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Abstract

Capacity formulas and random-coding exponents are derived for a generalized family of
Gel’fand-Pinsker coding problems. These exponents yield asymptotic upper bounds on the
achievable log probability of error. In our model, information is to be reliably transmitted
through a noisy channel with finite input and output alphabets and random state sequence,
and the channel is selected by a hypothetical adversary. Partial information about the state
sequence is available to the encoder, adversary, and decoder. The design of the transmitter is
subject to a cost constraint. Two families of channels are considered: 1) compound discrete
memoryless channels (CDMC), and 2) channels with arbitrary memory, subject to an additive
cost constraint, or more generally to a hard constraint on the conditional type of the channel
output given the input. Both problems are closely connected. The random-coding exponent is
achieved using a stacked binning scheme and a maximum penalized mutual information decoder,
which may be thought of as an empirical generalized Maximum a Posteriori decoder. For
channels with arbitrary memory, the random-coding exponents are larger than their CDMC
counterparts. Applications of this study include watermarking, data hiding, communication in
presence of partially known interferers, and problems such as broadcast channels, all of which
involve the fundamental idea of binning.

Index terms: channel coding with side information, error exponents, arbitrarily varying chan-
nels, universal coding and decoding, randomized codes, MAP decoding, random binning, capacity,
reliability function, method of types, watermarking, data hiding, broadcast channels.
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1 Introduction

In 1980, Gel’fand and Pinsker studied the problem of coding for a discrete memoryless channel
(DMC) p(y|x, s) with random states S that are observed by the encoder but not by the decoder [1].
They derived the capacity of this channel and showed it is achievable by a random binning scheme
and a joint-typicality decoder. Applications of their work include computer memories with defects
[2], writing on dirty paper, and communication in presence of a known interference [3, 4, 5, 6].
Duality with source coding problems with side information was explored in [7, 8, 9]. In the late
1990’s, it was discovered that the problems of embedding and hiding information in cover signals are
closely related to the Gel’fand-Pinsker problem: the cover signal plays the role of the state sequence
in the Gel’fand-Pinsker problem [10, 11, 12]. Capacity expressions were derived under expected
distortion constraints for the transmitter and a memoryless adversary [12]. One difference between
the basic Gel’fand-Pinsker problem and the various formulations of data-hiding and watermarking
problems resides in the amount of side information available to the encoder, channel designer
(adversary), and decoder. A unified framework for studying such problems is considered in this
paper. The encoder, adversary and decoder have access to degraded versions se, sa, sd, respectively,
of a state sequence s. Capacity is obtained as the solution to a mutual-information game:

C = sup
pXU|Se

min
pY |XSa

[I(U ;Y Sd)− I(U ;Se)],

where U is an auxiliary random variable, and the sup and min are subject to appropriate constraints.

In problems such as data hiding, the assumption of a fixed channel is untenable when the channel
is under partial control of an adversary. This motivated the game-theoretic approach of [12], where
the worst channel in a class of memoryless channels was derived, and capacity is the solution to a
maxmin mutual-information game. This game-theoretic approach was recently extended by Cohen
and Lapidoth [13] and Somekh-Baruch and Merhav [14, 15], who considered a class of channels with
arbitrary memory, subject to almost-sure distortion constraints. In the special case of private data
hiding, in which the cover signal is known to both the encoder and the decoder, Somekh-Baruch
and Merhav also derived random-coding and sphere-packing exponents [14]. Binning is not needed
in this scenario. The channel model of [13, 14, 15] is different from but reminiscent of the classical
memoryless arbitrary varying channel (AVC) [16, 17, 18] which is often used to analyze jamming
problems. In the classical AVC model, no side information is available to the encoder or decoder.
Error exponents for this problem were derived by Ericson [19] and Hughes and Thomas [20]. The
capacity of the AVC with side information at the encoder was derived by Ahlswede [21].

The coding problems considered in this paper are motivated by data hiding applications in which
the decoder has partial1 or no knowledge of the cover signal. In all cases capacity is achievable by
random-binning schemes. Roughly speaking, the encoder designs a codebook for the auxiliary U .
The selected sequenceU plays the role of input to a fictitious channel and conveys information about
both the encoder’s state sequence Se and the message M to the decoder. Finding the best error
exponents for such schemes is challenging. Initial attempts in this direction for the Gel’fand-Pinsker
DMC have been reported by Haroutunian et al. [22, 23], but errors were discovered later [24, 25].
Very recently, random-coding exponents have been independently obtained by Haroutunian and

1For instance, the decoder may have access to a noisy, compressed version of the original cover signal.
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Tonoyan [26] and Somekh-Baruch and Merhav [27]. Their results and ours [28] were presented at
the 2004 ISIT conference.

The random-coding exponents we have derived cannot be achieved by standard binning schemes
and standard maximum mutual information (MMI) decoders [16, 18]. Instead we use a stack
of variable-size codeword-arrays indexed by the type of the encoder’s state sequence Se. The
appropriate decoder is a maximum penalized mutual information (MPMI) decoder, where the
penalty is a function of the encoder’s state sequence type. The MPMI decoder may be thought of
as an empirical generalized MAP decoder, just like the conventional MMI decoder may be thought
of as an empirical MAP decoder.

This paper is organized as follows. A statement of the problem is given in Sec. 2, together with
basic definitions. Our main results are stated in Sec. 3 in the form of four theorems. An application
to binary alphabets under Hamming cost constraints for the transmitter and adversary is given in
Sec. 4. Proofs of the theorems appear in Secs. 5—8. All derivations are based on the method of
types [29]. The paper concludes with a discussion in Sec. 9 and appendices.

1.1 Notation

We use uppercase letters for random variables, lowercase letters for individual values, and boldface
fonts for sequences. The p.m.f. of a random variable X ∈ X is denoted by pX = {pX(x), x ∈ X},
and the probability of a set Ω under pX is denoted by PX(Ω). Entropy of a random variable X
is denoted by H(X), and mutual information between two random variables X and Y is denoted
by I(X;Y ) = H(X)−H(X|Y ), or by ĨXY (pXY ) when the dependency on pXY should be explicit;
similarly we sometimes use the notation ĨXY |Z(pXY Z). The Kullback-Leibler divergence between
two p.m.f.’s p and q is denoted by D(p||q). We denote by D(pY |X ||qY |X |pX) = D(pY |XpX ||qY |XpX)
the conditional Kullback-Leibler divergence of pY |X and qY |X with respect to pX . The base-2
logarithm of x is denoted by log x, and the natural logarithm is denoted by lnx.

Following the notation in Csiszár and Körner [16], let px denote the type of a sequence x ∈ XN

(px is an empirical p.m.f. over X ) and Tx the type class associated with px, i.e., the set of all
sequences of type px. Likewise, we define the joint type pxy of a pair of sequences (x,y) ∈ XN×YN

(a p.m.f. over X×Y) and Txy the type class associated with pxy, i.e., the set of all sequences of type

pxy. We define the conditional type py|x of a pair of sequences (x,y) as
pxy(x,y)
px(x)

for all x ∈ X such

that px(x) > 0. The conditional type class Ty|x is the set of all sequences ỹ such that (x, ỹ) ∈ Txy.
We denote by H(x) the entropy of the p.m.f. px and by I(x;y) the mutual information for the
joint p.m.f. pxy. Recall that

(N + 1)−|X | 2NH(x) ≤ |Tx| ≤ 2NH(x) (1.1)

and
(N + 1)−|X | |Y| 2NH(y|x) ≤ |Ty|x| ≤ 2NH(y|x). (1.2)

We let PX and P
[N ]
X represent the set of all p.m.f.’s and empirical p.m.f.’s, respectively, for

a random variable X. Likewise, PY |X and P
[N ]
Y |X denote the set of all conditional p.m.f.’s and all

empirical conditional p.m.f.’s, respectively, for a random variable Y givenX. The notations f(N) ≪
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g(N), f(N) = O(g(N)), and f(N) ≫ g(N) indicate that limN→∞

∣∣∣f(N)
g(N)

∣∣∣ is zero, finite but nonzero,

and infinite, respectively. The shorthands f(N)
.
= g(N), f(N)

�

≤ g(N) and f(N)
�

≥ g(N) denote

equality and inequality on the exponential scale: limN→∞
1
N ln f(N)

g(N) = 0, limN→∞
1
N ln f(N)

g(N) ≤ 0,

and limN→∞
1
N ln f(N)

g(N) ≥ 0, respectively. We let I{x ∈ Ω} denote the indicator function of a set Ω,

and U(Ω) denote the uniform p.m.f. over a finite set Ω. We define |t|+ , max(0, t), exp2(t) , 2t,
and h(t) , −t log t − (1 − t) log(1 − t) (the binary entropy function). We adopt the notational
convention that the minimum of a function over an empty set is +∞.

2 Statement of the Problem

Our generic problem of communication with side information at the encoder and decoder is dia-
grammed in Fig. 1. There three versions Se, Sa, and Sd of a state sequence are available to the
encoder, adversary and decoder, respectively. We use the short hand S to denote the joint state
sequence (Se,Sa,Sd). This sequence consists of independent and identically distributed (i.i.d.)
samples drawn from a p.m.f. p(se, sa, sd). The individual sequences Se, Sa, Sd are available non-
causally to the encoder, adversary and decoder, respectively. The adversary’s channel is of the
form pY|XSa(y|x, sa). This includes the problems listed in Table 1 as special cases. The alphabets

Se, Sa, Sd, X and Y are finite.

p(   ,   ,    )

Encoder
fN

Channel
g

X Y

M̂

d

Decoder

e
a

s

S
SS

ss

p(  |  ,   )y x sa

Randomized CodeC

N

e a d

Message

M {1, ... , 2    }NR

Figure 1: Communication with side information at the encoder and decoder. Cost constraints are
imposed on the encoder and channel.

Problem Sa Sd Binning?

Gel’fand-Pinsker [1] Se ∅ yes
Public Watermarking [12, 15] ∅ ∅ yes
Semiblind Watermarking [12] ∅ Sd 6= Se yes
Cover-Chiang [7] (Se,Sd) Sd yes

Private Watermarking [12, 14] ∅ Se no

Table 1: Relation between Se, Sa, and Sd for various coding problems with side information.
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A message M is to be transmitted to a decoder; M is uniformly distributed over the message
set M. The transmitter produces a sequence X = fN (S

e,M). The adversary passes X through the
channel pY|XSa(y|x, sa) to produce corrupted data Y. The decoder does not know pY|XSa selected

by the adversary and has access to Sd. The decoder produces an estimate M̂ = gN (Y,S
d) ∈ M of

the transmitted message.2

We allow the encoder/decoder pair (fN , gN ) to be randomized, i.e., the choice of (fN , gN ) is a
function of a random variable known to the encoder and decoder but not to the adversary. This
random variable is independent of all other random variables and plays the role of a secret key.
The randomized code will be denoted by (FN , GN ).

To summarize, the random variables M , FN , GN , S
e, Sa, Sd, X and Y have joint p.m.f.

pM (m)pFNGN
(fN , gN )

[
N∏

i=1

pSeSaSd(sei , s
a
i , s

d
i )

]
I{x = fN (s

e,m)}pY|XSa(y|x, sa).

2.1 Constrained Side-Information Codes

A cost function Γ : Se × X → R
+ is defined to quantify the cost Γ(se, x) of transmitting symbol

x when the channel state at the encoder is se. This definition is extended to N -vectors using
ΓN (se,x) = 1

N

∑N
i=1 Γ(s

e
i , xi). In information embedding applications, Γ is a distortion function

measuring the distortion between host signal and marked signal.

We now define a class of codes satisfying maximum-cost constraints (Def. 2.1) and a class of
codes satisfying average-cost constraints (Def. 2.2). The latter class is of course larger than the
former. We also define a class of randomly-modulated (RM) codes (Def. 2.3), adopting terminology
from [20].

Def. 2.2 is analogous to the definition of a length-N information hiding code in [12]. The common
source of randomness between encoder and decoder appears via the distribution pFNGN

(fN , gN )
whereas in [12] it appears via a cryptographic key sequence k with finite entropy rate.

Definition 2.1 A length-N , rate-R, randomized code with side information and maximum cost
D1 is a triple (M, FN , GN ), where

• M is the message set of cardinality |M| = ⌈2NR⌉;

• (FN , GN ) has joint distribution pFNGN
(fN , gN );

• fN : (Se)N ×M → XN is the encoder mapping the state sequence se and message m to the
transmitted sequence x = fN (s

e,m). The mapping is subject to the cost constraint

ΓN (se, fN (s
e,m)) ≤ D1 almost surely (pSepFN

pM ); (2.1)

2 At first sight the problem setup could be simplified by eliminating the variable Sa and considering the “average
channel” pY|XSe(y|x, se) =

P

sa
pY|XSa(y|x, sa)pNSa|Se(sa|se). We do not follow this approach because pSa|Se is fixed

and pY|XSa is optimized by the adversary; hence these p.m.f.’s appear separately in the problem formulation and its
solution. A similar comment applies to Sd.
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• gN : YN × (Sd)N → M∪ {e} is the decoder mapping the received sequence y and channel
state sequence sd to a decoded message m̂ = gN (y, s

d). The decision m̂ = e is a declaration
of error.

Definition 2.2 A length-N , rate-R, randomized code with side information and expected cost
D1 is a triple (M, FN , GN ) which satisfies the same conditions as in Def. 2.1, except that (2.1) is
replaced with the weaker constraint

∑

se

pNSe(se)
∑

fN

pFN
(fN )

∑

m∈M

1

|M|
ΓN (se, fN (s

e,m)) ≤ D1. (2.2)

Definition 2.3 A randomly modulated (RM) code with side information is a randomized code
defined via permutations of a prototype (fN , gN ). Such codes are of the form

x = fπN (s
e,m) , π−1fN(πs

e,m)

gπN (y, s
d) , gN (πy, πs

d)

where π is chosen uniformly from the set of all N ! permutations and is not revealed to the adversary.
The sequence πx is obtained by applying π to the elements of x.

2.2 Constrained Attack Channels

Next we define a class A of DMC’s (Def. 2.4) and a corresponding class PY|XSa [A] of channels with
arbitrary memory (CAM) in which the conditional type of y given (x, sa) is constrained (Def. 2.5).

Definition 2.4 A compound DMC (CDMC) class A is any compact (under L1 norm) subset of
PY |XSa.

For CDMC’s, we have pY|XSa(y|x, sa) =
∏N
i=1 pY |XSa(yi|xi, s

a
i ), where pY |XSa ∈ A. The set A is

defined according to the application.

