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Abstract— For a stationary additive Gaussian-noise channel
with a rational noise power spectrum of a finite-order L,
we derive two new results for the feedback capacity under
an average channel input power constraint. First, we show
that a very simple feedback-dependent Gauss-Markov source
achieves the feedback capacity, and that Kalman-Bucy filtering
is optimal for processing the feedback. Based on these results,
we develop a new method for optimizing the channel inputs for
achieving the Cover-Pombra block-length-n feedback capacity
by using a dynamic programming approach that decomposes the
computation into n sequentially identical optimization problems
where each stage involves optimizingO(L2) variables. Second,
we derive the explicit maximal information rate for stationary
feedback-dependent sources. In general, evaluating the maximal
information rate for stationary sources requires solving only a
few equations by simple non-linear programming. For first-order
autoregressive and/or moving average (ARMA) noise channels,
this optimization admits a closed form maximal information rate
formula. The maximal information rate for stationary sourc es is a
lower bound on the feedback capacity, and it equals the feedback
capacity if the long-standing conjecture, that stationarysources
achieve the feedback capacity, holds.

Index Terms— channel capacity, directed information, dynamic
programming, feedback capacity, Gauss-Markov source, infor-
mation rate, intersymbol interference, Kalman-Bucy filter, linear
Gaussian noise channel, noise whitening filter

I. I NTRODUCTION

We consider discrete-time power-constrained linear Gaus-
sian noise channels, where the signal is corrupted by an
additive Gaussian random process. When the channel is mem-
oryless, i.e., when the channel is corrupted by additivewhite
Gaussian noise (AWGN), Shannon [1] provided a simple
formula for computing the feed-forward channel capacity, and
he also proved that feedback does not increase the channel
capacity [2].

For Gaussian noise channels with memory, i.e., when the
channel noise is correlated, the feed-forward channel capacity
can be determined by the power-spectral-density water-filling
method [3], [4], [5], [6]. However, with noiseless feedback,
i.e., when the transmitter knows without error all previous
channel outputs, it has been a long-standing open problem
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to explicitly characterize the optimal (or feedback-capacity-
achieving) signal and thus compute the feedback channel
capacity. Cover and Pombra [7] defined then-block feedback
capacity and formulated then-block feedback capacity com-
putation as an optimization problem. Upper and lower bounds
on the feedback capacity were established. For example, it
is known that the feedback capacity can never exceed the
capacity without feedback (feed-forward capacity) by more
than0.5 bit/channel-use [7], or that the feedback capacity can
never be more than double the feed-forward capacity [8], [9].
Somewhat tighter upper bounds can be computed by numerical
techniques as in [10]. Butman [11] devised a feedback code
that recursively transmits the message through the channel,
which achieves a higher rate than the feed-forward channel
capacity for certain linear Gaussian channels. For first-order
autoregressive (AR) noise channels, the closed-form infor-
mation rate obtained by Butman [11] is very close to the
tightest upper bound and thus has been conjectured to be
the real feedback capacity, but a rigorous proof has been
missing. Ordentlich [12] characterized an optimal feedback
coding scheme for moving-average Gaussian noise channels.
Tatikonda [13] formulated the feedback channel capacity in
terms of the directed information rate. Ihara [14] studied the
continuous-time Gaussian noise channel with feedback.

There are two main contributions in this work:

1) We characterize the optimal signaling and feedback
strategy for achieving then-block feedback capacity of a
power constrained linear Gaussian channel with a ratio-
nal power spectrum. We show that the optimal source is
a simple feedback-dependent Gauss-Markov source and
that a Kalman-Bucy filter is optimal for processing the
feedback. This leads to a reformulation of the problem as
a stochastic control optimization problem. As a result, a
new method based on dynamic programming is derived
to optimize the source and thus compute then-block
feedback capacity. For computing then-block feedback
capacity, the new method decomposes the computation
into n identical sequential optimization problems with
each stage involving onlyO(L2) variables, whereL is
the order of the rational power spectral density of the
noise (or channel).
We prove that a Gauss Markov source (channel input
process)Xt of the following form (also depicted in
Fig. 1) is optimal

Xt = dTt(St−1 −mt−1)
︸ ︷︷ ︸

Kalman innovation

+ etZt,
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Fig. 1. Optimal source for achieving the feedback capacity

wheredt (a vector of dimensionL) and et are prede-
termined coefficients, vectorsSt−1 and mt−1 are the
channel state (of dimensionL) and the channel state
estimate (computed by the Kalman-Bucy filter in the
feedback loop), respectively, andZt is a zero-mean unit-
variance Gaussian random variable that is independent
of prior channel inputs, outputs and noise.
We note that the Kalman-Bucy filter developed in this
paper estimates the channel intersymbol-interference
stateSt and takes a different form from the filters used
in Schalkwijk [15] or Butman [11] which recursively es-
timate the transmittedmessage, but it is closely related.
The optimal channel input derived in this paper includes
a recursive estimate term (the Kalman innovation) and
a novelty term (etZt), thus it could be equivalent to the
recursive message estimating and transmitting scheme
in [15], [11] only if the optimal value of the novelty
term etZt is zero, which is an open problem that we
leave unresolved.

2) We derive an explicit formula for the maximal in-
formation rate achieved by (asymptotically) stationary
feedback-dependent sources. This represents a lower
bound on the feedback capacity. We note that it is a long-
standing conjecture that a stationary source achieves the
feedback capacity, and this conjecture is not proved in
this paper and is still open. If the optimal Kalman-
Bucy filter for processing the feedback (optimized over
both stationary and non-stationary feedback-dependent
sources) has a steady state, i.e., if the optimal Kalman-
Bucy filter becomes stationary asn → ∞, the feedback
channel capacity exists and equals the maximal infor-
mation rate for stationary sources.
For the case of the first order autoregressive (AR) noise
channels, our optimal signaling scheme for achieving the
maximal stationary-source information rate turns out to
be the same as Butman’s code [11].

Paper organization: We introduce the Guassian noise
channel model in Section II. For convenience the problem is
reformulated in the state-space (or state-machine) realization
context. In Section III, then-block feedback capacity is
expressed in a form that is suitable for solving the opti-
mization problem using dynamic programming techniques. In
Section IV, we show that Gauss-Markov sources achieve the
n-block feedback capacity and that a Kalman-Bucy filter is
optimal for processing the feedback. Section V is devoted
to solving the feedback capacity computation problem. A
simple feedback-capacity-achieving signaling scheme is ex-
plicitly characterized and a dynamic programming algorithm
to optimize the source is presented. In Section VI, we derive

receiverttX +transmitter

Nt

R

Fig. 2. A discrete-time linear Gaussian noise channel

an explicit formula for the maximal feedback information
rate achieved by stationary sources, which represents a lower
bound on the feedback capacity. This maximal feedback
information rate can be evaluated by nonlinear programming
techniques. We solve the nonlinear programming problem
in closed form for first-order autoregressive/moving-average
(ARMA) channels. Section VII concludes the paper.

II. POWER-CONSTRAINED L INEAR GAUSSIAN NOISE

CHANNEL MODEL

Let t ∈ Z denote the discrete time index, and let the random
variableXt denote the channel input at timet. As depicted in
Figure 2, additive stationary Gaussian noiseNt corrupts the
channel inputXt to form the channel output random variable

Rt = Xt +Nt. (1)

It is assumed that the power spectral density function of the
noise processNt is known and is denoted asSN (ω). In its
most general formulation, the power spectral density function
of the Gaussian noise process can be an arbitrary nonnegative
function defined on the intervalω ∈ (−π, π], such that it is
even, i.e.,SN (ω) = SN (−ω), and its power is finite

σ2
N =

1

2π

π∫

−π

SN (ω)dω < ∞. (2)

Further, it is required that the average signal power be bounded
by a known valueP from above, i.e., we have an average
channel-input power constraint

lim
n→∞

E

[

1

n

n∑

t=1

(Xt)
2

]

≤ P. (3)

If a finite block lengthn is considered as in [7], then the power
constraint becomes

E

[

1

n

n∑

t=1

(Xt)
2

]

≤ P. (4)

The Gaussian noise channel has memory when the noise is
correlated. A correlated noise processNt can be obtained by
passing a white Gaussian noise processWt through a linear
filter defined by a constant-coefficient difference equationof
the following form

Nt = Wt −

L∑

l=1

alWt−l −

L∑

l=1

clNt−l, (5)

where Wt is a white Gaussian random process with vari-
ance σ2

W . It is easy to verify that thez-domain transfer
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Fig. 3. A linear Gaussian noise channel with a rational noisefilter

function of the linear noise filter in (5) is

H(z) =

1−
L∑

l=1

alz
−l

1 +
L∑

l=1

clz−l

, (6)

and that the power spectral density function of the noise
processNt is rational, i.e.,

SN (ω) = σ2
W

∣
∣H(ejω)

∣
∣
2

= σ2
W

(

1−
L∑

l=1

ale
−jlω

)(

1−
L∑

l=1

ale
jlω

)

(

1 +
L∑

l=1

cle−jlω

)(

1 +
L∑

l=1

clejlω
) . (7)

Such alinear Gaussian noise channelwith memory is depicted
in Figure 3.

It is known that any power spectral density can be ap-
proximated arbitrarily closely by the rational function (7) if
the model size (memory length) parameterL is chosen to be
large enough [17]. So, restriction (5) is not strong, but as we
will see, it is very much needed in the subsequent analysis.
Further, without loss of generality, we may assume that the
functionH(z) has all its poles and zeros inside the unit circle
and that no poles or zeros occur at the originz = 0. Thus,
H(z) is a causal and stable minimum phase linear filter [17],
and its inverse is also a causal and stable minimum phase
linear filter.

For the linear Gaussian noise channel, the channel capac-
ity [1] is defined as the maximal amount of information that
could be transmitted per channel use with an arbitrarily small
error probability. It is well known that noiseless channel output
feedback, i.e., error-free observation of the channel output by
the transmitter, may increase the channel capacity [11]. Thus,
if we denote the feed-forward channel capacity asC and the
feedback channel capacity asCfb, thenC ≤ Cfb.

As illustrated in Figure 4, the transmitter knows at timet,
without error, all previous realizations of the channel outputs
before it forms and sends out the next channel input signal.
The transmission starts at timet = 1. We also assume
that prior to time t = 1, a known signal is transmitted,
e.g., Xt = 0 for t ≤ 0, and thus both the transmitter and
receiver know the prior channel outputsR0

−∞ = N0
−∞ =

n0
−∞. This is equivalent to assuming that both the receiver

and the transmitter knowN0
−∞ = n0

−∞ andW 0
−∞ = w0

−∞.
This assumption on the channel inputs and outputs prior to
transmission is mainly for simplifying the analysis in the state-
space setting, which we formally introduce in Section II-B.

M

0, σW
2

tX +
Nt

transmitter receiverRt

zH(  )

Wt ~N

D
Rt−1

(        )

Fig. 4. Linear Gaussian noise channel with feedback.

We denote the message asM and encode it inton feedback-
dependent channel input signal variablesXn

1 by using a
feedback encoder, which in its most general form is

Xt = Xt

(
M, Rt−1

1 , n0
−∞

)
. (8)

The receiver tries to decode the messageM based on the
realization of the channel output variablesRn

1 = rn1 .
We next summarize some of the relevant known results.

A. Butman’s Recursive Feedback Coding Scheme

Butman [11] considered a very general communication
system for colored Gaussian noise channels with or without
feedback. The feedback considered can be noiseless or noisy.
If we omit the noisy feedback scenario, the transmitted signal
Xt is chosen as a linear combination of the feedback and the
Gaussian messageM = θ as

Xt = δtθ +

t−1∑

i=1

atiRi. (9)

With this transmission model, Butman optimized the signaling
for certain Gaussian noise channels with feedback. For first-
order autoregressive noise channels, the following feedback
scheme achieves the maximal information rate under the model
in (9). At each time instantt > 0, the transmitter computes
the receiver-side minimum-variance estimate of the message

θ̃ = E
[
θ
∣
∣Rt−1

1 = rt−1
1

]
(10)

and transmits

Xt = δt

(

θ − θ̃
)

. (11)

By optimizing the coefficientsδt to maximize the information
rate subject to the power constraint, a tight lower bound on
the feedback capacity was obtained, which was shown to be
greater than the feed-forward channel capacity. This result
was generalized to higher order channels [18]. Proving that
Butman’s coding scheme (9) achieves the capacity is still an
open problem.

B. n-Block Feedback Capacity

Cover and Pombra [7] introduced the (block-length-n) feed-
back capacity as the maximal achievable information rate
(i.e., maximal information per channel use) for finite block
length (or finite horizon)n, and showed that a sequence
of codes exists that can achieve the capacity asn → ∞.
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Since we are assuming that the noise realizationn0
−∞ is

known both to the receiver and the transmitter prior to the
start of transmission, we can express the Cover-Pombran-

block feedback capacity asCfb(n) △
= max 1

n
I
(
M;Rn

1

∣
∣n0

−∞

)
,

where the maximization is taken under a finite-horizon power
constraint

E

[

1

n

n∑

t=1

(Xt)
2

∣
∣
∣
∣
∣
N0

−∞ = n0
−∞

]

≤ P. (12)

Define the following covariance matrices

K
(n)
N

△
= E

[

Nn
1 · (Nn

1 )
T ∣∣N0

−∞ = n0
−∞

]

K
(n)
X

△
= E

[

Xn
1 · (Xn

1 )
T ∣∣X0

−∞ = n0
−∞

]

K
(n)
X+N

△
= E

[

(Xn
1 +Nn

1 ) · (X
n
1 +Nn

1 )
T ∣∣N0

−∞ = n0
−∞

]

.

As shown in [7], then-block feedback capacity (or maximal
information rate) equals

Cfb(n) = max
1
n
tr

“

K
(n)
X

”

≤P

1

2n
log

∣
∣
∣K

(n)
X+N

∣
∣
∣

∣
∣
∣K

(n)
N

∣
∣
∣

. (13)

Here, the maximization is taken over all channel input vari-
ablesXn

1 , which take the following linear form

Xt =

t−1∑

i=1

btiNi + Vt, for t = 1, 2, . . . , n, (14)

wherebti are the coefficients that need to be optimized, and
the random variablesVt have a Gaussian distribution whose
covariance matrix needs to be optimized.

Then-block feedback capacity computation problem in (13)
is formulated for an arbitrary noise covariance matrixK

(n)
N .

This optimization problem can be solved by methods given
in [19]. The number of unknown variables in (14) isO(n2).
For the feedback code in (14) the transmitter would need
to remember and utilize all previous channel output realiza-
tions Rt−1

1 = rt−1
1 (or the noise realizationsN t−1

1 = nt−1
1 )

so as to form the next input signalXt = xt by using the
linear equation (14). Thus, the encoding complexity grows
with time t in general.

In the following, we reformulate the linear Gaussian noise
channel in Figure 4 as a state-space channel model. The state-
space formalism permits a very simple feedback-capacity-
achieving signaling scheme whose encoding complexity is
constant for any time instantt ≥ 1. For this optimal signaling
scheme we show in this paper, the number of variables grows
asO(n), and the encoding complexity is fixed for allt > 1.

