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Asymptotically Optimal Multiple-access
Communication via Distributed Rate Splitting
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Abstract— We consider the multiple-access communication
problem in a distributed setting for both the additive white
Gaussian noise channel and the discrete memoryless channel.
We propose a scheme called Distributed Rate Splitting to achieve
the optimal rates allowed by information theory in a distributed
manner. In this scheme, each real user creates a number of
virtual users via a power/rate splitting mechanism in theM -user
Gaussian channel or via a random switching mechanism in the
M -user discrete memoryless channel. At the receiver, all virtual
users are successively decoded. Compared with other multiple-
access techniques, Distributed Rate Splitting can be implemented
with lower complexity and less coordination. Furthermore, in a
symmetric setting, we show that the rate tuple achieved by this
scheme converges to the maximum equal rate point allowed by
the information-theoretic bound as the number of virtual users
per real user tends to infinity. When the capacity regions are
asymmetric, we show that a point on the dominant face can
be achieved asymptotically. Finally, when there is an unequal
number of virtual users per real user, we show that differential
user rate requirements can be accommodated in a distributed
fashion.

Index Terms— Multiple access, rate splitting, successive decod-
ing, stripping, interference cancellation, ALOHA.

I. I NTRODUCTION

We consider the basic multiple-access communication prob-
lem in a distributed setting. In Gallager’s survey paper [1],
it is pointed out that the multiple-access problem has been
studied from a number of different perspectives, each having
its own advantages and shortcomings. In the data networking
community, a well-known distributed multiple access scheme
is ALOHA [2], [3]. In ALOHA, it is assumed that a “collision”
happens whenever more than one user transmit simultaneously.
Those packets involved in a collision are discarded and re-
transmitted according to some retransmission probability. The
collision channel model, however, does not accurately describe
the underlying physical multiple-access channel. It is well
known that there exist coding techniques which can decode
multiple users’ messages when simultaneous transmissions
occur. Indeed, more sophisticated models such as signal cap-
ture [4], [5], spread ALOHA [6], and multi-packet reception
[7], [8], [9] have been developed to enhance ALOHA. Even
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these improved schemes, however, are not optimal from the
viewpoint of information theory. In the information theory
literature, the capacity regions of various multiple-access
channel (MAC) models have been characterized (see [10],
[11], [12], [13], [14], [15]). Rate splitting multiple-access
techniques (or generalized time-sharing) are presented in[16],
[17], [18], [19] to achieve every point in the Gaussian or the
discrete memoryless MAC capacity region using only single-
user codes. These schemes, however, require a pre-defined
decoding order, which makes distributed implementation dif-
ficult. Finally, in the spread spectrum community, CDMA
techniques are adopted. Here, users are decoded regarding
all other users’ signals as interference. This, however, isnot
optimal from the information theoretic viewpoint.

To address some of the shortcomings mentioned above,
Medard et al. [20] use information-theoretic techniques to
analyze different notions of capacity for time-slotted ALOHA
systems. A coding/decoding scheme which combines rate
splitting and superposition coding is constructed. This scheme
allows some bits to be reliably received even when collision
occurs, and more bits to be reliably received in the absence
of collisions. Shamai [21] proposes a similar scheme to apply
a broadcast strategy to multiple-access channel under static
fading where the fading coefficients are not available to
the transmitters or the receiver. To implement the scheme
in [20], however, a pre-defined decoding order is required, as
in [16], [17], [18], [19]. In [22], Cheng proposes a distributed
scheme called “stripping CDMA” for theL out ofK Gaussian
MAC. Here, no pre-defined decoding order is required. It is
shown in [22] that stripping CDMA is asymptotically optimal,
although the optimal operating parameters are not specified.

In this paper, we investigate distributed multiple-access
schemes based on the idea of rate splitting for both the
M -user additive white Gaussian noise MAC and theM -
user discrete memoryless MAC. We characterize the optimal
operating parameters as well as the asymptotic optimality
of these schemes from the viewpoint of information theory.
Assume that every user has an infinite backlog of bits to send,
and that every user knows the total number of usersM . We
propose a distributed scheme, calledDistributed Rate Splitting
(DRS), to achieve the optimal communication rates allowed
by information theory. In this scheme, each real user creates a
number of virtual users via a power/rate splitting mechanism
in the M -user Gaussian channel or via a random switching
mechanism in theM -user discrete memoryless channel. At the
receiver, all virtual users are successively decoded. A possible
advantage of the DRS scheme is that it can be implemented
with lower complexity when compared with multiple-access
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schemes such as joint coding1 and less coordination when
compared with time-sharing and rate splitting.

In Sections II and III, we focus first on symmetric situations
where the channel capacity regions are symmetric and every
real user creates the same number of virtual users. In this
case, the DRS scheme entails the following. Each useri

createsL virtual users indexed byik, k = 1, 2, ..., L. The
virtual user classVk consists of users{1k, ...,Mk} (i.e. we
have altogetherL virtual user classes and there areM virtual
users in each class). In theM -user Gaussian MAC, virtual
users are created via a power/rate splitting mechanism. The
signal transmitted by a real user is the superposition of all
its virtual users’ signals. The receiver receives the sum of
the virtual users’ signals plus noise. All virtual users arethen
successively decoded in increasing order of their class. That
is, all virtual users in classVk, k = 1, ..., L, are decoded
before any virtual user inVj , where j > k, is decoded. In
contrast to [22], the optimal operating parameters, such as
power and rate, are explicitly specified for any finiteL. In
theM -user discrete memoryless MAC, virtual users with the
same input distribution as the real users are created, and the
transmitted signal of a real user is determined by a random
switch. The receiver successively decodes all virtual users in
increasing order of their class given the side information of
already decoded virtual users. The optimal switch is found
for any finiteL for the 2-user case. Finally, it is shown that
for both channel models, the rate tuple achieved by the DRS
scheme converges to the maximum equal rate point allowed
by the information-theoretic bound as the number of virtual
users per real user tends to infinity.

Next, in Section IV, we consider more general situations
where the capacity regions can be asymmetric and real users
may generate different numbers of virtual users. For the case
of asymmetric capacity regions, new operating parameters are
specified for any finite number of virtual users per real user.
We show that the DRS scheme still can achieve a point on
the dominant face as the number of virtual users per real user
tends to infinity. For the case of unequal number of virtual
users per real user, we present a variation of DRS which
supports differential user rate requirements in a distributed
manner. In this new scheme, each useri, independently from
other users, generatesLi virtual users according to its own
rate requirement. All virtual users are then decoded reliably
at the receiver. Furthermore, as each real user generates more
virtual users, the rate tuple achieved under this variationof
DRS converges the maximum equal rate point on the dominant
face.

II. M -USERGAUSSIAN MULTIPLE-ACCESSCHANNEL

We first examine a Gaussian MAC with a symmetric ca-
pacity region. Later in Section IV, we consider the asym-
metric case. Consider anM -user Gaussian MAC where each
transmitter has transmission powerP and the receiver has

1The lower complexity comes from the fact that the DRS scheme uses
single-user codes instead of multi-user codes. As we show later, the DRS
scheme with a reasonable number of virtual users per real user allows us to
get close to the optimal operating rates.
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Fig. 1. Two-user Gaussian multiple-access capacity region, where the
dominant face has been highlighted.

noise varianceN . The capacity regionC is the set ofR =
(R1, ..., RM ) ∈ R

M
+ satisfying2

∑

i∈S

Ri ≤
1

2
log

(

1 +
|S|P

N

)

∀S ⊆ {1, ...,M} , (1)

where |S| is the cardinality of the setS. The dominant face
D is the subset of rate tuples which gives equality in (1) for
S = {1, ...,M}. For this symmetric setting, it is easy to see
that the maximum common rate that every user can achieve3

is R∗ = 1
2M log(1 + MP

N
).

It is well-known that rate tuples on the dominant face
other than the vertices cannot be achieved via standard
successive decoding [11]. Note that the optimal rate tuple
R∗ ≡ (R∗, ..., R∗), called themaximum equal rate point, is
such a point. For the two-user Gaussian MAC, the maximum
equal rate point is shown in Fig. 1. Currently, three methods
are known to achieve general points on the dominant face:
joint encoding/decoding, time-sharing, and rate-splitting. Joint
encoding/decoding is not practical because of its high com-
plexity [1]. In time-sharing, allM users need to coordinate
their transmissions. Therefore, some communication overhead
is required. The rate-splitting method in [16] achieves every
point in C via a generalized successive decoding scheme. For
the two-user case, user1 creates two virtual users, say1a
and1b, by splitting its powerP into δ andP − δ and setting
r1a = 1

2 log(1+
δ

2P−δ+N
), r1b = 1

2 log(1+
P−δ
N

). User2 does
not split its power and sets its rate toR2 = 1

2 log(1+
P

P−δ+N
).

