L — 1). From a real
andr, = Llog(1 + (M—l)lzlgé—é)—ﬁ-N)' user’s view point, the virtual user with,, is decoded second

5We assume a genie-aided [16] decoding scheme where theopshyi

4In terms of achievable rate, the DRS scheme with= 2 is not optimal. decoded messages have been decoded correctly. In prastioes can be

Later in this section, we demonstrate the asymptotic opitynaf DRS by made in previous decodings. However, for purposes of aimgythe overall
taking L to infinity. error probability, the genie-aided model is sufficient.



to last among all virtual users generated by this real user userk andk + 1 are decoded at thith and(k + 1)th places
and the virtual user with; » is decoded last. Thus, all virtualrespectively, andy, (p1,...,pr) # r&+1 (P1, ..., PL)-
users can be decoded and frdih ¢2),+r,~ > rr. Therefore, ~ Without loss of generality, let us consider the case where
every real user withl. virtual users can strictly increase itsry (p1, ..., pr) > Tk+1 (D1, ..., pr.). By the definition ofry, we
throughput by splitting its power amordg+ 1 virtual users.C]  have

Dk
MP—MY, b —pk+ N

Before we examine the asymptotic behavior of DRS, we
solve the problem of how to split a user’'s powastimally _
among a fixed number of virtual users. The main difficulty > Dk+1 ®
here is that the objective function is not concave. In order MP—M3, 1 bj — Mpr — Pry1 + N

to find the optimal splitting method, we prove the following \ye can verify that if we changg, to j — ¢ and 1 to
lemma. Pr+1 + €, wheree is a small positive number, then the first

term of [4) decreases and the second term[bf (4) increases.
Lemma 3: Consider the following optimization problem: Let ¢* be the solution to

Pr—¢€
1 1 ; = .~
max—log(l-i—Apk )+§10g<1+#) MP_MZj<kpj—(pk_6)+N
PkDj — Pk — MPk — Py B Dkt1t €
subject to pi+p; = ¢ and pg,p; > 0, where A, M MP—-M Zg‘<kﬁj — M (pr — ) = (Prt1+¢) + N
and ¢ are positive constants and > Mc. The unique (The existence of ¢* can be demonstrated). Let
solu'uqn to EB).|s also the unique solution tg*t- = 5 _ 5 _ ¢ and pq = prs1 + €*. Notice that
#j,k_pjv subject topx, + p; = c andpy,p; > 0, where 5, + 5,1 = P + pry1. Since the maximization
A> Me. considered in Lemmal[l3 has a unique solution,
Proof: Substitutep; = ¢ — p into the objective function, "* (731’ =+ Pky P15 ""QL) + Thi (p17~---,pk,~pk1u1, ""pLz >
we have Tk (pla voos Ply Pk+1, "'apL) + Tk+1 (pla vors Ply Pk+1, "'apL)-
This contradicts our assumption thak, ..., pr,) maximizes
fpr) = llog 14 Dk Zézl ri. Therefore, the theorem follows. O
2 A= pr
+110g <1+ C— Dk ) By Theorem[lL, if (p3,...,p}) maximizesZi:1 7, and
2 A— Mpy, — (¢ — pr) satisfies>_, pf = P, p; > 0 for k = 1,2..., L, then
dfp) . _ we must haveSIR; (p},...,p;) = ... = SIRL (p},....,0})
Setting =7 = 0 subject 00 < py < ¢, the unique whereSIRy (p1,...,pL) = Therefore,

Pk
: i * * MP—MY . _,.pj—pr+tN"
solution is pj = 37(A — \/A(A —cM)). Thus, pj iS the i¢ \ye show thatSIR, (pr, ... pr) — SIR; (p1,...ps) for
unique stationary point off (p;). We can also verify that ;.. £ j. has a unique solution, then thereas most one

fpp) > f£(0) and f(p;) > f(c). So (p,c—pf) IS faasible solution to the maximization problem.
the unique solution to our maximization problem. We can

H _ bj i —
directly solve A’j’“pk. = A*I\ff;k_fpj .subject top, +p; = c and
Pk, pj > 0. The unique solution is alsty;, ¢ — p}). O

Theorem 2: The set of equationSI R, (p1,...,pL) = ... =
SIRL (p1,-..,pr), subject o> r_, pr = P andp; > 0 V&,

We now present the optimal splitting method. Theoldm Ilas a unique solution.

states a necessary cqndition for the op.timal spl_itting mdgth Proof: See Appendix I.
and Theorenfd2 implies there is a unique optimal splitting o i )
method. In Corollary[1l, we formally present the optimal Corollary 1. If a real user splits its powe into L virtual
splitting method and the required power levels. users, then the unique way to maximize this user’s throughpu
is to setpy, = & (1+242) T [(1+24E)T —1]fork =1,..., L.
Theorem 1. Let each real user split its power infovirtual Proof: Since the constraint regiodp - Zlepk _

users. Letp, be the power allocated to theth virtual user p andp, > Ofork = 1,2,.,L} is a simplex and

1 p * * . . . .
andr, = glog (1 + gp—gry =) I (P1PL) 2L 4 is continuous, there exists at least one solution.
maximizesy +_, r, and satisfie$ ~_, p; = P, p; > 0 for We denote one solution bypi,...,pz). By the necessary

k=1,2..,L, thenry (pi,...p3) = r*, for all k. condition stated in Theorerll 1(p,...,p;) must satisfy
That is, the optimal power split must lead to equal transimiss 71 (P1, - PL) = ... = rL(p1,..,pr). Moreover, Aby the
rates for all virtual users. uniqueness property stated in Theor@in (2;,...,pr) is

_ _ ~ the unique solution tomax,, . ;. Zizl r, Subject to

Prpof: We uLse aperturbat!oq arg%ment. Suppgse..., pr) Ziﬂpk — Pandp, > 0Vk. Next, we plugps into the

maXImIZESZk_:lrk and Sat'Sf_'GSZkzl Pk =P, pr 2 0Vk  exnression ofSIR, (p1,...,pr). Let A = 1+ ME we are
and the resultingy, (p1, ..., o) is not the same for akt. Then

