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Abstract— We investigate optimal encoding and retrieval of reliability of the “per symbol” retrieval, without takingnto

digital data, when the storage/communication medium is de- gccount any pre- or post-processing (channel coding). The

scribed by quantum mechanics. We assume am-ary alphabet  oritaria we address in this work are of the second kind.
with arbitrary prior distribution, and an n-dimensional quantum .
system. Under these constraints, we seek an encoding-reval The laws of quantum mechanics state that the outcome of

setup, comprised of code-states and a quantum measurement,@ Mmeasurement, in our case an attempt to retrieve the encoded

which maximizes the probability of correct detection. In ou  symbol, is random. Thus, a quantum encoding-retrievalpsetu
development, we consider two cases. In the first, the measument s characterized by the transition probabilities

is predefined and we seek the optimal code-states. In the sech
optimization is performed on both the code-states and the
measurement.

We show that one cannot outperform ‘pseudo-classical trans This is reminiscent of the more common classical setups, but
mission’, in which we transmit n symbols with orthogonal Ps,

code-states, and discard the remaining symbols. Howeverush ~Whereas the randomness there is induced by noise from the
pseudo-classical transmission is not the only optimum. Weufly — environment, in the quantum case, the randomness is intheren
characterize the collection of optimal setups, and briefly écuss in the system itself.

the links between our findings and applications such as quanm ; ; )
key distribution and quantum computing. We conclude with a The state of a quantum system is mathematically repre

number of results conceming the design under an alternatie S€Nted by a unit trace positive semidefinite operatan an
optimality criterion, the worst-case posterior probability, which ~ n-dimensional Hilbert space{. Encoding digital information

serves as a measure of the retrieval reliability. in a quantum system is done by preparing the system in one
Index Terms—transmitter design, quantum detection, quan- of m predefined stategp; ?ll’_eaCh_ assoqiated with one Of_
tum key distribution, semidefinite programming, bilinear matrix ~ the possible messages. Retrieval is achieved by performing
inequality. a measurement, and determining in which of these predeter-
mined states the system has been prepared.
However, if a quantum system is in one of several states
whose range spaces are not orthogonal pie; # 0, then no
NDERLYING any scheme for the storage or transmigneasurement permitted in quantum mechanics can determine
sion of information is a physical medium. The encodingithout fail which of the states is present; there is a norwze
and the retrieval of information must therefore involve corprobability of detection error, i.ePr{i|j} > 0 for i # j.
siderations as to the nature of the medium, with regard Tde question is then, what valid quantum measurement would
possible corruption of the retrieved data, due to inteoacti yield favorable detection performance.
with the environment or to physical limitations of the madiu A popular measure of performance, and the one which is
itself. Examples of media and information encoding ranghe main interest of this work, is the probability of correct
from letters printed in ink on paper, through electric cleargletection

Pr{i|j} £ Pr{out = symboli|in = symbol;}.

|I. INTRODUCTION

stored in a capacitor, to photons travelling through ancapti LS -

fiber. This work is concerned with the encoding of digital Fo= Zpi Priili}.

information in media, whose physics is described by the laws =1

of quantum mechanics [1]. One of the contributions of this work is a complete charac-

We concentrate on digital information with a finite alphabeterization of the encoding-retrieval setups which maxaniz
i.e. the data is one of. possible messages, each one associatgdder the constraints imposed by the postulates of quantum
with a prior probabilityp;. Retrieval of the data is done bymechanics. We also present several new results concerning
performing a measurement, thereby detecting the stateeof th different performance measure, the worst-case posterior
system. probability, which is defined in SectidoVI.

There are several common criteria for the assessment offhe focus of this paper is the design of a complete digital
information retrieval, which can, for the most part, be dad communications channel (or memory unit), in which the
into two categories. The first is comprised of criteria whosgesigner can choose both the code-statesnd the detection
motivation stems from information theory (e.g. mutual info measurement. We assume that the nature of the data, which is
mation [2]). The second type of criteria aim to measure thfesignated by the number of possible symbalsand their

) ) . prior probabilitiesp;, is known. We also assume that the
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transmit (or store) data reliably, much like the signal taseo the only possible encoding-retrieval setup which achiglies
ratio in classical systems. maximal value ofP,. In Section[i¥ we show that all setups

Thus, we seek the optimal setup, comprised of code-statkat attain the maximum are composed of pure code-states
and a measurement, that maximiZeunder a constraint of the and of rank-1 measurement operators, and fully charaeteriz
dimensionn of the system. We find the maximum attainablé¢he collection of optimal setups. The importance of findifig a
value of P; for data with an arbitrary prior distribution, andthe optimal setups is discussed in Subsediion V-C, where we
completely characterize the optimal setups, which achigige outline possible use of our results in the analysis of quantu
value of P;. communication and computation protocols.