The decoding order is(1a, 2, 1b). In order to achieve the
maximum equal rate point, we solveR2 = r1a+ r1b, yielding
δ = 1

2 (N + 2P −
√

N(N + 2P )). Thus, both time-sharing
and rate splitting require some coordination among users.

In this paper, we focus ondistributed multiple-access
communication schemes. In particular, we introduce theDis-
tributed Rate Splitting (DRS) scheme. The DRS scheme offers
the possibility of multiple-access communication with lower
complexity when compared with joint coding, and communi-

2We useR to denote(R1, ...,RM ) throughout.
3
R is achievable if for anyε > 0, there exists an(n,R1 − ε, ...,RM − ε)

multiple-access code with overall error probabilityPe < ε, wheren is the
block length.
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Fig. 2. Comparison of rate splitting with distributed rate splitting. In the
right-hand figure, the virtual user classV1 = {11, 21} is decoded before
virtual user classV2 = {12, 22}.

cation with less coordination when compared with the time-
sharing or rate splitting method. Moreover, we show that
DRS can achieve the maximum equal rate point of the MAC
capacity region asymptotically.

We now formally present the DRS scheme. In this scheme,
each user createsL virtual users by splitting its powerP
into (p1, p2, ..., pL), wherepk is the power allocated to the
kth virtual user and

∑L
k=1 pk = P . Each user then assigns

transmission raterk to virtual userk. Note that the proposed
DRS scheme is symmetric, i.e. allM users split their powers
and set their rates in the same way. The signal transmitted
by a user is the superposition of its virtual users’ signals.As
defined in Section I, virtual user classVk consists of all virtual
users indexed byk. The receiver receives the sum of all virtual
users’ signals plus noise. All virtual users are then successively
decoded in increasing order of their class.

To illustrate the DRS scheme, consider the caseL = 2.
Each real user splits its powerP into δ andP − δ. Notice
there are two major differences between our scheme and the
traditional rate splitting scheme in [16]. First, in our scheme,
all real users split in the same way, whereas there is at leastone
user who does not split in the traditional rate splitting scheme.
Second, virtual users in the same class, (i.e. with the same
indexk), are allocated the same rate in our scheme, whereas all
virtual users have different rates according to the pre-defined
decoding order in the traditional rate splitting scheme.4 These
differences are illustrated in Fig. 2.

Since we assume the receiver uses successive decoding
method, some virtual user must be decoded first. Without loss
of generality we assume one of theδ virtual users is decoded
first. For the caseL = 2, we show that there is a unique way
for a real user to split its power in order to maximize its total
throughput.

Lemma 1: For L = 2 and for a fixedδ, each real user’s
throughput is maximized by settingr1 = 1

2 log(1+
δ

MP−δ+N
)

andr2 = 1
2 log(1 +

P−δ
(M−1)(P−δ)+N

).

4In terms of achievable rate, the DRS scheme withL = 2 is not optimal.
Later in this section, we demonstrate the asymptotic optimality of DRS by
taking L to infinity.

Proof: The δ virtual user who is decoded first must have
r1 = 1

2 log(1 + δ
MP−δ+N

) (i.e. the virtual user regards all
other virtual users as interference) in order to be decoded
successfully. Due to symmetry, all otherδ virtual users must
have the samer1. Then the problem of maximizing each
real user’s throughput reduces tomax r2, subject to (i)r1 =
1
2 log(1+

δ
MP−δ+N

), (ii) one of theδ virtual users is decoded
first and (iii) (r1, r2, r1, r2, ..., r1, r2)must be decodable.

Note thatr2 is maximized when the interference plus noise
faced by all the(P − δ) virtual users is minimized, and the
only way to minimize the interference plus noise faced by all
the (P − δ) virtual users is to decode all theδ virtual users
before decoding any(P − δ) virtual user.5 Therefore, the
minimum interference plus noise faced by any(P − δ) virtual
user isMP −Mδ − (P − δ) +N = (M − 1) (P − δ) +N .
Hence, the maximum rate associated with a(P − δ) virtual
user isr2 = 1

2 log(1 +
P−δ

(M−1)(p−δ)+N
). �

Using the DRS scheme withL = 2, each user can strictly
increase its throughput relative to the case where users do not
split their powers and decode against each other as noise. This
is easily verified by observing that for anyδ < P ,

log

(

1 +
δ

MP − δ +N

)

+log

(

1 +
P − δ

(M − 1) (P − δ) +N

)

> log

(

1 +
P

(M − 1)P +N

)

. (2)

Now consider the case where each user creates more than
two virtual users(L > 2). Here, we show that each user’s
throughput increases further.

Lemma 2: Given a DRS scheme withL virtual users per
real user, where(p1, ..., pL) are the virtual users’ powers, it
is possible to strictly increase the throughput via an(L + 1)
virtual user system with powers(p1, ..., pL−1, p

′

L, p
′′

L), where
p

′

L + p
′′

L = pL.

Proof: Suppose that every user splits its power intoL virtual
users:(p1, p2, ..., pL−1, pL) subject to

∑L

k=1 pk = P , whereL
is an arbitrary integer andpk is the power ofkth virtual user.
Since virtual userL is decoded last, following the reasoning in
the proof of Lemma1, we haverL = 1

2 log(1+
pL

(M−1)pL+N
).

We now split the virtual user with powerpL into two new
virtual users with powersp

′

L and p
′′

L, wherep
′

L + p
′′

L = pL.
We set

rL′ =
1

2
log

(

1 +
p

′

L

MpL − p
′

L +N

)

rL′′ =
1

2
log

(

1 +
p

′′

L

(M − 1) p
′′

L +N

)

.

Now each real user hasL+1 virtual users. Notice that we
do not change the power and decoding order of any of the
other virtual users (i.e. virtual users1, . . . , L−1). From a real
user’s view point, the virtual user withrL′ is decoded second

5We assume a genie-aided [16] decoding scheme where the previously
decoded messages have been decoded correctly. In practice,errors can be
made in previous decodings. However, for purposes of analyzing the overall
error probability, the genie-aided model is sufficient.
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to last among all virtual users generated by this real user
and the virtual user withrL′′ is decoded last. Thus, all virtual
users can be decoded and from (2),rL′ +rL′′ > rL. Therefore,
every real user withL virtual users can strictly increase its
throughput by splitting its power amongL+1 virtual users.�

Before we examine the asymptotic behavior of DRS, we
solve the problem of how to split a user’s poweroptimally
among a fixed number of virtual users. The main difficulty
here is that the objective function is not concave. In order
to find the optimal splitting method, we prove the following
lemma.

Lemma 3: Consider the following optimization problem:

max
pk,pj

1

2
log

(

1 +
pk

A− pk

)

+
1

2
log

(

1 +
pj

A−Mpk − pj

)

(3)
subject to pk+pj = c and pk, pj ≥ 0, where A, M

and c are positive constants andA ≥ Mc. The unique
solution to (3) is also the unique solution topk

A−pk
=

pj

A−Mpk−pj
, subject topk + pj = c andpk, pj ≥ 0, where

A ≥ Mc.

Proof: Substitutepj = c − pk into the objective function,
we have

f (pk) =
1

2
log

(

1 +
pk

A− pk

)

+
1

2
log

(

1 +
c− pk

A−Mpk − (c− pk)

)

.

Setting df(pk)
dpk

= 0 subject to 0 ≤ pk ≤ c, the unique

solution is p∗k = 1
M
(A −

√

A(A − cM)). Thus, p∗k is the
unique stationary point off (pk). We can also verify that
f (p∗k) > f (0) and f (p∗k) > f (c). So (p∗k, c− p∗k) is
the unique solution to our maximization problem. We can
directly solve pk

A−pk
=

pj

A−Mpk−pj
subject topk + pj = c and

pk, pj ≥ 0. The unique solution is also(p∗k, c− p∗k). �

We now present the optimal splitting method. Theorem 1
states a necessary condition for the optimal splitting method,
and Theorem 2 implies there is a unique optimal splitting
method. In Corollary 1, we formally present the optimal
splitting method and the required power levels.

Theorem 1: Let each real user split its power intoL virtual
users. Letpk be the power allocated to thekth virtual user
and rk = 1

2 log (1 + pk

MP−M
∑

j<k
pj−pk+N

). If (p∗1, ...p
∗
L)

maximizes
∑L

k=1 rk and satisfies
∑L

k=1 p
∗
k = P , p∗k ≥ 0 for

k = 1, 2..., L, thenrk (p∗1, ...p
∗
L) = r∗, for all k.

That is, the optimal power split must lead to equal transmission
rates for all virtual users.

Proof: We use a perturbation argument. Suppose(p̃1, ..., p̃L)
maximizes

∑L

k=1 rk and satisfies
∑L

k=1 p̃k = P , p̃k ≥ 0 ∀k
and the resultingrk (p̃1, ..., p̃L) is not the same for allk. Then
we can find a pair of virtual users(k, k + 1), where virtual

userk andk+ 1 are decoded at thekth and(k + 1)th places
respectively, andrk (p̃1, ..., p̃L) 6= rk+1 (p̃1, ..., p̃L).