1. In the case of a known channel [1], A is a singleton.

2. In information hiding problems [12], A is the class of DMC’s that introduce expected distor-
tion between X and Y at most equal to D2:

∑

sa,x,y

pXSa(x, sa)pY |XSa(y|x, sa)d(x, y) ≤ D2, (2.3)

where d : X × Y → R
+ is a distortion function. A can also be defined to be a subset of the

above class.

3. In some applications, A could be defined via multiple cost constraints.
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Given a p.m.f. pXUSe , we denote by PY SaSd|XUSe [A, pXUSe ] the class of DMC’s pY SaSd|XUSe whose
conditional marginal pY |XSa is in the CDMC class A.

Definition 2.5 The CAM class PY|XSa [A] is the set of channels such that for any channel input

(x, sa) and output y, the conditional type py|xsa belongs to A
⋂
P

[N ]
Y |XSa with probability 1:

Pr[py|xsa ∈ A] = 1. (2.4)

If A is defined via the distortion constraint (2.3), let dN (x,y) = 1
N

∑N
i=1 d(xi, yi). Condition (2.4)

may then be rewritten as
Pr[dN (x,y) ≤ D2] = 1, (2.5)

i.e., feasible channels have total distortion bounded by ND2 and arbitrary memory.3 Comparing
the CDMC class A and the CAM class PY|XSa [A], we see that 1) for (X,Sa,Y) in any given type
class, the conditional p.m.f. of Y given (X,Sa) is uniform in the CDMC case but not necessarily
so in the CAM case, and 2) while conditional types py|xsa /∈ A may have exponentially vanishing
probability under the CDMC model, such types are prohibited in the CAM case. One may expect
that both factors have an effect on capacity and random-coding exponents. As we shall see, only
the latter factor does have an effect on random-coding exponents.

The relation between the CAM class PY|XSa [A] in (2.5) and the classical AVC model [16] is
detailed in Appendix A. The class (2.5) is not a special case of the classical AVC model because
arbitrary memory is allowed.

We also introduce the following class of attack channels, which turn out to be the worst CAM
channels for the problems considered in this paper.

Definition 2.6 An attack channel pY|XSa uniform over single conditional types is defined via

a mapping Λ : P
[N ]
XSa → P

[N ]
Y |XSa such that with probability 1, the channel output y has conditional

type py|xsa = Λ(pxsa). Moreover, Y is uniformly distributed over the corresponding conditional type
class.

Lastly, given a type pxuse , we denote by P
[N ]

Y SaSd|XUSe [A, pxuse ] the class of conditional types

pysasd|xuse such that py|xsa is in the CAM class PY|XSa [A].

2.3 Probability of Error

The average probability of error for a deterministic code (fN , gN ) when channel pY|XSa is in effect
is given by

Pe(fN , gN , pY|XSa)

= Pr(M̂ 6=M)

=
1

|M|

∑

m

∑

se,sa,x

∑

(y,sd)/∈g−1
N

(m)

pY|XSa(y|x, sa) I{x = fN (s
e,m)}pNSeSaSd(s

e, sa, sd). (2.6)

3 The case of channels with arbitrary memory subject to expected-distortion constraints admits a trivial solution:
the adversary “obliterates” X with a fixed, nonzero probability that depends on D2 but not on N , and therefore no
reliable communication is possible in the sense of Def. 2.7 below.

7



For a randomized code the expression above is averaged with respect to pFNGN
(fN , gN ); this average

is denoted by Pe(FN , GN , pY|XSa). The minmax probability of error for the class of randomized
codes and the class of attack channels considered is given by

P ∗
e,N = min

pFNGN

max
pY|XSa

∑

fN ,gN

pFNGN
(fN , gN )Pe(fN , gN , pY|XSa). (2.7)

Definition 2.7 A rate R is said to be achievable if P ∗
e,N → 0 as N → ∞.

Definition 2.8 The capacity C(D1,A) is the supremum of all achievable rates.

Definition 2.9 The reliability function of the class of attack channels considered is

E(R) = lim inf
N→∞

[
−

1

N
log P ∗

e,N

]
. (2.8)

There are four combinations of maximum/expected cost constraints for the transmitter and
CDMC/CAM designs for the adversary (four flavors of the generalized Gel’fand-Pinsker problem),
and a question is whether same capacity and error exponents will be obtained in all four cases. We
now define transmit channels, which play a crucial role in deriving capacity and error-exponents.

Definition 2.10 Given alphabets X , U and Se, a transmit channel pXU |Se is a conditional p.m.f.
that satisfies the following distortion constraint on the conditional marginal pX|Se:

∑

u,se,x

pXU |Se(x, u|se)pSe(se)Γ(se, x) ≤ D1.

Given an alphabet U of cardinality L, we denote by PXU |Se(L,D1) the set of feasible transmit
channels. Note that transmit channels have been termed covert channels [12] and watermarking
channels [14, 15] in the context of information hiding. In those papers, the channel pY |X was termed
attack channel; we retain this terminology for pY |XSa in this paper.

2.4 Preliminaries

Consider a sextuple of random variables (Se, Sa, Sd, U,X, Y ) with joint p.m.f. pSeSaSdUXY , where
U is an auxiliary random variable taking values in U , {1, 2, · · · , L}. The following difference of
mutual informations plays a fundamental role in capacity analysis [1]—[15] of channels with side
information. It plays a central role in the analysis of error exponents as well:

JL(pSeSaSdUXY ) , I(U ;Y Sd)− I(U ;Se). (2.9)

Note that JL depends on pSeSaSdUXY only via the marginal pUSeSdY ; moreover, the cardinality L
of the alphabet U has been made explicit in the definition (2.9).
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Channel capacity for the problems studied in [1]—[15] is given by

C(D1,A) = lim
L→∞

max
pXU|Se

min
pY |XSa

JL(pSeSaSd pXU |Se pY |XSa) (2.10)

where restrictions are imposed on the joint distribution of (Se, Sa, Sd) (including the absence of
some of these variables, see Table 1), and the maximization over pXU |Se and minimization over
pY |XSa are possibly subject to cost constraints.

The cardinality of the alphabet U may be unbounded [15, p. 514] 4 , hence the infinite range
for L in (2.10). To evaluate (2.10) in the case Sa = ∅, Moulin and O’Sullivan [12] claimed that
one can choose L = |Se| |X | + 1 without loss of optimality. The proof is based on Caratheodory’s
theorem, as suggested in [1]. However the proof in [12] applies only to the fixed-channel case 5.

The use of alphabets with unbounded cardinality introduces some technical subtleties. The
following two lemmas are straightforward but will be useful. The proof of the first one is based on
the nested nature of the feasible sets PXU |Se(L,D1), 1 ≤ L <∞.

Lemma 2.1 Let U = {1, 2, · · · , L} and ψL a functional defined over PXU |Se(L,D1). Then

ψ∗
L , max

pXU|Se∈PXU|Se(L,D1)
ψL(pXU |Se) (2.11)

is a nondecreasing function of L.

Proof. We need to prove that ψ∗
L ≤ ψ∗

L+1 for any L. Let p∗XU |Se achieve the maximum defining ψ∗
L

and define the extended p.m.f. pexXU |Se over {1, 2, · · · , L+ 1} as follows:

pexXU |Se(x, u|se) =

{
p∗XU |Se(x, u|se) u = 1, 2, · · · , L

0 u = L+ 1
∀x, se.

Since pexXU |Se and p∗XU |Se have the same conditional marginal pX|Se , we have pexXU |Se ∈ PXU |Se(L+

1,D1), and
ψL+1(p

ex
XU |Se) = ψL(p

∗
XU |Se).

Therefore
ψ∗
L = ψL+1(p

ex
XU |Se) ≤ ψ∗

L+1.

✷

Lemma 2.2 Given three compact sets P, Q, R and a functional φ : P×Q×R → R, let (p∗, q∗, r∗)
achieve the min max min in

min
p∈P

max
q∈Q

min
r∈R

φ(p, q, r). (2.12)

It is assumed that φ is continuous in an L1 neighborhood of (p∗, q∗, r∗). Then, given three sequences
of subsets Pn,Qn,Rn, 1 ≤ n < ∞ respectively dense in P, Q and R under the L1 norm, we have
the following property:

min
p∈P

max
q∈Q

min
r∈R

φ(p, q, r) = lim
n→∞

min
p∈Pn

max
q∈Qn

min
r∈Rn

φ(p, q, r). (2.13)

4 The capacity formula in [15, Corollary 1, p. 514] was obtained under the restriction of constant composition
codes.

5Equation (A7) in the proof of [12, Prop. 4.1(iv)] is associated with a fixed DMC.
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Proof: Denote the left side of (2.13) by φ∗∗∗ and the argument of the limit in the right side by An.
We have An ≤ An ≤ An where

An = min
p∈P

max
q∈Qn

min
r∈R

φ(p, q, r),

An = min
p∈Pn

max
q∈Q

min
r∈Rn

φ(p, q, r).

Since the maximization (resp. minimizations) defining An (resp. An) is over a dense subset of Q
(resp. P ×R), we have

lim
n→∞

An = lim
n→∞

An = φ∗∗∗.

Hence limn→∞An = φ∗∗∗. ✷

Finally, recall that the Kullback-Leibler divergence [16] and related functionals (including mu-
tual information Ĩ(pXY ) = D(pXY ||pXpY ) and JL functionals) are continuous with respect to L1

norm. For instance, for any L, any p.m.f.’s p and p′ with finite values of JL, and any ǫ > 0, there
exists δ such that

‖p − p′‖ < δ ⇒ |JL(p)− JL(p
′)| < ǫ,

where the norm on p− p′ is the L1 norm.

3 Main Results

The main tool used to prove the coding theorems in this paper is the method of types [29]. Our
random-coding schemes are binning schemes in which the auxiliary random variable U is input to
a fictitious channel.

In all derivations, optimal types for sextuples (se, sa, sd,u,x,y) are obtained as solutions to
maxmin problems. Two key facts used to prove the theorems are: 1) the number of conditional
types is polynomial in N , and 2) in the CAM case, the worst attacks are uniform over conditional
types, as in Somekh-Baruch and Merhav’s watermarking capacity game [15]. Proof of the theorems
appears in Secs. 5—8. Related, known results for CDMC’s without side information are summarized
in Appendix B.

The expression (2.10), restated below in a slightly different form, turns out to be a capacity
expression for the problems considered in this paper (Theorems 3.6 and 3.7):

C = C(D1,A) = lim
L→∞

CL (3.1)

where
CL , max

pXU|Se∈PXU|Se(L,D1)
min

pY |XSa∈A
JL(pSeSaSdpXU |SepY |XSa). (3.2)

By application of Lemma 2.1, the sequence CL is nondecreasing in L.

In the special case of degenerate pSeSd (no side information at the encoder and decoder), it is
known that the maximum above is achieved by U = X, and capacity reduces to the standard formula
C = maxpX minpY |XSa ĨXY (pX pY |XSa pSa). If Se = Sd = S and Sa = ∅ (private watermarking),

the optimal choice is again U = X, and C = maxpX|S
minpY |X

ĨXY |S(pX|S pY |X pS).

10



3.1 Random-Coding Exponents for CDMC Model

Lemma 3.1 The function

ECDMC
r,L (R) , min

p̃Se∈PSe

max
pXU|Se∈PXU|Se (L,D1)

min
p̃
Y SaSd|XUSe∈PY SaSd|XUSe

min
pY |XSa∈A

[
D(p̃Se pXU |Se p̃Y SaSd|XUSe ||pSeSaSd pXU |Se pY |XSa)

+|JL(p̃Se pXU |Se p̃Y SaSd|XUSe)−R|+
]

(3.3)

satisfies the following properties:

(i) ECDMC
r,L (R) = 0 if and only if R ≥ CL;

(ii) ECDMC
r,L (R) ≤ |CL −R|+;

(iii) ECDMC
r,L (R) ≤ ECDMC

r,L+1 (R) (nondecreasing in L).

Proof.
(i) Clearly ECDMC

r,L (R) ≥ 0, with equality if and only if the following three conditions are met:

1. the minimizing p̃Se in (3.3) is equal to pSe ,

2. the minimizing p̃Y SaSd|XUSe in (3.3) is equal to pY |XSa pSaSd|Se , and

3. R ≥ CL.

(ii) This upper bound on (3.3) is obtained by fixing p̃Se = pSe and p̃Y SaSd|XUSe = pY |XSa pSaSd|Se .
The upper bound is achieved if the minimizing p̃Se and p̃Y SaSd|XUSe in (3.3) are equal to pSe and
pY |XSa pSaSd|Se , respectively.

(iii) This is a direct consequence of Lemma 2.1.

Theorem 3.2 For the CDMC case (Def. 2.4) with maximum-cost constraint (2.1) or expected-cost
constraint (2.2) on the transmitter, the reliability function is lower-bounded by the random-coding
error exponent

ECDMC
r (R) = lim

L→∞
ECDMC
r,L (R). (3.4)

Moreover, ECDMC
r (R) = 0 if and only if R ≥ C.

For any value of L, the random-coding error exponent ECDMC
r,L (R) of (3.3) is achieved by a

binning code with conditionally constant composition and the MPMI decoder. We now present a
brief overview of this scheme and an interpretation for the MPMI decoder.

11
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Figure 2: Representation of binning scheme as a stack of arrays indexed by the encoder’s state
sequence type λ. The arrays have 2NR columns and 2Nρ(λ) rows, and the random-coding exponent
is optimized by choosing ρ(λ) = I∗USe(λ) + ǫ.

For notational simplicity, here we use the shorthand λ to denote the type of the encoder’s state
sequence (recall there is a polynomial number of such types). Let U = {1, 2, · · · , L}, where the
value of L is arbitrary. Referring to Fig. 2, to each value of λ corresponds an array

C(λ) = {ulm|λ, 1 ≤ l ≤ 2Nρ(λ), 1 ≤ m ≤ |M|} (3.5)

of codewords, drawn uniformly from some optimized type class. We refer to ρ(λ) as the depth pa-
rameter of the array C(λ). The codebook C is the union of these arrays. Each array has exponential
size, but the number of arrays is polynomial in N .

The array depth parameter ρ(λ) is designed to optimally balance the probability of encoding
error and the probability of decoding error, conditioned on the encoder’s state sequence type λ.
Upon seeing m and se, the encoder evaluates the type λ of se and seeks a codeword ulm|λ that
belongs to some optimized conditional type class Tu|se . Let I∗USe(λ) denote the empirical mutual
information associated with Tu|se . An encoding error arises when no codeword can be found in the
conditional type class Tu|se . The probability of that event does not vanish when ρ(λ) ≤ I∗USe(λ) but
vanishes at a double-exponential rate when ρ(λ) > I∗USe(λ) + ǫ. The probability of decoding error
increases exponentially with ρ(λ). Therefore the optimal tradeoff is given by ρ(λ) = I∗USe(λ) + ǫ.