C. An Equivalent State-Space Gaussian Noise Channel Model

The filter H(z) in (6) is modeled as a rational filter with
all poles and zeros inside the unit circle and no poles or
zeros in the origin. The inverse of such a filter exists and
is also invertible, so we may filter (without causing latency)
the channel output by a noise whitening filterH−1(z) to get
an equivalent state-space (intersymbol interference) channel
model with white noise (depicted in Figure 5)

Y (z) = H−1(z)R(z) = H−1(z)X(z) +W (z), (15)

M transmitter

(        )0, σW
2

tX + receivertzH (  )

Wt ~N

−1 Y

D
Yt−1

Fig. 5. An equivalent linear Gaussian noise channel model
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Fig. 6. AnLth-order LTI Gaussian noise channel with noiseless feedback

or equivalently

Yt −

L∑

l=1

alYt−l = Xt +

L∑

l=1

clXt−l +Wt −

L∑

l=1

alWt−l, (16)

where Wt is an independent and identically distributed
(i.i.d.) Gaussian random process with varianceσ2

W .
The channel model (16), depicted in Figure 5, is a channel

model with intersymbol interference due to the filterH−1(z).
Note that the transmitter obtainsYt by filtering the original
channel outputRt using the filterH−1(z). The filtersH(z)
andH−1(z) are causal, minimum phase and invertible, and
thus do not cause any delay, see [17]. Thus, the two channel
models depicted in Figure 4 and Figure 5 could be converted
into each other’s form by filtering their channel outputs using
rational causal delay-free filtersH(z) and H−1(z), respec-
tively. Hence, the two channel models are mathematically
equivalent and have the same feedback (or feed-forward)
channel capacities.

The rational filterH−1(z) can be realized by shift regis-
ters [17], and the channel model depicted in Figure 5 can
thus be represented as a state-space (or state-machine) channel
model with noiseless feedback. As depicted in Figure 6, we
only need to consider a linear time-invariant (LTI) filter [17]
observed through an additive white Gaussian noise (AWGN)
channel, see equation (15). The LTI filter in the channel is
completely characterized by its orderL and the two vectors
of tap coefficients

a
△
= [a1, a2, · · · , aL]

T
, (17)

c
△
= [c1, c2, · · · , cL]

T
, (18)

which are also coefficients of the rational filterH(z) in
equation (6).

Let Xt be the channel input at timet whose realization
is denoted byxt. Let Yt be the noisy channel output at
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time t whose realization is denoted byyt (which is thefiltered
channel outputRt of the linear Gaussian noise channel in
Figure 4). Let the vector of values stored in the shift registers

of the LTI filter, i.e.,St

△
= [St(1), St(2), . . . , St(L)]

T, be the

channelstatevector, and denote the state realization byst
△
=

[st(1), st(2), . . . , st(L)]
T. Since it is assumed that the channel

inputsX0
−∞ are known prior to the start of transmission at

time t = 1, the state realizationS0 = s0 is also known. Then,
the channel can be described by the following assumptions:

1) The forward channel satisfies a state-space model, i.e.,

St = ASt−1 + bXt (19)

Yt = (a+ c)T St−1 +Xt +Wt, (20)

whereWt is white Gaussian noise with varianceσ2
W .

The square matrixA and the vectorb are time-invariant
as follows

A
△
=










a1 a2 . . . aL−1 aL
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0










, b
△
=








1
0
...
0







. (21)

The LTI filter described by the coefficient vectorsa andc
is invertible and stable. The initial stateS0 = s0 is
known to both the encoder and the decoder.

2) The feedback link is noiseless and causal, i.e., the
encoder, before sending out symbolXt, knows without
error all previous channel outputsY t−1

1 = yt−1
1 .

3) The average channel input power is constrained by

1

n

n∑

t=1

E
[
(Xt)

2 |S0 = s0
]
≤ P, (22)

wheren is the total number of input symbolsXn
1 that

are used to encode the messageM.

From assumptions 1)-3), we have the following:

I) For any given initial channel stateS0 = s0, the
sequencesSt

1 and Xt
1 determine each other uniquely

because of the linear equation (19). If a state sequence
does not conform to the channel law (19), it is called
invalid. We only need to considervalid state sequences
throughout. From the definition of the stateSt in (19),
we see that when the initial states0 is known, the chan-
nel input sequenceXt and the channel state sequenceSt

are in a1-to-1 relationship. So, the mutual information
rate between the channel input sequence (source) and
the channel output sequence is the same as the mutual
information rate between the channel state sequence and
the channel output sequence. Thus, it is valid to refer to
the state sequence as thesourcesequence.

II) Given the channel state pairSt
t−1 =

(
St−1, St

)
, the

channel outputYt is statistically independent of previous
channel statesSt−2

0 and outputsY t−1
1 , that is

P
Yt|St

0,Y
t−1
1

(
yt
∣
∣st0, y

t−1
1

)
= P

Yt|St
t−1

(
yt
∣
∣stt−1

)
. (23)

Since the variance of the white Gaussian noiseWt

is σ2
W , from equation (20) we have the following con-

ditional differential entropy of the channel output

h
(
Yt

∣
∣St

0, Y
t−1
1

)
= h

(
Yt

∣
∣St

t−1

)

= h (Wt)

=
1

2
log(2πeσ2

W ). (24)

III) Since the sequencesXt andSt uniquely determine each
other for any given value ofs0, we can characterize the
source distribution either in terms of channel inputsXt

as

Pt

(
xt

∣
∣st−1

0 , yt−1
1

)△
= P

Xt|St−1
0 ,Y

t−1
1

(
xt

∣
∣st−1

0 , yt−1
1

)
, (25)

or in terms of channel statesSt as

Pt

(
st
∣
∣st−1

0 , yt−1
1

)△
= P

St|S
t−1
0 ,Y

t−1
1

(
st
∣
∣st−1

0 , yt−1
1

)
. (26)

For the Gaussian noise channel formulated in the state-
space framework, the feedback capacity for a finite horizon
n equals [7]

Cfb(n) = max
1

n
I (M;Y n

1 |S0 = s0 )

= max
1

n
[h (Y n

1 |S0 = s0 )− h (Wn
1 )] , (27)

where the maximization is over the channel input distribu-
tion (26) and is subject to the average input power con-
straint (22). In the subsequent sections, we focus on char-
acterizing the optimal signaling and the feedback capacityfor
the state-space channel model depicted in Figure 6.

III. n-BLOCK FEEDBACK CAPACITY

In this section, we manipulate the mutual informa-
tion I (M;Y n

1 |S0 = s0 ) into a form that is suitable for
evaluation and analysis. Let the source distribution induced
by the encoderXt = Xt

(
M, Y t−1

1

)
, i.e., the set of all

valid conditional probability density functions defined in(25)
or (26), be denoted by

P
△
= {Pt

(
st
∣
∣st−1

0 , yt−1
1

)
, t = 1, 2, . . .}. (28)

The n-block feedback capacity computation problem (13)
becomes (see [7])

Cfb(n) = max
P

1

n
I (M;Y n

1 |S0 = s0 )

= max
P

1

n
[h (Y n

1 |S0 = s0 )− h (Wn
1 )] , (29)

where the maximization is over the source distributionP .
Note that in (28) we temporarily ignore the linear structure
of the capacity-achieving signaling (14) derived by Cover and
Pombra in [7], and consider the distributionP instead because
we first want to show that the a Markov structure of the
distributionP is sufficient. Consequently, we will show that a
linear signaling scheme, taking a very simple form, is sufficient
for achieving then-block capacity.
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The differential entropy of the channel noise in (29) can be
alternatively expressed as

h (Wn
1 ) =

n∑

t=1

h (Wt) =

n∑

t=1

h
(
Yt

∣
∣Y t−1

1 , St
1, S0 = s0

)
. (30)

Here, the equalities follow from the fact that the whitened
noise sequenceWt is independent and identically dis-
tributed (i.i.d.) and from the channel assumptions in Sec-
tion II-C, see (24). By substituting (30) into the expression for
I (M;Y n

1 |S0 = s0 ) in (29), we arrive at several equivalent
expressions forI (M;Y n

1 |S0 = s0 )

I (M;Y n
1 |S0 = s0 )

=
n∑

t=1

[

h
(
Yt

∣
∣Y t−1

1 , s0
)
−

1

2
log
(
2πeσ2

W

)
]

(31)

=

n∑

t=1

[
h
(
Yt

∣
∣Y t−1

1 , s0
)
− h

(
Yt

∣
∣Y t−1

1 , St
1, s0

)]
(32)

=

n∑

t=1

[
h
(
Yt

∣
∣Y t−1

1 , s0
)
− h

(
Yt

∣
∣Y t−1

1 , St
t−1, s0

)]
(33)

=
n∑

t=1

I
(
St
t−1;Yt

∣
∣Y t−1

1 , s0
)
, (34)

where equalities in (31) and (32)1 follow from the definition
of mutual information; the equality in (33) comes from the
chain rule for mutual information and the channel assumptions,
see (24); and equality (34) follows from the definition of
mutual information. The terms in the sums (31) through (34)
represent the amount of information that every channel use
contributes to the total transmitted information.

Now, the feedback capacity can be expressed as

Cfb(n) = max
P

1

n
I (M;Y n

1 |S0 = s0 )

= max
P

1

n

n∑

t=1

I
(
St
t−1;Yt

∣
∣Y t−1

1 , s0
)
, (35)

where the maximization is taken over the setP of valid
feedback-dependent source distribution functions (28), see [7]
or [13] for the proof.

A source distributionP is called optimal if it maxi-
mizes I (M;Y n

1 |S0 = s0 ) and thus achieves then-block
feedback capacity in (35). Since the information rate
1
n
I (M;Y n

1 |S0 = s0 ) is linearly proportional to the entropy
rate of the channel output, see (31), a feedback-dependent
source is optimal if and only if it maximizes the entropy
rate of the channel output processYt. For a linear Gaus-
sian noise channel, the feedback capacity is achieved by a
Gaussian source distribution, see [7], [13]. Therefore, inthe
sequel, without loss of optimality, we only consider feedback-
dependentGaussiansource distributions.

Since the number of arguments for the probability density
function (pdf)Pt

(
st
∣
∣st−1

0 , yt−1
1

)
increases linearly with time

t, it is hard to directly find the optimal distributionP in (28)

1The right-hand side of equation (32) is defined by Marko [20] and
Massey [21] as the directed information from the channel state to the channel
output.

and thereby compute then-block feedback capacityCfb(n)

for large block lengthn. However, by working on a state-
space channel model as defined in Section II-C, we are able
to significantly simplify the problem and derive a simple dy-
namic programming method to compute then-block feedback
capacity.

IV. n-BLOCK FEEDBACK-CAPACITY-ACHIEVING

STRATEGY

A. Gauss-Markov Sources Achieve the Feedback Capacity

In the following analysis, we note that since the initial
channel states0 is known according to the channel assumption
in Section II-C, for notational simplicity, we will not explicitly
write the dependence ons0 when obvious.

Theorem 1:[Feedback-dependent Gauss-Markov sources
achieve the feedback capacity] For the power constrained
Gaussian channel, a feedback-dependent Gauss-Markov source
distribution (not necessarily stationary) of the following form

PGM △
=
{
Pt

(
st
∣
∣st−1, y

t−1
1

)
, t = 1, 2, . . .

}
(36)

achieves then-block feedback capacityCfb(n), for any block
lengthn.

Proof: We adopt the following proof strategy. As shown
in [7], we only need to consider feedback-dependent Gaus-
sian source distributions. We take an arbitrary feedback-
dependent Gaussian (not necessarily Markov) source distri-
bution P1 of the form in (28). From the sourceP1, we
obtain the marginal state transition probabilities, from which
we construct a feedback-dependent Gauss-Markov sourceP2

of the form in (36). We then show that sourcesP1 and
P2, though different in general, induce the same information
I (M;Y n

1 |S0 = s0 ). Using this argument, we will show that
for any optimal feedback-dependent Gaussian source distribu-
tion that achieves then-block feedback capacity, there exists
a feedback-dependent Gauss-Markov source distribution (not
necessarily stationary) that also achieves then-block feedback
capacity.

Let P1 be any valid feedback-dependent Gaussian source
distribution defined as

P1
△
=
{
Pt

(
st
∣
∣st−1

0 , yt−1
1

)
, t = 1, 2, · · ·

}
. (37)

From the sourceP1, we define the sequence of conditional
marginal pdf’sQt

(
st
∣
∣st−1, y

t−1
1

)
, for t = 1, 2, · · ·, as follows

Qt

(
st
∣
∣st−1, y

t−1
1

) △
= P

(P1)

St|St−1,Y
t−1
1

(
st
∣
∣st−1, y

t−1
1

)
(38)

=

∫
"

t−1
Q

τ=1
Pτ(sτ|s

τ−1
0 ,y

τ−1
1 )f

Yτ|Sτ
τ−1
(yτ |sττ−1)

#

Pt(st|s
t−1
0 ,y

t−1
1 )ds

t−2
1

∫
"

t−1
Q

τ=1
Pτ(sτ|s

τ−1
0 ,y

τ−1
1 )f

Yτ|Sτ
τ−1
(yτ |sττ−1)

#

dst−21

.(39)

Using the functionsQt

(
st
∣
∣st−1, y

t−1
1

)
, we construct a

feedback-dependent Markov (not necessarily stationary)
source distributionP2 as

P2 =
{
Qt

(
st
∣
∣st−1, y

t−1
1

)
, t = 1, 2, · · ·

}
. (40)
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The sourceP2 induces the following joint pdf of the channel
statesSt

t−1 and outputsY t
1

P
(P2)

St
t−1,Y

t
1 |S0

(
stt−1, y

t
1 |s0

)

=

∫

P
(P2)

St
1,Y

t
1 |S0

(
st1, y

t
1 |s0

)
dst−2

1 (41)

=

∫ t∏

τ=1

Qτ

(
sτ
∣
∣sτ−1, y

τ−1
1

)
P
Yτ |Sτ

τ−1

(
yτ
∣
∣sττ−1

)
dst−2

1 . (42)

We next show by induction that the joint distribution (42)
of St

t−1 andY t
1 induced by the sourceP2 is the same as the

one induced by the sourceP1, i.e.,

P
(P2)

St
t−1,Y

t
1 |S0

(
stt−1, y

t
1 |s0

)
= P

(P1)

St
t−1,Y

t
1 |S0

(
stt−1, y

t
1 |s0

)
(43)

=

∫

P
(P1)

St
1,Y

t
1 |S0

(
st1, y

t
1 |s0

)
dst−2

1 (44)

=

∫ t∏

τ=1

Pτ

(
sτ
∣
∣sτ−1

0 , yτ−1
1

)
P
Yτ |Sτ

τ−1

(
yτ
∣
∣sττ−1

)
dst−2

1 .(45)

For t = 1, by the definition (39) of sourceP2 we have

Q1(s1 |s0 ) = P1(s1 |s0 ). (46)

We verify the to-be-proved equality (43) fort = 1 by noting
that

P
(P2)

S1,Y1|S0

(s1, y1 |s0 ) = Q1(s1 |s0 )PY1|S1
0

(
y1
∣
∣s10
)

(47)

= P1(s1 |s0 )PY1|S1
0

(
y1
∣
∣s10
)

(48)

= P
(P1)

S1,Y1|S0

(s1, y1 |s0 ) , (49)

which directly implies

P
(P2)

S1
0,Y1|S0

(
s10, y1 |s0

)
= P

(P1)

S1
0,Y1|S0

(
s10, y1 |s0

)
. (50)

Now, assume that the equality (43) holds for up to timet− 1,
wheret > 1, particularly,

P
(P2)

S
t−1
t−2,Y

t−1
1 |S0

(
st−1
t−2, y

t−1
1 |s0

)

= P
(P1)

St−1
t−2,Y

t−1
1 |S0

(
st−1
t−2, y

t−1
1 |s0

)
(51)

=

∫ t−1∏

τ=1

Pτ

(
sτ
∣
∣sτ−1

0 , yτ−1
1

)
P
Yτ |Sτ

τ−1

(
yτ
∣
∣sττ−1

)
dst−3

1 .(52)

The induction step for timet is simply shown as follows

P
(P2)

St
t−1,Y

t
1 |S0

(
stt−1, y

t
1 |s0

)

= Qt

(
st
∣
∣st−1, y

t−1
1

)
P
Yt|St

t−1

(
yt
∣
∣stt−1

)

∫

P
(P2)

S
t−1
t−2,Y

t−1
1 |S0

(
st−1
t−2, y

t−1
1 |s0

)
dst−2 (53)

(a)
=

∫
"

t−1
Q

τ=1
Pτ (sτ|s

τ−1
0 ,y

τ−1
1 )f

Yτ|Sτ
τ−1
(yτ |sττ−1)

#

Pt(st|s
t−1
0 ,y

t−1
1 )dst−2

1

∫
"

t−1
Q

τ=1
Pτ (sτ|s

τ−1
0 ,y

τ−1
1 )f

Yτ|Sτ
τ−1
(yτ |sττ−1)

#

dst−2
1

×

P
Yt|St

t−1

(
yt
∣
∣stt−1

)
∫

"

t−1
Q

τ=1
Pτ (sτ|s

τ−1
0 ,y

τ−1
1 )f

Yτ|Sτ
τ−1
(yτ |sττ−1)

#

dst−2
1 (54)

(b)
=

∫ t∏

τ=1

Pτ

(
sτ
∣
∣sτ−1

0 , yτ−1
1

)
P
Yτ |Sτ

τ−1

(
yτ
∣
∣sττ−1

)
dst−2

1 (55)

= P
(P1)

St
t−1,Y

t
1 |S0

(
stt−1, y

t
1 |s0

)
, (56)

where(a) is the result of substituting the definition (39) for
sourceP2 and the induction assumption (52) into (53), and(b)
is obtained by simplifying the expression in (54).