Without loss of generality, let us consider the case where
rk (p̃1, ..., p̃L) > rk+1 (p̃1, ..., p̃L). By the definition ofrk, we
have

p̃k

MP −M
∑

j<k p̃j − p̃k +N

>
p̃k+1

MP −M
∑

j<k p̃j −Mp̃k − p̃k+1 +N
. (4)

We can verify that if we changẽpk to p̃k − ε and p̃k+1 to
p̃k+1 + ε, whereε is a small positive number, then the first
term of (4) decreases and the second term of (4) increases.
Let ε∗ be the solution to

p̃k − ε

MP −M
∑

j<k p̃j − (p̃k − ε) +N

=
p̃k+1 + ε

MP −M
∑

j<k p̃j −M (p̃k − ε)− (p̃k+1 + ε) +N
.

(The existence of ε∗ can be demonstrated). Let
p̂k = p̃k − ε∗ and p̂k+1 = p̃k+1 + ε∗. Notice that
p̃k + p̃k+1 = p̂k + p̂k+1. Since the maximization
considered in Lemma 3 has a unique solution,
rk (p̃1, ..., p̂k, p̂k+1, ..., p̃L) + rk+1 (p̃1, ..., p̂k, p̂k+1, ..., p̃L) >

rk (p̃1, ..., p̃k, p̃k+1, ..., p̃L) + rk+1 (p̃1, ..., p̃k, p̃k+1, ..., p̃L).
This contradicts our assumption that(p̃1, ..., p̃L) maximizes
∑L

k=1 rk. Therefore, the theorem follows. �

By Theorem 1, if (p∗1, ..., p
∗
L) maximizes

∑L
k=1 rk and

satisfies
∑L

k=1 p
∗
k = P , p∗k ≥ 0 for k = 1, 2..., L, then

we must haveSIR1 (p
∗
1, ..., p

∗
L) = ... = SIRL (p∗1, ..., p

∗
L)

whereSIRk (p1, ..., pL) =
pk

MP−M
∑

j<k pj−pk+N
. Therefore,

if we show thatSIRk (p1, ..., pL) = SIRj (p1, ..., pL) for
all k 6= j, has a unique solution, then there isat most one
feasible solution to the maximization problem.

Theorem 2: The set of equations:SIR1 (p1, ..., pL) = ... =
SIRL (p1, ..., pL), subject to

∑L

k=1 pk = P and pk ≥ 0 ∀k,
has a unique solution.

Proof: See Appendix I.

Corollary 1: If a real user splits its powerP into L virtual
users, then the unique way to maximize this user’s throughput
is to setpk = N

M
(1+MP

N
)

L−k
L [(1+MP

N
)

1
L−1] for k = 1, ..., L.

Proof: Since the constraint region{p :
∑L

k=1 pk =
P andpk ≥ 0 for k = 1, 2, .., L} is a simplex and
∑L

k=1 rk is continuous, there exists at least one solution.
We denote one solution by(p̂1, ..., p̂L). By the necessary
condition stated in Theorem 1,(p̂1, ..., p̂L) must satisfy
r1 (p̂1, ..., p̂L) = ... = rL (p̂1, ..., p̂L). Moreover, by the
uniqueness property stated in Theorem 2,(p̂1, ..., p̂L) is
the unique solution tomaxp1,..,pL

∑L

k=1 rk subject to
∑L

k=1 pk = P andpk ≥ 0 ∀k. Next, we plugpk into the
expression ofSIRk (p1, ..., pL). Let A = 1 + MP

N
, we are

able to verify thatSIRk (p1, ..., pL) = A
1
L −1

(M−1)A
1
L +1

, which
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is independent ofk. Hence, the corollary follows. �

We now examine the asymptotic behavior of the DRS
scheme. We first demonstrate the interesting fact that the rate
tuple converges to the maximum equal rate point for a general
power split as long as all virtual users’ powers go to0 as
L → ∞. This implies a convergence result for the optimal
power split. We then analyze the rate of convergence under
the optimal power split.

Theorem 3: Given any power split(p1, ..., pL), a suffi-
cient condition forlimL→∞

∑L

k=1 rk = 1
2M log(1 + MP

N
) is

maxk∈{1,...,L} pk → 0 asL → ∞.

Proof:

lim
L→∞

L
∑

k=1

rk

= lim
L→∞

L
∑

k=1

1

2
log

(

1 +
pk

MP −M
∑

j<k pj − pk +N

)

= lim
L→∞

L
∑

k=1

1

2

(

pk

MP −M
∑

j<k pj − pk +N

)

(5)

≥ lim
L→∞

L
∑

k=1

1

2

(

pk

MP −M
∑

j<k pj +N

)

(6)

= lim
L→∞

L
∑

k=1

1

2

(

βk − βk−1

MP +N −Mβk−1

)

(7)

=
1

2

∫ P

0

1

MP +N −Mx
dx (8)

=
1

2M
log

(

1 +
MP

N

)

(9)

whereβ0 = 0, βk =
∑k

j=1 pj .
The equality in (5) is justified as follows. Note that,

limx→0
log(1+x)−x

x2 = − 1
2 . Hence, for sufficiently small posi-

tive δ, |x| < δ ⇒ | log(1+x)−x

x2 | < 1 ⇒ | log(1 + x)− x| ≤ x2.
Now, we examine the error term

∣

∣

∣

∣

∣

L
∑

k=1

[

log

(

1 +
pk

MP −M
∑

j<k pj − pk +N

)

−

(

pk

MP −M
∑

j<k pj − pk +N

)]∣

∣

∣

∣

∣

≤

L
∑

k=1

∣

∣

∣

∣

∣

log

(

1 +
pk

MP −M
∑

j<k pj − pk +N

)

−

(

pk

MP −M
∑

j<k pj − pk +N

)∣

∣

∣

∣

∣

≤
L
∑

k=1

(

pk

MP −M
∑

j<k pj − pk +N

)2

(10)

≤

L
∑

k=1

(

1

N

)2

p2k (11)

≤

(

1

N

)2

max
k

pk

L
∑

k=1

pk (12)

= P

(

1

N

)2

max
k

pk (13)

where inequality in (10) holds because
pk

MP−M
∑

j<k
pj−pk+N

< δ whenL → ∞, and the inequality

in (11) follows from the fact that pk

MP−M
∑

j<k pj−pk+N
≤ pk

N
.

Sincemaxk pk → 0 asL → ∞, the error term goes to zero in
the limit. This justifies the equality in (5). Using the capacity
bound, we also havelimL→∞

∑L
k=1 rk ≤ 1

2M log(1 + MP
N

).
Therefore,limL→∞

∑L
k=1 rk = 1

2M log(1 + MP
N

). �

Note that our optimal power split satisfies the sufficient
condition in Theorem 3. Therefore, its convergence is assured.

Corollary 2: If each real user adopts the optimal splitting
method specified in Corollary 1, then

lim
L→∞

L
∑

k=1

rk =
1

2M
log

(

1 +
MP

N

)

≡ R∗.

Next, we examine the rate of convergence to the maximum
equal rate point under the optimal power split. Define the error
term e[L] ≡ R∗ −

∑L

k=1 rk, we analyze how fast this error
term tends to0 asL → ∞. We prove the following:6

Theorem 4: e [L] = Θ
(

1
L

)

.

Proof: Let A , 1 + MP
N

.

lim
L→∞

Le [L]

= lim
L→∞

L

(

1

2M
log (A)−

L

2
log

(

M

M − 1 +A− 1
L

))

= lim
y→0

y log(A)
2M − 1

2 log
(

M
M−1+A−y

)

y2
(14)

= lim
y→0

log(A)
2M − 1

2
A−y log(A)
M−1+A−y

2y
(15)

=
(M − 1) (log (A))

2

4M2
. (16)

Note that equalities in (15) and (16) can be verified by
L’Hospital’s rule.

Consequently, given anyε > 0, there exists a pos-
itive integer n0 such that for all L > n0, we have
∣

∣

∣Le [L]−
(M−1)(log(A))2

4M2

∣

∣

∣ < ε. This implies (M−1)(log(A))2

4M2 −

ε < Le [L] < (M−1)(log(A))2

4M2 + ε. Therefore, we can choose

a small enoughε such that (M−1)(log(A))2

4M2 − ε > 0. Let

c1 = (M−1)(log(A))2

4M2 − ε, c2 = (M−1)(log(A))2

4M2 + ε, we have
c1 ≤ Le [L] ≤ c2. This implies that there exists a positive

6Recall thatf [n] = Ω (g [n]) if there exist positive constantsc1 andn0

such thatf [n] ≥ c1g [n] for all n ≥ n0, and f [n] = O(g[n]) if there
are positive constantsc2 andn0, such thatf [n] ≤ c2g[n] for all n ≥ n0.
Finally, f [n] = Θ (g[n]) if f [n] = Ω (g[n]) andf [n] = O (g[n]).
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Fig. 3. Throughput per real user v.s. the number of virtual users per real
user for both high and low SNR regimes. Note that the scales ofthe vertical
axes in both figures are different.

integern0 and for allL > n0, we havec1
L

≤ e [L] ≤ c2
L

. �

Finally, we note that all virtual users in one virtual user
class can be decodedin parallel. Thus, the decoding delay
of DRS is proportional to the number of virtual usersL and
independent of the number of real users. SinceL is controlled
by the designer, DRS offers a tradeoff between the throughput
of a real user and the decoding delay. In Fig. 3, we present
some numerical simulations illustrating the tradeoff between
the number of virtual users and the throughput for both the
high and low SNR regimes. A system with100 real users is
used in the simulations.

