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Abstract–Joint maximum-likelihood (JML) detector
may be used in memoryless multiple input multiple
output (MIMO) systems to obtain optimal detec-
tion performance. However, the JML detector needs
an exhaustive search and causes prohibitively large
decoding complexity. To reduce the complexity of
MIMO signal detection, minimum mean-square-error
(MMSE) linear detector (LD), decision-feedback de-
tector (DFD) and sphere detector (SD) may be used.
In this paper, we propose a truncation based detector
for low complexity MIMO signal detection, and give
theoretical insight into the design and performance.
We study bi-truncation in detail and present two bi-
truncation approaches. These approaches have low-
complexity, and computer simulation results show
that they outperform MMSE-LD and MMSE-DFD.

Keywords–MIMO signal detection, channel trunca-
tion, bi-truncation, Viterbi Algorithm.

I. INTRODUCTION

In MIMO systems, joint maximum-likelihood (JML)
detector minimizes the joint error probability. However,
its complexity increases exponentially as the number
of input bits increases, which is often impractical. To
reduce decoding complexity, some simplified detection
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MDA904-03-1-0052 and NSF under Grant DMS-0245530.

approaches have been employed, including linear de-
tector (LD) [1], decision-feedback detector (DFD) [2],
sorted DFD [3], and sphere detector (SD) [4], [5]. In
this paper, we present an original truncation based de-
tector for simplified MIMO signal detection. Truncation
detector uses a linear (matrix) transformation to truncate
the channel into an L-diagonal matrix. Then slightly
modified Viterbi Algorithm [6], [7], [8] is used to detect
the signals with low complexity.

The rest of the paper is organized as follows. In
Section II, we briefly describe a MIMO system with a
truncation based signal detector. Then in Section III, we
derive truncation criteria in terms of maximizing signal-
to-noise ratio (SNR) and minimizing error probability
bound. As an example, we study bi-truncation in detail.
The specific bi-truncation criteria are investigated in
Section IV. Based on such truncation criteria, we develop
two bi-truncation approaches in Section V and inves-
tigate the optimal grouping in Section VI. Finally, we
present computer simulation results and compare with
some some known detectors to demonstrate effectiveness
of the proposed methods in Section VII and conclude the
paper in Section VIII.

II. SYSTEM MODEL

A memoryless m-input and n-output channel is de-
scribed in Figure 1. The complex received signal vector,
r = (r1, r2, · · · , rn)T , can be expressed as

r =
√

EsHa + z, (1)
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Fig. 1. A MIMO system with a truncation detector.

where H is an n × m channel matrix, a =

(a1, a2, · · · , am)T is the channel input vector, and z =

(z1, z2, · · · , zn)T is the noise vector.
The m channel input symbols are independent and

uniformly chosen from the same discrete and complex
alphabet set. Therefore, input symbols, ai’s, are inde-
pendent and identically distributed (i.i.d), and with zero-
mean and unit-variance. We assume that the m columns
of H are linearly independent, which requires that there
are at least as many outputs as inputs, that is, m ≤ n. As
usual, we also assume that the noise is white (circular
complex) Gaussian so that the real and imaginary com-
ponents of z are i.i.d zero-mean Gaussian with variance
N0/2. In addition, we make the assumption that the
transmitter does not know H, but the receiver has perfect
channel knowledge.

We desire to find a linear truncator C such that B =

CH is an L-diagonal matrix as in (2). If L = 2, we call
this truncation bi-truncation. Such a matrix C always
exists if the columns of H are linearly independent. After
the truncator, C, the output becomes

r̃ =
√

EsBa + z̃, (3)

where the noise vector z̃ = Cz = (z̃1, z̃2, · · · , z̃m)T .

Note that z̃ is usually not white any more, but it is still
Gaussian and with zero-mean and autocorrelation matrix
N0CC

∗. After the channel is truncated in this form, a
slightly modified Viterbi Algorithm is then used to detect
the transmitted symbols. For bi-truncation, the number of
states in the trellis diagram is the same as the number of
constellations. For 4-QAM constellation, there are only
4 states; therefore, the complexity is much less than that
of the JML detector.

III. TRUNCATION CRITERIA

In this section, we shall investigate truncation criteria
to minimize error probability bounds or maximize the
average SNR.