Thus, we have shown that the channel statesSt
t−1 and

outputsY t
1 induced by sourcesP1 and P2 have the same

distribution. It is therefore clear that the sourcesP1 andP2

induce the same informationI (M;Y n
1 |S0 = s0 ) according

to (34).
Note that the set of channel state vector entries

{Sτ (i) : 1 ≤ i ≤ M, 1 ≤ τ ≤ t− 1} and the input sequence
Xt−1

1 linearly determine each other according to the channel
law in (19). Thus, induced by the Gaussian sourceP1, the
channel state entriesSτ (i) (for 1 ≤ i ≤ M and 1 ≤ τ ≤ t)
and the symbolsY t

1 are jointly Gaussian. We conclude that
the conditional pdf’sQt

(
st
∣
∣st−1, y

t−1
1

)
constructed in (39)

are also Gaussian functions and thusP2 is a feedback-
dependent Gauss-Markov (not necessarily stationary) source.
The Gauss-Markov sourceP2 also satisfies the input power
constraint (22), which is obvious by the equality in (56).

Theorem 1 reveals that, for any given prior channel output
yt−1
1 , it is sufficient to utilize Markov sources to maximize

the entropy of the channel output sequence. By Theorem 1,
without loss of optimality, in the sequel we only consider
feedback-dependent Gauss-Markov sources of the following
form

PGM △
=
{
Pt

(
st
∣
∣st−1, y

t−1
1

)
, t = 1, 2, · · ·

}
. (57)

B. The Kalman-Bucy Filter is Optimal for Processing the
Feedback

Definition 1: We useαt(·) as shorthand notation for the
posterior pdf of the channel stateSt given the prior channel
outputsY t

1 = yt1, that is

αt(µ)
△
= P

S
t|S0,Y

t
1

(
µ
∣
∣s0, y

t
1

)
. (58)

�

For a feedback-dependent Gauss-Markov sourcePGM, the
functionsαt(·) can be recursively computed by the Bayes rule
as follows

αt

(
µ
)
=

∫
αt−1(v)Pt(µ|v,yt−1

1 )PYt|St−1,St
(yt|v,µ )dv

∫∫
αt−1(v)Pt(u|v,yt−1

1 )PYt|St−1,St
(yt|v,u )dudv

. (59)

Since the functionαt(·) is a Gaussian pdf, it is completely
characterized by the conditional meanmt and conditional
covariance matrixKt of the channel state

mt = E
[
St

∣
∣s0, y

t
1

]
, (60)

Kt = E
[

(St −mt) (St −mt)
T ∣∣s0, y

t
1

]

. (61)

We note that the recursion (59), i.e., the recursive computation
of mt and Kt, can be implemented by a Kalman-Bucy
filter [22].

Theorem 2:[Kalman-Bucy filter is optimal for processing
the feedback] For the power-constrained linear Gaussian chan-
nel, let the feedback-dependent Gauss-Markov (not necessarily
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Fig. 7. The optimal feedback strategy for the Linear Gaussian noise channel.

stationary) sourcePGM
α be defined as

PGM
α

△
=
{
Pt

(
st
∣
∣st−1, αt−1(·)

)
, t = 1, 2, . . .

}
, (62)

where the Markov transition probability depends only on the
posterior distribution function of the channel stateαt(·) instead
of all prior channel outputsY t−1

1 . The n-block feedback
capacityCfb(n) then equals

Cfb(n) = max
PGM

α

1

n
I (M;Y n

1 |S0 = s0 )

= max
PGM

α

1

n

n∑

t=1

I
(
St
t−1;Yt

∣
∣Y t−1

1 , s0
)
, (63)

where the maximization is taken subject to an average input
power constraint

1

n

n∑

t=1

E
[
(Xt)

2 |S0 = s0
]
≤ P. (64)

This capacity-achieving strategy is depicted in Figure 7.�
Proof: We first briefly outline the proof strategy. We will

consider twodifferent feedback vector realizations (channel
output histories)yt−1

1 and ỹt−1
1 that both induce the same

posterior state pdfαt−1(·) at time t − 1. We will then
apply equivalent Gauss-Markov source distributions for the
subsequent source symbols (at timest, t+1, ...), irrespective of
the feedback realization (yt−1

1 or ỹt−1
1 ), and we get the same

distributions for the subsequent channel inputs and outputs,
and thus the same transmission power and output entropy (for
the subsequent transmissions), irrespective of the two channel
histories. Using this result, we complete the proof using an
inductive argument.

Suppose that two different feedback vectorsỹt−1
1 andyt−1

1

(ỹt−1
1 6= yt−1

1 ) induce the same posterior channel state pdf
αt−1(·), that is, for any possible state valuest−1 = µ we
have

α̃t−1

(
µ
) △
= P

St−1|S0,Y
t−1
1

(
µ
∣
∣s0, ỹ

t−1
1

)

= P
St−1|S0,Y

t−1
1

(
µ
∣
∣s0, y

t−1
1

)△
=αt−1

(
µ
)
. (65)

Now consider two distributions of the sourceSτ , for τ ≥ t,
the first distribution conditioned onyt−1

1 , and the second con-
ditioned onỹt−1

1 . If we let these two distributions, irrespective
of the feedback realization (yt−1

1 or ỹt−1
1 ), be equal to each

other forτ ≥ t, that is, forτ ≥ t if

Pτ

(
sτ
∣
∣sτ−1, ỹ

t−1
1 , yτ−1

t

)
= Pτ

(
sτ
∣
∣sτ−1, y

t−1
1 , yτ−1

t

)
, (66)

we then have

P
Y n
t ,Sn

t−1|S0,Y
t−1
1

(
ynt , s

n
t−1

∣
∣s0, ỹ

t−1
1

)

= αt−1(st−1)
n∏

τ=t

Pτ

(
sτ
∣
∣sτ−1, y

τ−1
1

)
P
Yτ |Sτ

τ−1

(
yτ
∣
∣sττ−1

)

= P
Y n
t ,Sn

t−1|S0,Y
t−1
1

(
ynt , s

n
t−1

∣
∣s0, y

t−1
1

)
. (67)

The equality in (67) directly implies that the entropies are
equal

h
(
Y n
t

∣
∣s0, ỹ

t−1
1

)
= h

(
Y n
t

∣
∣s0, y

t−1
1

)
, (68)

and that for anyτ ≥ t the transmission powers are equal

E
[
(Xτ )

2
∣
∣s0, ỹ

t−1
1

]
= E

[
(Xτ )

2
∣
∣s0, y

t−1
1

]
. (69)

Therefore, for anyt > 0 and any constantΠ ≥ 0, the source
distribution Pτ

(
sτ
∣
∣sτ−1, y

t−1
1 , yτ−1

t

)
for time t ≤ τ ≤ n

that maximizes the channel output entropyh
(
Y n
t

∣
∣s0, y

t−1
1

)
,

subject to power constraint
n∑

τ=t

E
[
(Xτ )

2
∣
∣s0, y

t−1
1

]
≤ Π, (70)

when yt−1
1 is the feedback vector, must also maximize the

entropyh
(
Y n
t

∣
∣s0, ỹ

t−1
1

)
under constraint

n∑

τ=t

E
[
(Xτ )

2
∣
∣s0, ỹ

t−1
1

]
≤ Π, (71)

when ỹt−1
1 is the feedback vector. We note thatΠ is an

arbitrary non-negative constant (independent of the channel
output history, and independent of the initial state).

According to the above analysis, for any given power
budgetΠ ≥ 0 for transmissions at timesτ ≥ t, the optimal
source distributionPt

(
st
∣
∣st−1, y

t−1
1

)
at time t that maxi-

mizes the entropy of subsequent channel outputs depends only
on αt−1(·). We may summarize the conclusion as follows:

Conclusion 1: At any time instantt, for any con-
stant non-negative power constraintΠ, the optimal
distribution of the sourceXn

t that maximizes the
channel output entropyh

(
Y n
t | s0, y

t−1
1

)
under the

power constraint
∑n

τ=t E
[
(Xτ )

2
∣
∣s0, y

t−1
1

]
≤ Π,

depends only on the posterior channel state distri-
butionαt−1 (·), regardless of the channel output his-
tory yt−1

1 that lead to that posterior state distribution.
We now show that we can drop the conditioning on the

channel output historyyt−1
1 when formulating the power con-

straint in Conclusion 1. According to (29), the maximization
problem in (63) is equivalent to maximizing the channel output
entropy, i.e.,

argmax
P

n∑

t=1

I
(
St
t−1;Yt

∣
∣Y t−1

1 , s0
)

= argmax
P

h (Y n
1 |s0 ) . (72)

For any1 ≤ t ≤ n, we can rewrite the channel output entropy
as

h (Y n
1 |s0 ) = h

(
Y t−1
1 |s0

)
+

∫

h
(
Y n
t

∣
∣s0, y

t−1
1

)
PY

t−1
1

(
yt−1
1

)
dyt−1

1 . (73)
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Similarly, we can rewrite the input power as

n∑

τ=1

E
[
(Xτ )

2 |s0
]
=

t−1∑

τ=1

E
[
(Xτ )

2 |s0
]
+

∫ n∑

τ=t

E
[
(Xτ )

2
∣
∣s0, y

t−1
1

]
PY

t−1
1

(
yt−1
1

)
dyt−1

1 . (74)

For the optimal source distribution that maximizes (72) subject
to the power constraint (64), and for any given channel output
realizationyt−1

1 , we define the remaining power at timet as

Πt−1

(
yt−1
1

) △
=

n∑

τ=t

E
[
(Xτ )

2
∣
∣s0, y

t−1
1

]
. (75)

Clearly Π0 = nP . By definition,Πt−1

(
yt−1
1

)
is a function

of prior channel outputs and a function of timet. We note
that the channel inputs and outputs are jointly Gaussian [7].
Thus for anyτ ≥ t, it is sufficient to only consider optimal
Gaussian sources that satisfy

E
[
Xτ

∣
∣s0, y

t−1
1

]
= 0, (76)

because otherwise one could easily verify that another

Gaussian source defined aŝXτ
△
= Xτ − E

[
Xτ

∣
∣s0, y

t−1
1

]

for τ ≥ t would induce the same channel output entropy (73)
while consuming strictly less power thanXτ . Now, since
E
[
Xτ

∣
∣s0, y

t−1
1

]
= 0, we have

n∑

τ=t

E
[
(Xτ )

2
∣
∣s0, y

t−1
1

]
=

n∑

τ=t

Var
(
Xτ

∣
∣s0, y

t−1
1

)
. (77)

But sinceXτ and Y t−1
1 are jointly Gaussian, the variance

Var
(
Xτ

∣
∣s0, y

t−1
1

)
does not depend on the realizationyt−1

1 ,
and we can write

n∑

τ=t

E
[
(Xτ )

2
∣
∣s0, y

t−1
1

]
=

n∑

τ=t

E
[
(Xτ )

2 |s0
]
, (78)

or equivalently,Πt−1 = Πt−1

(
yt−1
1

)
. Hence, conditioning on

the channel output historyyt−1
1 , is irrelevant when formulating

the power constraint. Directly utilizing (78), we can modify
Conclusion 1 into a new (slightly relaxed) conclusion that does
not require conditioning on the channel output history when
formulating the power constraint.

Conclusion 2: At any time instantt, for any con-
stant non-negative power constraintΠ, the opti-
mal distribution of the sourceXn

t that maximizes
the channel output entropyh

(
Y n
t | s0, y

t−1
1

)
under

the power constraint
∑n

τ=t E
[
(Xτ )

2
∣
∣s0, y

t−1
1

]
=

∑n
τ=t E

[
(Xτ )

2 |s0
]
≤ Π, depends only on the pos-

terior channel state distributionαt−1 (·), regardless
of the channel output historyyt−1

1 that lead to that
posterior state distribution.

We now utilize Conclusion 2 to finalize the proof using an
inductive argument. LetΠ0 = nP be the power constraint at
the beginning of transmissions. We have already established
in Conclusion 2 that given the power constraintΠ0, the
optimal source that maximizesh (Y n

1 | s0) under the power

constraintΠ0 depends only onα0 (·).2 The optimal source
now generates the channel inputX1 at time t = 1, whose
power isπ1 = E

[

(X1)
2
∣
∣
∣ s0

]

. The channel inputX1 induces
the channel outputY1, which in turn produces a new posterior
state distributionα1 (·). The leftover power isΠ1 = Π0 − π1.
Now, the optimal source at time instantt = 2 is one that
maximizesh (Y n

2 | s0, y1) subject to the power constraintΠ1

and, according to Conclusion 2, the source distribution at time
t = 2 depends only onα1 (·). This source generatesX2. Ex-
tending the inductive argument further in similar fashion,we
conclude that at each time stept, according to Conclusion 2,
the source distribution at timet depends only on the posterior
state distributionαt−1 (·).

An alternative proof based on dynamic programming [23]
and Lagrange multipliers is given in Appendix 1.