Instead of choosing ρ(λ) as a function of λ, a suboptimal design would be to fix the value of
ρ and draw all the codewords uniformly and i.i.d. from a single type class Tu. The scheme would
then be more akin to the original Gel’fand-Pinsker binning scheme, which uses a single array of
codewords (drawn i.i.d. from a p.m.f. pU). When ρ is fixed, the fact that a polynomial number of
equal-size arrays is used rather than a single array is inconsequential as far as error exponents are
concerned.

The MPMI decoder is matched to the selected random binning scheme. Given (y, sd), the
MPMI decoder seeks the codeword in C =

⋃
λ C(λ) that achieves the maximum of the penalized

12



empirical mutual information criterion

m̂MPMI = argmaxmmax
l,λ

[I(ulm|λ;ysd)− ρ(λ)]. (3.6)

As the proof of Theorem 3.2 indicates, the penalty ρ(λ) is optimal among all functions of λ; the
optimal penalty is thus matched to the array depth parameter.

The MPMI decoder may be thought of as an empirical generalized MAP decoder. Indeed, all
messages are equiprobable, and the encoding procedure ensures that for any given type λ, all bins are
equiprobable as well. The probability of the pair (m, l) is thus equal to 1/|C(λ)| for all l,m. Hence,
given C(λ), the a priori distribution of the codewords is uniform: p(ulm|λ) = 1/|C(λ)| = 2−N [R+ρ(λ)].
Therefore

ρ(λ) = −R−
1

N
log p(ulm|λ) ∀l,m. (3.7)

We may write

I(ulm|λ;ysd) =
1

N
log

p̂(y, sd|ulm|λ)

p̂(y, sd)
(3.8)

where p̂ denotes an empirical p.m.f. or empirical conditional p.m.f.. Substituting (3.7) and (3.8)
into (3.6), we obtain

m̂MPMI = argmaxmmax
l,λ

[
1

N
log

p̂(y, sd|ulm|λ)

p̂(y, sd)
+

1

N
log p(ulm|λ)

]

= argmaxmmax
l,λ

p̂(ulm|λ|ysd). (3.9)

This may be thought of as an empirical version of the generalized MAP decoder

m̂GMAP , argmaxmmax
l,λ

p(ulm|λ|ysd)

= argmaxmmax
l,λ

[
1

N
log

p(y, sd|ulm|λ)

p(y, sd)
+

1

N
log p(ulm|λ)

]
(3.10)

which requires knowledge of the channel from u to (y, sd). We do not know whether the GMAP
decoder is as good (on the exponential scale) as the optimal MAP decoder

m̂MAP , argmaxm p(m|y, sd) = argmaxmEl,λ|ysd p(u
lm|λ|y, sd) (3.11)

which averages out the nuisance parameters (l, λ) and is more difficult to analyze.

The MPMI decoder is matched to the encoding scheme in that the same function ρ(λ) is used
as the depth parameter of the array C(λ) and as the penalty in the decoding function. As the proof
of Theorem 3.2 indicates, any other choice of the penalty function would in general result in a lower
error exponent. This is not surprising in view of the above generalized MAP interpretation.

3.2 Random-Coding Exponents for CAM Model

We now turn our attention to the CAM channel model. First we state the following lemma, which
is analogous to Lemma 3.1.

13



Lemma 3.3 The function

ECAM
r,L (R) , min

p̃Se∈PSe

max
pXU|Se∈PXU|Se(L,D1)

min
p̃
Y SaSd|XUSe∈PY SaSd|XUSe [A,pXU|Se p̃Se ]

[
D(p̃SeSaSd ||pSeSaSd) + ĨY ;USeSd|XSa(p̃Se pXU |Se p̃Y SaSd|XUSe)

+|JL(p̃Se pXU |Se p̃Y SaSd|XUSe)−R|+
]

(3.12)

satisfies the following properties:

(i) ECAM
r,L (R) = 0 if and only if R ≥ CL;

(ii) ECAM
r,L (R) ≤ |CL −R|+;

(iii) ECAM
r,L (R) ≤ ECAM

r,L+1(R) (monotonicity in L).

Theorem 3.4 For the CAM case (Def. 2.5) with maximum-cost constraint (2.1) or expected-cost
constraint (2.2) on the transmitter, the reliability function is lower-bounded by the random-coding
error exponent

ECAM
r (R) = lim

L→∞
ECAM
r,L (R) (3.13)

Moreover, ECAM
r (R) = 0 if and only if R ≥ C.

For any value of L, the random-coding error exponent (3.12) is achieved by a randomly-
modulated code with conditionally constant composition, stacked binning, and a MPMI decoder.
The worst attack channel is uniform over single conditional types (Def. 2.6).

3.3 Comparison of Random-Coding Exponents for CDMC and CAM Models

For both the CDMC and the CAM models, it should be noted that:

1. the worst type classes Tse , Tysasd|xuse , and best type class Txu|se (in an appropriate min max
min sense) determine the error exponents;

2. the order of the min, max and min is determined by the knowledge available to the encoder.
The encoder knows se and can optimize Txu|se , but has no control over Tysasd|xuse ;

3. the straight-line part of Er(R) results from the union bound;

4. random codes are generally suboptimal at low rates.

Theorems 3.2 and 3.4 imply the following relationship between error exponents in the CDMC
and CAM cases.

Corollary 3.5 ECDMC
r (R) ≤ ECAM

r (R) ≤ |C −R|+ for all R.
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Proof. Fix L. Using the relation

I(Y ;USeSd|XSa) = D(pY XUSeSaSd||pY |XSapXUSeSaSd),

we write

ĨY ;USeSd|XSa(p̃Se pXU |Se p̃Y SaSd|XUSe) = D(p̃Se pXU |Se p̃Y SaSd|XUSe ||p̃S pXU |Se pY |XSa)

where we have defined the marginal conditional p.m.f.

pY |XSa(y|x, sa) =

∑
usesd p̃Y SaSd|XUSe(y, sa, sd|x, u, se) pXU |Se(x, u|se) p̃Se(se)

∑
yusesd p̃Y SaSd|XUSe(y, sa, sd|x, u, se) pXU |Se(x, u|se) p̃Se(se)

.

Since p̃Y SaSd|XUSe is an element of PY SaSd|XUSe [A, pXU |Se p̃Se ] in (3.12), pY |XSa defined above is
an element of A and may be viewed as a functional of p̃Y SaSd|XUSe (for fixed pXU |Se and p̃Se).
Hence the cost function in (3.12) may be written as

D(p̃S||pS) +D(p̃Se pXU |Se p̃Y SaSd|XUSe ||p̃S pXU |Se pY |XSa) + |J −R|+

= D(p̃Se pXU |Se p̃Y SaSd|XUSe ||pSeSaSd pXU |Se pY |XSa) + |J −R|+

where the equality follows from the chain rule for divergence. Thus the cost functions in (3.12)
and (3.3) are identical; the only difference is the domain over which the minimizations are per-
formed. In (3.3), the minimization over p̃Y SaSd|XUSe is unconstrained, and the minimization
over pY |XSa is over A. In (3.12), the minimization over p̃Y SaSd|XUSe is constrained to the set
PY SaSd|XUSe [A, pXU |Se p̃Se ], and pY |XSa is a fixed element of A once p̃Y SaSd|XUSe is fixed. In other

words the minimization in (3.3) is over a larger set, and we have ECDMC
r,L (R) ≤ ECAM

r,L (R). Taking

the limits of both sides of this inequality as L→ ∞, we obtain ECDMC
r (R) ≤ ECAM

r (R).

Similarly, from Lemma 3.3 we have ECAM
r,L (R) ≤ |CL−R|+; taking limits as L→ ∞, we obtain

ECAM
r (R) ≤ |C −R|+. ✷

The inequality ECDMC
r (R) ≤ ECAM

r (R) is not as surprising as it initially seems, because the
proof of Theorem 3.4 shows there is no loss in optimality in considering CAM’s that are uniform over
conditional types, and there are more conditional types to choose from under the CDMC model.
Generally that additional flexibility is beneficial for the adversary, and the worst conditional type
does not satisfy the hard constraint (2.4). See Sec. 4 for an example.

Remark 3.1 In the absence of side information (degenerate pSeSd), the optimal U = X, and
(3.13) becomes ECAM

r (R) = |C − R|+. The expression for Er(R) derived by Hughes and Thomas
[20] (Eqns (9), (6), also see the observation on top of p. 96) is upper-bounded by |C − R|+; they
also provide a binary-Hamming example in which equality is achieved. Our result implies that the
upper bound |C − R|+ is in fact achieved for any problem without side information in which there
exists a hard constraint on the conditional type of the channel output given the input.

3.4 Capacity

As discussed in Sec. 2.4, Gel’fand and Pinsker’s proof of the converse theorem in [1] can be extended
to more complex problems such as compound Gel’fand-Pinsker channels [12, 15]. The capacity for
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the generalized Gel’fand-Pinsker problem is given in Theorems 3.6 and 3.7, respectively. Achiev-
ability of C follows from Theorems 3.2 and 3.4. Indeed, for any ǫ > 0, there exists L(ǫ) such that
CL ≥ C − ǫ. The proof of the converses appear in Sec. 7 and 8.

Theorem 3.6 Under the CDMC model (Def. 2.4) for the adversary, capacity for the generalized
Gel’fand-Pinsker problem is given by (3.1) for both combinations of maximum-cost constraints (2.1)
and expected-cost constraints (2.2) on the transmitter.

Theorem 3.7 Under the CAM model (Def. 2.5) for the adversary, capacity for the generalized
Gel’fand-Pinsker problem is given by (3.1) for both combinations of maximum-cost constraints
(2.1) and expected-cost constraints (2.2) on the transmitter.

The proof of the CDMC converse is similar to that in [12]; the proof in the CAM case exploits
the close connection between the CAM and CDMC problems.

3.5 Remarks on Cardinality of U

The sequence CL defined in (3.2) is nondecreasing and converges to the capacity limit C, but
one may ask at what rate. When the feasible set A has finite cardinality, by application of
Caratheodory’s theorem, it suffices to select L = |X | |Se|+|A|−1 (see [15, 30] for related problems).
When A is a compact set, one may construct a sequence ǫL ↓ 0 and a sequence {AL} of subsets of
A that is dense in the L1 norm:

∀ pY |XSa ∈ A,∃ p̂Y |XSa ∈ AL : max
x,sa

‖p̂Y |XSa(·|x, sa)− pY |XSa(·|x, sa)‖ < ǫL.

This may be done, for instance, by applying a uniform quantizer to each pY |XSa(y|x, sa) to obtain
p̂Y |XSa(y|x, sa). By continuity of the functional JL, the effect of this quantization on JL can be
made arbitrarily small by letting L → ∞. Finally, Caratheodory’s theorem can be applied to the
set of |AL| attack channels so that maxpXU|Se minpY |XSa∈AL

JL(pSe pXU |Se pY |XSa) is achieved using
L = |X | |Se| + |AL| − 1. Proposition 3.8 below formally states this result when the feasible set of
attack channels is defined by the distortion constraint (2.3).

Proposition 3.8 Consider the subsequence {CL} indexed by

L = |X | |Se|+ (l + 1)|Y| |X | |Sa| − 1, l = 1, 2, · · · (3.14)

Then

C − 2|Y|
log l

l
≤ CL ≤ C.

Proof: See Appendix G.

For the random-coding exponent Er(R), the idea is similar but the derivations are more involved
because Kullback-Leibler divergence is not absolutely continuous with respect to its arguments;
attack channels that lie on the boundary of the probability simplex require a special treatment.

In Proposition 3.10 below, the random-coding exponent is viewed as a function of D2 and, with
a little abuse of notation, written as Er(D2). The random-coding exponent when the alphabet U
has size L is similarly denoted by Er,L(D2).
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Lemma 3.9 The function Er(D2) is continuous and nonincreasing in D2.

The above statement is a consequence of the fact that the Kullback-Leibler and mutual-
information functionals are continuous in their arguments, and that the sets {A(D2)} are con-
tinuously nested.

Proposition 3.10 Denote by c ≤ 1
|Sa| |Sd|

the minimum of pSaSd|Se over its support set. Define

the constants

lmin = max



|Y| |Sa| |Sd|, exp2


1 +

√∣∣∣∣−
1

2
log(8|Sa|5|Sd|c)

∣∣∣∣
+







and D = maxx
1
|Y|

∑
y d(x, y). Consider the subsequence {Er,L(D2)} indexed by

L = |X | |Se|+ l|Y| |X | (|S|+|Sa|) − 1, l = lmin, lmin + 1, · · · (3.15)

Then

Er,L(D2) ≤ Er(D2) ≤ Er,L

(
D2 −

|Y| |Sa| |Sd|D +D2 ln l

l

)
+ 7 |Y| |Sa| |Sd|

log2 l

l
. (3.16)

The gap between the lower and upper bounds in (3.16) is O( log
2 l
l ) as l → ∞.

Proof: See Appendix H.

4 Binary-Hamming Case

In this section, we consider a problem of theoretical and practical interest where Se = {0, 1},
Se is a Bernoulli sequence with Pr[Se = 1] = pe = 1 − Pr[Se = 0], transmission is subject to
the cost constraint (2.1) in which Γ is Hamming distance, and the adversary is subject to the
expected-distortion constraint (2.3) or to the maximum-distortion constraint (2.5), in which d is
also Hamming distance. In both cases the set A is given by (2.3). We study three cases:

Case I: pe = 1
2 , S

a = Sd = ∅. This problem is analogous to the public watermarking problem of
[8, 9, 12].

Case II: pe = 1
2 , S

a = ∅, Sd = Se. This is the private watermarking problem of [12]. The CAM
version of this problem is closely related to a problem studied by Csiszár and Narayan [17]
and Hughes and Thomas [20].

Case III: Degenerate side information: pe = 0, Se = Sa = Sd = ∅. Unlike [17, 20], the attacker’s
noise may depend on X.

In all three cases, we were able to derive some analytical results and to numerically evaluate error
exponents. Capacity formulas for these problems are given below and illustrated in Fig. 3.

In this section we use the notation p ⋆ q , p(1− q) + (1− p)q.
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Figure 3: Capacity functions for Cases I–III when D2 = 0.2.