A. Maximum of Average SNR

Under the assumptions that z and a are i.i.d., with
zero-mean, and variance N0 and 1, respectively, the
average SNR is

SNR =
E(|

√
EsBa|2)

E(|z̃|2)
=

Es

N0

tr(BB
∗)

tr(CC
∗)

.
(4)

Our objective here is to find B and C to maximize SNR.
From singular value decomposition theory, there exist an
n× n unitary matrix, U, and an m×m unitary matrix,
V, such that

H = U
∗



























λ1 0 · · · 0

0 λ2 · · · 0

· · · · · · · · · · · ·
0 0 · · · λm

0 0 · · · 0

· · · · · · · · · · · ·
0 0 0 0



























V,

where λ1 ≥ 0, λ2 ≥ 0, · · · , λm ≥ 0 are the singular
values of H. Since we assume the columns of H are
linearly independent, λi > 0 for 1 ≤ i ≤ m.

Let D = diag(λ1, λ2, · · · , λm) and CU
∗ = (C1,C2),

where C1 is an m × m matrix, and C2 is an m × (n −
m) matrix. Since CH = B, we immediately get C1 =

BV
∗
D

−1. Hence,

C = (C1 , C2)U = (BV
∗
D

−1 , C2)U (5)

and

CC
∗ = BV

∗
D

−1(D−1)∗VB
∗ + C2C

∗
2

= BXB
∗ + C2C

∗
2,

(6)

where X = (V∗
D

−1)(V∗
D

−1)∗ is an m × m positive
definite Hermitian matrix since both D and V are
nonsingular. From (6), we have

tr(CC
∗) ≥ tr(BXB

∗), (7)

and this equality holds if and only if C2 = 0. From (4)
and (7), we obtain the following Theorem.

Theorem 1 The total average SNR of system (3) is
bounded by

SNR ≤ Es

N0

tr(BB
∗)

tr(BXB
∗)

, (8)
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B =











































d1,1 d1,2 · · · d1,L 0 0 · · · 0

0 d2,1 d2,2 · · · d2,L 0 · · · 0

0 0
. . . . . . . . . . . . . . .

...
...

. . . 0 di−1,1 di−1,2 · · · di−1,L 0

0 0 0 0 di,1 di,2 · · · di,L

di+1,L 0
. . . 0 0 di+1,1 · · · di+1,L−1

di+2,L−1 di+2,L 0
. . . 0 0 di+2,1 · · ·

...
. . . 0

. . . . . . 0
. . .

...
dm,2 · · · dm,L 0 0 · · · 0 dm,1











































(2)

and the maximum is achieved if and only if

C = (BV
∗
D

−1,0), (9)

that is equivalent to C2 = 0.

From Theorem 1, we conclude that a good approach
to maximizing SNR is therefore to minimize tr(BXB

∗)

while fixing tr(BB
∗) and setting C2 = 0.

B. Error Probability Analysis

If a signal r is detected by JML detector from
(1), then the pairwise error probability of transmitting
a = (a1, a2, · · · , am) and decoding in favor of e =

(e1, e2, · · · , em) is well approximated [9], [10] by

Pa→e ≤ exp(−|Ha−He|2 Es

4N0
). (10)

In our scheme, a truncator C is used at the receiver,
and equation (3) is used to detect the signal. Based on
the approach presented in [9], we now derive an upper
bound on the error probability by Markov’s inequality
[11]. Assuming Viterbi Algorithm is used for decoding,
then the pairwise error probability is

Pa→e = Pr(|̃r−
√

EsBa|2 ≥ |̃r −
√

EsBe|2). (11)

For simplicity, we set η:= Ba − Be and write η =

(η1, η2, · · · , ηm)T . From (3), we find

|̃r−
√

EsBa|2 = |z̃|2,

and

|̃r−
√

EsBe|2 = Es|η|2 + 2
√

EsRe(η∗
z̃) + |z̃|2,

where Re(·) denotes the real part of a complex number.
So (11) can be rewritten as

Pa→e = Pr(−2
√

EsRe(η∗
z̃) ≥ Es|η|2). (12)

Let λ > 0 be arbitrary. Note that Y ≥ α if and only
if eλY ≥ eλα. Applying Markov’s inequality we have

Pa→e = Pr(exp{−2λ
√

EsRe(η∗
z̃)} ≥ exp{λEs|η|2})

≤ E(exp{(−2λ
√

Es)Re(η∗
z̃)})

exp{λEs|η|2}
.