III. M- USERDISCRETEMEMORYLESSMAC

An M -user discrete memoryless MAC is defined in terms
of M discrete input alphabetsXi, i ∈ {1, ...,M}, an output
alphabetY and a stochastic matrixW : X1 × X2 × · · · ×
XM → Y with entries W (y | x1, ..., xM ). For any prod-
uct input distributionPX1

· · ·PXM
, let the achievable region

R[W ;PX1
· · ·PXM

] be the set ofR ∈ R
M
+ satisfying

∑

i∈S

Ri ≤ I (XS ;Y | XSc) , ∀S ⊆ {1, ...,M}

whereXS , (Xi)i∈S andSc , {1, ...,M} \ S.
The capacity region of the asynchronous MAC is [14] [15]

C =
⋃

PX1
···PXM

R[W ;PX1
· · ·PXM

]. (17)

We fix the input product distribution PX1
· · ·PXM

and focus on achieving the desired operating point in
R[W ;PX1

· · ·PXM
]. In this section, we consider only

discrete memoryless channels satisfying the following
symmetry condition:

I (XS ;Y | XSc) = I (XT ;Y | XT c) , (18)

∀S, T ⊆ {1, ...,M} such that|S| = |T |. Later, in Section IV,
we consider the more general asymmetric case. We further
assume that for∀S, T ⊆ {1, 2, ...,M}, if S ∩ T = ∅, then
I (XS ;Y ) < I (XS ;Y |XT ). Under our symmetric setting, the
maximum common rate that every user can achieve isR∗ =
1
M
I (X1, ..., XM ;Y ).
In the Gaussian MAC, virtual users are created via a

power/rate splitting mechanism. For the discrete memoryless
MAC, we adopt the random switching mechanism of [19]
where virtual users with the same input distribution as the real
users are created and the transmitted signal of a real user is
determined by a random switch. We first consider the two-user
discrete memoryless MAC(M = 2), and illustrate the random
switching mechanism. The optimal random switches and the
asymptotic behavior of DRS under the optimal switching are
presented. We then examine theM -user case(M > 2),
and present a sufficient condition for the random switching
mechanism to converge to the information theoretic upper
bound. Finally, we investigate the rate of convergence for a
simple suboptimal random switch.

A. Two-user Case (M = 2)

Consider a two-user MAC,W : X1 ×X2 → Y. For a fixed
input product distributionPX1

PX2
, the achievable region is

given by:

R1 ≤ I (X1;Y |X2) = I (X1;Y,X2)

R2 ≤ I (X2;Y |X1) = I (X2;Y,X1)

R1 +R2 ≤ I (X1, X2;Y ) .

Under our symmetry assumption (cf (18)), we have
I(X1;Y ) = I(X2;Y ), I(X1;Y,X2) = I(X2;Y,X1),
I(X1;Y,X2) > I(X1;Y ), and the optimal rate tuple is

(R∗, R∗) ≡

(

1

2
I (X1, X2;Y ) ,

1

2
I (X1, X2;Y )

)

. (19)

Let us consider the random switching mechanism for this
channel. We first consider the case where each real user
generates two virtual users. Later, we consider the case where
the number of virtual users per real user goes to infinity. We
split by means of two switches, as shown in Fig. 4. Each
switch has two inputs,Xi1 ∈ Xi and Xi2 ∈ Xi and one
outputXi ∈ Xi. Switch i is controlled by a random variable
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Fig. 4. Switches for two-user discrete memoryless MAC

Si ∈ {1, 2} with P (Si = 1) = λ. The output is given by
Xi = Xi1 if Si = 1, andXi = Xi2 if Si = 2.

The switching random variables{S1, S2} are independent
of the channel inputs. We also assume that{S1, S2} are
available at the receiver. In practice, one would generate
S1 and S2 at the transmitters and at the receiver, e.g. by
means of a pseudorandom sequence generator. Assign to
the channel inputsX11, X12, X21 and X22 the proba-
bility mass functionPX11,X12,X21,X22

(x11, x12, x21, x22) =
PX1

(x11)PX1
(x12)PX2

(x21)PX2
(x22). Notice thatXi1 and

Xi2 are independent and each has the same probability mass
function as the random variableXi for i = 1, 2.

In successive decoding for the discrete memoryless MAC,
the signals of decoded virtual users are used as side informa-
tion to aid the decoding process of subsequent virtual users.
The first constituent decoder observes the output{Y, S1, S2}
and tries to decodeX11 and X21. The second constituent
decoder is informed of the decision about{X11, X21} made
by the previous constituent decoder and tries to decodeX12

andX22. Without loss of generality, let us focus on real user 1.

rX11
= I(X11;Y, S1, S2)

= I(X11;Y, S2|S1)

= λI(X11;Y, S2|S1 = 1)

+ (1− λ) I(X11;Y, S2|S1 = 2)

= λI(X1;Y )

where the second equality follows from the independence
betweenX11 andS1, and the last equality follows from the
fact that whenS1 = 2, X11 is independently of the outputY
andS2. Similarly, we have

rX12
= I(X12;Y, S1, S2, X11, X21)

= (1− λ) [λI(X1;Y,X2) + (1− λ)I(X1;Y )] .

It can be verified that in the two-user discrete memoryless
MAC, both real users’ throughput can be strictly increased by
splitting their inputs via a random switch, relative to the case
where they do not split, (i.e.rX11

+ rX12
> I(X1;Y ) for

λ ∈ (0, 1)). Next, we show that by generating more virtual
users, the throughput of each real user increases further.

Lemma 4: For M = 2, consider a distributed rate splitting
scheme withL virtual users per real user. The random switch
for user i is controlled bySi, whereP(Si = k) = λk for
k = 1, ..., L. It is possible to strictly increase the throughput
via an(L+1) virtual user system by splitting theLth virtual
user into two virtual users.

Proof: Without loss of generality, we consider user1. For
the kth virtual user, we have

rX1k

= I
(

X1k;Y, S1, S2, X11, X21, ..., X1(k−1), X2(k−1)

)

= I (X1k;Y, S2, X11, X21, ...,

X1(k−1), X2(k−1) | S1

)

(20)

= λkI (X1k;Y, S2, X11, X21, ...,

X1(k−1), X2(k−1) | S1 = k
)

+(1− λk) I (X1k;Y, S2, X11, X21, ...,

X1(k−1), X2(k−1) | S1 6= k
)

= λkI (X1k;Y, S2, X11, X21, ...,

X1(k−1), X2(k−1) | S1 = k
)

(21)

= λk









∑

j<k

λj



 I (X1k;Y,X11, X21, ...,

X1(k−1), X2(k−1) | S1 = k, S2 < k
)

+



1−
∑

j<k

λj



 I (X1k;Y,X11, X21, ...,

X1(k−1), X2(k−1) | S1 = k, S2 ≥ k
)

]

= λk









∑

j<k

λj



 I (X1;Y,X2)

+



1−
∑

j<k

λj



 I (X1;Y )



 , (22)

where equality in (20) is due to the independence between
X1k andS1, and equality in (21) follows from the fact that
whenS1 6= k, X1k is independent of the outputY and all the
other random variables. Finally, equality in (22) holds because
whenS2 < k, one of the random variablesX21, ..., X2(k−1)

is the switch output, and whenS2 ≥ k, none of them is the
switch output. Therefore,

rX1L
= λL [(1− λL) I (X1;Y,X2) + λLI (X1;Y )] .

Now let us splitrX1L
into rX1

1L
andrX2

1L
by using a switch

controlled by a binary random variableS′ with P(S′ = 0) =
α. We have

rX1
1L

= αλL ((1− λL) I (X1;Y,X2) + λLI (X1;Y )) ,

rX2
1L

= αλL ((1− αλL) I (X1;Y,X2) + αλLI (X1;Y )) ,

whereᾱ = 1− α. Hence,

rX1
1L

+ rX2
1L

− rX1L

= αλL ((1− λL) I (X1;Y,X2) + λLI (X1;Y ))

+αλL ((1− αλL) I (X1;Y,X2) + αλLI (X1;Y ))
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−λL [(1− λL) I (X1;Y,X2) + λLI (X1;Y )]

= ααλ2
L [I (X1;Y,X2)− I (X1;Y )]

≥ 0

with strict inequality ifα ∈ (0, 1). �

Before we examine the asymptotic behavior of the DRS
scheme forM = 2, we first solve the problem of how to find
the optimal switches for a fixed number of virtual users per
real user.