When the number of symbols: is no larger than the In Section[V] we explore performance in relation to a
dimension of the Hilbert space, one can simply choose; measure of the reliability of the outcome. We introduce the
as orthogonal pure states and attain perfect detectionnWheorst-case posterior probabilitydenoted P,. Again, when
m > n this is no longer possible, and quantum encoding > n and perfect communication is impossible, the output
becomes non-trivial. can never be fully reliable. We provide a simple method for

Motivation for using many symbols in a quantum systerfinding an upper bound oR, for arbitrary stateg; and prior
of low dimension may stem from benefits, which a protoc@robabilitiesp;.
provides, for which one is willing to sacrifice the probatyilbf Regrettably, for a large family of encoding-retrieval setu
detection or the information rate. For instance, in prood P, is ill-defined. For this reason, we also define a variation on
quantum key distribution [3] the use of many states enables tp, that we name theffectiveworst-case posterior probability.
detection of eavesdropping on the communication. In SectigVe investigate how one should choose the code-states, which
MV-O we elaborate on this point. Another possible scenariepresent discarded symbols in pseudo-classical trasgmjs
is a quantum computation, which has a finite number @i order to increase the reliability of the output, whilellsti
possible outputsn, and where for reasons of implementatiomttaining maximalP;. We develop an upper bound d?gﬁ',
complexity one cannot create a system large enough (w#hd present a choice which attains it.
enough qubits such that < n).

The problem of distinguishing among a collectionspiec-
ified quantum states, i.e. when the code-stateare a given,
is regularly referred to agjuantum detectioror quantum A. Notation
state discriminationand has been studied in detail. Necessary
and sufficient conditions for an optimal measurement, Whi%{’]

. . _ physical system is mathematically represented bynan
maximizes the probability of correct detectiély, have been . : :
derived [4], [5], [6]. Explicit solutions to the problem are‘dlmenS|onaI complex Hilbert spa@é. The state of the system

known in some particular cases [7], [8], [9], [10], [11],/) is represented by a positive semidefinite (PSD) Hermitian

including ensembles obeying a large class of symmetri 18perator ont, such thatTr(p) = 1. Throughout, we shall
9 ying 9 Y QS_[ se the notatiom > 0 to indicate that an operatot is PSD,
The optimal measurement can also be calculated numerica

o . i ; Md the notationd > B to imply that A — B is PSD. If
to within arbitrary accuracy, and in polynomial complexéy. rank(p) — 1, then it is known as a pure state

Several alternative approaches have also been investigate , . . .
As is customary in work relating to quantum theory, we

These include optimization with regard to other perforneanc L . ) .
L . . Shall use Dirac’s notation of linear algebra, wherein a mect
criteria, such as mutual information [4] or the worst-case

posterior probability [13]. Another approach ismambiguous IS denoted byu), its H_erm!tlan conjugate bju|, and inner and
X : . : outer products are signified biy:|v) and |u){v| respectively.
detection[14], [15], [16] in which one allows for an inconclu- . .
. . We do not assume that) is normalized. We denote by (A)
sive result but does not allow for error. More recently, int the range space of a Hermitian operatbrand by M (A) the
has grown in detection in a noisy environment [17], [18],][19 ge sp P y

and in situations where the states are only partially kn@®@j [ eigenspace of its maximal eigenvalue.
or the prior probabilities not specified [21].
In Section[, the problem is presented in more detaiB. Encoding Data in Quantum Media
Then, in SectiorIll, we show that the optimal code-statesW ish de diaital inf . .
for a predetermined measurement are states which lie in the e wish to encode digital information in a quantum

eigenspaces of the measurement operators associatemwithwegr'zrr;'aznesm:sggaﬂgg ':\ reﬁéfsergtggbtﬂm?\%hﬂﬂ??ggst'
maximal eigenvalues. This result is of interest both in g0 y P b Iy

right, and as part of the design of complete optimal encodin§f generality, we assume that the prior d_|str|bu'qon obeys
retrieval setups. 1> p2 > -+ > pyn > 0. The encoding is achieved by

Section§ IV and}/ are the heart of this work. In Secfiah l@ssociating.with each sympol a predefineq quantum gtate
we show that when encoding digital information in a quantu@irﬂ:)e?sgngattge ‘ngtg;ré:sttgfe ;Popg)zré?tifSéigeé_z:/aetessha”
system of dimension, the maximum attainable probability of m Pi .
correct detection may be achieved by simply discardingn {/r)é}i’tirzlr ervere;ssruarﬁeatrﬁ;[sieirgbléert/u}/henever an ensemble is
of the symbols and using an orthonormal set to encode fAe Y pans.
remainingn symbols With perfeF:t reconStrUC.tion- We dub this 1 it goes not span, the problem can always be projected onto the
method pseudo-classicatransmission. This is, however, notsubspace which it spans.