(13)
Recall that z̃ = Cz = (z̃1, z̃2, · · · , z̃m)T . Hence

Re(η∗
z̃) =

∑m
i=1 Re(η∗i z̃i)

=
∑m

k=1 Re(zk)(
∑m

i=1 Re(ηiC
∗
i,k))

+
∑m

k=1 Im(zk)(
∑m

i=1 Im(ηiC
∗
i,k)),

where Im(·) denotes the imaginary part of a complex
number. Under the assumption that the real and imagi-
nary components of z are i.i.d zero-mean Gaussian with
variance N0/2, the variance of Re(η∗

z̃) is σ2
Re(η∗z̃) =

N0

2 σ2, where

σ2 =
m

∑

k=1

((
m

∑

i=1

Re(ηiC
∗
i,k))

2 + (
m

∑

i=1

Im(ηiC
∗
i,k))

2).

(14)

Note that for any real number t, the characteristic
function of a Gaussian random variable Y with zero-
mean and variance σ2

Y is E(ejtY ) = exp{− t2σ2

Y

2 }. Hence
from (13) we have

Pa→e ≤
exp{1

2(−2λ
√

Es)
2σ2

Re(η∗z̃)}
exp{λEs|η|2}

= exp{Es(N0σ
2λ2 − |η|2λ)}.

(15)
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Optimizing (15), we have λ =
|η|2

2N0σ2
, which yields the

following upper bound:

Pa→e ≤ exp{−|η|4
σ2

Es

4N0
}.

Theorem 2 Suppose Viterbi Algorithm is used for de-
coding for equation (3), then the pair-wise symbol error
probability of transmitting a = (a1, a2, · · · , am) and
decoding in favor of e = (e1, e2, · · · , em) is bounded
by

Pa→e ≤ exp{−|η|4
σ2

Es

4N0
}, (16)

where, σ2 is given in (14).

Hence, a good approach to minimizing the error
probability is therefore to maximize

min
B,C

|η|4
σ2

.

IV. BI-TRUNCATION

In this section, we focus on bi-truncation. We will first
establish criteria for bi-truncation and then develop two
approaches.

A. BI-TRUNCATION CRITERIA

For simplicity, we write the truncation matrix in (2)
for bi-truncation as in the following,

B =

























d1 c1 0 · · · 0 0

0 d2 c2 · · · 0 0

0 0 d3
. . . 0 0

· · · · · · · · · . . . . . . · · ·
0 0 0 · · · dm−1 cm−1

cm 0 0 · · · 0 dm

























(17)

where di 6= 0 and ci 6= 0 for all 1 ≤ i ≤ m.
At high SNR, when a is transmitted, and the receiver

decodes to e, usually at most one bit is detected wrong,
that is, a and e differ in at most one bit. The bound in
(16) allows us to derive an upper bound on the bit error
probability, based on which bi-truncation design criteria
will be derived. Suppose a and e differ in only one bit,
and assume al 6= el for some l (1 ≤ l ≤ m). Then η has
only two nonzero components ηl−1 = cl−1(al − el) and
ηl = dl(al − el). Thus |η|4 = (|dl|2 + |cl−1|2)2|al − el|4.

Throughout the rest of the paper, we adopt the follow-
ing subscript operation

i + 1 := δ(i − m) + (i + 1) mod (m + 1)

i − 1 := mδ(i − 1) + (i − 1) mod m

where δ(·) is the Deta function, i.e.,

δ(x) =

{

1 if x = 0;

0 otherwise.

Now

σ2 =
∑m

k=1(Re(ηlC
∗
l,k) + Re(ηl−1C

∗
l−1,k))

2

+
∑m

k=1(Im(ηlC
∗
l,k) + Im(ηl−1C

∗
l−1,k))

2

= |ηl|2(CC
∗)l,l + |ηl−1|2(CC

∗)l−1,l−1

+2Re(ηlη
∗
l−1(CC

∗)l−1,l).
(18)

Recall that CC
∗ = BXB

∗ + C2C
∗
2. By Cauchy-

Schwartz inequality,

((C2C
∗
2)l,l(C2C

∗
2)l−1,l−1)

1/2 ≥ |(C2C
∗
2)l−1,l|.