Theorem 5: For M = 2, if a real user hasL virtual users,
then the optimal random variable to control the switch for user
i is Si ∈ {1, ..., L} with P(Si = k) = 1

L
for k = 1, ..., L and

i = 1, 2.

Proof: We use a perturbation argument. Suppose the random
variablesS1, S2 ∈ {1, ..., L} with P(S1 = k) = P(S2 =
k) = λk maximizeRX1

, whereλk ≥ 0 and
∑L

k=1 λk = 1.
Moreover, suppose there existsλk such thatλk 6= 1

L
. Let λk

be the first element which is not equal to1
L

. We consider the
pair (λk, λk+1). We have

r1k = λk

(

k − 1

L
I(X1;Y,X2)

+

(

1−
k − 1

L

)

I(X1;Y )

)

,

r1(k+1) = λk+1

[(

k − 1

L
+ λk

)

I(X1;Y,X2)

+

(

1−
k − 1

L
− λk

)

I(X1;Y )

]

.

Therefore,

r1k + r1(k+1)

=

[

(λk + λk+1)
k − 1

L
+ λkλk+1

]

I(X1;Y,X2)

+

[

(λk + λk+1)
L− k + 1

L
− λkλk+1

]

I(X1;Y ).

First, we consider the case whereλk > λk+1. We let λ̂k =
λk − ε and λ̂k+1 = λk+1 + ε for ε < λk−λk+1

2 . We have

r̂1k + r̂1(k+1)

=

[

(λk + λk+1)
k − 1

L
+ (λk − ε) (λk+1 + ε)

]

I(X1;Y,X2)

+

[

(λk + λk+1)
L− k + 1

L
− (λk − ε) (λk+1 + ε)

]

I(X1;Y ).

Thus, r̂1k + r̂1(k+1) - (r1k + r1(k+1)) = [(λk + λk+1) ε

-ε2] (I(X1;Y,X2)-I(X1;Y )). Notice that the second term
of the R.H.S. expression is positive and there existsε such
that ((λk + λk+1) ε-ε2) > 0. This, however, contradicts our
assumption that the random variablesS1, S2 ∈ {1, ..., L}
with P(S1 = k) = P(S2 = k) = λk, maximizeRX1

. We
obtain similar contradictions for the case whereλk ≤ λk+1. �

We now examine the asymptotic behavior of the DRS
scheme in the two-user discrete memoryless MAC.

Theorem 6: For M = 2, if both real users adopt
P (Si = k) = 1

L
for k = 1, ..., L and i = 1, 2, then

limL→∞

∑L

k=1 rXik
= 1

2I (X1, X2;Y ) = R∗ for i = 1, 2.
Moreover, if we define the error terme[L] ≡ R∗−

∑L

k=1 rXik
,

thene[L] = Θ( 1
L
) for i = 1, 2.

Proof: Without loss of generality, we consider real user1.
Since

rX1k
=

1

L

(

k − 1

L
I(X1;Y,X2) +

(

1−
k − 1

L

)

I(X1;Y )

)

,

we have

lim
L→∞

RX1

= lim
L→∞

[

1

L

(

1 +
1

L
+ ...+

L− 1

L

)

I(X1;Y )

+
1

L

(

L− 1

L
+ ...+

1

L

)

I(X1;Y,X2)

]

= lim
L→∞

[

L+ 1

2L
I(X1;Y ) +

L− 1

2L
I(X1;Y X2)

]

=
1

2
[I(X1;Y ) + I(X1;Y,X2)]

=
1

2
I(X1, X2;Y ),

where the last equality follows from the fact that
I(X1;Y,X2) = I(X2;Y,X1) in the symmetric setting.

Next, we examine the rate of convergence. We have the error
term e[L] = 1

2I(X1;Y ) + 1
2I(X1;Y,X2)− (L+1

2L I(X1;Y ) +
L−1
2L I(X1;Y,X2)). Thus,

e[L] =
1

2L
(I(X1;Y,X2)− I(X1;Y )) ,

which implies

lim
L→∞

Le[L] =
1

2
(I(X1;Y,X2)− I(X1;Y )) ,

c

2
.

For anyε > 0, there exists ann0 such that for allL > n0,
|Le[L] − c

2 | < ε. Hence, c2 − ε < Le[L] < c
2 + ε. We can

chooseε small enough such thatc2 − ε > 0. This implies
e[L] = Θ( 1

L
). �

B. M -user Case (M > 2)

There areM real users and each real user createsL virtual
users. We haveM switches(S1, ..., SM ) to do the splitting
with probabilitiesP(Si = k) = λk for i = 1, ...,M and
k = 1, ..., L. We assume the receiver also knows(S1, ..., SM ).
This may require common randomness to exist between all
transmitters and the receiver. Due to symmetry, we focus on
one user, say user1. For k = 1, ..., L, we set

rX1k

= I(X1k;Y,S
M
1 ,X1(k−1)

11 , ...,XM(k−1)
M1 ) (23)

= I(X1k;Y,S
M
2 ,X1(k−1)

11 , ...,XM(k−1)
M1 | S1) (24)

= λkI(X1k;Y,S
M
2 ,X1(k−1)

11 , ...,XM(k−1)
M1 | S1 = k)

+ (1− λk) I(X1k;Y,S
M
2 ,X1(k−1)

11 , ...,
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XM(k−1)
M1 | S1 6= k)

= λkI(X1k;Y,S
M
2 ,X1(k−1)

11 , ...,XM(k−1)
M1 | S1 = k) (25)

= λkI(X1;Y,X
1(k−1)
11 , ...,XM(k−1)

M1 |S1 = k,SM
2 )

=
∑

s2,...,sM

P (S2 = s2, ..., SM = sM )λkI(X1;Y,X
1(k−1)
11 ,

...,XM(k−1)
M1 |S1 = k, S2 = s2, ..., SM = sM )

= λk









1−
∑

j<k

λj





M−1

I(X1;Y )

+

M−1
∑

i=1

(

M − 1

i

)





∑

j<k

λj





i

·



1−
∑

j<k

λj





M−1−i

I(X1;Y,X2, ..., Xi+1)






, (26)

whereSj
i , {Si, ..., Sj} and Xik

i1 , {Xi1, ..., Xik}. Equality
in (24) is due to the independence betweenX1k and S1.
Equality in (25) holds because whenS1 6= k, X1k is inde-
pendent of the outputY and all the other random variables.
The first term in (26) follows fromP(S2 ≥ k, ..., SM ≥ k)
= (1 −

∑

j<k λj)
M−1. The second summation term in (26)

follows from the fact that the probability ofi switching random
variables among(S2, ..., SM ) having values less thank is
(

M−1
i

)

(
∑

j<k λj)
i(1−

∑

j<k λj)
M−1−i. It can be verified that

real user1 with L virtual users can strictly increase its total
throughput via anL+ 1 virtual user system.

In order to maximize the total throughput of real user 1 for
fixed L, we need to find the optimal(λ∗

1, ..., λ
∗
L) to maximize

∑L
k=1 rX1k

. This is a non-convex optimization problem and
appears to be difficult. We are able to verify that for the general
M -user case (unlike the two-user case), random switches with
a uniform distribution are in general suboptimal. Nevertheless,
it is possible to generalize the asymptotic result of Theorem 6.
We first demonstrate the fact that the convergence result holds
for a general switch controlled bySi, whereP (Si = k) = λk

for k = 1, ..., L, as long asmaxk∈{1,...,L} λk → 0 as L →
∞. We then analyze the rate of convergence for a particular
suboptimal switch, the uniform switch.

Theorem 7: For a general random switch controlled by
Si, whereP(Si = k) = λk for k = 1, ..., L, a sufficient
condition for limL→∞

∑L

k=1 rXik
= 1

M
I (X1, ..., XM ;Y ) is

maxk∈{1,...,L} λk → 0 asL → ∞ for i = 1, ...,M .