Theorem 2 suggests that, for the task of constructing the
next signal to be transmitted, all the “knowledge” contained
in the vector of prior channel outputsyt−1

1
is captured by the

posterior pdf of the channel stateαt−1(·).
So far, we have simplified the capacity-achieving feedback

strategy such that the transmitter does not need to memorize
the entire channel dynamicsyt−1

1 . Instead, for forming the
optimal signalXt (or equivalently stateSt) to be transmitted
at time t, we only need to know the immediately preceding
channel stateSt−1 = st−1 (determined by the prior chan-
nel inputs) and the Kalman-Bucy filter output, which is a
Gaussian probability density functionαt−1(·) characterized
by the conditional meanmt−1 and the conditional covariance
matrix Kt−1.

C. Properties of Capacity-Achieving Channel Dynamics

For any feedback-dependent Gauss-Markov sourcePGM
α ,

we have the following properties for the channel states, outputs
and posterior state distributions.

Theorem 3:For the linear Gaussian noise channel, if the
feedback-dependent Gauss-Markov source distributionPGM

α

is used, we have

1) The sequence of posterior channel state distributions
αt(·), or the pairs of variablesmt andKt, is a Markov
random process.

2) The sequence of the pairs(αt(·), St) is a Markov
random process.

3) The sequence of the pairs(αt(·), Yt) is a Markov
random process.

4) The sequence of the triples(αt(·), St, Yt) is a Markov
random process. �

Proof: For the Gauss-Markov sourcePGM
α , the recursive

sum-product rule (59) for updating the posterior pdf of the
channel state becomes

αt

(
µ
)
=

∫
αt−1(v)Pt(µ|v,αt−1(·))PYt|St−1,St

(yt|v,µ )dv
∫∫

αt−1(v)Pt(u|v,αt−1(·))PYt|St−1,St
(yt|v,u )dudv

,(79)

2Note that hereα0

“

µ
”

= δ
“

µ− s0

”

becauses0 is the known initial
state.
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and the conditional pdf of channel outputyt is

PYt|αt−1(·) (yt |αt−1(·) ) = P
Yt|S0,Y

t−1
1

(
yt
∣
∣s0, y

t−1
1

)

=

∫∫

αt−1(v)Pt(u|v, αt−1(·))PYt|St−1,St
(yt|v, u) dudv.(80)

We note that in (79) and (80), the dependence ons0 andyt−1
1

is replaced by the dependence onαt−1(·) according to Theo-
rem 2.

The theorem follows from (79), (80) and the Markovianity
of the sourcePGM

α .

D. Feedback-Capacity-Achieving Sources for General State-
Machine Channels

Theorems 1, 2 and 3 also hold for more general state-
machine (or state-space) channels other than the linear Gaus-
sian noise channel, except that for general state-machine
channels, the feedback-capacity-achieving source may notbe
Gaussian any more, and that the Kalman-Bucy filter is replaced
by a discrete-time version of the Wonham filter [24] (or
the forward sum-product recursion of the BCJR or Baum-
Welch algorithm [25], [26], [27], [28] for finite-state machines,
see [29]).

The linear Gaussian noise channel in this paper has an
average input power constraint over the whole block (or
horizon), which makes the feedback capacity computation
problem even more difficult than the state-machine channel
considered in [29], where no average power constraint is
needed and the inputs are chosen from a finite-size alphabet.
We note that the arguments used to prove Theorems 1, 2 and 3
also hold for some other channel input power constraints,
e.g., the peak input power constraint, which is beyond the
scope of this paper and will not be elaborated on any further.

V. n-BLOCK FEEDBACK CAPACITY COMPUTATION

A. Parameterizing the Feedback-Capacity-Achieving Markov
Sources

Lemma 1:Without loss of generality, the Gauss-Markov
sourcePGM

α can be expressed as

Xt = dTt St−1 + etZt + gt, (81)

where Zt is a white Gaussian random process with unit-
variance and is independent ofXt−1

1 andY t−1
1 . (Hereet and

gt are scalars, anddt is a vector of lengthL.) The coefficients
dt, et andgt are all dependent on the Gaussian pdfαt−1(·), or
alternatively on its meanmt−1 and covariance matrixKt−1.
The set of coefficients{dt, et, gt} completely determines the
feedback-dependent Gauss-Markov source distributionPGM

α

needed in Theorem 2. �

Proof: Given the channel state realizationSt−1 = st−1,
the inputxt and statest determine each other uniquely by the
channel state propagation rule (19), so the feedback-dependent
Gauss-Markov sourcePGM

α in Theorem 2 can be equivalently
represented as

PGM
α =

{
Pt

(
xt

∣
∣st−1, αt−1(·)

)
, t = 1, 2, . . .

}
. (82)

Further, since the channel state propagation rule (19) is lin-
ear, the joint distribution ofXt and St−1 is also Gaussian
for any given αt−1 (·). Thus, without loss of generality,
the sourcePGM

α can be specified as in (81) by coeffi-
cientsdt, et andgt, which depend on the Kalman-Bucy filter
outputαt−1(·).

The source parametrization in (81) reveals further structure
when compared to the source parametrization (14) obtained
by Cover and Pombra [7]. It is clear that every parametriza-
tion (81) leads to an equivalent parametrization (14), but not
vice versa. Also note that the number of parametersdt, et and
gt in (81) grows only linearly with the horizon distancen,
while the number of parametersbit in (14) grows quadratically
with the horizon distancen. The encoding complexity in (14)
grows linearly with time in general, while the encoding
complexity in (81) is constant for any time instantt > 1.

The following lemma establishes a formula for each term in
the information sum (63) and the input signal power sum (64)
in terms of the source parametersdt, et, andgt,.

Lemma 2:For the feedback-dependent Gauss-Markov
source (81), we have

h
(
Yt

∣
∣s0, y

t−1
1

)
−

1

2
log
(
2πeσ2

W

)

=
1

2
log

(

σ2
W + (a+c+dt)

T
Kt−1(a+c+dt)+(et)

2

σ2
W

)

, (83)

and

E
[
(Xt)

2
∣
∣s0, y

t−1
1

]
=
(

dTt mt−1+gt

)2

+ dTt Kt−1dt+(et)
2 , (84)

where dt, et and gt are themselves functions ofmt−1

andKt−1. �

Proof: For the source (81) in Lemma 1, using the Bayes
rule, we can formulate the first and second order conditional
moments of the channel inputXt and channel outputYt in
terms ofdt, et, gt, mt−1 andKt−1 as

E
[
Xt

∣
∣s0, y

t−1
1

]
= dTt mt−1 + gt, (85)

E
[
(Xt)

2
∣
∣s0, y

t−1
1

]

=
(

dTt mt−1+gt

)2

+ dTt Kt−1dt+(et)
2
, (86)

E
[
Yt

∣
∣s0, y

t−1
1

]
= (a+ c+ dt)

T
mt−1 + gt, (87)

E
[(
Yt − E

[
Yt

∣
∣s0, y

t−1
1

])2 ∣
∣s0, y

t−1
1

]

= (a+ c+ dt)
T
Kt−1 (a+ c+ dt) + (et)

2
+ σ2

W . (88)

Note that conditioned ons0 andyt−1
1 , the random variableYt

has a Gaussian distribution with variance as in (88), thus we
obtain (83). Equation (84) is the same as (86).

B. Problem Reformulation Using Lagrange Multipliers

The feedback capacity computation problem as stated in
Theorem 2 is a maximization problem under an inequality
constraint. Since then-block feedback capacity computation
problem is a convex optimization problem [19], and since
Slater’s conditions (see [30], Section 5.2.3) for this optimiza-
tion problem are satisfied, strong duality holds between the
original optimization problem and its Lagrangian dual. Such
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optimization problems can be reformulated (or solved) by
using the method of Lagrange multipliers.

We first define a reward function for this optimization
problem.

Definition 2: For an arbitrary constantγ ≥ 0, we define the
reward functionΩ (·) as

Ω
(
mt−1,Kt−1, dt, et, gt, γ

)

△
= h

(
Yt

∣
∣s0, y

t−1
1

)
−
1

2
log
(
2πeσ2

W

)

︸ ︷︷ ︸

information transmitted

− γE
[
(Xt)

2
∣
∣s0, y

t−1
1

]

︸ ︷︷ ︸

penalty for using power

(a)
=

1

2
log

(

σ2
W +(a+c+dt)

T
Kt−1(a+c+dt)+(et)

2

σ2
W

)

−γ

((

dTt mt−1 + gt

)2

+ dTt Kt−1dt + (et)
2

)

, (89)

where equality(a) follows from Lemma 2. �

Theorem 4:For a linear Gaussian noise channel with noise-
less feedback, then-block feedback capacity under the average
input power constraint equals

Cfb(n) = Cfb(n)(P )

= max
PGM

α

1

n
E

[
n∑

t=1

Ω
(
mt−1,Kt−1, dt, et, gt, γ

)

]

+γP,(90)

whereγ ≥ 0 and

γ

(

1

n

n∑

t=1

E
[

(Xt)
2 |S0 = s0

]

− P

)

= 0 (91)

are first-order Kuhn-Tucker necessary conditions for achieving
the feedback capacity. �

Proof: It has already been established that then-block
feedback capacity computation is a convex optimization prob-
lem [19]. It is easy to verify that Slater’s conditions (see [30],
Section 5.2.3) hold, hence the primal and the Lagrangian dual
problems are equivalent (see Appendix 2-A and Appendix 2-
C for a complete proof). Thus, we can focus on the dual
Lagrangian problem to derive the optimal source distribution
so as to achieve and compute then-block feedback capacity.

We consider the optimization problem in Theorem 2, i.e.,
we consider finding

max
PGM

α

n∑

t=1

EY
t−1
1

[

h
(
Yt

∣
∣s0, y

t−1
1

)
−

1

2
log (2πeσ2

W )

]

, (92)

subject to

n∑

t=1

E
[
(Xt)

2 |S0 = s0
]
≤ nP. (93)

The Lagrangian (with Lagrange multiplierγ) is

L(n)
(
PGM
α , γ

)

=

n∑

t=1

EY
t−1
1

[

h
(
Yt

∣
∣s0, y

t−1
1

)
−
1

2
log
(
2πeσ2

W

)
]

−γ

(
n∑

t=1

E
[
(Xt)

2 |S0 = s0
]
− nP

)

(94)

= EY
n−1
1

[
n∑

t=1

(

h
(
Yt

∣
∣s0, y

t−1
1

)
−

1

2
log
(
2πeσ2

W

)

−γE
[
(Xt)

2
∣
∣s0, y

t−1
1

]
)]

+nγP (95)

= E

[
n∑

t=1

Ω
(
mt−1,Kt−1, dt, et, gt, γ

)

]

+ nγP. (96)

The sourcePGM
α is optimal for the horizonn if and only if

it maximizes the LagrangianL(n)
(
PGM
α , γ

)
and also satisfies

the first-order Kuhn-Tucker necessary conditions [31], which
areγ ≥ 0 and

γ

(
n∑

t=1

E
[
(Xt)

2 |S0 = s0
]
− nP

)

= 0. (97)

Further, when the maximum in (92) is achieved, since equal-
ity (97) holds, we have

max
PGM

α

L(n)
(
PGM
α , γ

)

(a)
= max

PGM
α

n∑

t=1

EY
t−1
1

[

h
(
Yt

∣
∣s0, y

t−1
1

)
−

1

2
log
(
2πeσ2

W

)
]

(98)

= max
PGM

α

I (M;Y n
1 |S0 = s0 ) , (99)

where(a) is obtained by substituting (97) into (94).
Occasionally, the Lagrange multiplierγ is called as the

shadow price[32] for the optimization problem. As can be
seen in Definition 2, the value ofγ determines the penalty that
incurs for using the signal power in the objective function (90).
It can be verified that the shadow priceγ and the power
constraintP are in a 1-to-1 correspondence (see Corollary F
in Appendix 2-D), and thatγ monotonically decreases with
P (see Proposition E in Appendix 2-D). Particularly, the
valueγ = 0 corresponds to the case when there is no power
constraint, orP = ∞. In this paper, we are interested in a
finite input power constraint, i.e.,P < ∞, thus in the sequel
we only considerγ > 0.

Corollary 4.1: For any finite power budgetP , the corre-
sponding Lagrange multiplier (or shadow price) satisfiesγ >
0. The feedback-dependent Gauss-Markov sourceP∗ that
satisfies

P∗ = argmax
PGM

α

1

n
E

[
n∑

t=1

Ω
(
mt−1,Kt−1, dt, et, gt, γ

)

]

(100)

achieves then-block feedback capacityCfb(n), where the
power budgetP satisfies the following equality

P =
1

n

n∑

t=1

E
[

(Xt)
2
|S0 = s0

]

. (101)
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Here, the condition in (101) is the optimal power configura-
tion. �

Proof: For γ > 0, the condition (91) in Theorem 4
becomes (101). Thus by Theorem 4 (see also Appendix 2-
D) the sourceP∗ that achieves then-block feedback capac-
ity Cfb(n) = Cfb(n)(P ) in (90) has power equal toP and
satisfies (101).

Corollary 4.1 asserts that we can substitute the inequality
power constraint (22) by the correspondingequality, and
for any horizonn the power budgetP > 0 corresponds
to a shadow priceγ. For any shadow priceγ > 0, the
source determined in Corollary 4.1 is optimal for the specific
power budgetP satisfying (101); see Appendix 2-D for the
proof. In other words, the power budgetP is a monotonic
(see Proposition E in Appendix 2-D), though not explicitly
expressible, function ofγ (see also [33], [32]). Thus, comput-
ing the n-block feedback capacityCfb(n) for a finite power
budget0 < P < ∞ is equivalent to solving the maximization
problem posed in Corollary 4.1 for some positive shadow
price γ > 0 (as proved in Appendix 2-D), although the
relationship betweenP and γ is not known in an explicit
form.

We note that the general relationship between the power
budgetP and the shadow priceγ may also be derived from [7],
but the explicitly separable form of the objective functionin
Theorem 4 and Corollary 4.1 is a new result and will be crucial
for obtaining more explicit solutions to then-block feedback
capacity computation problem. It should also be mentioned
that it was shown in [33] that the feedback capacity is concave
in the power budgetP .

We next study and solve the maximization problem in
Corollary 4.1 for any given value of the shadow priceγ > 0.

C. Optimal Stochastic Control Formulation

The problem of finding the optimal source for a given value
of γ (see Corollary 4.1), can be formulated as a standard
dynamic-system stochastic control problem [23] (Vol 1, Chap-
ter 7 and Vol 2). We describe the dynamic system as follows.