4.1 Case I: Public Watermarking

Here pe = 1
2 and Sa = Sd = ∅, so we have S = Se. Capacity for a fixed-DMC problem (adversary

implements a binary symmetric channel (BSC) with crossover probability D2) is given in Barron
et al. [8] and Pradhan et al. [9]:

Cpub = g∗(D1,D2) ,





D1
δ2
[h(δ2)− h(D2)], if 0 ≤ D1 < δ2;

h(δ2)− h(D2), if δ2 ≤ D1 ≤ 1/2;

1− h(D2), if D1 > 1/2,

(4.1)

where δ2 = 1 − 2−h(D2) and h(·) is the binary entropy function. The straight-line portion of the
capacity function is achieved by time-sharing. Proposition 4.1 shows that the BSC is the worst
channel for the CDMC and CAM classes considered.

Proposition 4.1 Capacity under the CDMC and CAM models defined by the distortion constraints
(2.3) and (2.5), respectively, is equal to Cpub and is achieved for |U| = 2.

Proof : See Appendix C.

Proposition 4.2 The random-coding error exponent is a straight line in the CAM case:
ECAM,pub
r (R) = |Cpub − R|+ for all R. The minimizing p̃S in (3.12) coincides with pS, the max-

imizing L = |U| = 2, and the minimizing pY |XUS is the BSC pY |X with crossover probability D2.

Proof : See Appendix D.
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Unlike the CAM case, in the CDMC case we have no guarantee that L = 2 is optimal for
random-coding exponents. The exponents ECDMC

r,L (R) and ECAM
r,L (R) are shown in Fig. 4 for the

case D1 = 0.4, D2 = 0.2, and L = 2; see Sec. 4.4 for details of these calculations. For the CDMC
case, we have found numerically that the worst attack channel pY |X is the BSC with crossover
probability D2, and that the worst-case p̃S in (3.4) coincides with pS .

4.2 Case II: Private Watermarking

Here pe = 1
2 , S

a = ∅, Sd = Se = S.

Proposition 4.3 [12]. Capacity is given by

Cpriv = h(D1 ⋆ D2)− h(D2) (4.2)

and is achieved when U = X (L = 2).

For the random-coding exponents, we have no guarantee that L = 2 is an optimal choice.
The exponents ECDMC

r,L (R) and ECAM
r,L (R) in that case are shown in Fig. 5 for the case D1 = 0.4,

D2 = 0.2. As in Case I, for both the CAM and CDMC cases, the worst-case p̃S in (3.3) and (3.12)
coincides with pS .

The capacity expression (4.2) was also derived for the AVC problem of Csiszár and Narayan
[17], albeit with different assumptions (pe = 0, i.e., degenerate side information, and channel state θ
selected independently of X, see Appendix A). Error exponents for the latter problem were derived
by Hughes and Thomas [20]. They obtained Er(R) = |C −R|+ at all rates below capacity.

4.3 Case III: Degenerate side information

Here pe = 0, Se = Sa = Sd = ∅.

Proposition 4.4 Capacity is the same as in the public watermarking game: Cdeg = Cpub.

Proof : See Appendix E.

Proposition 4.5 ECAM,deg
r (R) = |Cdeg −R|+ for all R < Cdeg.

Proof : Follows from Remark 3.1.

Unlike Case I and Case II, the worst attack is an asymmetric binary channel, favoring outputs
with low Hamming weight. Error exponents in the case D1 = 0.4, D2 = 0.2, are given in Fig. 6.
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Figure 6: Error exponents when Se = Sa = Sd = ∅ (pe = 0, no side information).

4.4 Discussion

Comparing Figs 4 and 5, we see that the random-coding error exponents for L = 2 are only slightly
larger when side information is available to the decoder. For instance, the zero-rate exponents are
0.123 and 0.146 at rate zero in the CDMC case; and 0.249 and 0.263 in the CAM case.

Some practical comments about the optimization problems solved in this section are in order.
Among these problems, the calculations of random-coding exponents for the CDMC / public wa-
termarking scenario are the most complicated ones, both of which have four layers of minimization
or maximization. The number of the parameters to be optimized is 8|U|+ 1 (1 for p̃S, 4|U| − 2 for
pXU |S, 2 for pY |X and 4|U| for p̃Y |XUS). Other difficulties arise due to the lack of nice properties
such as everywhere differentiability and convexity. There appears to be a substantial increase of
computational difficulty going from |U| = 2 to larger U . Based on the analytical results derived
above, it is tempting to conjecture that |U| = 2 is an sufficient choice for optimality; unfortunately
at this time we are unable to validate that conjecture analytically or numerically.

We have used a genetic algorithm [31] to numerically solve the above-mentioned optimization
problems. Advantages of genetic algorithms include easy implementation, robustness with respect
to selection of starting points, no need for evaluation of function derivatives, and ability to handle
high-dimensional problems. The parameters of a genetic algorithm may be selected to ensure that
the algorithm is globally convergent. In particular, we have used an “elitist” genetic algorithm, in
which the value of the best individual in each iteration is nondecreasing for a maximization problem
(or nonincreasing for a minimization problem). The sequence of the best solutions in each iteration
is guaranteed to converge to the global optimum almost surely [31, 32].
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5 Proof of Theorem 3.2

Owing to Lemma 3.1, for any ǫ > 0, chosen independently of N , there exists L(ǫ) such that

ECDMC
r,L (R) ≥ ECDMC

r (R)− ǫ, ∀L > L(ǫ). (5.1)

We shall prove the existence of a sequence of codes (fN , gN ) such that

lim
N→∞

[
−

1

N
log max

pY |XSa∈A
Pe(fN , gN , pY |XSa)

]
= ECDMC

r,L (R).

The proof is given for the maximum-cost constraint (2.1) on the transmitter. Any code that
achieves the error exponent ECDMC

r,L (R) is therefore also feasible under the weaker average-cost
constraint (2.2). A random ensemble of binning codes is constructed, and it is shown that the
error probability averaged over this ensemble vanishes exponentially with N at rate ECDMC

r,L (R).
Since the error probability functional Pe(fN , gN , pY |XSa) is continuous in pY |XSa (by (2.6)) and the
feasible set A of attack channels can be approximated with arbitrary precision (in the L1 norm)
by a subset whose cardinality is polynomial in N , there exists a code (fN , gN ) from the ensemble
that achieves ECDMC

r,L (R) uniformly over A. It is therefore sufficient to prove that

lim
N→∞

[
−

1

N
log max

pY |XSa∈A
Pe(FN , GN , pY |XSa)

]
= ECDMC

r,L (R) (5.2)

for the random ensemble considered. Combining (5.2) and (5.1) then proves the claim.

The maximum-cost constraint (2.1) may be written as

∑

se,x

psex(s
e, x)Γ(se, x) ≤ D1 a.s. (5.3)

Assume R < CL − ǫ. Define the function

ẼCDMC
r,L,N (R, pse , pxu|se) , min

p
ysasd|xuse

∈P
[N]

Y SaSd|XUSe

min
pY |XSa∈A

[
D(pse pxu|se pysasd|xuse ||pSeSaSdpXU |SepY |XSa)

+|JL(psepxu|sepysasd|xuse)− ǫ−R|+
]
,

pse ∈ P
[N ]
Se , pxu|se ∈ P

[N ]
XU |Se(L,D1). (5.4)

Let

ECDMC
r,L,N (R) , min

pse∈P
[N]
Se

max
pxu|se∈P

[N]
XU|Se(L,D1)

ẼCDMC
r,L,N (R, pse , pxu|se), (5.5)

which differs from (3.3) in that the optimizations are performed over empirical p.m.f.’s instead of
arbitrary p.m.f.’s.

Consider the maximization over the conditional type pxu|se (viewed as a function of pse) in
(5.5). As a result of this optimization, we may associate the following:
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• to any type pse ,
a type class T ∗

U (pse) , Tu and a mutual information I∗USe(pse) , ĨUSe(pu|sepse);

• to any sequence se, a conditional type class T ∗
U |Se(se) , Tu|se ;

• to any sequences se and u ∈ T ∗
U |Se(s

e), a conditional type class T ∗
X|USe(u, s

e) , Tx|use .

A random codebook C for U is the union of codebooks C(pse) indexed by the state sequence
type pse (recall there is a polynomial number of types). The codebook C(pse) is obtained by a)
drawing 2N(R+ρ(pse )) random vectors independently from the uniform distribution over T ∗

U (pse),
and b) arranging them in an array with 2NR columns and 2Nρ(pse ) rows. The design of the function
ρ(pse) is arbitrary at this point but will be optimized later.

Encoder. The encoding (given se and m) proceeds in two steps.

1. Find l such that u(l,m) ∈ C(pse)
⋂
T ∗
U |Se(s

e). If more than one such l exists, pick one of them

randomly (with uniform distribution). Let u = u(l,m). If no such l can be found, generate
u uniformly from the conditional type class T ∗

U |Se(se).

2. Generate X uniformly distributed over the conditional type class T ∗
X|USe(u, se).

Clearly, the p.m.f. of (Se,U,X), conditioned on its joint type, is uniform, and the encoder’s
maximum-cost constraint is satisfied.

Decoder. Given (y, sd), the decoder seeks û ∈ C =
⋃
pse

C(pse) that maximizes the penalized
empirical mutual information criterion

max
pse

max
u∈C(pse )

[I(u;ysd)− ψ(pse)]. (5.6)

The decoder declares an error if maximizers with different column indices are found. Otherwise the
decoder outputs the column index of û. The penalty function ψ(·) in (5.6) will soon be optimized,
resulting in the “matched design” ψ = ρ.

We now analyze the probability of error

Pe , max
pY |XSa∈A

Pe(FN , GN , p
N
Y |XSa)

of the decoder.

Step 1. An encoding error arises under the following event:

Em = {(C, se) : (u(l,m) ∈ C and u(l,m) /∈ T ∗
U |Se(s

e)) for 1 ≤ l ≤ 2Nρ(pse )} (5.7)

conditioned on message m being selected. The probability that a vector U uniformly distributed
over T ∗

U (pse) also belongs to T ∗
U |Se(s

e) is equal to exp2{−NI
∗
USe(pse)} on the exponential scale.

Therefore

Pr[Em|Tse ] = (1− Pr[U ∈ T ∗
U |Se(S

e) | U ∼ U(T ∗
U (ps̃e))])

2Nρ(pse )

.
= (1− 2−NI

∗
USe (pse ))2

Nρ(pse )

≤ exp{−2N(ρ(pse )−I
∗
USe(pse ))} (5.8)

≤

{
exp{−2Nǫ} : if ρ(pse) ≥ I∗USe(pse) + ǫ
1 : else.

(5.9)
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The inequality (5.8) follows from 1 + a ≤ ea. The double-exponential term in (5.9) vanishes faster
than any exponential function.

Step 2. We have a decoding error under the following event E ′
m: conditioned on message m

being selected, there exists u′ not in column m of an array C(p′se) such that

I(u′;ysd)− ψ(p′se) ≥ I(u;ysd)− ψ(pse).

Therefore

Pe = max
pY |XSa

Pr[error | m = 1, pY |XSa]

= max
pY |XSa

∑

Tsuxy

Pr[Tsuxy]Pr[error | Tsuxy,m = 1]

≤ max
pY |XSa

∑

Tsuxy

Pr[Tsuxy]
(
Pr[E1|Tsuxy] + Pr[E ′

1 | Tsuxy, E
c
1 ]
)

= max
pY |XSa

∑

Tsuxy

Pr[Tsuxy]
(
Pr[E1|Tse ] + Pr[E ′

1 | Tsuxy, E
c
1 ]
)

(5.10)

≤
∑

Tsuxy

max
pY |XSa

Pr[Tsuxy]
(
Pr[E1|Tse ] + Pr[E ′

1 | Tsuxy, E
c
1 ]
)
. (5.11)

We will see in Step 3 that Pr[E ′
1 | Tsuxy, E

c
1 ] does not depend on pY |XSa for the MPMI

decoder. Using the asymptotic relations PNZ (Tz)
.
= exp2{−ND(pz||pZ)} and PNZ|V (Tz|v)

.
=

exp2{−ND(pz|v||pZ|V |pv)} [16], we derive

Pr[Tsuxy] = PNS PXU|SePNY |XSa(Tsuxy)
.
= exp2{−ND(psuxy||pSpxu|sepY |XSa)}

= exp2{−ND(psepxu|sepysasd|xuse ||pSpxu|sepY |XSa)}. (5.12)

Step 3. Next we evaluate Pr[E ′
1 | Tsuxy, E

c
1 ], which can be written as Pr[E ′

1 | Tsuxy,u,y, s
d, Ec1 ],

where u,y, sd is an arbitrary member of the conditional type class Tuysd|xsesa .

Denote by pe(u,y, s
d, p′se , Tsuxy) the probability that the decoder outputs the codeword in row

l′ and column m′ 6= 1 of the array C(p′se), conditioned on u,y, sd, and Tsuxy. This conditional error
probability is independent of (l′,m′). We have

Pr[E ′
1 | Tsuxy,u,y, s

d, Ec1 ] = 1−
∏

p′
se

[1− pe(u,y, s
d, p′se , Tsuxy)]

2Nρ(p′
se

)(2NR−1) (5.13)

where

pe(u,y, s
d, p′se , Tsuxy) =

∑

u′∈Ue(u,y,sd,p′se ,psuxy)

p(u′|p′se)

=
∑

u′∈Ue(u,y,sd,p′se ,psuxy)

1

|T ∗
U (p

′
se)|

(5.14)
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and

Ue(u,y, s
d, p′se , psuxy) =

{
u′ ∈ T ∗

U (p
′
se) : I(u′;ysd)− ψ(p′se) ≥ I(u;ysd)− ψ(pse)

}
(5.15)

is the set of codewords u′ in the array indexed by p′se , that cause a decoding error, conditioned on
u,y, sd, and Tusxy. Also define the corresponding set of conditional types

Te(u,y, s
d, p′se , psuxy) =

{
Tu′|ysd : Tu′ = T ∗

U (p
′
se), I(u

′;ysd)− ψ(p′se) ≥ I(u;ysd)− ψ(pse)
}

⊆
{
Tu′|ysd : I(u′;ysd)− ψ(p′se) ≥ I(u;ysd)− ψ(pse)

}
. (5.16)

Therefore

pe(u,y, s
d, p′se , Tsuxy) =

∑

T
u′|ysd

∈Te(u,y,sd,p′se ,psuxy)

|Tu′|ysd |

|Tu′ |

.
=

∑

T
u′|ysd

∈Te(u,y,sd,p′se ,psuxy)

2−NI(u
′;ysd)

�

≤ 2−N [I(u;ysd)−ψ(pse )+ψ(p
′
se
)] (5.17)

because
|T

u′|ysd
|

|Tu′ |

.
= 2−NI(u

′;ysd), and the number of conditional types Tu′|ysd is polynomial in N .

Next we use the following inequality, which is proved in Appendix F.

