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Abstract—A proper vertex coloring of a graph is called
rainbow if, for each vertex v, all neighbors of v receive distinct
colors. A k-regular graph G is called rainbow (or domatically
full) if it admits a rainbow (k + 1)-coloring. The d-dimensional
grid graph G, is the graph whose vertices are the points of¢
and two vertices are adjacent if and only if their [;-distance is 1.
We use a simple construction to prove thatG, is rainbow for

follows. The vertex set oty is Z4, and {u,v} € E(Gy) if
and only ifu — v equalse; or —e; for somei € {1,...,d}.
Theorem 1:For each positive integed the graphGy is
rainbow.
Proof: Letc:Z% — Zy4,1 be defined by

d

all d > 1. We discuss an important application of this result in
steganography.

(1. .., 2q) = <Z le> mod (2d + 1). 1)

i=1
Index Terms—steganography, domatically full graph, syn-

drome coding, pixel pooling, embedding efficiency, Hamming gd is (2d)-regular, andc is a rainbow(2d + 1)-coloring of

d- ]
We would like to point out that Theorem 1 generalizes the
result by van Dijk and Willems [4] who proposed rainbow

coloring of 2-dimensional lattices in the context of data hiding.

code

W E use the standard terminology of graph theory. L&te existence of rainbow colorings of higher dimensional
G be a simple graph. By (¢) and E(G) we denote |atiices is posed as an open question in the last sentence of

the vertex setof G and theedge setbof G, respectively. For [4].

a vertexv let d(v) be thedegreeof v (the number of edges
incident with v). We say thatG is k-regular if d(v) = k
for all v € V(G). For the purpose of the application pursueg\

in Section Il below it is sufficient to restrict our attention to ™ Background _ . _ . o
regular graphs. Steganography is the science of information hiding. The

A proper vertext-coloring (or just “¢-coloring”) of G is a Sender starts with eover objectsuch as for example a digital
mappingc : V(G) — C with the property thatC| = ¢ and multimedia file, and (s)he embeds a hidden message into the
c(u) # c¢(v) whenever{u,v} € E(G). Let N(v) = {x € cover object by slightly distorting it in a way that enables
V(G) : {z,v} € E(G)} be the neighborhood of in G. A the intended recipient to retrieve the hidden message from the
proper vertex coloring: is called rainbow if, for eachv € distorted cover object; at the same time the very existence
V(G), the set{c(u) : v € N(v)} consists ofd(v) distinct Of the hidden message should be impossible to detect by any
colors, that is, all neighbors af receive distinct colors. We third party.
say thatG is arainbow graphif there exists an integer such We assume that the cover object is a sequence of elements
that G is k-regular andG admits a rainbow(k + 1)-coloring. of D, whereD = {0,...,m — 1}, m = 2°, where typically

By this definition, each rainbow graph belongs to the clags€ {8,12,16}. For examplee = 8 for grayscale digital
of so-calleddomatically fullgraphs [3, page 251]. There exisimages and: = 16 for CD quality audio.
results that can be used to prove that certain graphs ardén most steganographic schemes, the sender and the recipi-
domatically full. One such result is a theorem due to Berd¥t agree on aymbol-assignment function
[1, Theorem 2], originally stated in the context of balanc'ed v:D— S )
hypergraphs. In order to apply Berge's theorem to proving
thatG is domatically full, one takes the closed neighborhood8 this correspondence we usg = F,, the finite field
N[v] := N() U {v} (v € V(G)) as the hyperedges of awith ¢ elements, wherey is a prime power. The message
hypergraph, which is then shown to be balanced. Interestingiidetectability condition limitgS| to relatively small values;
Theorem 1 stated below can not be proved in this way, sing#is the condition thatS| is a prime power is not very
for d > 3 the resulting hypergraph is easily seen to be négstrictive and it allows introducing linear codes as ingredients
balanced by looking at a small finite subgraph(f. for the message hiding process, as we will see shortly. To