Proof: Without loss of generality, let us examine real user1.

lim
L→∞

RX1

= lim
L→∞

L
∑

k=1

rX1k

= lim
L→∞

L
∑

k=1

λk









1−
∑

j<k

λj





M−1

I(X1;Y )

+

M−1
∑

i=1

(

M − 1

i

)





∑

j<k

λj





i

·



1−
∑

j<k

λj





M−1−i

I(X1;Y,X2, ..., Xi+1)







= lim
L→∞

M−1
∑

i=0

ciIi,

where

I0 = I(X1;Y )

Ii = I(X1;Y,X2, ..., Xi+1)

c0 =

L
∑

k=1

λk



1−
∑

j<k

λj





M−1

ci =

L
∑

k=1

λk

(

M − 1

i

)





∑

j<k

λj





i

1−
∑

j<k

λj





M−1−i

,

for i ≥ 1.
It is sufficient to provelimL→∞ ci =

1
M

for all i. For i ≥ 1,

lim
L→∞

ci

= lim
L→∞

L
∑

k=1

λk

(

M − 1

i

)





∑

j<k

λj





i

1−
∑

j<k

λj





M−1−i

= lim
L→∞

L
∑

k=1

(βk − βk−1)

(

M − 1

i

)

βi
k−1 (1− βk−1)

M−1−i

=

(

M − 1

i

)∫ 1

0

xi (1− x)M−1−i
dx

=

(

M − 1

i

)

B (i + 1,M − i)

=
(M − 1)!

i!(M − i− 1)!

i!(M − i− 1)!

M !

=
1

M
,

whereβ0 = 0, βk =
∑k

j=1 λk andB(m,n) = (m−1)!(n−1)!
(m+n−1)!

is the beta function. The termc0 can be shown to converge
to 1

M
asL → ∞ by a similar argument. �

Next, we analyze a particular suboptimal switch, the uni-
form switch. Since the uniform switch satisfies the sufficient
condition in Theorem 7, the convergence result holds. The next
lemma presents its rate of convergence.

Lemma 5: Consider anM -user discrete memoryless MAC.
Let each real user haveL virtual users and each switch be
controlled by an i.i.d. random variableSi ∈ {1, 2, ..., L} with
P(Si = k) = 1

L
, k = 1, ..., L. Define the error terme[L] ≡

1
M
I(X1, X2, ..., XM ;Y )−

∑L
k=1 rXik

. Thene[L] = O( 1
L
) for

all i.

Proof: In the uniform switch setting,P(Si = k) = 1
L

for
i = 1, ...,M andk = 1, ..., L. Without loss of generality, we
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examine the total throughput of real user1.

RX1
=

L
∑

k=1

rX1k

=
1

L
I(X1;Y ) +

L
∑

k=2

1

L

[

M−1
∑

i=0

(

M − 1

i

)(

k − 1

L

)i

·

(

1−
k − 1

L

)M−1−i

I(X1;Y,X2, ..., Xi+1)

]

,

whereI(X1;Y,X2, ..., Xi+1) = I(X1;Y ) for i = 0.
We denoteRX1

, c0I0 + ... + cM−1IM−1, where Ii is
defined in the proof of Theorem 7 fori ≥ 0, and

c0 =
1

L

L
∑

k=1

(

1−
k − 1

L

)M−1

ci =

L
∑

k=1

1

L

(

M − 1

i

)(

k − 1

L

)i (

1−
k − 1

L

)M−1−i

.

for i ≥ 1. Therefore, the error term can be calculated as
follows,

e[L] =

∣

∣

∣

∣

∣

1

M
I(X1, X2, ..., XM ;Y )−

M−1
∑

i=0

ciIi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M−1
∑

i=0

(

1

M
− ci

)

Ii

∣

∣

∣

∣

∣

≤

M−1
∑

i=0

∣

∣

∣

∣

1

M
− ci

∣

∣

∣

∣

Ii

≤ M

[

max
i

(∣

∣

∣

∣

1

M
− ci

∣

∣

∣

∣

Ii

)]

.

Note thatxi (1− x)
M−1−i is maximized atx = i

M−1 . For
i ≥ 1, it can be verified that

1

L

L−1
∑

l=0

(

l

L

)i (

1−
l

L

)M−1−i

+

(

i

M − 1

)i(

1−
i

M − 1

)M−1−i
1

L

≥

∫ 1

0

xi (1− x)
M−1−i

dx,

1

L

L−1
∑

l=0

(

l

L

)i (

1−
l

L

)M−1−i

−

(

i

M − 1

)i(

1−
i

M − 1

)M−1−i
1

L

≤

∫ 1

0

xi (1− x)M−1−i
dx.

Multiplying both sides of the above two inequalities by
(

M−1
i

)

,
we have
∣

∣

∣

∣

1

M
− ci

∣

∣

∣

∣

≤

(

M − 1

i

)(

i

M − 1

)i(

1−
i

M − 1

)M−1−i
1

L
.

Therefore,

max
i

(∣

∣

∣

∣

1

M
− ci

∣

∣

∣

∣

Ii

)

≤ max
i

[

(

M − 1

i

)(

i

M − 1

)i(

1−
i

M − 1

)M−1−i

Ii

]

1

L

≡ α
1

L
,

so e[L] ≤ Mα 1
L

, whereα > 0. For the termc0, a similar
argument can be used to show that|c0 −

1
M
| ≤ 1

L
. Therefore,

e[L] = O
(

1
L

)

. �

IV. VARIATIONS OF DISTRIBUTED RATE SPLITTING

In Section II and Section III, we imposed two symme-
try constraints. The first is that the capacity region for the
Gaussian MAC and the achievable rate region for the discrete
memoryless MAC are symmetric. The second is that users
generate the same number of virtual users. In this section,
we describe two variations of DRS. The first variation is
presented in Section IV-A, where we relax the symmetric
region constraint. In this case, we show that as the number
of virtual user per real user tends to infinity, the rate tuple
achieved under DRS approaches a point on the dominant face.
The second variation is presented in Section IV-B, where each
real user may generate a different number of virtual users. The
main advantage of this variation is that it can accommodate
different user rate requirements in a distributed fashion.

A. Asymmetric Capacity/Achievable Rate Region

1) M -user Gaussian MAC: In this section, we consider
the case where real users in a Gaussian MAC may have
different transmission powers (i.e. the capacity region may
not be symmetric). We assume that useri has transmission
powerPi and the power vector(P1, ..., PM ) is known to all
users. We also assume that all real users split their powers
into L virtual users according to the common power splitting
rule defined by the vector(γ1, γ2, ..., γL), whereγk > 0 ∀k
and

∑L
k=1 γk = 1. The power vector for the virtual users

generated by useri is (γ1Pi, ..., γLPi) for i = 1, ...,M .

Lemma 6: For any real user withL virtual users, the unique
way to maximize this user’s throughput is to set

γk = N
∑

M
j=1

Pj

(

1 +
∑M

j=1
Pj

N

)
L−k
L

[

(

1 +
∑M

j=1
Pj

N

)
1
L

− 1

]

for k = 1, ..., L. Moreover, if all real users adopt this power
allocation rule, then

lim
L→∞

L
∑

k=1

rik =
Pi

2
∑M

j=1 Pj

log

(

1 +

∑M

j=1 Pj

N

)

,

for i = 1, ...,M .

Proof: By replacingpk by γkPi for k = 1, ..., L, we can use
arguments similar to those in Section II to prove the following:
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R2

R1

Achievable Point
R2

*

R1
*

Fig. 5. Achievable point for a two-user Gaussian MAC where user 1 has
higher transmission power. The transmission powers and theachievable rates
satisfy R

∗

1

R
∗

2

= P1

P2
.

1) Given a DRS scheme withL virtual users per real user,
it is possible to strictly increase the throughput via an
(L+ 1) virtual user system.

2) Under the optimal power split, all virtual users generated
by real useri must have the same rate fori = 1, ...,M .
(Virtual users generated by different real users may have
different rates.)

3) For any real user withL virtual users, the unique way
to maximize this user’s throughput is to set

γk = N
∑

M
i=1

Pi

(

1 +
∑M

i=1
Pi

N

)

L−k
L

[

(

1 +
∑M

i=1
Pi

N

)
1
L

− 1

]

for k = 1, ..., L.
4) If all real users adopt this power allocation rule, then

lim
L→∞

L
∑

k=1

rik =
Pi

2
∑M

j=1 Pi

log

(

1 +

∑M
i=1 Pi

N

)

,

for i = 1, ...,M

�

We illustrate this achievable point on the dominant face for
a two-user Gaussian MAC in Fig. 5.

2) M -user Discrete Memoryless MAC: In Section III, we
considered the symmetric setting (cf (18)):

I (XS ;Y | XSc) = I (XT ;Y | XT c) ,

∀S, T ⊆ {1, ...,M} such that|S| = |T |. In this section, we
relax this constraint and consider an asymmetric achievable
region. We require only that for∀S, T ⊆ {1, 2, ...,M}, if
S ∩ T = ∅, then I (XS ;Y ) < I (XS ;Y |XT ). The M

switches(S1, ..., SM ) have probabilitiesP (Si = k) = λk for
i = 1, ...,M andk = 1, ..., L.