1−
∏

i

(1− αi)
ti ≤ min

(
1,
∑

i

αiti

)
, 0 ≤ αi ≤ 1, ti ≥ 1. (5.18)

Applying (5.18) and (5.17) successively to (5.13), we obtain

Pr[E ′
1 | Tsuxy, E

c
1 ] = Pr[E ′

1 | Tsuxy,u,y, s
d, Ec1 ]

≤ min



1,

∑

p′
se

pe(u,y, s
d, p′se , Tsuxy) 2

Nρ(p′
se

)(2NR − 1)





�

≤ min



1,

∑

p′
se

2−N [I(u;ysd)−ψ(pse )+ψ(p
′
se
)−ρ(p′

se
)−R]





.
= exp2

{
−N |I(u;ysd)− ψ(pse) + min

p′
se

[ψ(p′se)− ρ(p′se)]−R|+

}
. (5.19)

Step 4. Combining (5.19) and (5.9), we obtain

Pr[E1|Tse ] + Pr[E ′
1 | Tsuxy, E

c
1 ]

�

≤ exp2

{
−N Γ(R, ρ, ψ, pse , pxu|se , pysasd|xuse)

}
(5.20)
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where we have defined the function

Γ(R, ρ, ψ, pse , pxu|se , pysasd|xuse)

,

{
|I(u;ysd)− ψ(pse) + minp′

se
[ψ(p′se)− ρ(p′se)]−R|+ : ρ(pse) ≥ I∗USe(pse) + ǫ

0 : else.
(5.21)

Applying the inequality minp′
se
F (p′se) ≤ F (pse) to the function F = ψ − ρ, we obtain

Γ(R, ρ, ψ, pse , pxu|se , pysasd|xuse)

≤

{
|I(u;ysd)− ρ(pse)−R|+ : ρ(pse) ≥ I∗USe(pse) + ǫ
0 : else.

and thus
Γ(R, ρ, ψ, pse , pxu|se , pysasd|xuse) ≤ |JL(psepxu|sepysasd|xuse)− ǫ−R|+ (5.22)

with equality when
ψ(pse) = ρ(pse) = I∗USe(pse) + ǫ. (5.23)

Combining (5.11), (5.12), (5.20), and (5.22), we obtain

Pe ≤
∑

Tsuxy

max
pY |XSa

Pr[Tsuxy]
(
Pr[E1|Tse ] + Pr[E ′

1 | Tsuxy, E
c
1 ]
)

�

≤ max
pse

min
pxu|se

min
ρ,ψ

max
p
ysasd|xse

max
pY |XSa

exp2

{
−N [D(psepxu|sepysasd|xuse ||pSpxu|sepY |XSa)

+Γ(R, ρ, ψ, pse , pxu|se , pysasd|xuse)
}

(5.24)

= exp2
{
−NECDMC

r,L,N (R)
}

(5.25)

where (5.24) holds because pxu|se and (ρ, ψ) can be optimized to achieve the exponent ECDMC
r,L,N (R)

in (5.5).

Step 5. By Lemma 3.1, the function ECDMC
r,L (R) is nonnegative and upper bounded by |CL −

R|+. Applying (2.13) with p̃Se , pXU |Se , (p̃Y SaSd|XUSe , pY |XSa), and D+ |J−R|+ in the roles of the

variables p, q, r, and the functional φ, respectively, we conclude that the exponent ECDMC
r,L,N (R) in

(5.25) converges to the limit ECDMC
r,L (R) in (3.3) as N → ∞. Since ECDMC

r,L (R) > 0 for all R < CL,
the probability of error vanishes if R < CL. The claim follows from the fact that we can choose L
such that CL > C − ǫ, for any arbitrarily small ǫ.

6 Proof of Theorem 3.4

The proof is similar to the proof of Theorem 3.2 and is again given for the maximum-cost constraint
(2.1) on the transmitter. A random ensemble E of binning codes (fN , gN ) with fixed |U| = L is
constructed. This ensemble may also be viewed as a random ensemble of RM codes (Def. 2.3).
RM codes are obtained by selecting a prototype (fN , gN ) from E and generating the RM family
{fπN , g

π
N} according to Def. 2.3. For RM codes there is no loss of optimality in restricting the attack

26



channel to a class of channels that are uniform over conditional types (see Step 2 below). It is
shown that the error probability averaged over the ensemble E vanishes exponentially with N at
the rate ECAM

r,L (R) given in (3.12). Since the class of attack channels considered in Step 2 has

polynomial complexity, there exists a RM code that achieves ECAM
r,L (R) for all attack channels in

PY|XSa [A].

The codebook-generation, encoding and decoding procedures are the same as those in the
CDMC case, with the difference that the types and conditional types generated/selected by the
encoder are obtained by optimizing a slightly different payoff function. The probability of error
analysis is similar as well.

Assume R < CL − ǫ. Define

ẼCAM
r,L,N(R, pse , pxu|se) , min

p
ysasd|xuse

∈P
[N]

Y SaSd|XUSe
[A,pxu|sepse ]

[
D(psesasd ||pSeSaSd) + ĨY ;USeSd|XSa(psepxu|sepysasd|xuse)

+|JL(psepxu|sepysasd|xuse)− ǫ−R|+
]

(6.1)

for all pse ∈ P
[N ]
Se and pxu|se ∈ P

[N ]
XU |Se(L,D1). Let

ECAM
r,L,N (R) , min

pse∈P
[N]
Se

max
pxu|se∈P

[N]
XU|Se(D1)

ẼCAM
r,N (R, pse , pxu|se). (6.2)

which differs from (3.12) in that the optimizations are performed over empirical p.m.f.’s instead of
arbitrary p.m.f.’s. Consider the maximization over pxu|se (viewed as a function of pse) in (6.2). As
in the proof of Theorem 3.2, to the resulting optimal pxu|se we can associate a type class T ∗

U (pse),
conditional type classes T ∗

U |Se(s
e) and T ∗

X|USe(u, s
e), and a mutual information I∗USe(psepu|se).

Define ρ(pse) and ψ(pse) as in (5.23). The random codebook C is a stack of codebooks C(pse),
each of which is obtained by a) drawing 2N(R+ρ(pse )) independent random vectors whose components
are uniformly distributed in T ∗

U (pse), and b) arranging them in an array with 2NR columns and
2Nρ(pse ) rows.

Encoder. The encoding (given se and m) proceeds exactly as in the CDMC case:

1. Find l such that u(l,m) ∈ C(pse)
⋂
T ∗
U |Se(se). If more than one such l exists, pick one of them

randomly (with uniform distribution). Let u = u(l,m). If no such l can be found, generate
u uniformly from the conditional type class T ∗

U |Se(s
e).

2. Generate X uniformly distributed over the conditional type class T ∗
X|USe(us

e).

Decoder. The decoder is the MPMI decoder of (5.6). We now analyze its probability of error

Pe , max
pY|XSa∈PY|XSa [A]

Pe(FN , GN , pY|XSa).

Step 1. An encoding error arises when no codeword with the appropriate type can be found.
The probability Pr[Em|Tse ] of this event is given by (5.9).

27



Step 2. We have a decoding error under the following event E ′
m: there exists u′ not in column

m of an array C(p′se) such that I(u′;ysd)− ρ(p′se) ≥ I(u;ysd)− ρ(pse). Therefore

Pe = max
pY|XSa

Pr[error | m = 1]

= max
pY|XSa

∑

Tsuxy

Pr[Tsuxy]Pr[error | Tsuxy,m = 1]

= max
pY|XSa

∑

Tsuxy

Pr[Tsuxy]
(
Pr[E1|Tse ] + Pr[E ′

1 | Tsuxy, E
c
1 ]
)
. (6.3)

Unlike (5.11), no dependency on a DMC pY |XSa appears here. Observe that

Pr[E ′
1 | Tsuxy, E

c
1 ] =

∑

(s̃ũx̃ỹ)∈Tsuxy

p(s̃|Ts) p(x̃ũ|s̃
e)pY|XSa(ỹ|x̃s̃a)Pr[E ′

1 | ũ, ỹ, s̃d, Tsuxy, E
c
1 ]. (6.4)

Here we can apply the following argument from [15]. From (6.3) (6.4), we see
that Pe(FN , GN , pY|XSa) is an affine functional of pY|XSa . Moreover, it can be verified
that Pe(FN , GN , pY|XSa) = Pe(FN , GN , p

π
Y|XSa) where π is a permutation operator, and

pπ
Y|XSa(y|xsa) , pY|XSa(πy|πx, πsa). By uniform averaging over all permutations π, we obtain

an attack channel pY|XSa = 1
N !

∑
π p

π
Y|XSa which is strongly exchangeable: if (X,Sa) is uniformly

distributed over a type class, then Y is uniformly distributed over conditional class types. So
without loss of optimality for the adversary, we can consider only strongly exchangeable channels
in the analysis, for which pY|XSa(y|x, sa) is given by

pY|XSa(y|x, sa) =
Pr[Ty|xsa]

|Ty|xsa |
, (6.5)

with Ty|xsa to be optimized. Using the upper bound

Pr[Ty|xsa] ≤ I{py|xsa ∈ A} (6.6)

and the asymptotic relations Pr[Ts]
.
= exp2{−ND(ps||pS)} and

|Ty|zw|

|Ty|z|

.
= exp2{−NI(y;w|z)}, we

obtain

Pr[Tsuxy] = PNS PXU|SePY|XSa(Tsuxy)

= |Tsuxy|
Pr[Ts]Pr[Ty|xsa ]

|Ts| |Txu|se | |Ty|xsa |

≤ Pr[Ts]
|Tsuxy|

|Ts| |Txu|se | |Ty|xsa |
I{py|xsa ∈ A}

= Pr[Ts]
|Ty|xus|

|Ty|xsa |
I{py|xsa ∈ A}

.
= exp2

{
−N [D(ps||pS) + ĨY ;USeSd|XSa(psepxu|sepysasd|xuse)]

}
I{py|xsa ∈ A}.(6.7)

Step 3. This step is identical to the corresponding step in the DMC case and yields

Pr[E ′
1 | Tsuxy, E

c
1 ] ≤ exp2

{
−N |JL(pse pxu|se pysasd|xuse)− ǫ−R|+]

}
(6.8)
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Step 4. Combining (6.3), (6.7), (5.9), and (6.8), we obtain

Pe
�

≤
∑

Tsuxy

Pr[Tsuxy]Pr[E
′
1 | Tsuxy, E

c
1 ]

�

≤ max
pse

min
pxu|se

max
p
ysasd|xuse

exp2

{
−N [D(psesasd ||pSeSaSd) + ĨY ;USeSd|XSa(psepxu|sepysasd|xuse)

+|JL(pse pxu|se pysasd|xuse)− ǫ−R|+]
}

= exp2{−NE
CAM
r,L,N (R)} (6.9)

because pxu|se was optimized to achieve the exponent ECAM
r,L,N(R) in (6.2).

Step 5. The last step is identical to that in the DMC case: the exponent ECAM
r,L,N (R) in (6.9)

converges to the limit ECAM
r,L (R) in (3.12) as N → ∞, and all rates below CL are achievable. By

choosing L large enough, CL can be made arbitrarily close to C. ✷

7 Proof of Converse of Theorem 3.6

The proof of the converse theorem is an extension of [12, Prop. 4.3]. To prove the claim (derive
an upper bound on capacity), we only need to consider the expected-cost constraint (2.2) for the
transmitter. Indeed replacing (2.2) with the stronger maximum-cost constraint (2.1) cannot increase
capacity, so the same upper bound applies. Likewise, we assume as in [12] that the decoder knows
the attack channel pY |XSa, because the resulting upper bound on capacity applies to an uninformed
decoder as well.

Step 1. Choose an arbitrary small η > 0. For any rate-R encoder fN and attack channel
pY |XSa ∈ A such that

I(M,YSd) ≤ N(R− η), (7.1)

we have

NR = H(M) = H(M |YSd) + I(M ;YSd)

≤ 1 + Pe(fN , gN , p
N
Y |XSa)NR + I(M ;YSd)

≤ 1 + Pe(fN , gN , p
N
Y |XSa)NR +N(R − η)

where the first inequality is due to Fano’s inequality, and the second is due to (7.1). Hence

Pe(fN , gN , p
N
Y |XSa) ≥

Nη − 1

NR
.

We conclude that the probability of error is bounded away from zero:

Pe(fN , gN , p
N
Y |XSa) ≥

η

2R
(7.2)

for all N > 2
η . Therefore rate R is not achievable if

min
pY |XSa∈A

I(M ;YSd) ≤ N(R− η). (7.3)
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Step 2. The joint p.m.f. of (M,S,X,Y) is given by

pMSXY = pMpSeI{X = fN (S
e,M)}

N∏

i=1

pY |XSa(yi|xi, s
a
i )pSaSd|Se(sai , s

d
i |s

e
i ). (7.4)

Define the random variables

Wi = (M,Sei+1, · · · , S
e
N , S

d
1 , · · · , S

d
i−1, Y1, · · · , Yi−1), 1 ≤ i ≤ N. (7.5)

Since (M, {Sej , S
d
j , Yj}j 6=i) → XiS

e
i → YiS

a
i S

d
i forms a Markov chain for any 1 ≤ i ≤ N , so does

Wi → XiS
e
i → YiS

a
i S

d
i . (7.6)

Also define the quadruple of random variables (W,S,X, Y ) as (WT , ST ,XT , YT ), where T is
a time-sharing random variable, uniformly distributed over {1, · · · , N} and independent of all
the other random variables. The random variable W is defined over an alphabet of cardinality
exp2{N [R+ logmax(|Se|, |Y| |Sd|)]}. Due to (7.4) and (7.6), W → XSe → Y SaSd forms a Markov
chain.

Using the same inequalities as in [1, Lemma 4] (with (Yi, S
d
i ) and S

e
i playing the roles of Yi and

Si, respectively), we obtain

I(M ;YSd) ≤
N∑

i=1

[I(Wi;YiS
d
i )− I(Wi;S

e
i )]. (7.7)

Using the definition of (W,S,X, Y ) above and the same inequalities as in [12, (C16)], we obtain

N∑

i=1

[I(Wi;YiS
d
i )− I(Wi;S

e
i )] = N [I(W ;Y Sd|T )− I(W ;Se|T )]

≤ N [I(WT ;Y Sd)− I(WT ;Se)]

= N [I(U ;Y Sd)− I(U ;Se)] (7.8)

where U = (W,T ) is defined over an alphabet of cardinality

L(N) , N exp2{N [R + logmax(|Se|, |Y| |Sd|)]}.