Il. PROBLEM FORMULATION

According to the postulates of quantum mechanics [1],
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Retrieval of the information is accomplished by using a  Proof: The optimal stateg; are a solution to
positive operator valued measurement (POVM), which is a

set of m operatordI = {II;},, which satisfy InaXZpiTr(Hipi) (1)
pPi
>0, 1<i<m =
s.t.
I =1. Tr(p;) = 1.
i=1

o The objective function in[{1) is additive in the variables
This is the most general type of measurement allowed by thgq the constraints on each of theare independent. Hence,
laws of quantum physics. @) is separable in, i.e. the stateg; are optimal if and only

The measurement results in onesof possible outcomes, it they are also the solutions ta problems of the form (one
where, given that the state of the systenpjghe probability ., eachi)

of the i-th outcome is

max Tr(II 2
Pr{i} = Tr(ILp). oo Tr({lp) @)
Thus, the probability of correctly detecting the encoded-me st d? =0,
sage is Tr(p) = 1.
Py = Py(Il;, p;) = ZpiTr(Hipi)- Any quantum statey, such thatp > 0 and Tr(p) = 1, has
= an eigendecomposition of the form

In this work we useP,; as the main criterion for measuring n
the quality of an encoding-retrieval setup. p=>_gilup)(u;,
In the next section we find the optimal code-states, in the =1
sense of maximalPy;, for a given measurement. We therwhereg; > 0, 37, g; = 1, and (u;|u;) = 1. Sincell > 0,
characterize, in SectiodsJIV ardl V, all optimal encodingve have that
retrieval setups, when the design specifications are thaaat n
of the data (the prior probabilitigs), and the dimension of Tr(Ilp) = Zgj (uj|ITuy)
the quantum system. j=1

In Section[M] we develop several results concerning an "
alternative measure of performance, therst-case posterior < (@) y " g;
probability. This criterion is an indicator of the reliability of J=1
the output, and is defined at the beginning of Sedfidn VI. = (a|M]w)

S o,lr_xlla)(’

I11. DESIGNING CODE-STATES FOR ANARBITRARY . e
where (4|II|4) = max;(u;[II|lu;), and off® is the largest

MEASUREMENT : .
eigenvalue ofll. If IT = 0 then the upper bound is zero and

In this section we answer the following question. If th%nyp > 0 is optimal. WhenII # 0, equality is achieved
detector, i.e. the measuremdif and the prior probabilities Tr(H;) — omax, j.e. only when p iies in the eigenspace

of the datap; are predetermined, wha}t would be a good _ChOi(iﬁ')rresponding t@rinax. -

of code-statep; to encode the data in a quantum medium of

dimensionn, in terms of P;? This question is of interest, Note that the optimal code-statgs are independent of
due to possible implementation restrictions on the detectach other and of the prior probabilitigs. Also note that
As indicated in the introduction, the reverse situatiorgtththe optima (the solutions of the problefd (1)) form a convex
of designing a measurement to discriminate among arbitr&i§t.

states, has been thoroughly studied. Corollary 1.1: If for all i, dim M(II;) = 1, then the
Our result is stated formally in Theordt 1. ensemble which maximizeg; is unique.

Theorem 1:Let {p;}>, be a probability distribution, and Proof: Whendim M(IL;) = 1 then p; must be the pure

let {I1;}}, be the measurement operators of a detector. Apuio \which spans\((I1,), and which is unique (due to the
m L :
ensemble of quantum statgs; };, maximizesF; if and only  yeqirement of normalization). If this is true for alithen the
if entire set of code-states is unique. ]
R(pi) € M(IL;). L .
) ) ) o ) In applications, one may have the freedom to choose which
Denoting the maximal eigenvalue Bf; asoy;™, the maximal  sympol will be detected by which of the detection operators.

probability of correct detection is given by Recalling that we assumed the prior probabilitiesto be
m sorted in descending order, maxinfa) can be attained when
PPt = meﬁax- the detection operators are sorted such #fgt* > o™ >
=1 - > op>*. Doing this, and selecting the optimal code-
Note that for all: such thafll; = 0, one has thai\((II) = states as above, would lead to the maximal valuePpf=

‘H, and any choice of; is optimal. > i Diof.
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IV. OPTIMAL QUANTUM ENCODING probability of correct detectiorP;. We now formulate and

We now find the maximal attainable value B§ when en- prove a theorem which shows this to be impossible.

coding data in a quantum medium. We assume that the natur@heorem 2:Let {p;}*, be a probability distribution with
of the data itself, which is manifested in the prior probigle p; > p2 > --- > p,, > 0. Denoting by P; the maximal
p;, is predetermined, and so is the quantum system itself (ipgobability of correct detection for a quantum system of
the dimensiom). We aim to find an encoding-retrieval setuglimensionn < m, we have that

that maximizesP,. . n
Thus, our goal is to find the solutions to Py = Zpi-
i=1
maXZpiTr(Hipi) (3) Proof: Let P; = > i, pi- Since the pseudo-classical
Wipi 17 setup %) achieve®,(I1;, p;) = P,;, we have that?; > P,.
We prove the theorem by showing thay < P,.
pi 20, Tr(p;) =1, The maximal value ofP; is the solution of [[B). From
s.t. m Theoren{dL, after maximizing with respect g, @) reduces
>0, > =1 to
. S . = - mapriaﬁ‘fx (5)
This optimization problem is of a class known Bdinear =

Matrix Inequality (BMI) optimization problems [22]. BMIs

are non-convex, and in general, finding a global optimum is II; > 0, (a)
an NP-hard problem [23]. Nonetheless, for this particullsil B std .