We will now establish a class of rainbow graphs. Zeand €mbed a given message symhok F, in a given element
Z.,, denote the integers and the integers modylespectively. = € D, the sender modifies to 2’ so thatv(z') = z and
Let d be a positive integer throughout. Lgt;, ..., eq} be the |z — 2’| is as small as possible.
standard basis d?, that is, (e;); equals 1 ifi = j and O One of the goals of Steganography is to design schemes with

otherwise. Let thel-dimensional grid grapli?; be defined as high embedding efficiency, which can be broadly defined as
the ratio between the amount of the communicated information
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I. RAINBOW GRAPHS

1. APPLICATION IN STEGANOGRAPHY



It has been established in [2], [6] that the embedding Lemma 1:Fori = 1,2, let C; be ag-ary linear code with
efficiency can be increased by applying covering codes. Ugbck lengthn;, redundancy-; and covering radiug?;. Then
us now briefly describe this method. The hidden messagefas any two non-negative integers b, the code obtained as
retrieved by the receiver as the syndrome of the receivéte direct sum of: copies ofC; andb copies ofCy; has the
(distorted) cover object with respect to a fixed parity chedRlI rate
matrix. Consequently, this steganography method is sometimes Ry Ry
called “syndrome coding”We use the standard terminology u <nl’ - log, Q> +(1-w) (n27 — log, Q> )
of coding theory that can be found for example in [7].

We will assume that the cover object is a sequence ef Whereu = ani/(any + bny). _
ements ofD and usep = (p1,. .., p,) to denote the sequence Thus we see from (5) that the direct sum of codes produces

of their symbols obtained using The sender and the recipientCOdeS whose CI rates are convex combinations of Cl rates of

agree in advance on anx n parity check matrixi/ overF,. Poth codes. _ _

The embedded message is then a vectoF’jnretrieved by The Cl rates (4) for all Hammlrlg codeig(q, ) satisfy a

the recipient ag{s”, wheres = (s1,...,s,) is the symbol USeful relation. Fronp = (¢ —1)/(¢" — 1) we have

sequence of the modified elements/dicommunicated by the r g4 qg—1

sender. Ifz € 7, is the message to be communicated, then the 7= )

sender modifies the cover object so that p + y wherey and thus

is a coset leader for the coset corresponding to the syndrome

z — Hp". Assuming thatany required change in any single a=1 rlog, ¢ = plog, (1 + ql) . (6)

coordinate ofp can be realized by one embedding chartpe q"—1 p

number of required embedding changes equals the Hammisigwing « as a continuous function gf € (0,1] in (6), we

weight of the coset leader and is bounded from above by thevea' (p) = —(¢ — 1)?/(p(p + ¢ — 1)?) and soa is strictly

covering radiusk of the code. concave forp > 0. Thus, for any0 < p < p(q,1) the code
Because the sender communicateg-ary symbols inn  with the largest information rate (among all codes obtained

elements ofD, and because the sender needs to do at ®ostas direct sums of Hamming codes) is obtained as the sum of

embedding changes, we say that this embedding scheme thasappropriate number of copies Hf(q, s) and H(q, s + 1),

change rate wherep(g, s+ 1) < p < p(q, s). In particular, we do not need
P R to consider sums of more than two types of Hamming codes
n as they cannot have higher information rates.

andinformation rate
B. A scheme based on rainbow colorings

r
@= n logs g. According to [8], the impact of embedding becomes statisti-

In other words, the change rate is the (upper bound on) t%Ily detgctable rather quickly with the increasing amplitude of
embedding changes. Thus, from now on we limit ourselves to

probability that an arbitrary element @ will be subjected to . . . o
an embedding change, and the information rate is measu?é;)dc""lIEdjEl embedding changés which the sender modifies