1
. _ AT71 .
we can find a pair of virtual usergt, k + 1), where virtual 2ple to verity thatSIRy (p1,....pr) = MDAt 1’ which



. 2 L

is independent of. Hence, the corollary follows. O < (i) max pr Zpk (12)
We now examine the asymptotic behavior of the DRS 9

scheme. We first demonstrate the interesting fact that tee ra — p (l) max pi (13)

tuple converges to the maximum equal rate point for a general N k

power split as long as all virtual users’ powers goOt@as where inequality in [[To) holds because

L — oo. This implies a convergence result for the optimal kp] —~ < 5§ whenL — oo, and the inequality

power split. We then analyze the rate of convergence uonrm) fo Iows from the fact thag =
“MP—M

< Pk
the optimal power split. J<m —p+N = N°

Sincemaxy px — 0 asL — oo, the error term goes to zero in
the limit. This justifies the equality irl{5). Using the cajtac

Theorem 3. Given any power split(pq, ..., a suffi-
y R P (pl pL), bound, we also havim;,_, . Zle ri < i log(1+ 4B,

cient condition forlimy e S r_, 7 = 5oz log(1 + 4E) s

. L
maxye 1.0y Pk — 0 as L — oo, Therefore limy, o0 Yy 7 = 537 log(1 + 24E). O
Proof: ] . o o
Note that our optimal power split satisfies the sufficient
L condition in Theorer3. Therefore, its convergence is asbkur
lim Zrk
L—oo —
» Corollary 2: If each real user adopts the optimal splitting
= lim log | 1+ method specified in Corollai 1, then
Lﬁwzz g( MP — M27<kpj_pk+N> P ) b
1 MP
L . _ *
1 lim r, = — lo <1+—):R.
= lim S - Pr ) 1500 24" T 9pr 08 N
155 22 \MP - MY, . pj —p + N k=t
L g Dk Next, we examine the rate of convergence to the maximum
= ngr;o Z o\ MP— M e (6) equal rate point under the optimal power split. Define thererr
k=1 J

. terme[l] = R* — Ziﬂ r,, we analyze how fast this error
—  lim 1 ( Br — Br_1 ) @ term tends td) as L — co. We prove the followind

00 MP+N-—-M
= = + B Theorem4: e[L] = © (4).
_ 1 1 MP,
= MP+N—M:z:d$ (8) Proof: Let A = 1+
MP
1 L M
wherefy =0, By = 25:1 Dj- = lim L <—M log (A) — = log <—1>)
The equality in IIB) is justified as follows. Note that, Lo \2 2 M-1+A"1
lim,, o 80— — 1 Hence, for sufficiently small posi- yloald) _ 1iog (ﬁw)
Uw5|ﬂ<5iﬂg¥i&ih<héﬂ%ﬂ+x%ﬂﬂ§x% = lim " (14)
Now, we examine the error term N T
L . y—0 2y ,
log (M —1) (log (4))
kzl ( MP—MZj<kpj—pk+N> = 12 . (16)

Pk
(Mp — MY _.pj— DK+ N) L'Hospital's rule. _ _
Consequently, given any > 0, there exists a pos-
log | 1+ Pk itive integer ng such that for all L > ng, we have
. 2 . 2
MP—-M3 % pj—pe+N ‘Le (L] — W’ < e. This implies Y=1los(A)"

| Note that equalities in[{15) and_{|16) can be verified by

M=

k=1

i e < Le[L] < M=DUoeA)® 4 . Therefore, we can choose
2
MP—M3 % pj—pe+N a small enoughe such that% e > 0. Let
I 2 o = M=DUog(A) _ %&Og(f‘))z £, co = M—1)(log(4) Dios(A)” | ¢, we have
< Z <MP szk — +N> (10) c1 < Le[L] < co. This implies that there exists a positive
k=1 o j<kPi — Pk

6Recall thatf [n] = Q (g [n]) if there exist positive constants and ng

1\2 ) such thatf [n] > ci1g[n] for all n > ng, and f[n] = O(g[n]) if there
Di; (11) are positive constants; and ng, such thatf[n] < cag[n] for all n > ng.

Finally, f[n] = © (g[n]) if f[n] = © (gln]) and J[n] = O (gln]).

M=



100 real users and P/N = 100
T T T

where Xs £ (X;)ies and S¢ = {1,..., M} \ S.
The capacity region of the asynchronous MAC is [14] [15]

o
©

o
®

c= U RW:Px - Px,l. (17)

PxyPx

o
3

=4
>

We fix the input product distribution Py, --- Px,,

and focus on achieving the desired operating point in
R[W; Px, --- Px,,]. In this section, we consider only
discrete  memoryless channels satisfying the following

o
@

Normalized thourghput for a real user
S
~

=
@
T

x - Distributed rate splitting

" No'piting:regard the usrs s nise symmetry condition:
0.2 —©- Centralized scheme -
L I(Xs;Y | Xge) =1 (XY | Xpe), (18)
B e ® vS, T C {1,..., M} such thatS| = |T|. Later, in Sectiol 1V,
DorealvseadPzon we consider the more general asymmetric case. We further

assume that fow'S, T C {1,2,.., M}, if SNT = @, then
e I(Xs;Y) <1(Xs;Y|Xr). Under our symmetric setting, the

oss| o ] maximum common rate that every user can achievB*is=
LI (X1, ., X3 Y).
oo, 1 In the Gaussian MAC, virtual users are created via a

power/rate splitting mechanism. For the discrete memesyle
MAC, we adopt the random switching mechanism of [19]
where virtual users with the same input distribution as e r
users are created and the transmitted signal of a real user is
e sers as nose determined by a random switch. We first consider the two-user
ot E— ] discrete memoryless MACM = 2), and illustrate the random
switching mechanism. The optimal random switches and the
N T T asymptotic behavior of DRS under the optimal switching are
presented. We then examine thd-user case(M > 2),

Fig. 3. Throughput per real user v.s. the number of virtuarsiper real and present a sufficient condition for the random switching
user for both high and low SNR regimes. Note that the scaldbeofrertical nachanism to converge to the information theoretic upper
axes in both figures are different. . . .

bound. Finally, we investigate the rate of convergence for a
simple suboptimal random switch.