@), we are able to formulate a closed form solution, and to ZH’ —7 (b)
completely specify the optimal set. = ’

When the dimensiom of the quantum system is equal t
the number of possible messages then perfect retrieval
(P; = 1) is achievable by choosing the code-statgego be o >0, 1<i<m, (6)
mutually orthogonal pure states, and the measurement suely trom [5b)
that II; = p;. Whenn < m this is no longer possible.

%The constraint[f5a) implies that

The most straightforward approach to quantum encoding when om, <1, L<i<m,

n < m is to simply disregardn — n of the messages and aim N

to perfectly retrieve the remaining messages. It is clear that ZUHI- sn. ()
i=1

the smallest probability of error would occur if the disredgd = _ _ _
messages were the ones with smallest prior probabilitiessT (The bottom expression ifl(7) is obtained by taking the trace
this approach is embodied in the ensemble-detector setup ©f @b)). We now replace]5) by a scalar program,

m
I — |wi) (s I<i<n HL%XZPiUi (8)
’ 0 n<i<m i=1
) 1<i<n @) 0<o; <1,
' |Dontcare n<i<m st m
. . . ; < n.
where{|u;)}?_, is some orthonormal system. When using this ; 7i=

Problem[(B) was created by relaxing the constraints of grabl
@ - we keep only the constraints on the eigenvalues and
disregard the original matrix-inequality constraintseféfore,

the solution of [B) is always larger or equal to the solutién o

very strongly linked to the fact that non-orthogonalityweén
two quantum states affects the ability to distinguish betwe
them. There is no classical analogue of this property. Wh and thus, serves as an upper bound

:)r]rfhs;?)tr?gl t?tatisa Silij(?ngnl])esﬁte,::]em?;;;i;? I?r;?t"m#trl:: The optimization problem[]8) is a linear programme. Its
fact that the setupl14) is comprised only of pure mutualll)'/agrange dual probleni24] is given by

orthogonal states implies that it is classical in nature tad min g(n;, p) 9)
the losses encountered are not due to the fact that the sisstem e

governed by quantum mechanics, but to a lossy preprocessing s.t.{m’ Vi p 2 0, (@)
(disregarding some of the messages). In the sequel we refer pi— N +v; — =0, (b)

to @) aspseudo-classmaransm|53|0n. wherel < i < m and

It would, at first glance, seem that one may somehow be able m
to utilize the “quantumness” of the §ystem, i.e. rjon-ormlzgj g(ni, p) = Zm +np
code-states and measurements, in order to improve on the =
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Using the constrain{]9b), the variablescan be eliminated, We define a “Tight Frame Encoding Setup” (TFES) to be an

yielding ensemble-detector setup of the form
Rt (10) L, = )l
hobh 2 0 _ [l tul (uilus) >0
S.t. iy Y Pi = Don't care <u|u> o
i+ 12 Di. g

where the vectorsu;) obey [I2). The pseudo-classical setup
is an example of a TFES. The probability of correct
yletection when using a TFES 1§, = Z?;lpi (ug|ug).
The constraint{lI2) on the vectors ensures fiias a valid

From Lagrange duality theory, for any point in the feasibili
set of [ID), the objective(n;, 1) is greater or equal to the
solution of the primal problen{I8). In other words, for an
dual feasible poin{n, 1), g(n;, 1) is an upper bound on the

solution of [B). Consider PQVM. It also imp!ies geveral prop(_erties of the vectprs,
which are summarized in the following lemma.
fy = 4P T Prtt l<sisn Lemma 1:Let {|u;)}™, be a set of vectors which satisfy
0 n<i<m @2). Then,
P = Pn+1- (11)
Jug) <1, 13
Becausep; > --- > p,, it is dual feasible. For this choice {uilus) < (13)
m n n if <u1|ul> =1 then <uz|u7> = 51’,]’7 (14)
gl 1) = hi+njit="Y (i +p) =D pi m
i=1 i=1 i=1 Z(ul|ul> =n. (15)
In conclusion, we have shown that =1
. Proof: See AppendikA. [ |
max @) = max &) < max @) < min @) < > p;, Tight frames are of interest in many fields and applications
i=1 where one seeks a set of vectors whose mutual “interference”

which implies that for any valid ensemble and detedtpr= is minimal. Specifically, in classical communication, thegy
S i Te(Tp) < P, m an important role in Syncronous CDMA systems [26], [27].

o _ _ Also, the simplex constellation, which is known to be optima
The implication of Theorerfil2 is that one can achieve thehder certain energy constraints [28], [29], is a tight feam

optimal probability of correct detection by using orthogbn  The significance of TFESs to quantum encoding is estab-

pure states and von Neumann measurements, which are §agyd by the following result:
to implement. Nevertheless, there may be setiypsIl;}7", .
other then [4) which attainP,(Il;,p;) = P,. In the next ~ Theorem 3:All ensemble-detector setups{p;, I},

section we identify all the ensemble-detector setups whi¥ich achievery(1l;, p;) = Py are TFESs.
achieve maximum pr(_)b_ability of correct _dete_ction. The im- The proof of Theorenfl3, relies on the following lemma,
portance of character|2|_ng the set of optima is that we May,qse proof is given in AppendXIB.
be able to select an optimum that has preferable performance A
with regard to other quality of service measures. Also,gher Lemma 2:For any ensemble-detector set{p, I1;) which
may be communication protocols which require using a “no@chieves Py (11;, p;) = Py, the largest eigenvalues of the
classical” ensemble. These aspects are discussed in mgre@@éection operators satisfy
detail in Sectiol \V=C. m

Z ag’?x =n.