Lo | D We will call th : he C each element ofD by at most one, which is the smallest
in bits per element o e will call the pair(p, a) the C Hssible modificatioh Taking ¢ = 3 andv(z) = z mod 3

rate. Steganographers’ goal is to design schemes with a hi D th bol . t functi d Vi
information rate but low change rate. A tight upper bound df € D) as the symbol-assignment function and applying
amming codes results in the following CI rates:

the information rate for codes of a given change ratwas
2 2r

given in [2] -

(p(3,7’), O‘(3arr)) - r — 1a 3r —1 10g2 3 (7)
: i . _ _ We now show that pooling pixels combined with rainbow
where, is theg-ary entropy functiontl, (x) = —xlog, () coloring and Hamming codes leads to embedding schemes

1—x)1 1-— 1 —1). . ) .
(1 = z)logy(1 — ) + zlogy(g — 1) . with ClI rates better than those obtainable using convex com-
The most popular codes used in steganographyqezagy binations of (7)

Hamming codes [7, p. 193], since the problem solved by theFor the purpose of the hidden message embedding we will

message sender (the coset leader problem) is trivial for them, : . o S .
as all these codes have covering radias= 1. The g-ary patrtition the cover object into disjoint segments, each of which

Hamming code with codimensionwill be denoted by (g, r) conS|sts.ofd.eIements ofD. Jhat.'s’ we WI|| partition the
: : cover object into elements @, which we will callcells.The
and its CI rate will be denoted

details of partitioning into cells are immaterial for our study.
g—1 (g—1r The symbol-assignment function will now be a mappin
tar)alar) = (A4 00 og,q). o Te symbokassig Pping

a < Hq(p)v (3)

v : D¢ — Fy,.
To cover the range of change and information rates more
densely, one can use the direct sum of codes [7’ Chapter jWe note that a problem will arise in the rare case when the sender is

. .. . . . required to apply ther-1 change to the valug: — 1 or the —1 change to the
§9]- The fOIIOWIng lemma is immediate; we record it here fo{’/alue 0. Then the sender can choose a different cover object, or the sender can

later use. perform a change of a magnitude greater than 1 to achieve the same effect.



Since both the change rate and the information rate warging some other embedding scheme, such as LSB embedding.
defined relative to one element &f, for embedding schemesNote that we only needbg, M bits to uniquely specify the
that embed into cells off elements ofD, we define these code choice. The rest of the cover object is used to embed the

concepts as message using the selected code.
R
p= nd
n I1l. CONCLUSION
and r We have shown that all integer lattices can be rainbow
o= @lo@ q- colored. Under the assumption of limiting the embedding

Let us assume thatis chosen such that— 2d+1 is a prime modifications of elements oD to +1, we have shown the

power. Assume that the symbol-assignment functioiis the fofIIO\_/ving: Tr?e sch_ebme thatl poolﬁ elenlwlents ?ir;}to cellsl_
function ¢ defined in (1), where we introduce some bijectio! SiZ€ d. then rainbow colors the cells, and then applies
betweenZ, and F, if ¢ is not a prime. Then Theorem 1@ (2d + 1)-ary Hamming code has an information rate that

guarantees that any symbol Ify can be embedded into anyis never worse than the information rate of the scheme that
cell z € D? by changing at most on®-coordinate ofz by changes individual elements dD independently (without

one. Additionally, suppose that thé(q, ) Hamming code is P0ling) at the very same change rate, and then applies the

used as described in the previous section. We have thus defi}‘?éalary Ham.ming %O?e' Both sche_mesl enjoy lth‘? same ease of

a scheme that embedsos, g bis n -y d - 13+ elements IMEIEIE ST S 4 20 point that ather code families

of D by changing at most one element bf by one, leading y X gea P : '

to the Cl rate such as those discussed in [2], can be used to further increase
the information rate at the expense of increased embedding

2 2rlogyq and extraction complexi
_ 2rloga g plexity.
(pe(QaT)vaC(qu)) <qr 1 ¢ —1 (8)
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