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Grid Colorings in Steganography
Jessica Fridrich and Petr Lisoněk

Abstract— A proper vertex coloring of a graph is called
rainbow if, for each vertex v, all neighbors of v receive distinct
colors. A k-regular graph G is called rainbow (or domatically
full) if it admits a rainbow (k + 1)-coloring. The d-dimensional
grid graph Gd is the graph whose vertices are the points ofZd

and two vertices are adjacent if and only if their l1-distance is 1.
We use a simple construction to prove thatGd is rainbow for
all d ≥ 1. We discuss an important application of this result in
steganography.

Index Terms— steganography, domatically full graph, syn-
drome coding, pixel pooling, embedding efficiency, Hamming
code

I. RAINBOW GRAPHS

W E use the standard terminology of graph theory. Let
G be a simple graph. ByV (G) andE(G) we denote

the vertex setof G and theedge setof G, respectively. For
a vertexv let d(v) be thedegreeof v (the number of edges
incident with v). We say thatG is k-regular if d(v) = k
for all v ∈ V (G). For the purpose of the application pursued
in Section II below it is sufficient to restrict our attention to
regular graphs.

A proper vertext-coloring (or just “t-coloring”) of G is a
mappingc : V (G) → C with the property that|C| = t and
c(u) 6= c(v) whenever{u, v} ∈ E(G). Let N(v) = {x ∈
V (G) : {x, v} ∈ E(G)} be the neighborhood ofv in G. A
proper vertex coloringc is called rainbow if, for each v ∈
V (G), the set{c(u) : u ∈ N(v)} consists ofd(v) distinct
colors, that is, all neighbors ofv receive distinct colors. We
say thatG is a rainbow graphif there exists an integerk such
that G is k-regular andG admits a rainbow(k + 1)-coloring.

By this definition, each rainbow graph belongs to the class
of so-calleddomatically fullgraphs [3, page 251]. There exist
results that can be used to prove that certain graphs are
domatically full. One such result is a theorem due to Berge
[1, Theorem 2], originally stated in the context of balanced
hypergraphs. In order to apply Berge’s theorem to proving
thatG is domatically full, one takes the closed neighborhoods
N [v] := N(v) ∪ {v} (v ∈ V (G)) as the hyperedges of a
hypergraph, which is then shown to be balanced. Interestingly,
Theorem 1 stated below can not be proved in this way, since
for d ≥ 3 the resulting hypergraph is easily seen to be not
balanced by looking at a small finite subgraph ofGd.

We will now establish a class of rainbow graphs. LetZ and
Zn denote the integers and the integers modulon, respectively.
Let d be a positive integer throughout. Let{e1, . . . , ed} be the
standard basis ofZd, that is, (ei)j equals 1 ifi = j and 0
otherwise. Let thed-dimensional grid graphGd be defined as
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follows. The vertex set ofGd is Zd, and{u, v} ∈ E(Gd) if
and only if u− v equalsei or −ei for somei ∈ {1, . . . , d}.

Theorem 1:For each positive integerd the graphGd is
rainbow.

Proof: Let c : Zd → Z2d+1 be defined by

c(x1, . . . , xd) :=

(
d∑

i=1

ixi

)
mod (2d + 1). (1)

Gd is (2d)-regular, andc is a rainbow(2d + 1)-coloring of
Gd.

We would like to point out that Theorem 1 generalizes the
result by van Dijk and Willems [4] who proposed rainbow
coloring of 2-dimensional lattices in the context of data hiding.
The existence of rainbow colorings of higher dimensional
lattices is posed as an open question in the last sentence of
[4].

II. A PPLICATION IN STEGANOGRAPHY

A. Background

Steganography is the science of information hiding. The
sender starts with acover object,such as for example a digital
multimedia file, and (s)he embeds a hidden message into the
cover object by slightly distorting it in a way that enables
the intended recipient to retrieve the hidden message from the
distorted cover object; at the same time the very existence
of the hidden message should be impossible to detect by any
third party.

We assume that the cover object is a sequence of elements
of D, whereD = {0, . . . ,m − 1}, m = 2e, where typically
e ∈ {8, 12, 16}. For example,e = 8 for grayscale digital
images ande = 16 for CD quality audio.

In most steganographic schemes, the sender and the recipi-
ent agree on asymbol-assignment function

v : D → S. (2)

In this correspondence we useS = Fq, the finite field
with q elements, whereq is a prime power. The message
undetectability condition limits|S| to relatively small values;
thus the condition that|S| is a prime power is not very
restrictive and it allows introducing linear codes as ingredients
for the message hiding process, as we will see shortly. To
embed a given message symbolz ∈ Fq in a given element
x ∈ D, the sender modifiesx to x′ so thatv(x′) = z and
|x− x′| is as small as possible.