=)

@

&
T

Normalized thourghput for a real user

integerny and for allL > ng, we have? <e[L] < %. O
A. Two-user Case (M = 2)

Finally, we note that all virtual users in one virtual user Consider a two-user MACIV : & x X — Y. For a fixed
class can be decodéd parallel. Thus, the decoding delayinPut product distributionPy, Py, , the achievable region is
of DRS is proportional to the number of virtual usdrsand  9iven by:
independent of the number of real users. Sihds controlled

. R < I(X;Y|Xo)=1(X1;Y, X
by the designer, DRS offers a tradeoff between the throughpu 1S X YIXG) (X3 Y, X3)
of a real user and the decoding delay. In Hib. 3, we present Ry < T(Xo;Y[X1) = I(X2;Y, X1)
some numerical simulations illustrating the tradeoff besw Ri+Ry < I(X1,X95Y).

the number of virtual users and the throughput for both the

high and low SNR regimes. A system will)0 real users is Under our symmetry assumption (cf []18)), we have

used in the simulations. I(X1Y) = I(Xy;Y), (XY, Xp) = I(XyY, X)),
I(X1;Y, X2) > I(X1;Y), and the optimal rate tuple is
[1l. M- USERDISCRETEMEMORYLESSMAC w ey [ 1 1
R* R )Y=|(-=-1(X1,X2Y),=-1(X1,X2;Y)]. 19
( 9 ) (2 ( 1,2, )72 ( 1, A2, )) ( )

An M-user discrete memoryless MAC is defined in terms

of M discrete input alphabet’;, i € {1,..., M}, an output ider th d itchi hanism for thi
alphabet) and a stochastic matri&y’ : &) x & x --- x Let us consider the random switching mechanism for this

Xy — Y with entries W (y | 21, ..., zas). For any prod- channel. We first consider the case where each real user
uct input distributionPx., - - - Px,,, let the achievabie region generates two virtual users. Later, we consider the caseewhe

oy the number of virtual users per real user goes to infinity. We
R[W: Px, --- Px,,] be the set oR € RY satisfyin i > P goe y
[ X o) + fying split by means of two switches, as shown in Hi§). 4. Each
E :Ri <I(Xs;Y | Xge),VS C{1,..., M} switch has two inputsX;; € &; and X;» € &; and one

ies output X; € X;. Switch: is controlled by a random variable
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Fig. 4. Switches for two-user discrete memoryless MAC

S; € {1,2} with P(S; =1) = A. The output is given by

The switching random variablesS;, S2} are independent
of the channel inputs. We also assume th&t,S.} are
available at the receiver. In practice, one would generate
S1 and S, at the transmitters and at the receiver, e.g. by
means of a pseudorandom sequence generator. Assign to—
the channel inputsX;;, Xi2, X21 and Xy the proba-
blllty mass fUI’\CtiOI’]PX“7)(12,)(217)(22 ($11,$12,$21,$22) =
PX] (xll)le (wlg)sz (l‘gl)PXz(l'gg). Notice thatXil and
X,o are independent and each has the same probability mass
function as the random variablg; for i = 1, 2.

In successive decoding for the discrete memoryless MAC,
the signals of decoded virtual users are used as side informa
tion to aid the decoding process of subsequent virtual users
The first constituent decoder observes the oufgtS;, S2}
and tries to decodeX;; and X5;. The second constituent
decoder is informed of the decision abdut’;, X5} made
by the previous constituent decoder and tries to decbge
and Xs,. Without loss of generality, let us focus on real user 1.

I(X11;Y, S1,52)
= I(X11;Y,52]51)

M(X11;Y, 85|81 = 1)

F (1= N I(X11;Y, S|S) = 2)
= M(Xy;Y)

X1,

Lemma 4: For M = 2, consider a distributed rate splitting
s, scheme withL virtual users per real user. The random switch
for user: is controlled byS;, whereP(S; = k) = Ay for
k =1,..., L. It is possible to strictly increase the throughput
via an(L + 1) virtual user system by splitting theth virtual
user into two virtual users.

Proof: Without loss of generality, we consider userFor
the kth virtual user, we have

X1k
I (X1k3Y, 51, 52, X11, Xo1, ooy X1 -1y Xok—1))
I (X1k; Y, S2, X1, Xo1, oo,y

Xi(k-1), Xo(k—1) | S1) (20)
Med (Xqk; Y, So, Xq1, Xog, oy

Xi(k-1), Xoge—1) | S1=Fk)
+ (1 =) I (XY, So, X11, Xo1, ..o,

Xi(o—1), Xo(e—1y | S1 # k)
Med (Xqk; Y, S2, X11, Xo, ooy

Xik—1), Xo(e—1y | S1 =k) (21)

M SN T(Xus Y X, Xon, oy
i<k
Xih—1), Xoge1) | S1 =k, S2 < k)

+ 1—2)\J I(Xlk;Y,Xll,Xgl,...,
i<k

Xi(k—1), Xok—1) | S1 =k, S2 > k)}

Ak Z)\j I(X1;Y, X))
i<k

1D N I(xsY) |, (22

j<k

where equality in[[20) is due to the independence between
X1, and Sy, and equality in[[21) follows from the fact that
whensS; # k, Xy; is independent of the outpdt and all the
other random variables. Finally, equality [D122) holdsdese
when Sy < k, one of the random variable¥s;, ..., Xo(x_1)

is the switch output, and whefi, > k, none of them is the

where the second equality follows from the independengwitch output. Therefore,

betweenX;; and S;, and the last equality follows from the
fact that whenS; = 2, X1, is independently of the output
and S,. Similarly, we have

X, = AL [(1 — /\L)I(Xl;Y,XQ) + /\LI(Xl,Y)]