=1

Proof: (of Thm.[3) For any POVM, we have that

V. CHARACTERIZATION OF OPTIMAL SETUPS

In this section we introduce the notion daight frame

encoding setupsand show that all optima are of this form Tr(I1;) > of (16)
(Theorem[B). We then fully characterize the set of optima m
for a given prior probability distribution (Theoreid 4 and Z’I‘r(l‘[i) =n a7)
corollaries). i=1

where [I¥) comes from taking the trace of the requirement
A. Tight Frame Encoding Setups i i =1.

. . m : Assume that an ensemble-detector sefpI1;} achieves
Saﬁ\sgght frame[25] is a set ofm vectors{|u;)}™, which P,. Using [IT) with Lemm4l2, we get that

m m m

> Jua) (i = 1. (12) D (L) =Y op™,

=1 =1 i=1
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which, in conjunction with [(T6), shows that for any such  Proof: From Theorenf]3, we know that the ensemble-
detector detector setup is a TFES. From TheorEm 4, forialt 7;,

Tr(I1;) = oR, 1<i<m IT; = |u;)(ug|, such that{us|u;) = 1. Together with[IH), it is
- o ' easy to see that
This in turn implies that )

rank(il) <1, 1<i<m Prijliy = Tr(@po) = s luilup)l” = ;.

i.e. the detection elements of any detector which is partnof a Aso from Theorenil4, for all € T, II; = 0, indicating that
optimal setup are of the forl; = |u;)(u;| (Where|u;) may the probability of detecting theth message i®r{deti} =

also be the null vector). In order fdf to be a valid POVM, Zj p;Tr(L;p;) = 0. -

the set of vectorg|u;)}1; must obey[(T). _ _ o
Since {p;,1I;} is assumed to be an optimal setup, tign _ Corollary 4.2: Let {p;};, be a non-increasing distribu-

must be an optimal ensemble for the detediorThus, from tion of probabilities. Ifp, > pni1 then any optimal setup

Theorenll we have that for anysuch that{u;|u;) > 0, {pi, I;}, must be of the form[{4) (pseudo-classical).
. 1 Proof: From TheorenfI3, the optimal setup must be a
pi = —<ul|u1> |wi) (wil. TFES. Whenp,, > p,t1 we haveZ; = {n +1,...,m},

which, using Theorerfl4, indicates that
If (u;lu;) =0, thenp, can be any quantum state. [ |

. . L ilui) =0 1<i<m.
An interesting aspect of the above result is tRatcan only (o) ntlsism

be attained by setups in which the detected code-statese(thpogether with [IR) this implies

for which the corresponding measurement operator is noj zer

are pure states. This is hardly surprising, since obvigdisty zn: ) (| = T (18)
mixed states the chances of “interference” between caatesst — AT ’

are greater.
A set of n vectors inn-dimensional space can satisfy}(18)

) if and only if they form an orthonormal set. Thus, the only

B. Choice of TFES optimal setup whem,, > p,.1 is @). [ ]

From Theorenid3 we know that all optima are TFESs. Not
all choices of TFES are, however, necessarily optimal. We no.
show that the set of optimal TFESs is dependent on the priot’
probabilities {p; };~,, and on the dimension of the quantum  Proof: The Corollary follows directly from Theored 4,
mediumn, and characterize this dependance. The followirfgr 7, = 7, = 0. u
results (Theorend4 and corollaries) fully characterize all
optimal solutions for a given prior distribution and dimims

n. Proof: (of Thm.[4) Assume thaf|u;)}", are the vectors
In order to formulate our results we introduce a classificgf a TFES which is optimal in the sense Bf.

tion of the symbols into three distinct subsets, accordirié Assume thaf, # () and denote by: the largest index itT; .
prior probability distribution and the dimension Recalling (je. 7, = {1,...,k}). This means thap, > ppi1 = prss =

Corollary 4.3: If p; = % for all z, then all TFESs achieve

We now prove Theorer 4.

that we assume; > ps > --- > pp,, we define ... = p, (from the definition ofZ;, we have that < n). For
o Iy = {i|pi > pn}, any TFES we can write
« I = {i|pi = pn}, m
o I3y ={i|pi < pn} szzpi<ui|ui>
Note thatZ; andZ; may be empty. i=1
k m
Theorem 4:Let {p;}™, be a non-increasing distribution of _ . .
probabilities, and le{|u;)}, be the vectors of a TFES in a ;pz<u1|ul> * i:%;rlpl (i)
guantum system of dimension This TFES is optimal in the i m
sense of probability of correct detection if and only if ©rf < s )+ w s 19
all i € Ty, (u;lu;) = 1, and (ii) for all i € Ty, (u;|u;) = 0. —Z;M i) p’““i;f i) (19)
Before proving Theorenfil4, we point out the following k k
important corollaries: = Zpi<ui|ui> +Pes1 | 0 — Z<“i|ui> (20)
=1 =1
Corollary 4.1: Let {p; };2, be a non-increasing distribution k
of probabilities, and lef ;,II;}7, be anoptimal encoding = Z [pi<ui|ui> + prr1(1 — <ui|ui>)] + (n — k)pr+1,
setup in a quantum system of dimensienThen i=1
(21)