With this inequality, we can show

σ2 ≥ |ηl|2(BXB
∗)l,l + |ηl−1|2(BXB

∗)l−1,l−1

+2Re(ηlη
∗
l−1(BXB

∗)l−1,l),

with equality if and only if C2 is a zero matrix—this
is consistent with the maximum SNR approach. Hence,
throughout the rest of the paper, we set C2 = 0. As a
result, CC

∗ = BXB
∗.

Thus, in the case when a and e differ only in the lth
bit, the pairwise symbol error probability becomes the
lth bit error probability and is bounded by

Pl ≤ exp{− (|dl|2 + |cl−1|2)2
σ2

l

Es

4N0
|al − el|2}, (19)

where

σ2
l = |ηl|2(BXB

∗)l,l + |ηl−1|2(BXB
∗)l−1,l−1

+2Re(ηlη
∗
l−1(BXB

∗)l−1,l)

= |dl|2(BXB
∗)l,l + |cl−1|2(BXB

∗)l−1,l−1

+2Re(dlc
∗
l−1(BXB

∗)l−1,l).
(20)

The probability that any single bit decision is incorrect
will be dominated by the largest bit error probability,

or equivalently by the min 1≤l≤m
(|dl|2 + |cl−1|2)2

σ2
l

}.

Hence, we conclude that the optimal choice of B should
maximize

min
1≤l≤m

(|dl|2 + |cl−1|2)2
σ2

l

. (21)
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It is non-trivial to find an optimal solution B for (21).
However, from the upper bound on the error probability,
we see that since tr(BB

∗) is fixed, if for some i (1 ≤
i ≤ m), |di| or |ci| is too small, then there must exist
some other k 6= i, such that |dk| or |ck| is large. As a
result, (21) could not be maximized. Therefore, |di|, |ci|,
1 ≤ i ≤ m, should be approximately equal. Therefore,
we propose the following criteria for designing a bi-
truncation matrix B:

• |di|, |ci|, 1 ≤ i ≤ m, are approximately equal.
• Minimize tr(BXB

∗) while fixing tr(BB
∗).

A good strategy is to choose B so as to balance these
two criteria. We formalize the bi-truncation problem as
follows: Find bi-diagonal matrix B to minimize

tr(BXB
∗) =

∑m
i=1(|di|2xi,i + |ci|2xi+1,i+1

+2Re(dic
∗
i xi,i+1))

(22)

while tr(BB
∗) is fixed and |di|, |ci|, 1 ≤ i ≤ m, are

approximately equal.

For technical convenience, we set tr(BB
∗) = m,

where m is the number of transmit antennas. Note that
once B is selected, C is determined by (5) with C2 = 0.

B. BI-TRUNCATION APPROACHES

In this section, two bi-truncation approaches are intro-
duced. It seems unrealistic to find a closed-form solution
for B, so we attempt to find a numerical solution. Since
Re(dic

∗
i xi,j) ≥ −|di||ci||xi,j |,

tr(BXB
∗) ≥ ∑m

i=1(|di|2xi,i + |ci|2xi+1,i+1

−2|di||ci||xi,i+1|).
(23)

The equality in (23) is achieved if and only if

xi,i+1 = 0

or
dic

∗
i = a negative scalar of x∗

i,i+1.

(24)

Hence, the optimal phase relationship between di, ci

and xi,i+1 is well determined for all i, and we only need
to consider |di| and |ci|, 1 ≤ i ≤ m, the magnitudes
of the entries of B. We shall explore two bi-truncation
approaches.

1) Approach I: In this subsection, we explore one
approach by maximizing SNR. The objective is to choose
B that minimizes

tr(BXB
∗) =

∑m
i=1(|di|2xi,i + |ci|2xi+1,i+1

−2|di||ci||xi,i+1|)
(25)

subject to the constraint
∑m

i=1 |di|2 + |ci|2 = m.