Now let us splitrx,, into rx1, andrxlz by using a switch
controlled by a binary random variabi with P(S"=0)=

rx;, = (X123, 81, 82, X11, Xo1) «. We have
1= M (XY, X 1-MI(X1;Y)].
(= VPG ) (= VYL ads (0= M) T (X0sY Xa) 4 AT (X05Y))
It can be verified that in the two-user discrete memoryless.. = a\p (1 —a@A) (XY, Xo) +ar ] (X;Y)),

MAC, both real users’ throughput can be strictly increasgd b
splitting their inputs via a random switch, relative to trese
where they do not split, (i.erx,, +rx,, > I(X1;Y) for
A € (0,1)). Next, we show that by generating more virtual
users, the throughput of each real user increases further.

wherea = 1 — «. Hence,

TXllL + TX12L X
or (1 =X) I (X1;Y, Xo) 4+ Al (X1;Y))
+adr (1 —ahp) I (XY, Xo) +@A ] (X3Y))



AL [(1=Ap) I (X13Y, Xo) + Apd (X1;Y)]
Q@i [1(X;Y, X)) — I (X1;Y)]
0

>

with strict inequality ifa € (0,1). O

Theorem 6: For M 2, if both real users adopt
P(S; =k) + for k = 1,..,L andi = 1,2, then
Wz oo by 7x = 31 (X1, X2Y) = R* for i = 1,2.
Moreover, if we define the error terafL] = R*—Zle TX 00
thene[L] = ©(1) fori =1,2.

Before we examine the asymptotic behavior of the DRS Proof: Without loss of generality, we consider real uger

scheme forM = 2, we first solve the problem of how to find

the optimal switches for a fixed number of virtual users per

real user.

Theorem 5: For M = 2, if a real user had. virtual users,
then the optimal random variable to control the switch farus
iis S; € {1,...,L} with P(S; = k)= 1 for k=1,...,L and
1=1,2.

Proof: We use a perturbation argument. Suppose the random

variables Sy, 52 € {1,...,L} with P(S; = k) = P(S, =
k) = A\ maximize Rx,, where\; > 0 and 25:1 A = 1.
Moreover, suppose there existg such that\; # % Let \x
be the first element which is not equal %o We consider the
pair (Ag, Ak+1). We have

T1k —/\k<

k-1
TI(Xl;Y,Xz)

+ ( )I(Xl;Y)) ;
T1(k41) = Ak+1 [(% + /\k) I(X1;Y, Xo)
+ (1 - % - /\k> I(Xl;Y)] .

1 k—1
L

Therefore,
Tk + T1(k+1)

{(/\k + Akt 1)

+ /\k)\kJrl] I(X1;Y, X5)

L—-k+1

+ [(/\k + A1) 7

- )\k/\k+1:| I(Xl; Y)
First, we consider the case whexg > \;1. We let\, =
Ae — € and A1 = A1 + e for e < 2222641 We have

Pk + P1(k+1)

k_
= |:(/\k+)\k+l) I

L—-k+1
L

Thus, 1k + 1oty = (Fie + T1er1)) = [(Ae + Aey1) €
2] (I(X1;Y,X2)-I(X1;Y)). Notice that the second term
of the R.H.S. expression is positive and there existuch
that (\r, + A\r+1) e-¢2) > 0. This, however, contradicts our
assumption that the random variabl®s, S. € {1,...,L}
with P(S; = k) = P(S2 = k) = \;, maximize Rx,. We
obtain similar contradictions for the case whage< A\xy;. O

! + (M =€) (N1 + 5)} I(X3;Y, X)

n [(Ak T hern) =) (e e)} (X0,

We now examine the asymptotic behavior of the DRS —

scheme in the two-user discrete memoryless MAC.

Since
1 (k-1 k-1
X1, = Z (TI(XlaYa X2) + (1 - T) I(Xl,Y)) ,
we have
lim Rx,
L—oo
. 1 1 L—-1
= ngrgo _Z (1+Z+...+—L )I(Xl,Y)
1 /L-1 1
. [L+1 L-1
= o _TI(Xl’Y)‘LTI(Xl’YX?)]

1

3 [[(X1;Y) + 1(X1;Y, Xo)]
1

§I(X17X2;Y)7

where the last equality follows from the fact that
I1(X1;Y, Xo) = I[(X9;Y, X1) in the symmetric setting.
Next, we examine the rate of convergence. We have the error

terme[L] = 11(X;Y) + $1(X1;Y, Xo) — (B2 1(X1;Y) +
LoL1I(X1;Y, X2)). Thus,
1
elL] = 57 (I(X1;Y, Xo) = [(X13Y),

which implies

lim LelZ] = & (I(X3; Y, Xa) — T(Xy;¥)) 2 &,
L—oo 2 2

For anye > 0, there exists amg such that for allL > ny,
|Le[L] — §| < e. Hence,§ — e < Le[L] < § +¢. We can
chooses small enough such tha§ — ¢ > 0. This implies
e[L] = O(1). O

L

B. M-user Case (M > 2)

There areM real users and each real user credtesrtual
users. We havél! switches(Sh,...,Sy) to do the splitting
with probabilitiesP(S; = k) = A for ¢ 1,...,M and
k=1,..., L. We assume the receiver also kno#s, ..., Sy ).

This may require common randomness to exist between all
transmitters and the receiver. Due to symmetry, we focus on
one user, say usdr Fork =1,..., L, we set

TXlk
= I(Xy Y, SM XD xR, (23)
= I(Xy Y, SY XD XM= g (24)
M (Xap; Y, S X0 XM= g — gy

(1= M) (X0 Y, SYO XD



ST
= AkI()(lka}/a Séwaxigk_l)a'"axﬁggk_l) | Sl = k) (25)
NI (X3 Y, X0 x Y 181 =k S))

Z P(Sy =s2,....,50m = sn) /\},CI(XI;Y’xﬂkﬂ)7

82,..0y SMm
o XMETD 16— ke Sy = s9, ., Sar = Sur)
M-—1
= X [[1-D0N I(X1;Y)
i<k
M-1 i
M—1
2 () (3
i=1 j<k
M—-1—14
1= I(X1;Y, X, ... Xis1) |, (26)

j<k
whereS/ 2 {S;,...,5;} andX*¥ 2 {X;,, ..., X;;.}. Equality
in @4) is due to the independence betwe&n, and S;.
Equality in [Z5) holds because whefy # k, Xy, is inde-