Therefore

I(M ;YSd) ≤ N [I(U ;Y Sd)− I(U ;Se)]

= NJL(N)(pUSXY )

min
pY |XSa∈A

I(M ;YSd) ≤ N min
pY |XSa∈A

JL(N)(pUSXY )

≤ N sup
L

max
pXU|Se

min
pY |XSa∈A

JL(pUSXY )

= N lim
L→∞

max
pXU|Se

min
pY |XSa∈A

JL(pUSXY ) (7.9)

where the last equality follows from Lemma 2.1. Combining (7.3) and (7.9), we conclude that R is
not achievable if

lim
L→∞

max
pXU|Se

min
pY |XSa∈A

JL(pUSXY ) ≤ R− η,

which proves the claim, because η is arbitrarily small. ✷
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8 Proof of Converse of Theorem 3.7

The proof of the converse theorem builds on the proof for the C-DMC case.

Step 1. Consider an attack channel p∗Y |XSa that achieves C(D1,A) in (3.1). Without loss of

generality, assume that pSa(sa) > 0 for all sa ∈ Sa. For any positive ǫ, consider the following L1

neighborhood of p∗Y |XSa:

B(ǫ) =

{
pY |XSa :

∑

y,x,sa

|pY |XSa(y|x, sa)− p∗Y |XSa(y|x, sa)| ≤ ǫ

}
.

We have limǫ→0C(D1,B(ǫ)) = C(D1,A). For any arbitrarily small η, there exists ǫ such that

C(D1,A)− η ≤ C(D1,B(ǫ)) ≤ C(D1,A).

In order to prove the converse theorem, it is sufficient to show that reliable communication at
rates R > C(D1,B(ǫ)) + 2η ≥ C(D1,A) + η is impossible for a particular attack channel pY|XSa ∈
PY|XSa [B(ǫ)]. The channel we select is “nearly memoryless”. Given any rate-R randomized code
(M, FN , GN ), we show that limN→∞ Pe,N(FN , GN , pY|XSa) ≥ η

4R hence is nonzero.

Step 2: Construction of pY|XSa . Consider any rate-R deterministic code (M, fN , gN ) where

R > C(D1,A). From Theorem 3.6, we know that minfN ,gN Pe,N (fN , gN , (p
∗
Y |XSa)N ) 6→ 0 as N →

∞. Define an arbitrary mapping Λ : XN × (Sa)N → YN such that pΛ(x,sa)|xsa ∈ B(ǫ) for all

(x, sa). Denote by Ỹ the output of (p∗Y |XSa)N . Define the following functions of (ỹ,x, sa): the
binary quantity

B = 1 ⇔ pỹ|xsa /∈ B(ǫ)

and the sequence

y =

{
ỹ : if pỹ|xsa ∈ B(ǫ) (B = 0)

Λ(x, sa) : else (B = 1).
(8.1)

Therefore the p.m.f.

pY|XSa(y|x, sa) =
[
(p∗Y |XSa)N (y|x, sa)Pr(B = 0) + I{y = Λ(x, sa)}Pr(B = 1)

]
I{py|x,sa ∈ B(ǫ)}

belongs to B(ǫ).

Step 3. Now we seek an upper bound on Pr[B = 1]. Define the binary random variable A
such that

A = 1 ⇔ min
x,sa

pxsa(x, s
a) ≤ ǫ2. (8.2)

The probability that A = 1 is a function of the code fN . We assume momentarily that fN is such
that

Pr[A = 1] <
η

9R
. (8.3)

In Step 5 we show this assumption causes no loss of generality.

Define the shorthand

ǫ̃ =
ǫ6

2 ln 2
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and the class of types

P
[N ]
Y XSa(ǫ̃) ,




pỹxsa : D(pỹ|xsa ||p

∗
Y |XSa|pxsa) > ǫ̃, min

x,sa
pxsa(x, s

a) > ǫ2

︸ ︷︷ ︸
A=0




. (8.4)

With this notation, we have

B = 1 ⇒
∑

y,x,sa

|py|xsa(y|x, s
a)− p∗Y |XSa(y|x, sa)| > ǫ

B = 1, A = 0 ⇒ ‖pỹ|xsapxsa − p∗Y |XSapxsa‖ > ǫ2
∑

y,x,sa

|pỹ|xsa(y|x, s
a)− p∗Y |XSa(y|x, sa)| > ǫ3

⇒ D(pỹ|xsa ||p
∗
Y |XSa|pxsa) > ǫ̃ (8.5)

where the first line follows from the definition of B(ǫ), the second line from (8.3), and the third line
from Pinsker’s inequality [16, p. 58]: D(p||p′) ≥ ‖p− p′‖2/(2 ln 2).

We have
Pr[B = 1] ≤ Pr[B = 1, A = 0] + Pr[A = 1]. (8.6)

Due to (8.4) and (8.5), the first term in the right side is bounded as follows:

Pr[B = 1, A = 0] ≤ Pr
[
pỹxsa ∈ P

[N ]
Y XSa(ǫ̃)

]

=
∑

pỹxsa∈P
[N]
Y XSa(ǫ̃)

Pr [Tỹxsa ]

≤ (N + 1)|Y| |X | |Sa| max
pỹxsa∈P

[N]
Y XSa(ǫ̃)

Pr [Tỹxsa ]

≤ (N + 1)|Y| |X | |Sa| max
pỹxsa∈P

[N]
Y XSa(ǫ̃)

exp2

{
−ND(pỹ|xsa ||p

∗
Y |XSa |pxsa)

}

≤ (N + 1)|Y| |X | |Sa| exp2 {−Nǫ̃} (8.7)

which vanishes as N → ∞. Combining (8.3), (8.6) and (8.7), we obtain

Pr[B = 1] ≤ (N + 1)|Y| |X | |Sa| 2−Nǫ̃ +
η

9R

≤
η

8R

for N large enough.

Step 4. For any (fN , gN ), we have

Pe,N (fN , gN , (p
∗
Y |XSa)N )

= Pr[M̂ 6=M |Ỹ,Sd]

= Pr[M̂ 6=M |Ỹ,Sd, B = 0]Pr(B = 0) + Pr[M̂ 6=M |Ỹ,Sd, B = 1]Pr(B = 1). (8.8)
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Likewise,

Pe,N (fN , gN , pY|XSa)

= Pr[M̂ 6=M |Y,Sd]

= Pr[M̂ 6=M |Y,Sd, B = 0]Pr(B = 0) + Pr[M̂ 6=M |Y,Sd, B = 1]Pr(B = 1). (8.9)

Noting that the terms multiplying Pr[B = 0] in (8.8) and (8.9) are identical by construction of y
in (8.1) and that Pr[B = 1] is upper bounded by η

8R , we obtain

|Pe,N (fN , gN , pY|XSa)− Pe,N (fN , gN , (p
∗
Y |XSa)N )| ≤ 2Pr[B = 1] ≤

η

4R
, ∀fN , gN .

Since R > C(D1,A) + η, Theorem 3.6 implies that

lim
N→∞

min
fN ,gN

Pe,N (fN , gN , (p
∗
Y |XSa)N ) ≥

η

2R
.

Hence
lim
N→∞

min
fN ,gN

Pe,N (fN , gN , pY|XSa) ≥
η

2R
−

η

4R
=

η

4R
.

Therefore
lim
N→∞

min
fN ,gN

Pe,N (FN , GN , pY|XSa) ≥
η

4R
.

for any randomized code (FN , GN ).

Step 5. It remains to prove there was no loss of generality in making the assumption (8.3).
This is done as follows. Given any code fN (that may not satisfy (8.3)), we can extend the code by
appending Nǫ|X |−1 letters x at the end of the sequence, for each x ∈ X . The resulting code has
length (1+ ǫ)N and will be denoted by f̃(1+ǫ)N . To this code we can associate a decoding function
g̃(1+ǫ)N that ignores the last ǫN letters of the received sequence and outputs the same decision as
gN based on the first N received letters. Hence

Pe,N (fN , gN , pY|XSa) = Pe,N (f̃(1+ǫ)N , g̃(1+ǫ)N , pY|XSa), ∀pY|XSa . (8.10)

If f̃(1+ǫ)N satisfies (8.3), it follows from Step 4 that reliable communication is impossible using such
codes, and from (8.10) the same conclusion applies to fN .

We now show that f̃(1+ǫ)N satisfies (8.3) for N large enough. Denote by N ′(x, sa) the number
of occurrences of the pair (x, sa) in the last ǫN letters of the joint sequence (x, sa). Also denote by
N ′(sa) the number of occurrences of sa in the last ǫ|X |−1N letters of the sequence sa.

If Sa 6= ∅, we have

∀x, sa : Pr[N ′(x, sa) ≤ ǫ2N ] = Pr[N ′(sa) ≤ ǫ2N ].

Since E[N ′(sa)] = Nǫ|X |−1pSa(sa), the above probabilities vanish exponentially with N provided
that ǫ < |X |−1 minsa pSa(sa). Hence

Pr[A = 1] = Pr

[
min
x,sa

pxsa(x, s
a) ≤ ǫ2

]

≤ |X | |Sa| max
x,sa

Pr[pxsa(x, s
a) ≤ ǫ2]

≤ |X | |Sa| max
x,sa

Pr[N ′(x, sa) ≤ ǫ2(1 + ǫ)N ]

= |X | |Sa| max
sa

Pr[N ′(sa) ≤ ǫ2(1 + ǫ)N ].
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Thus (8.3) holds for ǫ(1 + ǫ) < |X |−1 minsa pSa(sa) and N large enough.

If Sa = ∅, straightforward changes in the above derivation yield Pr[A = 1] = 0, i.e., (8.3) holds
again. This concludes the proof. ✷

9 Discussion

In their landmark paper, Gel’fand and Pinsker [1] showed that random binning achieves the capacity
of a DMC with random states known to the encoder. However their encoder was not designed to
provide positive error exponents at rates below capacity. In this paper we have addressed this
limitation and proposed and optimized a new random-coding scheme. The codebook consists of a
stack of codeword-arrays indexed by the encoder’s state sequence type λ. The size of these arrays
is 2Nρ(λ)×2NR, i.e., the number of rows is a function of λ. The decoder is the Maximum Penalized
Mutual Information decoder (3.6), where the penalty is the same function ρ(λ) that determines the
array sizes. This new MPMI decoder can be interpreted as an empirical generalized MAP decoder.

The channel models studied in this paper generalize the original Gel’fand-Pinsker setup in two
ways. First, partial information about the state sequence is available to the encoder, adversary,
and decoder. Second, both CDMC and CAM channel models are studied.

We have considered four combinations of maximum/expected cost constraints for the trans-
mitter and CDMC/CAM designs for the adversary, and obtained the same capacity in all four
cases. There is thus no advantage (in terms of capacity) to the transmitter in operating under
expected-cost constraints instead of the stronger maximum-cost constraints.

In terms of error exponents however, there is a definite advantage to the adversary in choosing
a CDMC rather than a CAM design of the channel. This is because 1) arbitrary memory does not
help the adversary because randomly-modulated codes and a MMI-type decoder are used, 2) the
set of conditional types the adversary can choose from is constrained in the CAM case but not in
the CDMC case, and 3) the error exponents are determined by the worst types. The random-coding
exponent is always upper bounded by a straight line with slope −1 at all rates below capacity. That
upper bound is achieved in the CAM case, when no side information is available to the encoder.

Finally, neither the MMI nor the MPMI decoder is practical, and it remains to be seen whether
good, practical encoders and decoders can be developed.

Acknowledgements. The authors are grateful to M. Haroutunian, A. Lapidoth, N. Merhav,
and P. Narayan for helpful comments.
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A Relation Between CAM and AVC Models

In this appendix, we detail the relation between a channel model pY|X, with maximum distortion
constraint (2.5), and the AVC model in [16]. The AVC is a family of conditional p.m.f.’s W (y|x, θ),
where θ ∈ Θ (finite set) is a “channel state” selected by the adversary. A cost function l : Θ → R

+

for the states is also defined. The channel law is of the form

p(y|x,θ) =
N∏

i=1

W (yi|xi, θi) (A.1)

where the sequence θ = {θ1, · · · , θN} is arbitrary except for a maximum-cost constraint

lN (θ) ,
1

N

N∑

i=1

l(θi) ≤ lmax. (A.2)

In some formulations of the jamming problem, θ must be selected by the adversary before seeing
x; in other formulations, θi is allowed to depend on xi but not on other samples of x [17, 20]; yet
in other formulations (the A*VC model [16]), θi is allowed to depend on xj for all j ≤ i.

If θ is allowed to depend on the entire sequence x in a noncausal manner (as opposed to the
above formulations of the AVC problem), the problem with maximum distortion constraint (2.5)
may be formulated as (A.1) and (A.2) with state θ, channel W , and cost l defined below. Let
θ = (θ′, θ′′) where θ′ ∈ X and θ′′ ∈ Y, hence Θ = X × Y. Let

l(θ) = d(θ′, θ′′), W (y|x, θ) = I{y = θ′′}.

The maximum-cost constraint (A.2) is then equivalent to the maximum-distortion constraint (2.5),
with lmax = D2. The sequence θ

′′ may be chosen deterministically or stochastically, using an
arbitrary distribution.

B Error Exponents for Channels Without Side Information

This appendix summarizes some known results on random-coding error exponents.

Single DMC: Let pY |X and pX be the channel law and input p.m.f., respectively. Referring to
[16, p. 165-166], we have

Er(R, pX , pY |X) = min
p̃Y |X

[D(p̃Y |X ||pY |X | pX) + |ĨXY (pX , p̃Y |X)−R|+], (B.1)

Compound DMC: Here pY |X belongs to a set A. We have

Er(R, pX ,A) = min
pY |X∈A

Er(R, pX , pY |X)

= min
pY |X∈A

min
p̃Y |X

[D(p̃Y |X ||pY |X | pX) + |ĨXY (pX , p̃Y |X)−R|+] (B.2)

which is zero if R ≥ minpY |X∈A ĨXY (pX , pY |X).
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Private Watermarking: the set A is defined by the distortion constraint (2.3). Then [14]

ECAM
r (R,D1,D2) = max

pX|S

min
pY |XS∈Ã

[ĨSY |X(pS , pX|S, pY |XS)

+ |ĨXY |S(pS , pX|S , pY |XS)−R|+] (B.3)

where Ã , {pY |XS :
∑

s pS(s)pX|S(x|s)pY |XS(y|x, s)d(x, y) ≤ D2}. The maximization over
pX|S is also subject to a distortion constraint.