Lemma 7: Consider a general random switch controlled by
Si, where P (Si = k) = λk, k = 1, ..., L. Define −i ≡

{1, ...,M} \ {i}. If maxk∈{1,...,L} λk → 0 asL → ∞, then

lim
L→∞

L
∑

k=1

rXik

=
1

M
I (Xi;Y ) +

M−1
∑

j=1

1

M

1
(

M−1
j

)

∑

∅⊂S⊆−i
|S|=j

I (Xi;Y,XS) ,

for i = 1, ...,M .

Proof: We can replace
(

M−1
i

)

I (X1;Y,X2, ..., Xi+1) by
∑

∅⊂S⊆−i,|S|=j I (Xi;Y,XS) and use arguments similar to
those for Theorem 7 to prove the above lemma. �

B. Unequal Number of Virtual Users

1) M -user Gaussian MAC: In this section, we retain the
assumption that every user has the same transmission powerP ,
but we do not require all real users to create the same number
of virtual users. That is, useri and userj createLi andLj

virtual users independently, whereLi may not be equal toLj.
The signal transmitted by a real user is the superposition ofall
its virtual users’ signals. We also assume in this section that
user i transmits the numberLi in a header message to the
receiver. The receiver receives the sum of

∑M

i=1 Li signals
plus noise. We now describe a protocol which allows each
user to split its power and set its rates independently, and
allows the receiver to decode all virtual users one by one via
a generalized successive decoding mechanism. Recall that for
the Gaussian MAC, successive decoding works as follows.
Users are decoded one after another regarding all other users
that have not been decoded as interference, and the signals of
decoded users are subtracted from the overall received signal.

PROTOCOL 1: For useri, the power split and rate allocation
rule are defined as follows: fork = 1, ..., Li,

pik =
N

M

(

1 +
MP

N

)

Li−k

Li

[

(

1 +
MP

N

)
1
Li

− 1

]

,

rik =
1

2
log



1 +
pik

M
(

P −
∑

j<k pij

)

− pik +N



 .

Note that the power split and rate allocation rule inPROTO-
COL 1 are the same as that discussed in Section II.

The generalized successive decoding algorithm is given by
the following pseudo-program. Note that after a virtual user
is decoded, its signal is subtracted from the overall received
signal.

decode virtual users(11, 21, ...,M1) in any order or in
parallel.

setp = (p11, p21, ..., pM1)
while (some virtual users are not decoded),

Find the minimal element inp, say theith entry;
Decode the subsequent virtual user of useri;
Update theith entry ofp: p(i) = p(i) + p̃,

wherep̃ is the power of the virtual user
being decoded in the previous step;
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end

Lemma 8: If all M users adopt the power split and the
rate allocation rule described inPROTOCOL 1, then for any
Li ∈ Z

+, i = 1, 2, ...,M , the decoder can decode all virtual
users one by one following the decoding algorithm.

Proof: By the rate allocation rule,ri1 = 1
2 log(1 +

pi1

MP−pi1+N
) for i = 1, ...,M . Thus, each of them can tolerate

the maximum amount of interference plus noise,MP − pi1+
N . It is then easy to see that virtual users(11, ...,M1) can
be decoded reliably in any order or in parallel. Now, we set
p = (p11, ..., pM1).

In the first run of thewhile loop, if pi1 is the minimum entry
in p, the receiver decodes virtual useri2. By the rate allocation
rule, ri2 = 1

2 log(1 + pi2

M(P−pi1)−pi2+N
). This implies that

the maximum amount of interference plus noise that virtual
useri2 can tolerate isM (P − pi1)−pi2+N . However, the real
amount of interference plus noise it faces isMP−

∑M
j=1 pj1−

pi2+N , which is smaller than or equal to what it can tolerate
becauseMpi1 ≤

∑M

j=1 pj1. Therefore, virtual useri2 can be
decoded reliably at the receiver.

Suppose the decoding process succeeds in thetth run
of the while loop. Now, p , (pt1, ..., p

t
M ). Let us consider

the (t + 1)th run of thewhile loop. Suppose theith entry,
pti, is the minimum entry inp. The receiver decodes the
subsequent virtual user of useri, denoted byil. By the rate
allocation rule,ril = 1

2 log(1 + pil

M(P−
∑

j<l
pij)−pil+N

). This
implies the maximum amount of interference plus noise that
virtual useril can tolerate isM(P −

∑

j<l pij) − pil +N =
M(P−pti)−pil+N . However, the real amount of interference
plus noise it faces isMP −

∑M

j=1 p
t
j − pil + N , which is

smaller than or equal to what virtual useril can tolerate
becauseMpti ≤

∑M
j=1 p

t
j . Therefore, virtual useril can be

decoded reliably. Hence, the lemma follows by induction.�

To illustrate the decoding algorithm, let us carefully exam-
ine a three-user example shown in Fig. 6. The shaded regions
correspond to the virtual users(11, 21, 31), which are decoded
in any order. Suppose we decode “11” first. By the rate
allocation rule,r11 = 1

2 log(1+
p11

3P−p11+N
), which means the

maximum amount interference plus noise that virtual user “11”
can tolerate is3P − p11 + N . This is exactly the amount
of interference plus noise it faces. Therefore, “11” can be
decoded reliably and we can subtract the signal of virtual user
“11” from the overall received signal. Similarly,(21, 31) can
be decoded reliably and subtracted from the overall received
signal. Nowp = (p11, p21, p31). The subsequent decoding
order is illustrated by the numbers in Fig. 6. In the first
run of the while loop, sincep31 is the minimum inp, the
receiver decodes virtual user “32”. By the rate allocation
rule, r32 = 1

2 log(1 + p32

3(P−p31)−p32+N
), which implies the

maximum amount interference plus noise it can tolerate is
3(P−p31)−p32+N . However, the real interference plus noise
it faces is(P −p11)+(P −p21)+(P −p31−p32)+N , which
is smaller than what it can tolerate since2p31 < p11+p21. So
virtual user “32” can be decoded reliably and subtracted from
the received signal. By searching for the minimum entry inp

search

P31P11
P21

(1)

user 1 user 2 user 3

P32

P33

P34

(2) P12

P13

(3)

(4) (5) (6)P22

Fig. 6. Three-user example to illustrate the decoding algorithm. The numbers
correspond to the decoding order inside thewhile loop.

in each run, we always decode a virtual user that can tolerate
more interference than what it really faces. This assures the
validity of our decoding algorithm. All of the other virtual
users can be decoded in a similar fashion.

By Lemma 2 and Lemma 8, useri can choose anyLi ∈ Z
+,

independently from other users, and have all virtual users de-
coded reliably at the receiver. Therefore, useri can chooseLi

according to its own service requirement. For example, if user i
wants to send low rate voice communication packets, it can
setLi = 1, which corresponds to the basic CDMA scheme. If
useri wants to send high rate stream video, it can setLi equal
to a large value in order to get higher throughput at the expense
of higher coding complexity. Thus, this variation of DRS
provides an explicit way for end users to trade off throughput
and coding complexity, making differential rate requirements
achievable in a distributed manner. Finally, Corollary 2 and
Theorem 4 demonstrate the asymptotic optimality of this
scheme and its rate of convergence.

2) M -user Discrete Memoryless MAC: In this section, we
describe a variation of the DRS scheme for the discrete mem-
oryless MAC which supports differential rate requirements
to end users in a distributed manner. In this scheme, we
adopt the uniform switch, but we do not require every user
to have the same number of virtual users. We split by means
of M independent switches. Without loss of generality, let us
consider useri. If user i hasLi virtual users, then switchi
hasLi inputs,Xik ∈ Xi for k = 1, ..., Li, and one output
Xi ∈ Xi. Switch i is controlled by a uniform random variable
Si ∈ {1, ..., Li} with P(Si = k) = 1

Li
for k = 1, ..., Li. The

output is given by:Xi = Xik, if Si = k.

We now describe the protocol for the discrete memoryless
MAC which allows useri to chooseLi independently. We
show the asymptotic optimality of this variation of DRS under
the protocol.

PROTOCOL 2: For useri with Li virtual users, the switchi
is controlled by a uniform random variableSi whereP(Si =
k) = 1

Li
for k = 1, ..., Li. The rate allocation rule is defined

as follows:

rXik
=

1

Li

[

(

1−
k − 1

Li

)M−1

I(X1;Y )

+

M−1
∑

l=1

(

M − 1

l

)(

k − 1

Li

)l

·
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(

1−
k − 1

Li

)M−1−l

I(X1;Y,X2, .., Xl+1)

]

.

The decoding algorithm is given by the following pseudo-
program. Note that after a virtual user is decoded, its signal
is used as side information to aid the decoding process of
subsequent virtual users.

decode virtual users(11, 21, ...,M1) in any order or in
parallel.

set s = ( 1
L1

, 1
L2

, ..., 1
LM

)
while (some virtual users are not decoded),

Find the minimal element ins, say theith entry;
Decode the subsequent virtual user of useri;
Update theith entry ofs: s(i) = s(i) + 1

Li
;

end

Lemma 9: If all M users adopt the rate allocation rule in
PROTOCOL 2, then for anyLi ∈ Z

+ ∀i, the decoder can
decode all virtual users one by one following the decoding
algorithm.