1) PI‘{]lZ} = 61',]' i€ 1y,
2) Pr{deti} =0 i€ where the transition fron[{19) t&{R0) relies d@l(15).
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Recall that for alli € Z; we havep; > py.1. If for some If Z; =0, thenZ, = {1,...,k'}. We can then write
1 <4 <k, (u;]u;) < 1, then from [21)

k
Py < Z [pz<uz|uz> +pi(l - <U1|Uz>)} + (n = k)pr+1 K
i? =D Z<uz|uz> (27)

:ZPH'( E)pri1 = ZPZ—
=1

Here we have relied on the fact that,1 = pry2 = -+ = pn.
Therefore, in order to achievé;, the vectorgu;) must satisfy

Py=" piluilus) (26)
i=1

= np1 :Zpi:Pda (28)

where the transition fron{26) t¢_(P7) relies on the factg tha

for all i > k', (u;|u;) =0, andp; = po = -+ = p,. The
transition from [(2F7) to[(28) is based dn125).
(uilui) =1, i€, If 7, = {1,...,k} andZ, = {k+1,...,k'} then, similarly,
This concludes the proof of the first statement of the ‘only if P, = Zpi<ui|ui>
direction. ;
We go on to prove the second statement. Assume that
kK = maxZo < m (le I3 = {k/ +1,.. .,m} # @) By = sz u1|uz + Pr+1 Z Uz|u1
definitionpy, > pp/+1. We again have i=k+1
m K m :ZPH-( k)pr+1 = Zpl_Pd;
Pq= ZPZ<U1|UZ> = ZPZ<U1|UZ> + Z piui|ui). =1
i=1 i=1 i=k/+1 thereby completing the proof. u

Theoremb below summarizes the assertions of Theorems
B,[3 and}, in concise form, and completely characterizes all
optimal transmitter-receiver setups.

If for somei € Zs, (u;|u;) > 0, then

kK m
Fa < sz wilui) + pi Z (wilui) (22) Theorem 5:Let {p;}™, be a probability distribution with
=t i=k'+1 LS pa> > pn >0, Fora given numben < m, define
m the index sets
- ;pi<uilui> + Pn i:;1<ui|ui> @) L lips )

n n o I ={i|pi = pu},
= pilwifus) o (n =Y (i) | @4y D= lilp < pal |

im1 im1 The maximal probability of correct detection for a quantum
n system of dimensiom < m is

= sz<uz|uz> + Pn Z (1 — (ui|wi)) §
izl "i:1 Pd=zpi.

< ZPi(uilui) + Zpi(l — (uilug)) =

=1 i=1

The optimum is achieved if and only if the ensemble-detector
setup is of the form

= sz = pda
=1 Hi = |uz><ul|,
1
. T Wi ) (Ui ilug) >0
where the transitions froni{R2) t&{24) rely on the fact that pi = {<“i|“j> i) s {uslus) >
k' € I, and on [Ib). Thus, for any TFES which achieves Don't carg (uilui) =0

maximal Py where the vectorg|u;)}7, obey

D ) {ui| = 1,
i=1

<’UJ1|’UJ1> = O, 1€ 13.

We continue by proving the ‘if’ direction. Assume that for

all i € 7y, (u;|u;) = 1, and that for alk € Zs, (u;|u;) = 0. We (wilusy =1, i€l
must first note that under these conditions, uslng (15) gield (uilui) =0. i€y
Put in words, maximun®; can only be attained by a TFES,
& where the messages with high prior probabilities (Z;) are
Z(UHUO —n. (25) encoded using orthogonal code states, and are thus redovere

P perfectly (Corollary[Z11), and the messages with low prior
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probabilities { € Z3) are discarded - much like in pseudoillustrate the possible use of the unconstrained upperdéyn
classical encoding. In choosing the remaining frame vectomn quantifying the efficacy of more complex communication
one has freedom and they can be chosen to be non-orthogopatocols.