%

M—1
M-1
(M) [Z
i=1 j<k
M—1—1
1—2)\j I(X1;Y, Xo, ..., Xit1)
i<k
M—1
= lim CiIi,
L—oo P
where
Io I(Xl,Y)
I = I(X1;Y,Xo,..., Xiy1)
M—1
L
S S T Y
k=1 j<k
i M—1—i
L M—1
= Z)\k< . ) PIEYE I D DR :
k=1 i<k i<k
for ¢ > 1.

pendent of the outplt’ and all the other random variables. Itis sufficient to proveim o ¢; = 57 forall . Fori > 1,

The first term in [2B) follows fronP(Sy > k,..., Sy > k)
(1
follows from the fact that the probability éfswitching random
variables amongSs, ..., Sas) having values less thah is

(MDY k M) TA=32, p A)M 1 It can be verified that

real userl with L virtual users can strictly increase its total

throughput via an. + 1 virtual user system.

In order to maximize the total throughput of real user 1 for

fixed L, we need to find the optimah;, ..., A} ) to maximize

Zf:lrxm- This is a non-convex optimization problem and
appears to be difficult. We are able to verify that for the gahe
M-user case (unlike the two-user case), random switches with=

a uniform distribution are in general suboptimal. Nevelghbs,
it is possible to generalize the asymptotic result of Thed@e

We first demonstrate the fact that the convergence resudshol

for a general switch controlled hy;, whereP (S; = k) = A\
fork =1,..,L, as long asmaxcf1,.. 1y A — 0 asL —

oo. We then analyze the rate of convergence for a particulghere 5y = 0, 8, = Z;?:l Ar. and B(m,n)

suboptimal switch, the uniform switch.

t
Theorem 7: For a general random switch controlled by

Si, whereP(S; = k) = M\, for kK = 1,..., L, a sufficient
condition forlimz, o0 S5, mx0 = 2 (X1, oo, Xars Y) i
maxpeq1,... .y} M —~ 0asL —oofori=1,. M.

Proof: Without loss of generality, let us examine real user

lim Ry,

L—oo
L
lim E TX 1k
k=1

L—oo
M-1

TPy

i<k

lim I(X1;Y)
L—oo

L
>
k=1

— > ., A)M~L. The second summation term in126)

lim ¢;
L—oo
. i M—1—i
. M—-1
i Sou (M) (S ) (-2
k=1 i<k i<k

L

dm 3 (5= i) (M7 ) -

(Mz_1> /01 zt (l—x)M_l_id:c
(MZ__1>B(2'+1,M—2')

(M —=1)! (M —i—1)!
i(M—i—1)! M!
-

(m—1)!(n—1)!
m+n—1)!

is the beta function. The termy can be shown to converge
0 % as L — oo by a similar argument. O

Next, we analyze a particular suboptimal switch, the uni-
form switch. Since the uniform switch satisfies the suffitien
condition in Theorerfll7, the convergence result holds. The ne
lemma presents its rate of convergence.

Lemma 5: Consider anV/-user discrete memoryless MAC.
Let each real user have virtual users and each switch be
controlled by an i.i.d. random variablg € {1,2,..., L} with
P(S; = k) = 1+, k = 1,..., L. Define the error terng[L] =
LI(X1, Xo, oo, Xars Y) = Y4, 7,y - Thene[L] = O(2) for
all 1.

Proof: In the uniform switch settingP(S; = k) = £ for
i1=1,..,.M andk = 1,..., L. Without loss of generality, we



examine the total throughput of real uder

L

RXl = E X1k

k=1

wherel(X1;Y, Xo, ..., X;+1) = I[(X1;Y) for i = 0.
We denoteRy, £ coly + ... + car—1In—1, WhereI; is
defined in the proof of Theorel 7 fér> 0, and

L M-1
12(1_k—1)
L L

Co = -
k=1
o ZL:l M-1\ (k=1\"(, k=1
L L\ i L L '
k=1
for ¢ > 1. Therefore, the error term can be calculated
follows,
1 M-—1
ell] = |3(X1, Xz, XapiY) = ;cili
M-—1
1
1=0
M-—1
1
< Z oGl
=0
< max i Gl | .
M—-1—1

Note thatz® (1 — ) For

1 > 1, it can be verified that

DI

. . o
is maximized atr = 57~

Multiplying both sides of the above two inequalities @Y '),

we have
M—1 i\ i \M"
< (7 1- -
=\ M—1 M—1 L

1
— —q
M

10

Therefore,
mzax (’% — ¢ IZ->
< max l<M_1)< : )i<1— ‘ )Mliji]l
- i ) M-1 M-1 L
. 1
= af,

soe[L] < Ma+, wherea > 0. For the termeg, a similar
argument can be used to show that— ;| < +. Therefore,
e[L] =0 (7). O

IV. VARIATIONS OF DISTRIBUTED RATE SPLITTING

In Section[d and SectiofJIl, we imposed two symme-
try constraints. The first is that the capacity region for the
Gaussian MAC and the achievable rate region for the discrete
memoryless MAC are symmetric. The second is that users
generate the same number of virtual users. In this section,
we describe two variations of DRS. The first variation is
presented in Sectioh TVAA, where we relax the symmetric
region constraint. In this case, we show that as the number
of virtual user per real user tends to infinity, the rate tuple
achieved under DRS approaches a point on the dominant face.
The second variation is presented in Seclion]V-B, wheré eac
real user may generate a different number of virtual uséve. T
main advantage of this variation is that it can accommodate
different user rate requirements in a distributed fashion.

Q,
w

A. Asymmetric Capacity/Achievable Rate Region

1) M-user Gaussian MAC: In this section, we consider
the case where real users in a Gaussian MAC may have
different transmission powers (i.e. the capacity regiory ma
not be symmetric). We assume that ugdnas transmission
power P; and the power vectofP;, ..., Pys) is known to all
users. We also assume that all real users split their powers
into L virtual users according to the common power splitting
rule defined by the vectofys, 72, ...,vL), wherevy, > 0 Vk
and Zézl v = 1. The power vector for the virtual users
generated by useris (y1 P, ...,y P;) fori=1,..., M.