The state of the dynamic system at each stage (or time)
t is the posterior pdfαt−1(·), which is characterized by
its meanmt−1 and covariance matrixKt−1. The control
or (policy) for staget is the Gauss-Markov (not necessarily
stationary) source distribution functionPt

(
st|st−1, αt−1(·)

)

characterized by the parametersdt, et andgt (see Lemma 1),
which themselves are functions ofmt−1 and Kt−1. The
systemdisturbanceat staget is the noisy channel outputYt,
which has the following distribution

PYt|αt−1(·) (yt |αt−1(·) ) = P
Yt|S0,Y

t−1
1

(
yt
∣
∣s0, y

t−1
1

)

=

∫∫

αt−1(v)Pt(u|v, αt−1(·))PYt|St−1,St
(yt |v, u) dudv.(102)

For this dynamic system which hasαt−1(·) as the state,
Pt

(
st|st−1, αt−1(·)

)
as the control andYt as the disturbance,

the system equation is

αt

(
µ
)
=

∫
αt−1(v)Pt(µ|v,αt−1(·))PYt|St−1,St

(yt|v,µ )dv
∫∫

αt−1(v)Pt(u|v,αt−1(·))PYt|St−1,St
(yt|v,u )dudv

, (103)

which can be implemented by the Kalman-Bucy filter, sym-
bolically expressed as

(mt,Kt) = F
(m,K)
KB

(
mt−1,Kt−1, dt, et, gt, yt

)
. (104)

If we define the matrixQt usingA andb in (21) as

Qt
△
= A+ b dTt , (105)

then, we can write the component-wise Kalman-Bucy fil-
ter (104) more explicitly as a pair of propagation equa-
tions [22]

mt = F
(m)
KB

(
mt−1,Kt−1, dt, et, gt, yt

)

= Qtmt−1 + gtb+
(

QtKt−1(a+c+dt)+b (et)
2
)(

yt−(a+dt)
Tmt−1

)

(a+ c+ dt)
T
Kt−1 (a+ c+ dt) + (et)

2
+ σ2

W

, (106)

and

Kt = F
(K)
KB (Kt−1, dt, et)

= QtKt−1Q
T
t +b bT (et)

2

−
(QtKt−1(a+c+dt)+b (et)

2)(QtKt−1(a+c+dt)+b (et)
2)T

(a+c+dt)
T

Kt−1(a+c+dt)+(et)
2+σ2

W

. (107)

Here, we note thatKt is a deterministic function ofKt−1, dt
andet, and can be computed offline.

By Theorem 3, when the feedback-dependent Gauss-
Markov sourcePGM

α is used, the processαt−1(·) has a Markov
property. For this dynamic system, if we define thereward for
each staget asΩ

(
mt−1,Kt−1, dt, et, gt, γ

)
, then the source

optimization problem in Corollary 4.1 is anaverage-reward-
per-stagestochastic control problem (see theaverage-cost-
per-stagestochastic control problem in [23], Chapter 7 and
Volume 2).

D. Source Optimization and Feedback Capacity Computation

We now describe a fairly simple dynamic-programming
value-iteration algorithm [23] which finds, for any horizonn,
the optimal source distribution that maximizes the informa-
tion I (M;Y n

1 |S0 = s0 ), and thus computes then-block feed-
back capacityCfb(n) for any shadow priceγ (or equivalently
for the corresponding power budgetP ).

Algorithm 1 FOR OPTIMIZING THE

FEEDBACK-CAPACITY-ACHIEVING SOURCE DISTRIBUTION

FOR ANY GIVEN SHADOW PRICE γ > 0

Initialization: For any possible value of the
pair

(
mt−1,Kt−1

)
, define the terminal reward

functionasJ (0)
(
mt−1,Kt−1, γ

) △
= 0.

Recursions: For k = 1, 2, . . . , n, generate the optimalk-
stage reward-to-go functions as

J (k)
(
mt−1,Kt−1, γ

)
= max
{dt,et,gt}

{

Ω
(
mt−1,Kt−1, dt, et, gt, γ

)

+E
[

J (k−1)(mt,Kt, γ)
]}

. (108)
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At the same time, we obtain the optimalkth-stage
policy P (k)

(
st
∣
∣st−1, αt−1(·)

)
as defined by the

following source coefficients
{

d(k)(mt−1,Kt−1, γ), e
(k)(mt−1,Kt−1, γ),

g(k)(mt−1,Kt−1, γ)
}

△
= arg max

{dt,et,gt}

{

Ω
(
mt−1,Kt−1, dt, et, gt, γ

)

+E
[

J (k−1)(mt,Kt, γ)
]}

. (109)

Here, in (108) and (109), the termsmt and Kt

are computed by the Kalman-Bucy equations (106)
and (107), respectively.

Optimized source: The optimal Gauss-Markov source
distribution is

PGM
α =

{

Pt

(
st
∣
∣st−1, αt−1(·)

)
=P (n−t+1)

(
st
∣
∣st−1, αt−1(·)

)
,

t = 1, 2, . . . , n
}

, (110)

where P (n−t+1)
(
st
∣
∣st−1, αt−1(·)

)
is the opti-

mal (n − t + 1)th-stage policy obtained by running
the above iterations.

End.

The above value iteration algorithm determines the
source distribution PGM

α that maximizes the informa-
tion I (M;Y n

1 |S0 = s0 ) for any given shadow priceγ > 0 (or
the corresponding finite power budgetP ), see [23] (Ch.7 and
Volume II). Each stage of the value iteration determines one
set of Gauss-Markov source coefficients used for one trans-
mission as in (110). Notice that the source distributionPGM

α

in Corollary 4.1 (or equivalently the coefficientsdt and et
in Lemma 1) has a dependence on the conditional meanmt−1.
We next show that this dependence onmt−1 can be dropped,
and the optimal signal can be characterized more explicitly.

Theorem 5:There exists a feedback-capacity-achieving
feedback-dependent Gauss-Markov source distributionPGM

α

of the kind as given in Lemma 1, whose coefficients have the
following form

dt = dt
(
mt−1,Kt−1

)
= dt (Kt−1) , (111)

et = et
(
mt−1,Kt−1

)
= et (Kt−1) , (112)

gt = gt
(
mt−1,Kt−1

)
= − (dt (Kt−1))

T
mt−1. (113)

That is, an input signal of the form

Xt = dTt St−1 + etZt + gt = dTt (St−1 −mt−1) + etZt,(114)

achieves then-block feedback channel capacityCfb(n). Fur-
ther, the processesKt , dt andet are all deterministic and can
be determined off-line before the transmission starts. �

Proof: It suffices to prove that, for anyk > 0, the
kth-stage optimal policy obtained from the value iteration
algorithm (108) and (109) has the following structure

d(k)
(
mt−1,Kt−1, γ

)
= d(k) (Kt−1, γ) , (115)

e(k)
(
mt−1,Kt−1, γ

)
= e(k) (Kt−1, γ) , (116)

g(k)
(
mt−1,Kt−1, γ

)
= −

(

d(k) (Kt−1, γ)
)T

mt−1.(117)

We show by induction onk that thek-stage reward-to-go
function is independent of the realization of the meanmt−1,
i.e.,

J (k)
(
mt−1,Kt−1, γ

)
= J (k) (Kt−1, γ) , (118)

and (115), (116) and (117) will be the byproducts.
Equality (118) is trivially true for k = 0
since J (0)

(
mt−1,Kt−1, γ

)
= 0 by definition. Now, let

us assume that (118) is true fork − 1, wherek ≥ 1, i.e.,

J (k−1)
(
mt−1,Kt−1, γ

)
= J (k−1) (Kt−1, γ) . (119)

By utilizing the inductive assumption (119), we can rewrite
the value iteration (108) as

J (k)(mt−1,Kt−1, γ)

= max
{dt,et,gt}

{

Ω
(
mt−1,Kt−1, dt, et, gt, γ

)

+E
[

J (k−1) (Kt, γ)
]}

(120)

= max
{dt,et,gt}

{

Ω
(
mt−1,Kt−1, dt, et, gt, γ

)

+J (k−1) (Kt, γ)
}

. (121)

Here, we drop the expectation operator in (121) because the
conditional covariance matrixKt = F

(K)
KB (Kt−1, dt, et) is a

(deterministic) function ofKt−1, dt andet. We also note that
in order to achieve the maximization in (121), we need to have

gt = −dTt mt−1. (122)

This is obvious by noting that J (k−1) (Kt, γ) =

J (k−1)
(

F
(K)
KB (Kt−1, dt, et) , γ

)

is independent of the
source coefficientgt, and that, for any choice of coefficients
dt and et, the reward functionΩ

(
mt−1,Kt−1, dt, et, gt, γ

)

defined in Definition 2 is maximized bygt = −dTt mt−1.
Now, we only need to show that for any two different

realizationsmt−1 and m̃t−1 of the conditional mean of
the channel state, wheremt−1 6= m̃t−1, if (dt, et, gt) =
(

dt, et,−dTt mt−1

)

is optimal for the pair
(
mt−1,Kt−1

)
,

then (dt, et, g̃t) =
(

dt, et,−dTt m̃t−1

)

must be optimal

for
(
m̃t−1,Kt−1

)
, and that

J (k)
(
mt−1,Kt−1, γ

)
= J (k)

(
m̃t−1,Kt−1, γ

)
. (123)

These are verified by checking, for any choice ofdt and et,
the following equality

Ω
(

mt−1,Kt−1, dt, et,−dTt mt−1, γ
)

+J (k−1)
(

F
(K)
KB (Kt−1, dt, et) , γ

)

= Ω
(

m̃t−1,Kt−1, dt, et,−dTt m̃t−1, γ
)

+J (k−1)
(

F
(K)
KB (Kt−1, dt, et) , γ

)

, (124)

which is obvious from the Definition 2 forΩ(·) and the induc-
tive assumption (119). We have thus verified that (118) is true
for everyk ≥ 0, and as a direct consequence, (115) and (116)
follow. The equality (117) is validated by substituting (115)
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into equation (122). Finally, (111)-(113) follow from (115)-
(117) by the optimality of the value iteration algorithm.

The covariance matrix sequenceKt can be com-
puted recursively by Kalman-Bucy filtering, i.e.,Kt =

F
(K)
KB (Kt−1, dt (Kt−1) , et (Kt−1)), which does not depend

on the realization of the random channel outputyt. Thus, for
any K0, the sequenceKt is deterministic, and so aredt =
dt (Kt−1) andet = et (Kt−1).

As shown in Theorem 5, in order to achieve then-block
feedback capacityCfb(n), we only need to consider a very
simple channel input signal of the following form

Xt = dTt St−1 + etZt + gt = dTt(St−1 −mt−1)
︸ ︷︷ ︸

Kalman innovation

+ etZt, (125)

and choose the parametersdt and et properly. Such a
feedback-capacity-achieving signal characterization inTheo-
rem 5 also asserts that the center-of-gravity encoding rule
(formulated in [16] for memoryless channels) is also optimal
for channels with memory. The expected value of the input
signal at the receiver’s site should always be zero, i.e.,

E
[
Xt

∣
∣yt−1

1 , s0
]
= 0. (126)

An intuitive explanation is that the mean of the signal,
i.e.,E

[
Xt

∣
∣yt−1

1 , s0
]
, is always known to both the transmitter

and the receiver (i.e., it is deterministic) and thus it doesnot
carry any useful information but only wastes energy. Clearly
this waste (the mean) should be equated to zero. The amount
of information that is carried by each symbolXt is determined
by the conditional variance of the channel input.

The optimal linear signaling in Theorem 5 also conforms
with the linear characterization shown by Cover and Pom-
bra [7], see (14). We note that our new Kalman-Bucy filtering
structure admits an encoder whose complexity does not grow
with time, and the above filtering structure gives rise to
a computation algorithm that breaks then-block feedback
capacity computation problem inton sequential stages, where
in each stage onlyO(L2) variables need to be optimized (since
the dimension of the matrixKt is L× L).

It is interesting to note that the linear signaling form in (125)
has already been used as a code by Butman for autoregressive
(AR) Gaussian noise channels, see (9)-(11), and equations (1)
and (28) in [11], where Butman assumed thatet = 0 for t > 1,
but provided no proof that such a code is optimal. Butman
also showed that the Kalman-Bucy filter needs to be utilized
with his chosen code, see equation (29) in [11]. While we still
cannot confirm that Butman’s choice of parameterset = 0 for
t > 0 is optimal, we can now confirm that Butman’s code,
at least parametrically, matches the optimal solution for AR
Gaussian noise channels.

By Theorem 5, the source coefficientsdt and et and
the conditional covariance matrixKt are all deterministic
and can be computed off-line. Thus, the stochastic dynamic
programming Algorithm 1 can be simplified, and we obtain the
following deterministicdynamic programming Algorithm 2,
which can be executed off-line (without actually transmitting
any signals through the channel). Note that Algorithm 1 on
the other hand isnot deterministicbecause the expectations

in (108) and (109) need to be computed (typically by Monte
Carlo methods).

Algorithm 2 FOR OPTIMIZING THE

FEEDBACK-CAPACITY-ACHIEVING SOURCE DISTRIBUTION

FOR ANY GIVEN SHADOW PRICE γ > 0

Initialization: For any possible value of the covariance ma-
trix Kt−1, define theterminal reward-to-go function
asJ (0) (Kt−1, γ) = 0.

Recursions: For k = 1, 2, . . . , n, generate the optimalk-
stage reward-to-go functions as

J (k)(Kt−1,γ)= max
{dt,et}

{

Ω
(

mt−1,Kt−1, dt, et,−dTt mt−1,γ
)

+J (k−1)(Kt,γ)
}

, (127)

and obtain the optimal kth-stage pol-
icy P (k)

(
st
∣
∣st−1, αt−1(·)

)
as defined by

{

d(k)(Kt−1, γ), e
(k)(Kt−1, γ)

}

△
= arg max

{dt
,et}

{

Ω
(

mt−1,Kt−1, dt, et,−dTt mt−1,γ
)

+J (k−1)(Kt, γ)
}

. (128)

Here, in (127) and (128), the termsmt and Kt

are computed by the Kalman-Bucy equations (106)
and (107), respectively.

Optimized source: The optimal Gauss-Markov source
distribution is

PGM
α =

{

Pt

(
st
∣
∣st−1, αt−1(·)

)
=P (n−t+1)

(
st
∣
∣st−1, αt−1(·)

)
,

t = 1, 2, . . . , n
}

, (129)

where P (n−t+1)
(
st
∣
∣st−1, αt−1(·)

)
is the opti-

mal (n− t+ 1)th-stage policy.
End.

After the source coefficientsdt and et are optimized by
running Algorithm 2, by combining Theorem 4, Lemma 2 and
Theorem 5, the power budgetP is determined as

P =
1

n

n∑

t=1

E
[

(Xt)
2
|S0 = s0

]

=
1

n

n∑

t=1

(

dTt Kt−1dt+(et)
2
)

, (130)

and then-block feedback channel capacityCfb(n) can be
determined as

Cfb(n)=
1

n

n∑

t=1

[

h
(
Yt

∣
∣Y t−1

1 , s0
)
−

1

2
log
(
2πeσ2

W

)
]

=
1

n

n∑

t=1

1

2
log
(

σ2
W

+(a+c+dt)
T

Kt−1(a+c+dt)+(et)
2

σ2
W

)

, (131)

both of which can be computed off-line (without actually
transmitting any symbols). We note that then-block feedback
capacity (131) is independent of the initial channel states0.



IEEE TRANSACTIONS ON INFORMATION THEORY 16

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
In
fo
rm

a
tio
n
R
a
te

(b
its

/c
h
a
n
n
e
l-
u
se

)
: maximal information rate of

stationary sources (S ection VI)

feed-forward capacity (computed

using the water-filling theorem)

: finite-horizon

feedback capacity

Fig. 8. The feedback capacity for a first-order linear Gaussian noise channel
(a = 0.5, c = 0.95)

E. Complexity Analysis of Algorithm 2 and Feedback Capacity
Curves

Directly computing then-block feedback capacity using the
formula in [7], see (13), involvesO(n2) unknown variables.
Here, we briefly analyze the complexity of the dynamic
programming Algorithm 2. In Algorithm 2, the unknown
variables are the length-L vectordt, the scalaret and theL×L
covariance matrixKt for t = 1, 2, . . . , n. The total number
of free parameters is thusκn, whereκ = L2+L

2 + 1 andL
is the channel memory order. Each iteration in Algorithm 2
in general requires an expensive exhaustive search (which
could be implemented by appropriately quantizing the search
space). For reasonable channel memory ordersL, reasonable
block lengthsn and reasonable numerical accuracies (as
determined by the quantization step), Algorithm 2 can be
easily carried out by ordinary computers. We have plotted
the results of such a computation in Figure 8 where the
computation takes several minutes. The figure shows that when
the block lengthn increases, then-block feedback capacity
very quickly saturates, such that the capacity curvesCfb(n)

for n > 15 reach saturation. The figure also shows the
maximal feedback information rateImax of stationary sources,
which we derive in Section VI. We also note that for largen
the curvesCfb(n) seem to be numerically indistinguishable
from Imax, suggesting that for largen the n-block feedback
capacitiesCfb(n) converge to the maximum information rate
Imax achieved by stationary sources.