Proof : Virtual users(11, 21, ...,M1) can be decoded in any
order if and only ifrXi1

≤ I(Xi1;Y,S
M
1 ) for all i. This is true

because under our rate allocation rule,rXi1
= 1

Li
I(X1;Y ) =

1
Li
I(Xi;Y ) = I(Xi1;Y,S

M
1 ). We sets = ( 1

L1
, ..., 1

LM
).

In the first run of thewhile loop, if 1
Li

is the minimum
entry of s, the receiver decodes virtual useri2. By the rate
allocation rule

rXi2
=

1

Li

[

(

1−
1

Li

)M−1

I(X1;Y )

+

M−1
∑

l=1

(

M − 1

l

)(

1

Li

)l

·

(

1−
1

Li

)M−1−l

I(X1;Y,X2, .., Xl+1)

]

(27)

Virtual user i2 can be decoded reliably ifrXi2
≤

I(Xi2;Y,S
M
1 , X11, ..., XM1). This mutual information can be

simplified in the same way as described in equations (23) -
(26). Recall the definition−i ≡ {1, ...,M} \ {i}.

I
(

Xi2;Y,S
M
1 , X11, ..., XM1

)

=
1

Li

I (Xi2;Y,X11, ...XM1 |S−i ) (28)

=
1

Li

∑

s−i

P (S−i = s−i) I (X1;Y,X11, ...,

XM1 |S−i = s−i ) . (29)

We can verify that theI(X1;Y ) term in (27) is less than or
equal to the correspondingI(X1;Y ) term in Equation (29).
This follows from

P (S1 > 1, ..., Si−1 > 1, Si+1 > 1, ...SM > 1)

=
∏

j 6=i

(

1−
1

Lj

)

≥

(

1−
1

Li

)M−1

,

since 1
Li

≤ 1
Lj

for all j 6= i. Similarly, it can be verified
that the second term in (27) is less than or equal to the
corresponding term in Equation (29). Therefore, virtual user i2
can be decoded reliably.

Suppose the decoding process succeeds in thetth run of
the while loop. Now, s , (st1, ..., s

t
M ). Let us consider the

(t + 1)th run of thewhile loop. Suppose theith entry,sti, is
the minimum entry ins. The receiver decodes the subsequent
virtual user of useri, denoted byij. By the rate allocation
rule

rXij
=

1

Li

[

(

1−
j − 1

Li

)M−1

I(X1;Y )

+

M−1
∑

l=1

(

M − 1

l

)(

j − 1

Li

)l

·

(

1−
j − 1

Li

)M−1−l

I(X1;Y,X2, .., Xl+1)

]

.

Again, we can simplify the mutual information
I(Xij ;Y,S

M
1 ,Xj−1

1 , ...,Xj−1
M ) and show that it is great

than or equal torXij
, which implies that virtual userij can

be decoded reliably. Hence, the lemma follows by induction.
�

Let us illustrate the decoding algorithm by the following
example. We consider a two-user discrete memoryless MAC
where user1 creates2 virtual users and user2 creates3 virtual
users. Random switch1 is controlled byS1 whereP(S1 =
1) = P(S1 = 2) = 1

2 , and random switch2 is controlled
by S2 whereP(S2 = k) = 1

3 for k = 1, 2, 3. By the rate
allocation rule, the virtual users’ rates can be simplified as
follows

rX11
=

1

2
I(X1;Y )

rX12
=

1

2

[

1

2
I(X1;Y ) +

1

2
I(X1;Y,X2)

]

rX21
=

1

3
I(X1;Y )

rX22
=

1

3

[

2

3
I(X1;Y ) +

1

3
I(X1;Y,X2)

]

rX23
=

1

3

[

1

3
I(X1;Y ) +

2

3
I(X1;Y,X2)

]

.

We first decode(11, 21) in any order. Suppose we decode
“21” first. Virtual user “21” can be decoded reliably ifrX21

≤
I (X21;Y, S1, S2). The condition holds because

I (X21;Y, S1, S2) = I (X21;Y, S1|S2)

=
1

3
I (X21;Y |S2 = 1)

=
1

3
I (X2;Y )

=
1

3
I (X1;Y )

= rX21

Virtual user “11” can be decoded similarly. Now, we sets =
(12 ,

1
3 ).
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In the first run of thewhile loop, the receiver decodes “22”
since 1

3 < 1
2 . Let us calculate the mutual information between

X22 andY givenS1, S2 and previously decodedX11, X21.

I (X22;Y, S1, S2, X11, X21)

=
1

3
I (X22;Y |S1, X11, X21, S2 = 2)

=
1

3

(

1

2
I(X2;Y,X1) +

1

2
I(X2;Y )

)

=
1

3

(

1

2
I(X1;Y,X2) +

1

2
I(X1;Y )

)

≥
1

3

(

1

3
I(X1;Y,X2) +

2

3
I(X1;Y )

)

= rX22
.

The third equality is due to our symmetric assumption. There-
fore, virtual user “22” can be decoded. By searching for the
minimum entry ins in each run, we always decode a virtual
user whose rate is smaller than or equal to the corresponding
mutual information. This guarantees the correctness of our
decoding algorithm. Virtual users(12, 23) can be decoded
reliably at the receiver in a similar fashion. The asymptotic
optimality of this scheme in the discrete memoryless MAC
can be demonstrated by Theorem 7.

V. CONCLUDING REMARKS

In this paper, we take an information-theoretic approach to
the problem of distributed multiple-access communication. We
present a Distributed Rate Splitting scheme whereby each real
user creates a number of virtual users and all virtual users are
successively decoded at the receiver. One possible advantage
of Distributed Rate Splitting is that it can be implemented with
lower complexity when compared with joint coding schemes,
and less coordination among users when compared with either
time-sharing or rate splitting. For the symmetricM -user Gaus-
sian MAC, each real user creates the same number of virtual
users via a power/rate splitting mechanism. The transmitted
signal of a real user is the superposition of all its virtual users’
signals. For the symmetricM -user discrete memoryless MAC,
each real user creates the same number of virtual users via a
random switching mechanism, and the transmitted signal of a
real user is determined by a random switch. All virtual users
are successively decoded at the receiver. It is shown that DRS
can achieve the maximum equal rate point for both channel
models as the number of virtual users per real user tends to
infinity. Finally, we present two variations of the DRS scheme.
For the case of asymmetric capacity regions, we show that a
point on the dominant face can be achieved asymptotically.
For the case of an unequal number of virtual users, we show
that different user rates requirements can be accommodated
independently in a distributed manner.

APPENDIX I
PROOF OFTHEOREM 2

Proof: We use induction on the number of virtual users.
For L = 2, the original problem reduces to:SIR1 (p1, p2) =

SIR2 (p1, p2) subject top1 + p2 = P and p1, p2 ≥ 0. The
unique solution is

(p∗1(P ), p∗2(P )) =

(

1

M

(

N +MP −
√

N (N +MP )
)

,

1

M

(

−N +
√

N (N +MP )
)

)

.

For L = j − 1, suppose(p∗1(P ), ..., p∗j−1(P )) uniquely solves
SIR1 (p1, ..., pj−1) = ... = SIRj−1 (p1, ..., pj−1) for any
P > 0, subject to

∑j−1
k=1 pk = P and pk ≥ 0 for k =

1, 2, .., j−1. Let us consider thej virtual users case. Given any
tuple (p1, ..., pj) such that

∑j
k=1 pk = P andpk ≥ 0 for k =

1, 2, .., j, we can fixpj , sop1 + ...+ pj−1 = P − pj . We now
solve

SIR1 (p1, ..., pj−1) = ... = SIRj−1 (p1, ..., pj−1) (30)

subject to
∑j−1

k=1pk = P−pj , pk ≥ 0 for k=1, 2, .., j. For fixed
pj , by the induction hypothesis, we have a unique solution
(p∗1(P − pj), ...,p∗j−1(P − pj)) which solves equation (30).
Let s∗ (pj) , SIRj−1

(

p∗1 (P − pj) , ..., p
∗
j−1 (P − pj)

)

=
p∗

j−1(P−pj)

(M−1)p∗

j−1
(P−pj)+N

. We are able to verify thats∗(pj)

is a strictly decreasing function ofpj , and SIRj(pj)
= pj

(M−1)pj+N
is a strictly increasing function ofpj .

Moreover, the function values at boundary points satisfy
s∗ (0) > SIRj (0) and s∗ (P ) < SIRj (P ). So there exists
a uniquep∗j such thatSIRj

(

p∗j
)

= s∗
(

p∗j
)

. Hence, we
conclude

(

p∗1
(

P − p∗j
)

, ..., p∗j−1

(

P − p∗j
)

, p∗j
)

is the unique
solution to thej virtual users case. The theorem follows by
induction. �
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