Lemma 6: For any real user witlk, virtual users, the unique
way to maximize this user’s throughput is to set

v op\ T M p\1T
(1+ JNH) (1+%) -1

for k = 1,..., L. Moreover, if all real users adopt this power
allocation rule, then

_ N
=TI

M
. L P; Zj:l P
lim Tik = ——=r—— lo 1 + — )
L—oo M J N
k=1 2 Zj:l Pj
fori=1,...,M.

Proof: By replacingpy by v P; for k = 1, ..., L, we can use
arguments similar to those in Sectlah Il to prove the follogyi
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{1, .., M}\ {i}. If maxgeqr,.. 2y Ax — 0 @sL — oo, then

L

lim E "Xk
L—oo
k=1

1 M-1 1
Achievable Point
Ry = —I(X;Y —

(M) o2

fori=1,...,M.

Proof: We can replace(™ ") I (X1;Y, Xa,..., X;11) by
chSGL'S':jI(Xi;Y,XS) and use arguments similar to
R, those for Theorerfil 7 to prove the above lemma. O

Fig. 5. Achievable point for a two-user Gaussian MAC whererushas
higher transmission power. The transmission powers andchivable rates B Unequal Number of Virtual Users

satisfyﬁ =D
=P _ ) . . .
2 1) M-user Gaussan MAC: In this section, we retain the

assumption that every user has the same transmission gawer
but we do not require all real users to create the same number

1) Given a DRS scheme with virtual users per real user,Of virtual users. That is, userand user; createL; and L;

it is possible to strictly increase the throughput via aMirtual users independently, whefe may not be equal td.;.

(L + 1) virtual user system. The signal transmitted by a real user is the superpositiail of

2) Under the optimal power split, all virtual users geneiatdtS Virtual users’ signals. We also assume in this sectia th
by real user must have the same rate foe= 1,..., )/, USeri transmits the numbef,; in a header message to the

(Virtual users generated by different real users may ha{@ceiver. The receiver receives the Sumﬁﬁ_l L; signals
different rates.) plus noise. We now describe a protocol which allows each

3) For any real user with. virtual users, the unique way USer to split its_ power and set its_ rates independently, ar_1d
to maximize this user’s throughput is to set allows the receiver to decode all virtual users one by one via
a generalized successive decoding mechanism. Recallahat f
N SM p\ T M p, the Gaussian MAC, successive decoding works as follows.
RLE SELEY (1 TN ) {(1 TN ) N 1} Users are decoded one after another regarding all othes user
fork=1,..., L.
4) If all real users adopt this power allocation rule, then

=

that have not been decoded as interference, and the signals o
decoded users are subtracted from the overall receivedlsign

PROTOCOL 1: For useri, the power split and rate allocation

L P ZM P rule are defined as follows: for =1, ..., L;,
lim Tik = I\ifz IOg 1+ B 5 L;—k 1
= 22 b N e N (g MY MPAT
Pik = 3p N ’
fori=1,...M
1 i
U rik =5 log | 1+ Dik

: ; . : . M (P - Zj<k pij) —pik + N
We illustrate this achievable point on the dominant face for ) )
a two-user Gaussian MAC in Fifll 5. Note that the power split and rate allocation ruleAROTO-

COL 1 are the same as that discussed in Sedfibn 1.

The generalized successive decoding algorithm is given by
the following pseudo-program. Note that after a virtualruse
is decoded, its signal is subtracted from the overall rexkiv
signal.

VS, T C {1,..., M} such that|S| = |T|. In this section, we  decode virtual users(11,21,...,M1) in any order or in
relax this constraint and consider an asymmetric achievaipiarallel.

region. We require only that fovS,T C {1,2,... M}, if setp = (pi1,p21, -, PM1)

SNT = @, thenI(Xs;Y) < I(Xs;Y|Xr). The M while (some virtual users are not decoded),

2) M-user Discrete Memoryless MAC: In Section[dll, we
considered the symmetric setting (Ef(18)):

I(Xs;Y | Xge) =1 (XY | Xpe),

switches(Sy, ..., Syr) have probabilitie® (S; = k) = A for Find the minimal element ip, say theith entry;
i=1,..,Mandk=1,..., L. Decode the subsequent virtual user of user
Update theith entry of p: p(i) = p(i) + 7,
Lemma 7: Consider a general random switch controlled by wherep is the power of the virtual user

Si, whereP (S; =k) = M\, k = 1,...,L. Define —i = being decoded in the previous step;
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end search

P31
Lemma 8: If all M users adopt the power split and the P,

rate allocation rule described IPROTOCOL 1, then for any M Py
L, € Z*,i=1,2,..,M, the decoder can decode all virtual
users one by one following the decoding algorithm. @] Py ©)| Py

@

PSS
Pas

e

Proof: By the rate allocation ruley;; = %1og(1 + user 1 user 2 user 3
MP%M) fori=1,..., M. Thus, each of them can tolerate _ o
the maximum amount of interference pIus nois&pP —pi+ Fig. 6. Three-user exam_ple to ||Ius_tra_te the (_:iecodlng #lyor The numbers
. . correspond to the decoding order inside tiale loop.
N. It is then easy to see that virtual usé€id, ..., M1) can

be decoded reliably in any order or in parallel. Now, we set

P = (P11, -, PM1)-

_ Inthe first run of thewhile loop, if p;; is the minimum entry i each run, we always decode a virtual user that can tolerate
in p, the receiver decodes virtual user By the rate allocation ore interference than what it really faces. This assures th

1 i e imnli o~ . . .
rule, iz = 5log(l + M(fP_—pi)z—piz-ﬁ-N)' This implies that yajidity of our decoding algorithm. All of the other virtual
the maximum amount of interference plus noise that virtugkers can be decoded in a similar fashion.