Important special cases are when ; > p,,, where one has no

freedom and the only optimum is pseudo-classical encoding/|. OpTIMAL WORSTCASE POSTERIORPROBABILITY
1

(Corollary[42), and the equiprobable case= --, where

there is complete freedom in choosing the TFES frame vector](s'a‘r.1 .alternat|ve gua_hty of service measure for sygtems
(Corollary[Z3). of digital communication/storage is theorst-case posterior

probability [31], [13]. The posterior probability, defined as
Pr{message detected correctly

In many applications, additional constraints, other then t ;’r%nje-ssage detected
ones imposed by the physics, are placed on the encoding- = M,
retrieval setup. In quantum key distribution [3], for exam- > P Tr(ip;)
ple, constraints arise due to the need for security agaigthe answer to the question: “Given that the detected rgessa

eavesdropping. Further constraints may occur due to teahnis ;, what is the probability that it is the right answer?”. The
(implementation) issues. The work at hand can then serve {@rst-case posterior probability is then

two purposes. The first is to quantify the degradationPin N . _
due to the need to meet the extra design constraints. This Py = L Py (i).
can be done by simply comparing the performance of the

constrained system to the theoretical upper boiihd The The higher the value of’,, the more reliable the output of
the measurement.

second possible use of this work, in this context, is to gear ) B
within the set of optimal TFESs for a setup, which is close to Denote Pr{deti} = >, p;Tr(Ilip;) the probability of

meeting the demands posed by the application. When takfigfecting thei-th outcome. By definition
the latter approach we are assured optimal performance with P, - Pr{deti} < p; Pr{ili}. 1<i<m (31)
regard toP;. _ _ N
Consider the BB84 protocol [30]. In this QKD protocol Summing the inequalitie§{B1) oveérone gets
Alice wishes to send Bob secure binary information. In order m
to counter possible eavesdropping, she sends one ef 4 P,=PF,- ZPr{detz‘} < Py.
messages with; = i over a 2-dimensional quantum channel. i=1

The code-states used are dendfied), wherei, j = 0,1, and  Thys in any digital encoding system (not necessarily quant
they obey the relations mechanical) the value oP, is bounded above by the value
of P,. In particular, for quantum systems, this means that a

C. Application to the Analysis of Communication Protocols Py(i) &

(30)

.,
[(wijlug g ))? = {6”/ Z D Z_, universal upper bound oR, is P,. Theorenib below provides
1/2 i#i a simple method for finding an upper bound Bnfor a given
1 & set of code-states; and prior probabilitiep,;. We present an
3 > Juig) (uigl =1 (29)  example in which our bound is tighter than the universal ioun
i,j=0 Py
Note that[[ZP) indicates that this collection of vectors tigyat Obtaining the optimal measurement in the sensePpf
frame. involves a bisection procedure, where each step is computa-

Bob utilizes the POVM (of order 4]JI;; = %Im,;-)(uijl, tionally expensive (solving an SDP) [13]. The bound obtdine
in order to retrieve Alice’'s message. They then exchangsing our method can serve to shorten the initial bisection
knowledge on which “pair of states” was received (by, fonterval, thereby reducing the computational cost of figdin
example, comparing thé index). If both the sent and thethe optimal detector. We also hope that our method can serve
detected symbols originate from the same pair, then thfind tighter universal upper bounds ai).
transferred bit of information is taken as the member of the Note that for the pseudo-classical TFES (4), and in fact for
pair that was detected (theindex). If the symbols originate any setup in which one of the POVM elements is zero, the
from different pairs, the received symbol is discarded.rieo posterior probability is ill-defined, since the denomimnaito
to promote security, Alice and Bob use > n, at a cost (30) is zero. We therefore introduce a surrogate measure of
of reduced data rate. The security of this protocol has be#e reliability of the outcome, designed to replagin this
extensively studied. case.

The probability of correct detection achieved by Bob prior Since we seek a measure of reliability of the output, there
to the exchange of thé index is P, = 1/2. This is equal is no point in taking into account outputs which never occur.
to the upper bound’; for this case, meaning that under thélence we choose to measure the most unreliable outcome,
requirement of countering eavesdropping, Bob achieves thiethe set of possible outcomes. Theeffective worst-case
maximal possible performance. The fact that the upper boupasterior probabilityis defined as
is reached would hardly surprise most readers, in the contex peft .
of a protocol as simple as BB84. It does, however, serve to P prldeti}>0

Py (i).
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Note that wheneveP, is well definedP;ﬁ' = P,. In addition, § > 0, and thatl—4 is an upper bound on thaptimalposterior
the upper bound; also holds forP;ff. probability P,.
According to Theorerfll5, in many cases, ensemble-detectoDefine the index subset
setups which attain optimaP; are a TFES, whose detector
has zero elements. For dllsuch thafll; = 0, we can choose Q(0) = {i|A;(d) > 0},
the code states freely, without degrading the performance i
P,. This raises the question, how should one choose the ‘doftd denote its cardinality byQ(d)|. If Q(J) is non-empty,
care’ states, so that the output of the system would be teabthen we can choose

We show that for the pseudo-classical TFES (4), there is a 0 i ¢ 0)
choice of ‘don’t care’ states which attains the maximum galu Y =0, \i = { " ,
of Fe*. e 1€Q0)
. which satisfy all the above requiremerfisl(33). Thus, whenev
A. An Upper Bound orP, for a Given Ensemble Q(5) is non-empty]l — ¢ is an upper bound orﬁ’p. -