One of the goals of Steganography is to design schemes with
high embedding efficiency, which can be broadly defined as
the ratio between the amount of the communicated information
and the amount of introduced distortion [5]. We will be
measuring the total amount of distortion simply by counting
the number of embedding changes.



It has been established in [2], [6] that the embedding
efficiency can be increased by applying covering codes. Let
us now briefly describe this method. The hidden message is
retrieved by the receiver as the syndrome of the received
(distorted) cover object with respect to a fixed parity check
matrix. Consequently, this steganography method is sometimes
called “syndrome coding.”We use the standard terminology
of coding theory that can be found for example in [7].

We will assume that the cover object is a sequence ofn el-
ements ofD and usep = (p1, . . . , pn) to denote the sequence
of their symbols obtained usingv. The sender and the recipient
agree in advance on anr× n parity check matrixH over Fq.
The embedded message is then a vector inFr

q, retrieved by
the recipient asHsT , wheres = (s1, . . . , sn) is the symbol
sequence of the modified elements ofD communicated by the
sender. Ifz ∈ Fr

q is the message to be communicated, then the
sender modifies the cover object so thats = p + y wherey
is a coset leader for the coset corresponding to the syndrome
z − HpT . Assuming thatany required change in any single
coordinate ofp can be realized by one embedding change, the
number of required embedding changes equals the Hamming
weight of the coset leader and is bounded from above by the
covering radiusR of the code.

Because the sender communicatesr q-ary symbols inn
elements ofD, and because the sender needs to do at mostR
embedding changes, we say that this embedding scheme has
change rate

ρ =
R

n

and information rate

α =
r

n
log2 q.

In other words, the change rate is the (upper bound on) the
probability that an arbitrary element ofD will be subjected to
an embedding change, and the information rate is measured
in bits per element ofD. We will call the pair(ρ, α) the CI
rate. Steganographers’ goal is to design schemes with a high
information rate but low change rate. A tight upper bound on
the information rate for codes of a given change rateρ was
given in [2]

α ≤ Hq(ρ), (3)

whereHq is theq-ary entropy functionHq(x) = −x log2(x)−
(1− x) log2(1− x) + x log2(q − 1).

The most popular codes used in steganography areq-ary
Hamming codes [7, p. 193], since the problem solved by the
message sender (the coset leader problem) is trivial for them,
as all these codes have covering radiusR = 1. The q-ary
Hamming code with codimensionr will be denoted byH(q, r)
and its CI rate will be denoted

(ρ(q, r), α(q, r)) =
(

q − 1
qr − 1

,
(q − 1)r
qr − 1

log2 q

)
. (4)

To cover the range of change and information rates more
densely, one can use the direct sum of codes [7, Chapter 2,
§9]. The following lemma is immediate; we record it here for
later use.

Lemma 1:For i = 1, 2, let Ci be aq-ary linear code with
block lengthni, redundancyri and covering radiusRi. Then
for any two non-negative integersa, b, the code obtained as
the direct sum ofa copies ofC1 and b copies ofC2 has the
CI rate

u

(
R1

n1
,
r1

n1
log2 q

)
+ (1− u)

(
R2

n2
,
r2

n2
log2 q

)
, (5)

whereu = an1/(an1 + bn2).
Thus we see from (5) that the direct sum of codes produces

codes whose CI rates are convex combinations of CI rates of
both codes.

The CI rates (4) for all Hamming codesH(q, r) satisfy a
useful relation. Fromρ = (q − 1)/(qr − 1) we have

qr = 1 +
q − 1

ρ

and thus

α =
q − 1
qr − 1

r log2 q = ρ log2

(
1 +

q − 1
ρ

)
. (6)

Viewing α as a continuous function ofρ ∈ (0, 1] in (6), we
haveα′′(ρ) = −(q − 1)2/(ρ(ρ + q − 1)2) and soα is strictly
concave forρ > 0. Thus, for any0 < ρ ≤ ρ(q, 1) the code
with the largest information rate (among all codes obtained
as direct sums of Hamming codes) is obtained as the sum of
the appropriate number of copies ofH(q, s) andH(q, s + 1),
whereρ(q, s+1) < ρ ≤ ρ(q, s). In particular, we do not need
to consider sums of more than two types of Hamming codes
as they cannot have higher information rates.