It is interesting to contrast the convex programming ap-
proach of [19] to our approach (Algorithm 2) in terms of
complexity and accuracy. In the convex optimization approach
of [19], the number of variables is proportional ton2, but the
method gives provable complexity vs. accuracy bounds. In our
Algorithm 2, the number of variables is linearly proportional to
n, but the numerical accuracy and effectiveness of Algorithm2
depend on how we quantize the search space, i.e., how we
quantize the possible values of parametersKt−1, mt−1, dt
and et. We can efficiently run Algorithm 2 by choosing a
good reference point for determining the quantization range

of the parameters. One good reference point is the optimal
stationary source that achievesImax. In the next section
(Section VI), we develop a theory for explicitly determining
the optimal stationary feedback source (or feedback code) and
the corresponding maximal information rateImax.

VI. T HE MAXIMAL FEEDBACK INFORMATION RATE OF

STATIONARY SOURCES

So far, we have derived a simple linear signaling and
feedback strategy that can achieve then-block feedback ca-
pacity for any finite horizon depthn. We have also given a
simple dynamic programming Algorithm 2 to optimize the
signal and thus compute then-block feedback capacity. We
now concentrate our attention on (asymptotically) stationary
sources and their feedback information rates corresponding
to n → ∞.

A. Maximal Information Rates Achieved by Stationary
Feedback-Dependent Sources

As shown in Sections IV and V, any achievable information
rate can be reached by a feedback-dependent Gauss-Markov
(not necessarily stationary) source. Thus, we only need to
consider feedback-dependent Gauss-Markov sources in the
form shown in Theorem 5. We first define the stationary
feedback-dependent Gauss-Markov sources that correspondto
the steady state of the Kalman-Bucy feedback filter.

Definition 3: [Stationary feedback-dependent Gauss-
Markov sources] A stationary feedback-dependent Gauss-
Markov source is a source that induces stationary channel
input and output processes.

An asymptoticallystationary feedback-dependent Gauss-
Markov source, in its limit ast → ∞, induces stationary
channel input and output processes. �

Lemma 3:For a stationary (or an asymptotically stationary)
feedback-dependent Gauss-Markov source, the Kalman-Bucy
covariance matrixKt and source coefficientsdt and et con-
verge, i.e.,

lim
t→∞

Kt = K, (132)

lim
t→∞

dt = d, (133)

lim
t→∞

et = e. (134)

Here, the matrixK satisfies the stationary Kalman-Bucy filter
equation (the algebraic Riccati equation)

K = F
(K)
KB (K, d, e)

= QKQT + b bTe2

−

(
QK(a+c+d)+b e2

) (
QK (a+c+d)+b e2

)T

(a+ c+ d)
T
K (a+ c+ d) + e2 + σ2

W

,(135)

whereQ = A+ b dT(K). �

Proof: Since the stationary (or asymptotically stationary)
source induces, in its limit ast → ∞, stationary channel input
and output processes, the Kalman-Bucy filter has a steady
state, and thus the sequencesKt, dt andet converge.
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Equation (135) is then obtained as the stationary form of the
covariance matrix propagation equation (107) of the Kalman-
Bucy filter.

Theorem 6:[Maximal Information Rates for Stationary
Feedback-dependent Sources] For a power constrained linear
Gaussian noise channel depicted in Figure 3 whose noise has
a rational power spectral density

SN (ω) = σ2
W

∣
∣H(ejω)

∣
∣
2

= σ2
W

(

1−
L∑

l=1

ale
−jlω

)(

1−
L∑

l=1

ale
jlω

)

(

1+
L∑

l=1

cle−jlω

)(

1+
L∑

l=1

clejlω
) , (136)

the maximal information rate achieved by (asymptotically)
stationary feedback-dependent sources subject to the average
input power constraint

lim
n→∞

1

n

n∑

t=1

E
[
(Xt)

2 |S0 = s0
]
≤ P, (137)

equals

Imax=max
d,e

1

2
log

(

σ2
W+(a+c+d)

T
K(a+c+d)+e2

σ2
W

)

,(138)

where the maximization in (138) is taken under the following
two constraints

dTKd+ e2 = P, (139)

K = QKQT + b bTe2

−

(
QK(a+c+d)+b e2

)(
QK (a+c+d)+b e2

)T

(a+ c+ d)TK (a+ c+ d) + e2 + σ2
W

. (140)

Here, a
△
= [a1, a2, · · · , aL]

T, c
△
= [c1, c2, · · · , cL]

T, and
matrix A and vectorb are

A
△
=










a1 a2 . . . aL−1 aL
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0










, b
△
=








1
0
...
0







.

The matrixQ is defined asQ
△
= A+ b dT, and the matrixK

is constrained to be non-negative definite. �

Proof: By Lemma 3, for any (asymptotically) stationary
Gauss-Markov source, the sequencesKt, dt andet converge
as t → ∞, so we have

lim
t→∞

1

2
log

(

σ2
W+(a+c+dt)

T
Kt−1(a+c+dt)+(et)

2

σ2
W

)

=
1

2
log

(

σ2
W +(a+c+d)

T
K(a+c+d)+e2

σ2
W

)

. (141)

Combining Lemma 2 with Theorem 5 and Lemma 3, we also
get

lim
t→∞

E
[

(Xt)
2∣∣S0=s0, Y

t−1
1 =yt−1

1

]

= lim
t→∞

(

dTt Kt−1dt+(et)
2
)

= dTKd+ e2. (142)

The information rate and the average channel input power
can now be easily computed as the Cesáro means of the
converging sequences in (141) and (142). From (141) and
using equation (31) and Lemma 2, the information rate for
the (asymptotically) stationary source exists and equals

lim
n→∞

1

n
I (M;Y n

1 |S0 = s0 )

= lim
n→∞

1

2n

n∑

t=1

log

(

σ2
W+(a+c+dt)

T
Kt−1(a+c+dt)+(et)

2

σ2
W

)

(143)

=
1

2
log

(

σ2
W + (a+ c+ d)

T
K (a+ c+ d) + e2

σ2
W

)

. (144)

From (142), the average signal power equals

lim
n→∞

1

n

n∑

t=1

E
[

(Xt)
2
|S0 = s0

]

= lim
n→∞

1

n
EY n

1

[
n∑

t=1

E
[

(Xt)
2 ∣∣S0 = s0, Y

t−1
1 = yt−1

1

]
]

= lim
n→∞

1

n

n∑

t=1

(

dTt Kt−1dt + (et)
2
)

(145)

= dTKd+ e2. (146)

Using the results in (144) and (146), we conclude that the
maximal information rateImax for (asymptotically) stationary
Gauss-Markov sources exists and equals

Imax=max
d,e

1

2
log

(

σ2
W+(a+c+d)

T
K(a+c+d)+e2

σ2
W

)

,(147)

where the maximization in (147) is taken under the power
constraint

lim
n→∞

1

n

n∑

t=1

E
[

(Xt)
2
|S0 = s0

]

= dTKd+ e2 ≤ P, (148)

and also under the constraint that the covariance matrixK

satisfies the stationary Kalman-Bucy equation

K = F
(K)
KB (K, d, e) , (149)

which is explicitly expressed in (140).
By Corollary 4.1, the inequality in (148) can be substituted

by an equality, thus proving the validity of the power con-
straint (139).

To this end, our attempts to further manipulate the expres-
sions in Theorem 6 into a simpler analytical form have not
produced the desired outcome because of the complexity of
the Kalman-Bucy (algebraic Riccati) equation (140). However,
we can readily find the solution to the non-linear programming
problem in Theorem 6 numerically, an example of which is
depicted in Figure 9. The asymptotic information rate given
by Theorem 6, depicted in Figure 9, is compared to the feed-
forward capacity computed by the water-filling method [5],
[6], [34].

We note thatImax is a lower bound on the feedback capacity
Cfb. Figure 8 shows thatImax numerically overlaps then-
block feedback capacity for long block lengths.
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Fig. 9. Maximal information rates achieved by stationary sources over a
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Under some special circumstances, for example first-order
Gaussian channels, we can solve the optimization problem
stated in Theorem 6 explicitly. We consider this scenario next.

B. Maximal Information Rates of Stationary Sources Used
over First-Order Channels

We consider the first-order linear-time-invariant (LTI) Gaus-
sian noise channel, whereL = 1. The channel coefficientsa
and c (where−1 < a < 1 and−1 < c < 1) and the channel
state covarianceK = K are all scalars. We restrict ourselves
to the casea + c 6= 0, since otherwise the channel is simply
the well studied AWGN channel.

Theorem 7:For a first-order Gaussian noise channel char-
acterized by coefficientsa, c or equivalently by its noise power
spectral density function

SN(ω) = σ2
W

(
1− ae−jω

) (
1− aejω

)

(1 + ce−jω) (1 + cejω)
, (150)

the maximal information rateImaxachieved by stationary
feedback-dependent sources subject to the average input power
constraint

lim
n→∞

1

n

n∑

t=1

E
[
(Xt)

2 |S0 = s0
]
≤ P (151)

equals

Imax =
1

2
log

(

1 +
(1 + η)

2
P

σ2
W

)

. (152)

Here, the parameterη is the largest positive root of the
following 4-th order equation

P

σ2
W

η4+2
P

σ2
W

η3+

(
P

σ2
W

+1−a2
)

η2

−2a(a+c)η−(a+c)2 = 0. (153)

The feedback-dependent Gauss-Markov (not necessarily sta-
tionary) source that solves (152) has coefficientsd =
(a+ c)/η ande = 0 in its steady state. �

Proof: By Theorem 6, the maximal information rateImax

is determined by solving the following optimization problem

max
d,e

1

2
log

(

σ2
W + (a+ c+ d)

2
K + e2

σ2
W

)

, (154)

under the following constraints

d2K + e2 = P, (155)

K =
(a+ d)2Kσ2

W + c2e2K + e2σ2
W

(a+ c+ d)
2
K + e2 + σ2

W

. (156)

By substituting the constraint (155) into the objective func-
tion (154) and noting that the functionlog(·) is strictly
monotonic, the optimization problem (154), (155) and (156)
is equivalent to the following optimization problem

max
d,e

[

(a+ c+ d)
2
K − d2K

]

, (157)

with constraints

d2K + e2 = P, (158)

K2(a+ c+ d)2 +K
(
e2 + σ2

W − σ2
W (a+ d)2 − c2e2

)

−e2σ2
W = 0. (159)

Obviously, the optimal stationary channel state varianceK
needs to satisfyK > 0.

The Lagrangian function for the optimization prob-
lem (157), (158) and (159) is

L(d, e,K, λ, ρ) = (a+c+d)
2
K−d2K+λ(d2K+e2−P )

+ρ
(
K2(a+c+d)2+K

(
e2+σ2

W−σ2
W (a+d)2−c2e2

)

−e2σ2
W

)
, (160)

where λ and ρ are the Lagrange multipliers. Let the first-
order derivatives of the Lagrangian functionL(d, e,K, λ, ρ)
be zeros, and we have the following necessary conditions for
optimality

2K
(
a+c+λd+ρ

(
K(a+c+d)−σ2

W (a+d)
))

= 0, (161)

2e
[
λ+ρ

(
K
(
1−c2

)
−σ2

W

)]
= 0, (162)

(a+c+d)2−d2+λd2+ ρ
(

2K (a+c+d)
2

+e2+σ2
W−σ2

W (a+d)2−c2e2
)

= 0,(163)

d2K+e2−P = 0, (164)

K2(a+c+d)2+K
(
e2+σ2

W−σ2
W (a+d)2−c2e2

)

−e2σ2
W = 0.(165)

We next solve for the optimal values ofd, e andK from the
above equations.

We first prove thate = 0 is necessary for optimality. Ife 6=
0, then equation (162) is substituted by

λ+ ρ
(
K
(
1− c2

)
− σ2

W

)
= 0. (166)

We here sketch the proof that (166) cannot hold. If (166) holds,
the system of equations (161), (166), (163), (164) and (165)
can be solved analytically, and the solution takes one of the
following two possible forms. We show that neither of the two
forms is acceptable.
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1) One possible form of the solution induced by (166) is

K = −
−c2P + c2σ2

W + 2acσ2
W

(a+ c)2c2
, (167)

e2 =
a2σ4 + c2Pσ2

W

−c2P + c2σ2
W + 2acσ2

W

. (168)

By (167) and (168), the valuesK and e2 cannot both
be positive. However, sinceK is a variance, we must
haveK > 0, and e2 also must be positive since it is
a square of a nonzero real number, so (167) and (168)
cannot be the solution.

2) The other possible form of the solution induced by (166)
is

d =
(1 + ac)(a+ c)2σ2

W

σ2
W (a2c3−2a2c−c−2a) + P (c5−2c3+c)

, (169)

K =
σ2
W

(
a2c3−2a2c−c−2a

)
+P

(
c5−2c3+c

)

(a+ c)2 (c2 − 1)c
. (170)

Now, if we substitute (169) and (170) into the objective
function (157), we get a strictly negative value

(a+ c+ d)2K − d2K

=
P
(
c2 − 1

)2
+ σ2

W (ac− 1)
2

c2 − 1
< 0. (171)

Since we will compute a positive objective func-
tion (157) when the equality condition (166) is replaced
by e = 0, this negative value (171) cannot be the
maximum of (157).

Therefore, we conclude that (166) cannot hold when the
variables are optimal and that the proper necessary condition
extracted from (162) ise = 0.

For e = 0, equations (161), (163), (164) and (165) can be
solved and the solution takes the following form

K =
P

d2
, (172)

whered satisfies the following4-th order polynomial equation

R(d) = σ2
W d4 + 2aσ2

Wd3 +
(
−P − σ2

W + a2σ2
W

)
d2

−2P (a+ c) d− P (a+ c)2

= 0. (173)

Here, we note that the first and last coefficients ofR(d) sat-
isfy σ2

W > 0 and−P (a+ c)2 < 0. Thus, the polynomialR(d)
has either3 negative and1 positive real roots or1 negative
and 1 (or 3) positive real roots. By these arguments, we can
always selectd such thatd(a + c) > 0 and get a positive
objective function to exceed the value in (171), that is

(a+ c+ d)
2
K − d2K > 0. (174)

Without loss of generality, we letd be

d =
a+ c

η
. (175)

We substitute (175) into (173), and get the4-th order polyno-
mial equation forη as in (153). From the previous discussion,
we note that equation (153) always has both positive and
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Fig. 10. Maximal information rates for stationary feedback-dependent
sources in first-order Gaussian noise channels

negative real roots. We note thatK = P/d2 = Pη2/(a+ c)2,
so the information rate equals

1

2
log

(

σ2
W+(a+c+d)

2
K

σ2
W

)

=
1

2
log

(

1+
(1+η)

2
P

σ2
W

)

,(176)

which implies that the optimal value ofη should be positive
to maximize (176).