~Theorem 6:Let {p;};, bem arbitrary quantum states of ~As an example of the application of TheorEm 6, we examine
dimensionn, with prior probabilitiesp;. Define the operators an ensemble comprised of the pure stais= |u;)(u;| in a

m two dimensional Hilbert space,
Ai(8) = (1=08) > prps — pipss
k=1

(0 1 (V3 1 (V3
Uy = 1 Ug = 5 ] us = 5 1
whered € R. If for somel < i < m, A;(6) > 0, then
By<1-0. with prior probabilities
Proof: Assume thatp;}7", is an arbitrary ensemble of
guantum states with prior probabilities. Denote byl and $ p1 =04 p2 =p3 = 0.3.
the solution to .
For this ensemble,
min s (32)
s An(s) = L (9188 V27
I >0, 270\ Vver o 19-226
s.t. ZHZ- =1 whose eigenvalues are
=1
. 1
Tr[I;Ai(6)] <s, 1<i<m 04, = 55 (7~ 100 £ V13 — 56 + 52).

In [13] it was shown that if the value oE{B2) is non-negative

(i.e. 3 > 0) for a specific choice of, therf P,(IT) <1 —¢. Thisimplies thatd,(5) is PSD for anys < 0.36, and thus the
This statement contains a slight inaccuracy, becausg,fdi) ~UPper bound provided by Theordih 6/% < 0.64. This is an
to be well-defined, one must also include[lnl(32) the constraimprovement over the universal bourt} = 0.7.

II; # 0 (the authors do mention ‘taking a short cut’).

The dual program of(32) is ) _
B. Choosing the ‘Don’t Care’ States of Optimal TFESs

max Tr(Y) _— . : :
Y, In many situations, setups which attain maximiiy have
A\ >0, II; = 0 for somei. When this is the case, there are undecided
mo degrees of freedom to the TFES - the ‘don’t care’ states. We
s.t. Z Ai =1, would like to be able to choose these states so that the ostcom
i=1 of the measurement is reliable. We measure the reliability
Aidi(6) =Y > 0. using P5™ defined above.
This means that if, for a specific value &fone can find real We present a choice of ‘don't care’ states for the pseudo-
scalars); and an operato¥’, such that classical setup for whictPs™ = P, i.e. when the pseudo-
classical setup is used with this choice of ‘don't care’ estat
Ai 20, its performance is optimal both in terms &% and in terms
il of peff,
=1, !
i=1 Theorem 7:When using the pseudo-classical TFHS (4),
NA;(0) =Y >0, (33) with the choice
thenTr(Y) < 5. Therefore, if in addition to the requirements 1 " ,
@3), v also satisfiesIr(Y) > 0, then we are assured that 77 = S0 d_piluiuil,  j=n+l.m

=107 =1
2Actually, the authors of [13] are concerned with an errorcfion which )
is equal tol — P. for the ‘don’t care’ statesP;ff attains the upper boun#;.
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Proof: For alli < n we get making
Pyli) - b >l =0
T i i s Loy il P G2
_ Di Since this is a sum of nonnegative numbers, then fok &l i
pi + Z;ﬁ:nﬂ zzszp we have
_ Lo Di (wlu)P =0 = (wfu) =0
anizlpi T 2Py proving [13). Property[{15) follows from taking the trace of
~S @.
i=1
off " . APPENDIXB
Thus Ps% = 377" | p; = Pa. u PROOF OFLEMMA A

Assume that(7};, z) is a feasible point of the programme

@@J), such thatz = 0. From the constrainf{{10b);; must
We have addressed the question of retrieval of digital daatisfy 7, > p; and then

encoded in a quantum medium, using as our main perfor- m n
mance criterion the probability of correct detection. Weeha g(mi, 1) > Zpi > Zpi = g(fi, f1)
i=1 i=1

VIl. CONCLUSION

found the optimal code-states for an arbitrary detectod an
the optimal encoding-retrieval setups for an arbitraryopri

distribution. . X ) : .
Ptlmal point. All dual optimal points must satisfy # 0.

. 0
In terms of P; one cannot do better then pseudo-classica T .
transmission (orthonormal code-states and measurement ng One of the KKT conditions for the solution to problefd (8)
in

ators). We have also shown that of all the setups which att m
maximal P;, the pseudo-classical TFES can be made to have i <n — Za‘i> =0.
optimal effective worst-case posterior probability. Wevda i=1

however, indicated that under certain circumstancesethsr Since the dual optimal # 0, then any optimal values af;
. . Ll 3
benefits for using fully quantum setups (non-orthogonakeod

where(7;, 1) are defined in[(A1). Thugj;, i) cannot be a dual

must satisfy.
states). m
The natural extension of this work is the design of optimal ch =n. (B.1)
setups with added constraints. Such constraints may auise d i=1

to requirements other than reliable communication, such ag et {I1,} be a POVM, which is part of an optimal ensemble-
the need for security discussed above. Constraints may &lgQector setup i.e), p;oax = P;. By choosing
, 1€ .

stem from implementation issues which are typical to specifi R
guantum systems that regularly serve for transmission and Gi = o, (B.2)

storage of information. we get) . pio; = Py, ensuring thab; are an optimum of{8),

and thus satisfy[{Bl1). In conjunction with(B.2), this pesv
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