Using Lagrange multiplier, it can be easily shown that
there is no interior critical point, which implies that the
minimum is achieved on the boundary where at least
one of |di|,s or |ci|,s is 0. Hence, we take an alternative
approach.

For each i, set |di| = Lisinθi, |ci| = Licosθi, θi ∈
(0, π

2 ). Then |di|2+|ci|2 = L2
i , and

∑m
i=1 |Li|2 = m. We

require that L2
i ≥ ε (i = 1, 2, · · · ,m), where 0 < ε ≤ 1.

tr(BXB
∗) can be computed as follows.

(BXB
∗)i,i = |di|2xi,i + |ci|2xi+1,i+1 − 2|di||ci||xi,i+1|

= L2
i (xi,isin2θi + xi+1,i+1cos2θi − |xi,i+1|sin2θi)

= L2
i (

xi,i + xi+1,i+1

2
− kicos(2θi − φi))

≥ L2
i (

xi,i + xi+1,i+1

2
− ki),

with equality if and only if θi =
φi

2
, where

ki = ((
xi,i − xi+1,i+1

2
)2 + |xi,i+1|2)1/2

and
φi = cos−1(

xi,i − xi+1,i+1

2ki
).

Set Si =
xi,i + xi+1,i+1

2
− ki , Si0 = min 1≤l≤m Si.

Then by the assumptions that L2
i ≥ ε and

∑m
i=1 L2

i = m,
and since Si0 ≤ Si for i 6= i0, we have

tr(BXB
∗) =

∑m
i=1 L2

i Si

≥ (
∑

i6=i0
εSi) + (m − (m − 1)ε)Si0 .

(26)

The equality holds in (26) if and only if L2
i0

= m−(m−
1)ε and L2

i = ε for all i 6= i0. Therefore, tr(BXB
∗) is

minimized by taking

|di| =











√
ε sin

φi

2
if i 6= i0;

√

m − (m − 1)ε sin
φi

2
if i = i0;

|ci| =











√
ε cos

φi

2
i 6= i0;

√

m − (m − 1)ε cos
φi

2
i = i0.

(27)
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Combining (24) and (27), we minimize tr(BXB
∗) by

setting

di =







|di| if xi,i+1 = 0;

|di|
x∗

i,i+1

|xi,i+1|
if xi,i+1 6= 0;

ci = −|ci|.

(28)

The bi-truncation matrix derived in (28) is optimal in the
sense of maximum average SNR.

2) Approach II: In approach I, the minimum of
tr(BXB

∗) has the asymptotic property:

tr(BXB
∗) → mSi0 as ε → 0.

However, SNR is not the unique factor that affects the
performance of a scheme. If ε is small, then all |di|,s
and |ci|,s (i 6= i0) are very small, which is equivalent to
deep fading in m− 1 subchannels. Therefore, there is a
tradeoff between the SNR and the fading. From the error
probability derivation (21), such truncation B for small
ε needs not provide the best performance even though it
maximizes the SNR.

Next, we consider both SNR and the fading in search
of a bi-truncation matrix B. It turns out that this matrix
B is very easy to compute and implement. Notice that
(25) may be written as

tr(BXB
∗) =

∑m
i=1(|di|√xi,i − |ci|√xi+1,i+1)

2

+2|di||ci|(√xi,ixi+1,i+1 − |xi,i+1|).

Let

|di| =

√
xi+1,i+1

si
, |ci| =

√
xi,i

si
, (29)

where si =
√

xi,i + xi+1,i+1. From X =

(V∗
D

−1)(V∗
D

−1)∗, we see that no |di| or |ci|
for all 1 ≤ i ≤ m will result in deep fading, and (25)
is close to be minimized. Let B be the bi-truncation
matrix with entries

di =















√
xi+1,i+1

si
if xi,i+1 = 0;

√
xi+1,i+1

si
·

x∗
i,i+1

|xi,i+1|
if xi,i+1 6= 0;

ci = −
√

xi,i

si
.

(30)

The simulation results show that this bi-truncation well
balances two design criteria we proposed in Section IV.