Jamming with channel state S selected independently of input X [17, 20]. We have

Ejamr (R) = max
pX

min
pS

min
p̃Y SX :

p̃X = pX , p̃S = pS

[D(p̃Y SX ||pY |SXpXpS) + |ĨXY (pX , p̃Y |X)−R|+]

(B.4)

C Proof of Proposition 4.1

The set A, denoted here as PY |X(D2), is the set of DMC’s that introduce maximum Hamming
distortion D2. Let the attack channel p∗Y |X be the BSC with crossover probability D2. Considering
p∗Y |X may not be the worst channel, we have

Cpub = sup
L

max
pXU|S∈PXU|S(L,D1)

min
pY |X∈PY |X(D2)

JL(pS pXU |S pY |X)

≤ sup
L

max
pXU|S∈PXU|S(L,D1)

JL(pS pXU |S p
∗
Y |X)

= g∗(D1,D2), (C.1)

where the last step is derived in [8, 9]. The function g∗ is defined in (4.1).

Next we prove that Cpub ≥ g∗(D1,D2). Consider D1 = D′
1θ, where D

′
1 ∈ [0, 12 ] and θ ∈ [0, 1].

Let p∗U |S be the BSC with crossover probability D′
1. Furthermore, X = U makes the distortion

equal to D′
1. (Note that L = |U| = 2 in this case.) Clearly,

Cpub(D′
1) ≥ min

pY |X∈PY |X(D2)
JL(pS p

∗
XU |S pY |X)

= min
pY |X∈PY |X(D2)

I(X;Y )− (1− h(D′
1))︸ ︷︷ ︸

I(U ;S)

= (1− h(D2))− (1− h(D′
1))

= h(D′
1)− h(D2), (C.2)

where
min

pY |X∈PY |X(D2)
I(X;Y ) = 1− h(D2)

is achieved by p∗Y |X .

36



Using time-sharing arguments, Barron et al. [8] proved that capacity is a concave function of
D1 in the case A = {p∗Y |X}. It can be shown that their result holds in the case A = PY |X(D2)
considered here. Therefore we have

Cpub(D1) = Cpub(D′
1θ) ≥ θCpub(D′

1) ≥ θ
(
h(D′

1)− h(D2)
)
, ∀θ ∈ [0, 1].

It may be verified that
max
0≤θ≤1

θ
(
h(D′

1)− h(D2)
)
= g∗(D1,D2).

Therefore
Cpub ≥ g∗(D1,D2). (C.3)

From (C.1) and (C.3), we conclude that Cpub = g∗(D1,D2); also |U| = 2. ✷

D Proof of Proposition 4.2

From (3.13), we have

ECAM,pub
r (R) = sup

L
min
p̃S

max
pXU|S∈PXU|S(L,D1)

min
pY |XUS∈PY |XUS(D2)

[
D(p̃S ||pS) + IY ;US|X(p̃S pXU |S pY |XUS)

+ |JL(p̃S pXU |S pY |XUS)−R|+
]
. (D.1)

Step 1. First we prove that

F (D1,D2) , sup
L

min
p̃S

max
pXU|S∈PXU|S(L,D1)

min
pY |XUS∈PY |XUS(D2)

JL(p̃S pXU |S pY |XUS)

= Cpub, (D.2)

with equality if p̃S = pS .

Referring to (4.1), we first consider the regime in which time sharing is not needed: D1 ≥ δ2 =

1 − 2−h(D2) and therefore Cpub = h(D1) − h(D2). Letting U = X and p∗X|S be the BSC with

crossover probability D1, we obtain a lower bound on F (D1,D2):

F (D1,D2) ≥ min
p̃S

min
pY |XS∈PY |XS(D2)

JL(p̃S p
∗
X|S pY |XS)

= min
p̃S

min
pY |XS∈PY |XS(D2)

[
ĨX;Y (p̃S p

∗
X|S pY |XS)− ĨX;S(p̃S p

∗
X|S)

]

= min
p̃S

min
pY |XS∈PY |XS(D2)

[
ĨX;Y (p̃S p

∗
X|S pY |XS)−

(
h(D1 ⋆ p0)− h(D1)

) ]
(D.3)

where we use the shorthand p0 = p̃S(0). Next, write pY |XS as

pY |XS XS = 00 XS = 10 XS = 01 XS = 11

Y = 0 1− e f 1− g h
Y = 1 e 1− f g 1− h

.
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The p.m.f. of X induced by p̃S and p∗X|S is given by

pX = (pX0, pX1)

= (p0(1−D1) + (1− p0)D1, p0D1 + (1 − p0)(1−D1)) .

We derive

min
pY |XS∈PY |XS(D2)

ĨX;Y (p̃S p
∗
X|S pY |XS)

= min
e,f,g,h:

p0((1−D1)e+D1f)+(1−p0)((1−D1)h+D1g)≤D2

h(pX0(1− α) + pX1β)− pX0h(1− α)− pX1h(β)

= h(D1 ⋆ p0)− h(D2) (D.4)

where

α =
p0(1−D1)e+ (1− p0)D1g

pX0
and β =

p0D1f + (1− p0)(1−D1)h

pX1
.

The minimum is achieved by

α∗ =
D2

pX0

pX1 −D2

1− 2D2
, β∗ =

D2

pX1

pX0 −D2

1− 2D2
.

Combining (D.3) and (D.4), we obtain

F (D1,D2) ≥ h(D1)− h(D2) = Cpub. (D.5)

In the case D1 < δ2, capacity is achieved using time-sharing: Cpub > h(D1)− h(D2). Similarly
to [8], it can be shown that F (D1,D2) is a nondecreasing concave function of D1. Hence,

F (D1,D2) = F (D′
1θ,D2) ≥ max

0≤θ≤1
θF (D′

1,D2) ≥ max
0≤θ≤1

θ
(
h(D′

1)− h(D2)
)
= Cpub. (D.6)

For all values of D1, letting p̃S = pS in (D.2) and further restricting the minimization over
pY |XUS , we have

F (D1,D2) ≤ sup
L

max
pXU|S∈PXU|S(L,D1)

min
pY |X∈PY |X(D2)

JL(p̃S pXU |S pY |X) = Cpub. (D.7)

Combining (D.5), (D.6) and (D.7), we obtain (D.2).

Step 2. The first two bracketed terms in (D.1) are nonnegative. This yields a lower bound on

ECAM,pub
r (R):

ECAM,pub
r (R) ≥ sup

L
min
p̃S

max
pXU|S∈PXU|S(L,D1)

min
pY |XUS∈PY |XUS(D2)

|JL(p̃S pXU |S pY |XUS)−R|+

= |Cpub −R|+ (D.8)

where the equality is due to (D.2).

Step 3. If we fix p̃S = pS = (12 ,
1
2) and restrict pY |SUX to be of the form pY |X , we obtain an

upper bound on ECAM,pub
r (R):

ECAM,pub
r (R) ≤ sup

L
max

pXU|S∈PXU|S(L,D1)
min

pY |X∈PY |X(D2)
|JL(pS pXU |S pY |X)−R|+

= |Cpub −R|+. (D.9)

Step 4. Combining (D.9) and (D.8), we obtain ECAM,pub
r (R) = |Cpub −R|+. ✷
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E Proof of Proposition 4.4

We have
Cdeg = max

pX∈PX (D1)
min

pY |X∈PY |XS(D2)
I(X;Y ). (E.1)

Let a = pX(1), e = pY |X(1|0), and f = pY |X(0|1), which satisfy the distortion constraints

a ≤ D1, (1− a)e+ af ≤ D2.

Substituting these probabilities into (E.1), we obtain

Cdeg = max
a≤D1

min
(1−a)e+af≤D2

[
h((1− a)(1− e) + af)− (1− a)h(e)− ah(f)

]
.

Solving the above max-min problem in the case D1 ≥ δ2 = 1 − 2h(D2), we obtain the optimal
p∗X and p∗Y |X from

a = D1, e =
D2(D1 −D2)

(1−D1)(1− 2D2)
, f =

D2(1−D1 −D2)

D1(1 − 2D2)
.

After some algebraic simplifications, we obtain Cdeg = h(D1) − h(D2). Applying the same time-
sharing argument as in the proof of Prop. 4.1, we obtain Cdeg = g∗(D1,D2), which is the same as
the capacity Cpub for the public watermarking game. ✷

F Proof of (5.18)

The inequality 1−
∏
i(1− αi)

ti ≤ 1 being trivial, it remains to prove that

1−
∏

i

(1− αi)
ti ≤

∑

i

αiti

or equivalently, ∏

i

(1− αi)
ti ≥ 1−

∑

i

αiti.

Define the K-vector 1 whose components are all equal to 1, the K-vectors α and t with components
{αi} and {ti}, and Ω = [1,∞)K , the domain of t. Denote by ∇f the gradient vector of a function
f defined on R

K , and by a · b the dot product of two vectors in R
K . Define the functions

f(t) =
∏

i

(1− αi)
ti (F.1)

g(t) = f(1) + (t− 1) · ∇f(1) (F.2)

h(t) = 1−α · t (F.3)

We need to prove that f(t) ≥ h(t) for all t ∈ Ω and α ∈ [0, 1]K . In Step 1 below we establish that
f(t) ≥ g(t). In Step 2, we prove that g(t) ≥ h(t).
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Step 1. The function g(t) describes a hyperplane tangent to the graph of f(t) at t = 1. The
function f(t) may be written as

f(t) = exp

{
∑

i

ti ln(1− αi)

}
. (F.4)

It is convex and therefore f(t) ≥ g(t), owing to the hyperplane separation theorem.

Step 2. From (F.2) and (F.3), we have

g(t)− h(t) = [f(1)− h(1)] +
∑

i

(ti − 1)

[
∂f(t)

∂ti

∣∣∣∣
t=1

+ αi

]
. (F.5)

Observe that f(1) =
∏
i(1−αi) and h(1) = 1−

∑
i αi; therefore we have the well-known inequality

f(1) ≥ h(1). Next, since each term ti− 1 in (F.5) is nonnegative for t ∈ Ω, it suffices to prove that

∂f(t)

∂ti

∣∣∣∣
t=1

≥ −αi (F.6)

to establish that g(t)− h(t) ≥ 0 for all t ∈ Ω.

From (F.4), we obtain

∂f(t)

∂ti

∣∣∣∣
t=1

= f(1) ln(1− αi), 1 ≤ i ≤ K, ∀t, (F.7)

where 0 ≤ f(1) ≤ 1− αi. Since ln(1− αi) ≤ 0, this implies

f(1) ln(1− αi) ≥ (1− αi) ln(1− αi). (F.8)

We now prove that
(1− αi) ln(1− αi) ≥ −αi (F.9)

which, combined with (F.8) and (F.7), will establish (F.6). Putting x = 1 − αi, we apply the
inequality ln 1

x ≤ 1
x − 1 to claim that

x lnx = −x ln
1

x
≥ −x

(
1

x
− 1

)
= x− 1

which proves (F.9). The proof is complete. ✷

G Proof of Proposition 3.8

The variational distance for p, p′ ∈ PY is defined as ‖p − p′‖ =
∑

y |p(y) − p′(y)| and extended to
conditional pmf’s p, p′ ∈ PY |X as ‖p − p′‖ = maxx

∑
y |p(y|x)− p′(y|x)|.

Lemma G.1 [16, p. 33]. For any p, p′ ∈ PY , we have

‖p − p′‖ ≤ θ ≤
1

2
⇒ |H̃p(Y )− H̃p′(Y )| ≤ θ log

|Y|

θ
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Lemma G.2 For any pX ∈ PX and p, p′ ∈ PY |X , we have

‖p − p′‖ ≤ θ ≤
1

2
⇒ |H̃pXp(Y |X)− H̃pXp′(Y |X)| ≤ θ log

|Y|

θ
.

Proof:

|H̃pXp(Y |X)− H̃pXp′(Y |X)| =

∣∣∣∣∣
∑

x

pX(x)[H̃p(Y |X = x)− H̃p′(Y |X = x)]

∣∣∣∣∣

≤ max
x

|H̃p(Y |X = x)− H̃p′(Y |X = x)|

≤ θ log
|Y|

θ

where the last inequality follows from Lemma G.1.

Proof of Proposition 3.8.

The upper bound is straightforward. We now derive the lower bound.

Step 1. Define a discretized set Al ⊂ A of attack channels as follows:

Al =
{
q ∈ A : q(y|x, sa) ∈ {0, l−1, 2 l−1, · · · , 1} ∀y, x, sa

}
.

Step 2. Any attack channel p ∈ A satisfies

∑

x

pX(x)d2(x) ≤ D2

where
d2(x, s

a) ,
∑

y

p(y|x, sa)d(x, y) (G.1)

is the distortion introduced by p when X = x and Sa = sa.

We construct an approximation p̂ of p with the following properties:

∑

y

p̂(y|x, sa) = 1 (G.2)

∑

y

p̂(y|x, sa)d(x, y) ≤ d2(x, s
a), ∀x, sa, (G.3)

hence p̂ ∈ Al. The construction of p̂ is as follows. Define p+(y|x, sa) as the least upper bound on
p(y|x, sa) in the set {l−1, 2 l−1, · · · , 1}. Therefore 0 < p+(y|x, sa)− p(y|x, sa) ≤ l−1. Define

k =
∑

y

(l p+(y|x, sa)− l p(y|x, sa))

= l
∑

y

p+(y|x, sa)− l ∈ {0, 1, · · · , |Y| − 1}, (G.4)
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dk(x) as the sum of the k largest values of d(x, y) when y ranges over Y, and Yk(x) as the set of k
corresponding values of y, that is, we have dk(x) =

∑
y∈Yk(x)

d(x, y). Now let

p̂(y|x, sa) = p+(y|x, sa)−
1

l
1{y∈Yk}. (G.5)

We have the following properties:

∑

y

p̂(y|x, sa) =
∑

y

p+(y|x, sa)−
k

l
=
∑

y

p(y|x, sa) = 1;

therefore (G.2) holds. Also

∑

y

d(x, y)p̂(y|x, sa) =
∑

y

d(x, y)p(y|x, sa) −
∑

y

d(x, y)(p+(y|x, sa)− p̂(y|x, sa))

+
∑

y

d(x, y)(p+(y|x, sa)− p(y|x, sa)).

From (G.1), the first sum in the right side is equal to d2(x, s
a). Owing to (G.5), the second sum is

equal to ∑

y

d(x, y)
1

l
1{y∈Yk} =

1

l
dk(x).

The third sum is equal to

1

l

∑

y

d(x, y)(l p+(y|x, sa)− l p(y|x, sa)) ≤
1

l
dk(x)

where the inequality holds because

l p+(y|x, sa)− l p(y|x, sa) ≤ 1 and
∑

y

(l p+(y|x, sa)− l p(y|x, sa)) = k.

Hence (G.3) holds as well, and p̂ ∈ Al. The cardinality of Al is at most (l + 1)|Y| |X | |Sa|.

By construction of p̂, we have

‖pY |XSa − p̂Y |XSa‖ ≤
|Y|

l
, θ.