user:i2 can tolerate S\ (P — p;1)—p;2+N. However, the real

. S . , By Lemmd2 and Lemmnid 8, usecan choose any; € Z™,
amount of interference plus noise it faceMsP—Z;‘il Dj1— y 42 id i €

independently from other users, and have all virtual users d
Eoded reliably at the receiver. Therefore, usean choosd.;
according to its own service requirement. For example,gf uis
wants to send low rate voice communication packets, it can
’ A t . setL; = 1, which corresponds to the basic CDMA scheme. If
of the while loop. Now, p = (pi,...,pj,). Let us consider qo \vants to send high rate stream video, it can/seéqual

tr:e (t + 1)th run of thewhile loop. Suppose théth entry, 4 arge value in order to get higher throughput at the es@en
p;, is the minimum entry inp. The receiver decodes theyt nigher coding complexity. Thus, this variation of DRS
subsequent virtual uier of usgrdenoted byil. By the ra_te provides an explicit way for end users to trade off throughpu
allocation rule,r;; = 5log(1 + M(P-3- . )- This and coding complexity, making differential rate requirerse

becauseMp;; < Z;‘ilpjl. Therefore, virtual usei2 can be
decoded reliably at the receiver.
Suppose the decoding process succeeds inttherun

il
o i =2 jarPig)—pa+N/T T
implies the maximum amount of interference plus noise thgthjevable in a distributed manner. Finally, Corollaty 2ian

virtual useril can tolerate isSM (P — > _;_, pij) —pi + N = Theorem[% demonstrate the asymptotic optimality of this
M (P—pt)—pi+N. However, the real amount of interferenc&cheme and its rate of convergence.

plus noise it faces isW P — Zj]\ilpE- — pi + N, which is
smaller than or equal to what virtual usér can tolerate
becauseMp! < ij\i , P%. Therefore, virtual usefl can be
decoded reliably. Hence, the lemma follows by inductian.

2) M-user Discrete Memoryless MAC: In this section, we
describe a variation of the DRS scheme for the discrete mem-
oryless MAC which supports differential rate requirements
to end users in a distributed manner. In this scheme, we
adopt the uniform switch, but we do not require every user

To illustrate the decoding algorithm, let us carefully exanto have the same number of virtual users. We split by means
ine a three-user example shown in HIYy. 6. The shaded regi®iis)/ independent switches. Without loss of generality, let us
correspond to the virtual usefsl, 21, 31), which are decoded consider uset. If useri hasL; virtual users, then switch
in any order. Suppose we decodél™ first. By the rate hasL; inputs, X;;, € &; for k = 1,..., L;, and one output
allocation rule;y1 = %log(l + gpj;)ﬁ), which means the X; € X;. Switchi is controlled by a uniform random variable

. . ) . . 1
maximum amount interference plus noise that virtual uset “ S; € {1,..., L;} with P(S; = k) = £- for k = 1,..., L;. The
can tolerate is3P — py; + N. This is exactly the amount output is given by:X; = X, if S; = k.
of interference plus noise it faces. Thereforél™ can be  We now describe the protocol for the discrete memoryless
decoded reliably and we can subtract the signal of virtuat uSAC which allows useri to chooseL; independently. We
“11” from the overall received signal. Similarly21,31) can show the asymptotic optimality of this variation of DRS unde
be decoded reliably and subtracted from the overall redeivehe protocol.

signal. Nowp = (pi1,p21,ps1). The subsequent decoding proTOCOL 2: For useri with L; virtual users, the switch

order is illustrated by the numbers in Figl 6. In the firS§ controlled by a uniform random variab whereP(S; =
run of thewhile loop, sinceps: is the minimum inp, the ) _ 2+ for k = 1,..., L;. The rate allocation rule is defined
receiver decodes virtual uses2”. By the rate allocation 5 foliows:

rule,. r32 = 1log(l + ?@wi}%)’ vyhich implies the _

maximum amount interference plus noise it can tolerate is M1
3(P—ps1)—ps2+N. However, the real interference plus noise |~ _ 1 (1 k- 1) [(X0:Y)
it faces is(P — p11) + (P —pa1) + (P —p31 — p32) + N, which X T L; b

is smaller than what it can tolerate singg;; < p11+p21- SO M1 .
virtual user ‘32" can be decoded reliably and subtracted from + Z M — 1) (k _ 1> .
the received signal. By searching for the minimum entrpin =1 !

%
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since - < - for all j # i. Similarly, it can be verified
K J . .
that the second term if{R7) is less than or equal to the

i , . ) corresponding term in Equatidn{29). Therefore, virtuarig
The decoding algorithm is given by the following pseudoc—an be decoded reliably.

program. Note that after a virtual user is decoded, its signa Suppose the decoding process succeeds inttheun of
is used as S|_de information to aid the decoding process ff \ hile loop. Now, s 2 (st, ..., st,). Let us consider the
subsequent virtual users. (t 4+ 1)th run of thewhile loop. Suppose théth entry, s, is

the minimum entry irs. The receiver decodes the subsequent
virtual user of user, denoted byij. By the rate allocation

k1 M—-1-1
(1— L > I(Xl;KXQ,..,XlJrl)

decode virtual users(11,21,...,M1) in any order or in

parallel.
sets = (1, 1,y 75) rule
while (some virtual users are not decoded), 1 j—1\M!
Find the minimal element is, say theith entry; "o =TT (1 L ) I(X1;Y)
Decode the subsequent virtual user of user Mot _ .
Update theith entry ofs: s(i) = s(i) + £; N Z (M - 1> <J - 1> '
end — l L;
Lemma 9: If all M users adopt the rate allocation rule in j—1\M !
PROTOCOL 2, then for anyL; € Z* Vi, the decoder can <1 I ) I(X1;Y, Xa, ., Xi1) | -

decode all virtual users one by one following the decoding
algorithm.
Proof : Virtual users(11, 21, ..., M1) can be decoded in any

Again, we can simplify the mutual information
I(Xi; Y, Y, x371 . X%, ") and show that it is great
than or equal tax,;, which implies that virtual usei; can

order if and only ifry,, < I(X;1;Y,S}) foralli. This is true ) : .
because under our rate allocation rulg,. %I(Xl;Y) _ be decoded reliably. Hence, the lemma follows by |ndcht|on.
|