B. A scheme based on rainbow colorings

According to [8], the impact of embedding becomes statisti-
cally detectable rather quickly with the increasing amplitude of
embedding changes. Thus, from now on we limit ourselves to
so-called±1 embedding changesin which the sender modifies
each element ofD by at most one, which is the smallest
possible modification1. Taking q = 3 and v(x) = x mod 3
(x ∈ D) as the symbol-assignment function and applying
Hamming codes results in the following CI rates:

(ρ(3, r), α(3, r)) =
(

2
3r − 1

,
2r

3r − 1
log2 3

)
(7)

We now show that pooling pixels combined with rainbow
coloring and Hamming codes leads to embedding schemes
with CI rates better than those obtainable using convex com-
binations of (7).

For the purpose of the hidden message embedding we will
partition the cover object into disjoint segments, each of which
consists ofd elements ofD. That is, we will partition the
cover object into elements ofDd, which we will callcells.The
details of partitioning into cells are immaterial for our study.
The symbol-assignment function will now be a mapping

vc : Dd → Fq.

1We note that a problem will arise in the rare case when the sender is
required to apply the+1 change to the valuem− 1 or the−1 change to the
value 0. Then the sender can choose a different cover object, or the sender can
perform a change of a magnitude greater than 1 to achieve the same effect.



Since both the change rate and the information rate were
defined relative to one element ofD, for embedding schemes
that embed into cells ofd elements ofD, we define these
concepts as

ρ =
R

nd

and
α =

r

nd
log2 q.

Let us assume thatd is chosen such thatq = 2d+1 is a prime
power. Assume that the symbol-assignment functionvc is the
function c defined in (1), where we introduce some bijection
betweenZq and Fq if q is not a prime. Then Theorem 1
guarantees that any symbol inFq can be embedded into any
cell x ∈ Dd by changing at most oneD-coordinate ofx by
one. Additionally, suppose that theH(q, r) Hamming code is
used as described in the previous section. We have thus defined
a scheme that embedsr log2 q bits in qr−1

q−1 d = qr−1
2 elements

of D by changing at most one element ofD by one, leading
to the CI rate

(ρc(q, r), αc(q, r)) =
(

2
qr − 1

,
2r log2 q

qr − 1

)
. (8)

We will now establish that the information rate achieved
this way is larger than or equal to the information rate of the
corresponding direct sum of ternary Hamming codes with the
very same change rate.

Theorem 2:Let q = 2d + 1 be a prime power,r a positive
integer, and(ρc(q, r), αc(q, r)) the CI rate (8). Lets be the
unique positive integer such that

ρ(3, s + 1) < ρc(q, r) ≤ ρ(3, s). (9)

Let C be the direct sum ofa copies ofH(3, s) and b copies
of H(3, s + 1), wherea, b are chosen such that the CI rate
(ρ̄, ᾱ) of C satisfiesρ̄ = ρc(q, r). Then

αc(q, r) ≥ ᾱ, (10)

and equality occurs if and only ifq is a power of 3.
Proof: For ternary Hamming codes, the relation (6) takes

the form

α = ρ log2

(
1 +

2
ρ

)
. (11)

The CI rates(ρc(q, r), αc(q, r)) computed in (8) also satisfy
the relation (11). The inequality (10) then follows from the
strict concavity of (11) (in which we again considerα as a
function of ρ), applied to the triple (9), taking into account
Lemma 1. The equality occurs exactly whenρc(q, r) = ρ(3, s)
for somes. This is, however, equivalent toq = 3k for some
positive integerk.

We close this section with a note on how the proposed codes
may be used in practice. Because the choice of the code (e.g.,
the parametersq, d, r) must be communicated to the recipient,
a common practice is to select the code parameters to obtain
a finite set ofM codes with ratesα1 < . . . < αM distributed
approximately evenly in[0, 1]. For a given information rate
α, the encoder first finds the smallestαi such thatα ≤ αi.
Then, a small portion of the cover object is selected using a
secret shared stego key and the code choice is embedded there

using some other embedding scheme, such as LSB embedding.
Note that we only needlog2 M bits to uniquely specify the
code choice. The rest of the cover object is used to embed the
message using the selected code.

III. C ONCLUSION

We have shown that all integer lattices can be rainbow
colored. Under the assumption of limiting the embedding
modifications of elements ofD to ±1, we have shown the
following: The scheme that pools elements ofD into cells
of size d, then rainbow colors the cells, and then applies
a (2d + 1)-ary Hamming code has an information rate that
is never worse than the information rate of the scheme that
changes individual elements ofD independently (without
pooling) at the very same change rate, and then applies the
ternary Hamming code. Both schemes enjoy the same ease of
implementation and low computational complexity.

We fully acknowledge at this point that other code families,
such as those discussed in [2], can be used to further increase
the information rate at the expense of increased embedding
and extraction complexity.
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