In Figure 10, we plot the maximal information rate
curvesImax achieved by (asymptotically) stationary sources
for two different first-order LTI Gaussian noise channels (one
with first-order AR noisea = 0, and the other with first-order
ARMA noise). For each channel, we compare the feedback
information rate computed by Theorem 7, which is of course
the same as computed by Theorem 6, to the feed-forward
capacity computed by the water-filling method [5], [6], [34].

An interesting by-product of Theorem 7 is that, with sta-
tionary feedback-dependent sources, the maximal information
rates for the first-order autoregressive (AR) noise channel
(i.e., for a = 0 and c 6= 0), e.g., the channela = 0 and c =
0.95 in Figure 10, equals the well-known Butman feedback
capacity lower bound [11]. We next establish a formal proof
of this statement.

Corollary 7.1: For the first order autoregressive (AR) Gaus-
sian noise channel, wherea = 0 and c 6= 0, the maximal
information rate achieved by stationary sources equals

Imax =
1

2
log
(
χ2
)
= log (|χ|) , (177)

where the value ofχ satisfies

χ2 = 1 +
P

σ2
W

(
χ+ |c|

χ

)2

. (178)

This information rate (177) is exactly the same as the achiev-
able rate by Butman’s feedback code [11], also given in
equation (9). �

Proof: By Theorem 7, the optimal stationary source has
parameterse = 0 and d = c/η, whereη > 0 in the steady
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state. The value ofK = P/d2 = η2P/c2 needs to satisfy the
stationary Kalman-Bucy filtering equation (135)

K =
η2P

c2

= F
(K)
KB (K, d, e)

= F
(K)
KB

(
η2P

c2
,
c

η
, 0

)

=
Pσ2

W

σ2
W + (1 + η)

2
P
. (179)

From (179), we have

σ2
W + (1 + η)2 P

σ2
W

=

(
c

η

)2

. (180)

Next, we define

χ
△
=

c

η
. (181)

By substituting the definition (181) into equation (180), weget
the equation (178) forχ. Further, by substituting (180) into
the information rate formula (152), we get

Imax =
1

2
log

(

σ2
W + (1 + η)

2
P

σ2
W

)

= log
(
χ2
)
. (182)

Note that Butman’s information rate [11] (Corollary 7.1)
applies only to autoregressive (AR) noise channels of the first
orderL = 1. The optimality of Butman’s code has been a long-
standing conjecture (Butman’s conjecture was generalizedto
higher order channels in [18]). Our solution (Theorem 6 and
Theorem 7) applies to both autoregressive (AR) and moving-
average (MA) (or combined ARMA) noise processes of any
finite order L. We now have a proof that Butman’s code
achieves the maximal information rateImax of stationary
sources for first order AR channels. However, we still cannot
claim that this maximal rateImax equals the channel capacity
Cfb. Further, though numerically verifiable, we still cannot
provethat Butman’s code for higher order (L > 1) AR channel
noise achievesImax.

C. Sufficient Condition for the Existence of the Feedback
Capacity

We consider the sufficient condition for the limitCfb =
limn→∞ Cfb(n) to exist.

Definition 4: [Time-invariant feedback-dependent Gauss-
Markov sources] A time-invariant feedback-dependent Gauss-
Markov source, restricted to the optimal structure shown in
Theorem 5, is a source whose coefficientsdt and et have
a time-invariant dependence on the covariance matrixKt−1.
The time-dependence is captured by the dependence on the
posterior channel state statistics only, i.e.,

dt = d (Kt−1) , (183)

et = e (Kt−1) , (184)

gt = −dTt mt−1 = −dT (Kt−1)mt−1. (185)

�

It is interesting to note that a time-invariant source as
defined above may in fact induce a channel input processXt

whose parametersdt, et and the induced processKt never
reach a steady state ast → ∞. So, time-invariance does not
guarantee stationarity3.

Corollary 4.1 states a finite-horizon stochastic control prob-
lem. We next consider the corresponding infinite-horizon prob-
lem. In the next lemma, we link the Bellman equation [23] for
this infinite-horizon problem to the feedback capacity (should
it exist). Subsequently, we formulate a sufficient condition for
the feedback capacityCfb to exist.

Lemma 4:Let the functionC(γ) with argumentγ > 0 be
defined as

C(γ)
△
= lim

n→∞
max
PGM

α

1

n

n∑

t=1

Ω
(

mt−1,Kt−1, dt, et,

gt = −dTt mt−1, γ
)

, (186)

if the limit exists. Bellman’s equation [23] associated
with (186) takes the following form

C(γ) + π(K, γ) = max
d,e

{

Ω
(

m,K, d, e,−dTm, γ
)

+π
(

K̃, γ
)}

.(187)

Here, the functionπ(K, γ) is the optimal relative reward-to-
go function, the symbol̃K on the right-hand side of (187) is
the short notation for the Kalman-Bucy filter output, that is

K̃ = F
(K)
KB (K, d, e) . (188)

Bellman’s equation (187) is solved by atime-invariantsource
as long as it has a solution. Further, the time-invariant source
that solves (187) also solves (186), in which case the asymp-
totic feedback capacity exists and equals

Cfb △
= lim

n→∞
Cfb(n) = C(γ) + γP. (189)

�

Proof: The lemma is proved by applying the results for
the average-cost-per-stage stochastic control problem in[23]
(Ch. 7 and Volume II). Note that if there exists a valueC(γ)
and a functionπ(K, γ) which solve Bellman’s equation (187),
the valueC(γ) and the corresponding feedback-dependent
Gauss-Markov sourcePGM

α determined by coefficientsdt =
d(Kt−1) and et = e(Kt−1) also solves the maximization
in (186), and vice versa, see [23] (Ch. 7 and Volume II).
The time-invariant sourcePGM

α that solves Bellman’s equa-
tion (187) is thus optimal for the particular choice of power
shadow priceγ.

3Here, we give an example of a time-invariant but non-stationary source.
Suppose that we have a first-order system (such as the one discussed in Section
VI-B) for which a = 0 and c = 0.2. Let the filter coefficientset = 0 and
dt be time-invariant, but letdt be dependent on the value of the posterior
state varianceKt−1 as:dt = d(Kt−1) = −1 if Kt−1 > 0.01, anddt =
d(Kt−1) = −19 if Kt−1 ≤ 0.01. Note thatdt is indeed a time-invariant
function of Kt−1 because it does not depend on timet, but rather on the
value ofKt−1. Let the value of the posterior state variance at timet− 1 be
Kt−1 = 0.0102. Then, because of this special choice of the parameters, when
substituted into the Riccati equation (156) we getKt = 0.0062. Applying
the Riccati equation one more time, we getKt+1 = 0.0102 = Kt−1. So,
the system oscillates.
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From Theorem 4 and Theorem 5, the feedback capacity
exists if C(γ) defined in (186) exists, and equation (189)
follows.

In general, ensuring that Bellman’s equation (187) has a
solution can be very complicated, see [23] (Ch. 7 and Volume
II). However, from Lemma 4, we know that if the solution
exists, it must be a time-invariant Gauss-Markov source. One
sufficient condition [23] to guarantee the existence of a time-
invariant solution to Bellman’s equation (187) is that for two
arbitrary valid covariance matrices̄K and K̂, there exists a
time-invariant Gauss-Markov source distribution that drives
the Kalman-Bucy filter covariance matrix from valueKt = K̄

to valueKt+τ = K̂ within finite time τ < ∞. We note that
verifying such a sufficient condition is possible only on a case
by case basis, and a systematic analytic verification is still
missing.

Further, even if the optimal feedback-dependent source
is time-invariant, the covariance matrix sequenceKt may
not converge. One way to numerically check whether the
sequenceKt converges for a given channel is to run the
dynamic-programming Algorithm 2 (value iteration) or policy
iteration [23] for a large block lengthn. However, besides
this numerical verification procedure, there are no known
systematic approaches to analytically handle such a problem
for an arbitrary channel. Therefore, to make further progress
towards finding an analytic solution to the feedback capacity
problem, we would need to prove thatKt converges ast → ∞.

By numerically running the dynamic programming Algo-
rithm 2 for various Gaussian noise channels with large block
lengthsn, e.g.,n ≥ 100, we have always observed that the
Kalman-Bucy filter in Figure 7 becomes stationary, i.e.,Kt

converges numerically, ast becomes large. It has been a
long-standing conjecture that stationary sources achievethe
feedback capacity [11]. Here, we reformulate the conjecture
in terms of the posterior state covariance matrix computed by
the Kalman-Bucy filter.

Conjecture 1:The optimal (feedback-capacity-achieving)
source induces a stationary (or asymptotically stationary)
Kalman-Bucy filter for processing the feedback, i.e., for the
optimal source, the limit

lim
t→∞

Kt = K

exists. �

Under Conjecture 1, the feedback capacity of a power
constrained linear Gaussian noise would be achieved by a
(asymptotically) stationary source, and the feedback capacity
would equalImax given in Theorem 6.

For first-order moving-average (MA) linear Gaussian noise
channels, Kim [35] recently proved that a uniform power
allocation over time is asymptotically optimal by following
a different approach from what used in this paper, and that
the feedback capacity equals the maximal information rate
derived in Theorem 7 for the moving-average noise subcase.
This new result implies that stationary sources for first-order
moving-average (MA) linear Gaussian noise channels are
indeed optimal.

VII. C ONCLUSION

We considered the problem of computing then-block feed-
back capacity of a Gaussian noise channel with memory under
an average channel input power constraint. In its full gener-
ality, the problem would consider any power spectral density
of the Gaussian noise process. However, for technical reasons,
we only considered noise processes that have rational power
spectra, i.e., noise processes that are either autoregressive (AR)
or moving average (MA) or both (ARMA). Since we were
computing the capacity of a channel withmemory, we found
it beneficial to cast the problem in the state-space realization
formulation, which proved to be well-suited for this problem.

For the Gaussian noise channel with a rational power
spectrum, we found that then-block feedback capacityCfb(n)

is achieved by a Gauss-Markov (not necessarily stationary)
source distribution, where the channel input depends only
on the previous channel state and the posterior channel state
distribution computed by a Kalman-Bucy filter. Further, we
showed that the channel state, the posterior channel state
distribution and the channel output jointly form a Markov
process.

The Markov property of the optimal source reduced then-
block feedback capacity computation to a standard dynamic-
system stochastic control problem, which can be solved by
dynamic programming. For this optimization problem, we
found a simple structure of the optimal source, where the
encoding complexity is constant for any time instant. We
showed that the coefficients of the optimal Gauss-Markov
source depend only on the covariance matrix of the posterior
channel state estimate computed by a Kalman-Bucy filter,
and can be optimized deterministically and off-line. Then-
block optimization problem is thus broken inton sequential
problems. In each sequential step,O(L2) variables need to be
solved for, whereL is the order of the ARMA channel noise.

We note that for additive white Gaussian noise (AWGN)
channels, retransmitting the message uncertainty [15] or trans-
mitting the newly coded signal [1] could both achieve the
channel capacity (the feedback capacity equals the feed-
forward capacity). In our formulation (125), it is still an open
problem to determine if both parametersdt and et could
take non-zero optimal values. For the initial transmissionat
time t = 1, sinces0 is known, the transmitter has to letet 6= 0
to start transmission. Our numerical simulation have always
suggested that, fort → ∞, the optimal value ofet should be
zero, but a proof is missing.

We solved analytically the maximal feedback information
rate Imax achieved by (asymptotically) stationary sources,
which represents a lower bound on the feedback capacity
Cfb. Under a Kalman-Bucy filter stationarity assumption
(Conjecture 1), the feedback capacityCfb would equalImax.
Conjecture 1 is a reformulation (in terms of Kalman-Bucy fil-
tering parameters) of a long-standing conjecture that stationary
sources achieve the feedback capacity.

APPENDIX I
ALTERNATIVE PROOF OFTHEOREM 2

Here we present an alternative proof of Theorem 2 based
on dynamic programming [23] and Lagrange multipliers (see
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Appendix 2). Consider the mixed cost:

n∑

t=1

I(St
t−1;Yt | Y

t−1
1 , s0)− γ · E

[
n∑

t=1

(Xt)
2 | s0

]

. (190)

As discussed in Appendix 2, there is, under an optimal source,
a one-to-one relationship between the Lagrange multiplier
(shadow price)γ and the resulting average power constraintP ,
and hence the optimization of the mixed cost in (190) yields
the optimal source. We will now show that for any shadow
price γ, including theγ corresponding to the given powerP ,
we can without loss of generality restrict ourselves to sources
of the form{Pt(st | st−1, αt−1(·)), t = 1, 2, · · ·}.

As is typical of dynamic programming arguments we will
prove this by backward induction starting at timen. At time
n the optimization is:

max
Pn(sn | s

n−1,y
n−1
1 )

I(Sn
n−1;Yn | Y n−1

1 , s0)−γ ·E[(Xn)
2 | s0].

This can be rewritten as (191), whereAn−1(·) =
P
S

n−1|S0,Y
n−1
1

(
·
∣
∣s0, Y

n−1
1

)
is the random function whose

realizations areαn−1(·) = P
Sn−1|S0,Y

n−1
1

(
·
∣
∣s0, y

n−1
1

)
.

Becauses0 is fixed and to simplify notation we will not
explicitly condition on s0 in the following discussion. To
compute the first term in the inner expectation of (191), we
need access to

p(yn, s
n
n−1, αn−1(·) | y

n−1
1 )

= p(yn | snn−1)Pn(sn | sn−1, y
n−1
1 )αn−1(sn−1).

To compute the second term in the inner expectation of (191),
we need access to

p(xn | yn−1
1 )

=

∫

p(xn | snn−1)Pn(sn | sn−1, y
n−1
1 )αn−1(sn−1)ds

n
n−1.

Hence, in the inner expectation of (191), the maximization
over the choice ofPn(sn | sn−1, y

n−1
1 ) requires knowing

only sn−1 and αn−1(·). Thus without loss of generality
we can restrict the source at timen to be of the form:
Pn(sn | sn−1, αn−1(·)). Let the optimal cost-to-go [23] at
timen, given by the inner expectation in (191), be denoted by
Jn(αn−1(·)).

Now, via the induction hypothesis assume that the source
for times τ = t + 1, ..., n can be chosen without loss of
generality to be of the form{Pτ (sτ | sτ−1, ατ−1(·)), τ =
t+1, ..., n}, and assume the cost-to-go functionsJτ (ατ−1(·))
can be chosen to only depend onατ−1(·) for τ = t+1, ..., n.
The optimization at timet is given in (192) whereJt+1(·)
is the optimal cost-to-go (which by the induction hypothesis
only depends onαt).

As in (191) we can write (192) as an iterated expectation
conditioned onY t−1

1 . The inner expectation for the new term
Jt+1(αt(·)) takes the form

E
[
Jt+1(At(·)) | Y

t−1
1

]
. (193)

To compute (193), we need access top(αt(·) | y
t−1
1 ). Now by

equation (59) we know thatαt(·) is a function ofαt−1(·), yt,

andPt(st | st−1, y
t−1
1 ). Therefore, to compute (193), we need

access to

p(yt, αt−1(·) | y
t−1
1 )

=

∫

p(yt | s
t
t−1)Pt(st | st−1, y

t−1
1 )αt−1(st−1)ds

t
t−1.