C. GROUPING OF BI-TRUNCATION

Up to this point, we have assumed that the bi-
truncation matrix B is a bi-diagonal matrix, which allows
the modified Viterbi detector to detect the symbols in
the natural grouping (a1, a2), (a2, a3), · · · , (am, a1) of
a1, a2, · · · , am. Similar to the sorted MMSE-DFD, this is
not the only possible grouping. Note that each grouping
forms an array, under rotation and/or reflection, the
array still corresponds to an equivalent grouping. This is
equivalent to a Dihedral Group D2m acting on the set
comprised of all these arrays. The order of the Dihedral
Group is 2m. By applying Burnside’s theorem [12], there
are

m!

2m
=

(m − 1)!

2

nonequivalent groupings.
Each grouping determines a bi-truncation matrix

B, which is not necessarily bi-diagonal. Suppose
(a1, ai2), (ai2 , ai3), · · · , (aim

, a1) is a grouping, which
corresponds to a

′ = (a1, ai2 , ai3 , · · · , aim
), then there

is a permutation matrix P such that a = P
T
a
′, where

a = (a1, a2, a3, · · · , am). Substituting a = P
T
a
′ into

the truncation channel model (3) yields

r̃ = BP
T
a
′ + z̃ = B

′
a
′ + z̃, (31)

where B
′ is a bi-diagonal matrix. Making use of bi-

truncation II, B
′ can be computed, and then B = B

′
P

is the bi-truncation matrix corresponding to the group-
ing (a1, ai2), (ai2 , ai3), · · · , (aim

, a1). The best grouping
corresponds to the bi-truncation matrix B which mini-
mizes

tr(B′
XB

′∗) = tr(BX
′
B

∗),

where X
′ = P

T
XP. For example, there are 3 nonequiv-

alent groupings when m = 4, so there are 3 nonequiva-
lent bi-truncation matrices:

B1 =













d1 c1 0 0

0 d2 c2 0

0 0 d3 c3

c4 0 0 d4













,
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Fig. 2. Comparison performance of uncoded 4-QAM codes with 3
Tx and 3 Rx.
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Fig. 3. Comparison performance of uncoded 4-QAM codes with 4
Tx and 4 Rx.

B2 =













d1 0 c1 0

0 c2 d2 0

0 d3 0 c3

c4 0 0 d4













,

B3 =













d1 0 c1 0

0 0 d2 c2

0 c3 0 d3

c4 d4 0 0













.
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Fig. 4. Comparison performance of uncoded 4-QAM codes with 8
Tx and 8 Rx.

V. SIMULATION RESULTS

In this section, we compare the performance of bi-
truncation with MMSE-LD and MMSE-DFD for mem-
oryless MIMO systems. Instead of specializing to a par-
ticular channel matrix, we will average the performance
over one million to ten million randomly generated
Rayleigh fading channels. All transmit signals are chosen
uniformly and independently from 4-QAM alphabet. The
performance of bi-truncation detection is obtained by
modified Viterbi Algorithm.

In Figure 2, a system with 3 transmit antennas and
3 receive antennas is simulated. In this system, both bi-
truncation detection approaches outperform MMSE-LD
and sorted MMSE-DFD at high SNR. Also, bi-truncation
II outperforms bi-truncation I (ε = 1), the main reason
is that Bi-truncation I results in deep fading sometimes,
while Bi-truncation II provides a good balance between
SNR and fading. A 4×4 system is simulated in Figure 3,
the simulation results indicate that Bi-truncation II and
optimal grouped Bi-truncation II both outperform sorted
MMSE-DFD at high SNR. In Figure 4 we simulate an
8 × 8 system, we notice that Bi-truncation II provides
much better performance than MMSE-DFD.

VI. CONCLUSIONS

In this paper, we propose a channel truncation based
detector for low complexity MIMO signal detection,
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and give theoretical analysis into the design and per-
formance. The bi-truncation is studied in detail. Two bi-
truncation approaches are presented, and the simulation
results indicate that bi-truncation detector outperforms
MMSE-LD and sorted MMSE-DFD when a system is
equipped with a small number of transmit antennas.
Especially, the average bit error probability (BER) by
bi-truncation detection decreases dramatically as SNR
increases. When implementing SD, the major issues
are choosing the initial radius and the order in which
the inputs are detected. The advantage of bi-truncation
detection over SD is therefore the existence of simple
modified Viterti Algorithm decoding.
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