= 1(Xi; Y_) = I(X;1;Y, sf'f)_. We sets zl(LL_l, L—M)
In th? flrsr: run of the\évhnedloop,. if ? IS thg mlr:umum Let us illustrate the decoding algorithm by the following
entry of s, the receiver decodes virtual usex. By the rate o, 5 mnje We consider a two-user discrete memoryless MAC

allocation rule where usell create< virtual users and usercreates virtual
1 1\ M1 users. Random switch is controlled byS; whereP(S; =
"X =T 1- L. I(X1;Y) 1) = P(S; = 2) = 3, and random switcl2 is controlled
M z by S, whereP(S; = k) = & for k = 1,2,3. By the rate
Z M—-1\ 1\ allocation rule, the virtual users’ rates can be simplified a
— l L; follows
- 1
M—-1-1
1 r = —I(X;Y
(1 - L—> I1(X1;Y, XQ,..,XZH)] (27) X 5 (XY
i 11 1
. . X2 = 5 |:_I(X1;Y)+_I(X1;Y5X2):|
Virtual user 72 can be decoded reliably ifrx,, < 2|2 2
I(X;2:Y, SlM,XH, ..., Xr1). This mutual information can be 1
simplified in the same way as described in equatién$ (23) - rx, = =I(X1;Y)
@8). Recall the definition-i = {1,..., M} \ {i}. i’ ) .
r = - |-I(XpY)+ - I(X1;Y, X
I(Xi2§KS1M7X117---7XMl) ez 3 {3 (&3 3 - 2)]
11 2
1 _ . .
= f.I(XQ;Y, Xi1,.. X |S24) (28) TX2s = 3 {gI(Xl,Y) + gI(Xl,Y, X2)] :
1 We first decode(11,21) in any order. Suppose we decode
= - P(S_;=s_;)1(X;Y, X1, ..., e T . .
L; 52: ( )1 (X 1 21" first. Virtual user 21" can be decoded reliably ifx,, <
- I(X51;Y,51,55). The condition holds because
Xui|S—i=s.). (29) (Xon 1 52)
. . . I(X51;Y,51, S = I(X21:;Y, 5|8
We can verify that the/(X;;Y") term in [2T) is less than or (X1 152) 1( 2t 1192)
equal to the corresponding( X;;Y) term in Equation[(29). = §I(X21;Y|Sg =1)
This follows from 1
= —I(X2:Y)
P(S1>1,...,58-1>1,511>1,..5y>1) i)’
_ H(l—i) = 3I(X;Y)
j#i Lj = TXn

Y

1—— )
(33)-

( 1 )Ml Virtual user “11” can be decoded similarly. Now, we set=
L;



In the first run of thewhile loop, the receiver decodeg2”
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SIRs (p1,p2) subject top; + po = P andpy,ps > 0. The

since% < % Let us calculate the mutual information betweennique solution is

X9 andY given Sy, .S, and previously decodef 11, Xo;.

(X22;Y, 51,52, X11, X21)

I
1
51(X227Y|51,X11,X21, Sy =
1
3
1

For L = j — 1, suppos€pi(P ),.

Wi PLi(P) = & (N4 MP VNV T MP)).

(- Nwm)).

,p7 1(P)) uniquely solves

= SIRy (p1,..yDj—1) = . 1 (p1,...,pj—1) for any
P > 0, subject toZk:lp,C = P and pr > 0fork =
_ 1,2,..,j—1. Let us consider thg¢ virtual users case. Given any

)
(I(Xg,YXl)—i- SI(XyY )
)

1
( I(X13Y, Xp) + 5 1(X1:Y

3 tuple (p1, ..., p;) such thaty";_, p, = P andp;, > 0 for k =
1 . 2 ' 1,2,.., 5, we can fixp;, sop1 + ... + pj—1 = P —p;. We now
Z g (gI(Xl,KXQ)'i‘gI(Xl,Y)) solve
= r .
a2 SIR:y (p1,.spj—1) = .. = SIR; 1 (p1,.-,pj—1)  (30)
The third equality is due to our symmetric assumption. There Ubject toZk 1]% = P—p;, e > 0for k=1,2, .., j. For fixed

fore, virtual user 22" can be decoded. By searching for the
minimum entry ins in each run, we always decode a virtu
user whose rate is smaller than or equal to the correspond
mutual information. This guarantees the correctness of diff

>

;, by the induction hypothesis, we have a unigue solution

--p}ll(P — p;)) which solves equatior{BO).
£ SIR; 1 (p; (P —p;), P} 1 (P —D)))

decoding algorithm. Virtual user§l2,23) can be decoded 7=

reliably at the receiver in a similar fashion. The asymptotis a stnctly decreasing function op;, and SIR;(p;

optimality of this scheme in the discrete memoryless MAE
can be demonstrated by TheorEn 7.

= 1) i+
Moreover, the function values at boundary points satisfy

P; (P ;) ;

l)fpl 02 Jpg)+N We are able to verify thats*(p;)
)
~ Is a strictly increasing function ofpj

s*(0) > SIR; (0) and s* (P) < SIR (P). So there exists

V. CONCLUDING REMARKS

In this paper, we take an information-theoretic approach
the problem of distributed multiple-access communicatia
present a Distributed Rate Splitting scheme whereby eadh re
user creates a number of virtual users and all virtual users a
successively decoded at the receiver. One possible adyanta
of Distributed Rate Splitting is that it can be implementdthw

a unique pj; such thatSIR
%)nclude(p1 (P—p3),.
solution to thej virtual users case. The theorem follows by
induction.

s* (p*-‘). Hence, we

pﬁ is the unique

’pj 1 (P p]

O
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time-sharing or rate splitting. For the symmethit-user Gaus-
sian MAC, each real user creates the same number of virtual
users via a power/rate splitting mechanism. The transthittez)
signal of a real user is the superposition of all its virtusérs’
signals. For the symmetritf -user discrete memoryless MAC, [2]
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