Hence (193) depends onyt−1
1 only throughαt−1 and the

choice of sourcePt(st | st−1, y
t−1
1 ).

This observation, along with an argument similar to the one
given for the optimization (191), shows that the optimization
in (192) can, without loss of generality, be restricted to a
source of the form:Pt(st | st−1, αt−1(·)). Thus we have
proved Theorem 2.

APPENDIX II
STRONG DUALITY AND THE RELATIONSHIP BETWEEN THE

POWER CONSTRAINT AND THE SHADOW PRICE

A. Strong Duality under Slater’s Conditions

Let I (P) be a function (not necessarily concave) of a
variableP . Let f (P) ≤ 0 be a constraint on the variable
P . Let

P∗ = arg max
P:f(P)≤0

I (P)

be the solution of the constrained optimization problem, and
let

I∗
△
= I (P∗) = max

P:f(P)≤0
I (P)

be the constrained maximum. Define the Lagrangian for the
constrained optimization problem as

L (P , γ) = I (P)− γf (P) ,

for which the Lagrangian dual function is the unconstrained
maximum

G (γ) = max
P

[I (P)− γf (P)] .

From Boyd-Vandenberghe [30] Section 5.1.2, we have that
G (γ) is convex (even whenI (P) is not concave), and from
Section 5.1.3, we have

G (γ) ≥ I∗ = I (P∗) .

Let the solution to the Lagrangian dual problem be

γ∗ = argmin
γ

G (γ) .

Weak duality, Boyd-Vandenberghe [30] Section 5.2.2, guaran-
tees

G∗ △
= G (γ∗) ≥ I (P∗) = I∗.

Theorem (Strong duality under Slater’s conditions,
Boyd-Vandenberghe [30], Section 5.2.3) IfI (P) is a
concave function, iff(P) is a convex function, and
if there exists a parameterP for which f (P) < 0 is
feasible, then strong dualityI∗ = G∗ holds.
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E

[

max
Pn(sn|sn−1,y

n−1
1 )

E

[

log
p(Yn|S

n
n−1)

∫
p(Yn|snn−1)Pn(sn|sn−1, Y

n−1
1 )An−1(sn−1)dsnn−1

− γ(Xn)
2

∣
∣
∣
∣
∣
Y n−1
1

]∣
∣
∣
∣
∣
s0

]

(191)

max
Pt(st|st−1,y

t−1
1 )

I(St
t−1;Yt | Y

t−1
1 , s0)− γ · E[(Xt)

2 | s0] + E[Jt+1(At(·)) | s0], (192)

B. Propositions Involving the Feedback Capacity

Let Cfb(n) (P ) be then-block feedback capacity under the
power constraintP , and letC(n) (P ) be the feed-forwardn-
block capacity under the same power constraint.

Proposition 1 (Cover-Pombra [7])

Cfb(n) (P ) ≤ C(n) (P ) +
1

2
.

Proposition 2 (reformulation: water-filling theorem,
Gallager [34], Theorem 7.5.1 )

C(n) (P ) =
1

2n

k∑

i=1

log
nP + r1 + r2 + · · ·+ rk

kri

where0 ≤ r1 ≤ r2 ≤ · · · ≤ rn are eigenvalues of the
n×n channel noise covariance matrix andk (≤ n) is
the largest integer satisfyingnP+r1+r2+· · ·+rk >
krk.
Proposition 3

lim
P→∞

Cfb(n) (P )

P
= 0.

proof: Using Propositions 1 and 2, we have

lim
P→∞

Cfb(n) (P )

P
≤ lim

P→∞

C(n) (P ) + 1
2

P

= lim
P→∞

1
2n

k∑

i=1

log nP+r1+r2+···+rk
kri

+ 1
2

P
.

Applying L’Hôpital’s rule to the right-hand side
proves the proposition.
Proposition 4 For anyγ > 0,

lim
P→∞

[

Cfb(n) (P )− γP
]

= −∞.

proof: Similar to the proof or Proposition 3.

C. Strong Duality of the n-Block Feedback Capacity

DefineP as the source (under some proper parametrization;
here it is convenient to choose the parametrization in Van-
denberghe, Boyd and Wu [19] because it leads to a concave
feedback information rate). LetI fb(n) (P) be the n-block
feedback information rate achieved by the sourceP . Let the
sourceP be subject to a power constraintPow (P) ≤ P . The
primal constrained optimization problem is then stated as

Cfb(n) (P ) = max
P:Pow(P)≤P

I fb(n) (P) .

The caseP = 0 is trivial and can be dismissed. The function
I fb(n) (P) is concave and the power constraint is convex, see

Vandenberghe, Boyd and Wu [19]. Further, for anyP > 0,
there exists a feasible source that satisfiesPow (P) < P (just
take the trivial zero-source as an example). Hence, Slater’s
conditions for strong duality are satisfied and the solutionof
the primal problem equals the solution of the dual problem
for anyP > 0.

The dual problem is formulated as follows. The Lagrangian
is

L (P , γ) = I fb(n) (P)− γPow (P) + γP.

The Lagrangian dual function is the unconstrained maximum

G (γ) = max
P

L (P , γ) .

The solution to the dual problem is

γ∗ = argmin
γ

G (γ) ,

and then-block feedback capacity is

Cfb(n) (P ) = G∗ △
= G (γ∗) = min

γ
G (γ) .

D. Relationship between the Power Constraint and the
Shadow Price

Because of the strong duality between then-block feedback
capacity computation problem and its dual, for any power
constraintP > 0, the solution to the dual problem gives a
parameterγ∗ such thatG (γ∗) is the solution to the primal
problem. We now want to establish the backwards relationship,
i.e., that for any chosen shadow priceγ, the unconstrained
solution to the Lagrangian maximization

P∗ = argmax
P

[

I fb(n) (P)− γPow (P)
]

(194)

gives a sourceP∗ whose power satisfiesPow (P) = P < ∞,
such thatP∗ is the solution to the primal problem whenP is
the power constraint.

First, we can easily dismiss the shadow priceγ = 0 from
consideration because ifγ = 0, then the solution to (194)
clearly gives a source whose power isP = ∞, i.e., the source
is not power-constrained and can be dismissed.

Next, we want to establish that for any power constraint
P < ∞, there exists an optimal shadow priceγ∗ > 0, and
vice versa, that for any shadow priceγ > 0, the solution
to the unconstrained Lagrangian optimization (194) gives a
source whose powerP is finite, P < ∞.

Proposition A For any power constraintP < ∞,
the solution to the Lagrangian dual problem satisfies
γ∗ > 0.
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proof: Pick anyP < ∞. Then clearly,Cfb(n) (P ) <
∞. Because of the strong duality, we must have

G (γ∗) = Cfb(n) (P ) < ∞,

where
γ∗ = argmin

γ
G (γ) .

Now, assume thatγ∗ = 0. Then the solution to the
dual problem deliversG (γ∗) = G (0) = ∞, which
contradicts the previously established relationship
Cfb(n) (P ) = G (γ∗) < ∞. Hence,γ∗ > 0 must
hold.
Proposition B For any shadow priceγ > 0, the
solution to the unconstrained Lagrangian optimiza-
tion problem (194) delivers a source whose power is
finite, i.e.,P < ∞.
proof: First notice that

max
P

[

I fb(n) (P)− γPow (P)
]

≥ 0

because we can always pick the trivial all-zero
source whose power and information rate are zero.
Now, assume that there exists aγ > 0 such that the
solution to (194) delivers a sourceP∗ whose power
is Pow (P∗) = P = ∞. For such a source, invoking
Proposition 4, the following holds

max
P

[

I fb(n) (P)− γPow (P)
]

= I fb(n) (P∗)− γPow (P∗)

≤ lim
P→∞

Cfb(n) (P )− γPow (P∗)

= lim
P→∞

[

Cfb(n) (P )− γP
]

= −∞,

which contradicts our earlier conclusion. Thus, for
any γ > 0, the solution to (194) must be a source
whose power is finite,P < ∞.

Propositions A and B jointly establish that any shadow
price γ > 0 maps to a powerP < ∞, and vice versa. We
now show that the solution to the unconstrained Lagrangian
optimization (194) gives a source that achieves the feedback
capacity for someP < ∞.

Proposition C For anyγ > 0, the solution to the
unconstrained Lagrangian optimization (194) gives
a sourceP∗ with powerPow (P∗) = P for which
γ∗ = γ is the solution to the Lagrangian dual
optimization.
proof: Pick someγ > 0. For this γ, Proposition B
established that the solution to (194) is a sourceP∗

whose powerP is finite,P < ∞. For such finiteP ,
strong Lagrangian duality holds, so for this value of
P , we must have

I fb(n) (P∗) = Cfb(n) (P ) = G (γ∗) ,

where γ∗ is a solution to the Lagrangian dual
problem for powerP . Now, if we substitute this
sourceP∗, whose power isPow (P∗) = P , into the

expression for the Lagrangian dual functionG (·),
for our chosen valueγ > 0, we get

G (γ) = I fb(n) (P∗) = Cfb(n) (P ) = G (γ∗) .

SinceG (·) is a convex function, and sinceG (γ∗) is
the minimum ofG (·), it follows thatG (γ) is also
the minimum ofG (·). Thereforeγ is also a solution
to the Lagrangian dual problem for powerP . Hence
we can setγ∗ = γ.

Proposition C established that any chosenγ > 0 is indeed
the solutionγ∗ = γ of the Lagrangian dual problem for some
powerP < ∞. The following two propositions establish that
two different power constraintsP1 6= P2 correspond to two
different shadow pricesγ∗

1 6= γ∗
2 .

Proposition D If P1 6= P2, thenγ∗
1 6= γ∗

2 .
proof: Let P1 6= P2. By the monotonicity and
continuity ofCfb(n) (P ), we have

Cfb(n) (P1) 6= Cfb(n) (P2) .

Now, assume that the respective solutions to the
Lagrangian dual problems are equal, i.e.,γ∗

1 = γ∗
2 .

Then

Cfb(n) (P1) = G (γ∗
1) = G (γ∗

2 ) = Cfb(n) (P2) ,

which contradicts our earlier conclusion that
Cfb(n) (P1) 6= Cfb(n) (P2). Hence,γ∗

1 6= γ∗
2 must

hold.

Proposition E If γ∗
1 < γ∗

2 , thenP1 > P2.
proof: We observe that for anyγ∗

1 < γ∗
2 and

for any P (such thatPow(P) > 0), we have the
following inequality

L (P , γ∗
1) > L (P , γ∗

2) .

We first show that

G(γ∗
1 ) = max

P
L (P , γ∗

1) > max
P

L (P , γ∗
2) = G(γ∗

2 ).

Let’s assume that the contrary is true, that is

max
P

L (P , γ∗
1) ≤ max

P
L (P , γ∗

2) .

Let P∗
2 be

P∗
2 = argmax

P
L (P , γ∗

2) .

Then we have

L (P∗
2 , γ

∗
1) ≤ max

P
L (P , γ∗

1)

≤ max
P

L (P , γ∗
2)

= L (P∗
2 , γ

∗
2) ,

which contradicts the established inequality
L (P , γ∗

1 ) > L (P , γ∗
2) for ay P .

As a result, we have

Cfb(n)(P1) = G(γ∗
1 ) > G(γ∗

2 ) = Cfb(n)(P2).

By the monotonicity and continuity ofCfb(n) (P ), we
further have

P1 > P2.
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Corollary F The shadow priceγ = γ∗ > 0
and the power constraintP < ∞ are in a 1-to-1
correspondence.
proof: It is a direct consequence of Propositions D
and E.
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Aleksandar Kavčić (S’93–M’98–SM’04) received the Dipl.-Ing. degree in
Electrical Engineering from Ruhr-University, Bochum, Germany in 1993,
and the Ph.D. degree in Electrical and Computer Engineeringfrom Carnegie
Mellon University, Pittsburgh, Pennsylvania in 1998.

Since 2007 he has been with the University of Hawaii, Honolulu where
he is presently Associate Professor of Electrical Engineering. Prior to 2007,
he was in the Division of Engineering and Applied Sciences atHarvard
University, as Assistant Professor of Electrical Engineering from 1998 to
2002, and as John L. Loeb Associate Professor of Natural Sciences from
2002 to 2006. While on leave from Harvard University, he served as Visiting
Associate Professor at the City University of Hong Kong in the Fall of 2005
and as Visiting Scholar at the Chinese University of Hong Kong in the Spring
of 2006.

Prof. Kavčić received the IBM Partnership Award in 1999 and the NSF
CAREER Award in 2000. He is a co-recipient, with X. Ma and N. Varnica,
of the 2005 IEEE Best Paper Award in Signal Processing and Coding for
Data Storage. He served on the Editorial Board of the IEEE TRANSACTIONS

ON INFORMATION THEORY as Associate Editor for Detection and Estimation
from 2001 to 2004. Presently, he is the Chair of the Signal Processing for
Storage Technical Committee of the IEEE Communications Society.

http://pantheon.yale.edu/~sct29/thesis.html


IEEE TRANSACTIONS ON INFORMATION THEORY 26

Sekhar Tatikonda (S’92-M’00) received the Ph.D. degree in Electrical
Engineering and Computer Science from the Massachusetts Institute of
Technology, Cambridge, in 2000. From 2000 to 2002, he was a Postdoctoral
Fellow in the Computer Science Department at the Universityof California,
Berkeley. He is currently an Associate Professor of Electrical Engineering at
Yale University, New Haven, CT. His research interests include communica-
tion theory, information theory, stochastic control, distributed estimation and
control, statistical machine learning, and inference.


	Introduction
	Power-Constrained Linear Gaussian Noise Channel Model
	Butman's Recursive Feedback Coding Scheme
	n-Block Feedback Capacity
	An Equivalent State-Space Gaussian Noise Channel Model

	n-Block Feedback Capacity
	n-Block Feedback-Capacity-Achieving Strategy
	Gauss-Markov Sources Achieve the Feedback Capacity
	The Kalman-Bucy Filter is Optimal for Processing the Feedback
	Properties of Capacity-Achieving Channel Dynamics
	Feedback-Capacity-Achieving Sources for General State-Machine Channels

	n-Block Feedback Capacity Computation
	Parameterizing the Feedback-Capacity-Achieving Markov Sources
	Problem Reformulation Using Lagrange Multipliers
	Optimal Stochastic Control Formulation
	Source Optimization and Feedback Capacity Computation
	Complexity Analysis of Algorithm 2 and Feedback Capacity Curves

	The Maximal Feedback Information Rate of Stationary Sources
	Maximal Information Rates Achieved by Stationary Feedback-Dependent Sources
	Maximal Information Rates of Stationary Sources Used over First-Order Channels
	Sufficient Condition for the Existence of the Feedback Capacity

	Conclusion  
	Appendix I: Alternative Proof of Theorem 2
	Appendix II: Strong Duality and the Relationship between the Power Constraint and the Shadow Price
	Strong Duality under Slater's Conditions
	Propositions Involving the Feedback Capacity
	Strong Duality of the n-Block Feedback Capacity
	Relationship between the Power Constraint and the Shadow Price

	References
	Biographies
	Shaohua Yang
	Aleksandar Kavcic
	Sekhar Tatikonda