Step 3. Consider an alphabet U of arbitrarily large cardinality. We have

J|U|(·) = I(U ;Y Sd)− I(U ;Se) = H(Y |Sd)−H(Y |USd) + I(U ;Sd)− I(U ;Se),

hence

|J|U|(pS pXU |Se pY |XSa)− J|U|(pS pXU |Se p̂Y |XSa)|

= |H̃pY |XSa (Y |Sd)− H̃pY |XSa (Y |USd)− H̃p̂Y |XSa (Y |Sd) + H̃p̂Y |XSa (Y |USd)|

≤ |H̃pY |XSa (Y |Sd)− H̃p̂Y |XSa (Y |Sd)|+ |H̃pY |XSa (Y |USd)− H̃p̂Y |XSa (Y |USd)|

≤ 2 θ log
|Y|

θ
= 2|Y|

log l

l
(G.6)
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where the second inequality is obtained by application of Lemmas G.1 and G.2.

Step 4. By application of Caratheodory’s theorem, given a pmf pXUSe where U has arbitrarily
large cardinality, and given L real-valued functionals fi, 1 ≤ i ≤ L defined over the set PXSe , there
exist L elements u1, · · · , uL of U and L nonnegative numbers α1, · · · , αL summing to 1 such that

∑

u∈U

pU (u)fi(pXSe|U=u) =

L∑

u=1

αufi(pXSe|U=u), i = 1, 2, · · · , L.

The payoff function in the mutual-information game takes the form

J|U|(pSpXU |SepY |XSa) = I(U ;Y Sd)− I(U ;Se)

=
∑

u∈U

pU (u)[−H(Y Sd|U = u) +H(Se|U = u)] +H(Y Sd)−H(Se).

We apply Caratheodory’s theorem to our problem by letting

fi(pXSe|U=u) = pXSe(x, se), 1 ≤ i(x, se) ≤ |X | |Se| − 1,

fi(pXSe|U=u) = H(Y Sd|U = u)−H(Se|U = u), |X | |Se| ≤ i(pY |XSa) ≤ |X | |Se|+ |Al| − 1.

The first |X | |Se| − 1 functions correspond to the marginals of pXSe except one, and the next
|Al| = l|Y| |X | |Sa| functions are indexed by the attack channels pY |XSa ∈ Al. Hence, defining
U ′ = {1, · · · , L}, there exist L nonnegative numbers α1, · · · , αL summing to 1 and a random
variable U ′ ∈ U ′ such that

pXU ′Se(x, u′, se) = pXSe|U(x, s
e|uu′)αu′ ∀x, se

JL(pSpXU ′|SepY |XSa) = J|U|(pSpXU |SepY |XSa) ∀pY |XSa ∈ Al.

Hence it suffices to consider

|U| = L = |X | |Se|+ l|Y| |X | |Sa| − 1,

as stated in (3.14), to achieve the maximum in

max
pXU|Se∈PXU|Se(|U|,D1)

min
pY |XSa∈Al

JL(pSpXU |SepY |XSa).

Step 5. For any choice of U , we have

CL
(a)
= max

pXU|Se∈PXU|Se(L,D1)
min

pY |XSa∈A
JL(pSpXU |SepY |XSa)

(b)

≥ max
pXU|Se∈PXU|Se(L,D1)

min
pY |XSa∈Al

JL(pSpXU |SepY |XSa)− 2|Y|
log l

l

(c)
= max

pXU|Se∈PXU|Se(|U|,D1)
min

pY |XSa∈Al

J|U|(pSpXU |SepY |XSa)− 2|Y|
log l

l

(d)

≥ max
pXU|Se∈PXU|Se(|U|,D1)

min
pY |XSa∈A

J|U|(pSpXU |SepY |XSa)− 2|Y|
log l

l
(G.7)
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where (a) is the definition of CL; (b) is because (G.6) holds uniformly for all pXU |Se and pY |XSa ∈ A;
and (c) is a consequence of Caratheodory’s theorem in Step 4; and (d) holds because Al ⊂ A.

The inequality (G.7) holds in the limit as |U| → ∞, hence

CL ≥ C − 2|Y|
log l

l
,

which proves the claim. ✷

H Proof of Proposition 3.10

Define sets PY (ǫ) = {pY ∈ PY : miny p(y) ≥ ǫ} and similarly, PY |X(ǫ) = {pY |X ∈
PY |X : minx,y p(y|x) ≥ ǫ}, for any ǫ ∈ [0, 1/|Y|]. In preparation for the proof of the propo-
sition, we define a log-uniform quantizer Φl and present three lemmas.

Pmf quantization. Given l ≥ |Y|, we define ǫ = l−1 and a pmf quantization mapping
Φl : PY (ǫ) → PY (ǫ) as follows. Define the log-uniform quantizer Ql : [ǫ, 1] → Ql with l
reproduction levels

Ql = {ǫ = ǫlǫ, ǫ(l−1)ǫ, · · · , ǫ2ǫ, ǫǫ}. (H.1)

and quantization function

Ql(z) =

{
ǫ : z = ǫ

ǫiǫ : ǫiǫ < z ≤ ǫ(i−1)ǫ, i = 1, 2, · · · , l.
(H.2)

Observe that the ratio between adjacent reproduction levels, ǫǫ ↑ 1 as l → ∞. Moreover the
difference between adjacent reproduction levels is upper-bounded by 1 − ǫǫ ≤ ǫ ln ǫ−1 = ln l

l . Both
notions of precision will be useful in the proof.

For any p ∈ PY (ǫ), define
q(y) = Ql(p(y)), (H.3)

the sum σ =
∑

y q(y), and the pmf p̂(y) = 1
σ q(y). Hence

p̂(y) = Φl p(y) ,
Ql(p(y))∑
y Ql(p(y))

, y ∈ Y. (H.4)

Lemma H.1 For any integer l ≥ |Y| ≥ 2 and p, p̃ ∈ PY (l
−1), we have

|D(p̃‖p)−D(Φl p̃‖Φl p)| ≤ 2(|Y| + 1)
log2 l

l
.

Proof. Let ǫ = l−1. Since p(y) > ǫ, it follows from (H.2) and (H.3) that

ǫǫp(y) ≤ q(y) < p(y). (H.5)
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Summing (H.5) over y ∈ Y, we obtain

ǫǫ ≤ σ =
∑

y

q(y) ≤ 1. (H.6)

We have

ǫǫ ≤
q(y)

p(y)
≤ 1 and 1 ≤

1

σ
=

Φl p(y)

q(y)
≤ ǫ−ǫ (H.7)

For each y ∈ Y, we have

|p(y)− Φl p(y)| ≤ |p(y)− q(y)|+ |q(y)− Φl p(y)| ≤
ln l

l
+ (1− σ)Φl p(y) ≤ [1 + Φl p(y)]

ln l

l
,

hence

‖p− Φl p‖ ≤ (|Y| + 1)
ln l

l
. (H.8)

Multiplying the inequalities in (H.7) and taking logarithms, we obtain
∣∣∣∣log

Φl p(y)

p(y)

∣∣∣∣ ≤ −ǫ log ǫ =
log l

l
. (H.9)

Similarly, ∣∣∣∣log
Φl p(y)

p(y)

∣∣∣∣ ≤
log l

l
, ∀y. (H.10)

Hence

D(p̃‖p)−D(Φl p̃‖Φl p) =
∑

y

p̃(y) log
p̃(y)

p(y)
−
∑

y

Φl p̃(y) log
Φl p̃(y)

Φlp(y)

=
∑

y

p̃(y)

(
log

p̃(y)

p(y)
− log

Φl p̃(y)

Φl p(y)

)
+
∑

y

(p̃(y)− Φlp̃(y)) log
Φl p̃(y)

Φl p(y)

=
∑

y

p̃(y)

(
log

Φl p(y)

p(y)
− log

Φl p̃(y)

p̃(y)

)
+
∑

y

(p̃(y)− Φlp̃(y)) log
Φl p̃(y)

Φl p(y)
.

Hence

|D(p̃‖p)−D(Φl p̃‖Φl p)| ≤ max
y

∣∣∣∣log
Φl p(y)

p(y)

∣∣∣∣+max
y

∣∣∣∣log
Φl p̃(y)

p̃(y)

∣∣∣∣+ ‖p̃− Φl p̃‖ max
y

∣∣∣∣log
Φl p̃(y)

Φl p(y)

∣∣∣∣

≤ 2
log l

l
+ (|Y|+ 1)

ln l

l
log l

= 2
log l

l

[
1 + (|Y|+ 1)

ln 2

2
log l

]

≤ 2(|Y|+ 1)
log2 l

l

where the second inequality follows from (H.8), (H.9), and (H.10), and the third inequality from
the fact that l ≥ |Y| ≥ 2. ✷

The following lemma establishes a bound on the variation in conditional Kullback-Leibler di-
vergence D(p̃Y |X‖pY |X |p̃X) when the mapping Φl is applied to each pmf pY |X(·|x) ∈ PY (ǫ). The
resulting pmf is denoted by Φl pY |X = {Φl pY |X(·|x), x ∈ X}.
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Lemma H.2 For any integer l ≥ |Y| ≥ 2, p̃XY = p̃X p̃Y |X ∈ PXY , and pY |X , p̃Y |X ∈ PY |X(ǫ), we
have

|D(p̃Y |X‖pY |X |p̃X)−D(Φl p̃Y |X‖Φl pY |X |p̃X)| ≤ 2(|Y| + 1)
log2 l

l
.

Proof.

|D(p̃Y |X‖pY |X |p̃X)−D(Φl p̃Y |X‖Φl pY |X |p̃X)|

=

∣∣∣∣∣
∑

x

p̃X(x)[D(p̃Y |X=x‖pY |X=x)−D(Φl p̃Y |X=x‖Φl pY |X=x)]

∣∣∣∣∣
≤ max

x
|D(p̃Y |X=x‖pY |X=x)−D(Φl p̃Y |X=x‖Φl pY |X=x)|

≤ 2(|Y| + 1)
log2 l

l

where the last inequality follows from Lemma H.1. ✷

Proof of Proposition 3.10.

The lower bound is straightforward. We now derive the upper bound. The class of attack
channels under expected distortion constraint D2 is denoted by A(D2); the dependency on pX is
not explicitly indicated.

Define UL = {1, · · · , L}, where L is given in (3.15). Let U have arbitrarily cardinality, possibly
larger than L. Define the shorthands

Ã , PY SaSd|XSe and ÃU , PY SaSd|XUSe

and the functionals (with a little abuse of notation)

Er,|U|(p̃Se , pXU |Se , p̃Y SaSd|XUSe , pY |XSa)

, D(p̃SepXU |Se p̃Y SaSd|XUSe‖pSpXU |SepY |XSa) + |J|U|(p̃SepXU |Se p̃Y SaSd|XUSe)−R|+

and

Er,|U|(p̃Se , B̃U ,B) , max
pXU|Se∈PXU|Se(|U|,D1)

min
p̃
Y SaSd|XUSe∈B̃U

min
pY |XSa∈B

Er,|U|(p̃Se , pXU |Se , p̃Y SaSd|XUSe , pY |XSa), ∀B̃U ⊆ ÃU , B ⊆ A.(H.11)

Hence

Er,|U|(D2) = min
p̃Se

Er,|U|(p̃Se , ÃU ,A(D2))

Er(D2) = lim
|U|→∞

Er,|U|(D2).

Let ǫ = 1/l and

D′
2 = D2(1 + ǫ ln ǫ) < D2 (H.12)

D′′
2 = D′

2 − ǫ |Y|| |Sa| |Sd|D

= D2 − ǫ(|Y|| |Sa| |Sd|D +D2 ln ǫ
−1). (H.13)

The proof consists of the following steps:
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1. (Pmf lifting step). Define the subsets

A(D2; ǫ) ,

{
pY |XSa ∈ A(D2) : min

y,x,sa
pY |XSa(y|x, sa) ≥ ǫ

}

Ã(ǫ) ,

{
p̃Y SaSd|XSe ∈ Ã : min

y,x,s
p̃Y SaSd|XSe(y, sa, sd|x, se) ≥ ǫ

}

of A(D2) and Ã in which the conditional pmf’s pY |XSa and p̃Y SaSd|XSe are lower-bounded

by ǫ. Also define ÃU (ǫ) as the set of all pmf’s p̃Y SaSd|XUSe whose conditional marginals

p̃Y SaSd|XSe,U=u are in Ã(ǫ) for all u ∈ U .

For any p̃Se , pXU |Se ∈ PXU |Se(|U|,D1), p̃Y SaSd|XUSe ∈ ÃU and pY |XSa ∈ A(D′′
2), we show

there exist p̃′
Y SaSd|XUSe ∈ ÃU(ǫ) and p

′
Y |XSa ∈ A(D′

2; ǫ) such that

Er,|U|(p̃Se , pXU |Se , p̃Y SaSd|XUSe , pY |XSa)

≥ Er,|U|(p̃Se , pXU |Se , p̃′Y SaSd|XUSe , p
′
Y |XSa)| −

4

l
|Y| |Sa| |Sd| log

l

2|Sa|5/4|Sd|1/4c1/4

(H.14)

where the constant c was defined in the statement of the proposition.

2. (Pmf quantization step). We define finite nets Ãl(ǫ) ⊂ Ã(ǫ) and Al(D2; ǫ) ⊂ A(D2; ǫ) whose
cardinalities are at most l|Y| |X | |S| and l|Y| |X | |Sa|, respectively. Also define Ãl,U(ǫ) as the set of
all pmf’s p̃Y SaSd|XUSe whose conditional marginals p̃Y SaSd|XSe,U=u are in Ãl(ǫ) for all u ∈ U .

For any p̃Se , pXU |Se , p̃′
Y SaSd|XUSe ∈ ÃU(ǫ) and p′Y |XSa ∈ A(D′

2; ǫ), we show there exist

p̂Y SaSd|XUSe ∈ Ãl,U(ǫ) and p̂Y |XSa ∈ Al(D2; ǫ) such that

Er,|U|(p̃Se , pXU |Se , p̃′Y SaSd|XUSe , p
′
Y |XSa)

≥ Er,|U|(p̃Se , pXU |Se , p̂Y SaSd|XUSe , p̂Y |XSa)− 5|Y| |Sa| |Sd|
log2 l

l
. (H.15)

From (H.14) and (H.15), for

l ≥ exp2


1 +

√∣∣∣∣−
1

2
log(8|Sa|5|Sd|c)

∣∣∣∣
+

 (H.16)

we obtain

Er,|U|(p̃Se , pXU |Se , p̃Y SaSd|XUSe , pY |XSa)

≥ Er,|U|(p̃Se , pXU |Se , p̂Y SaSd|XUSe , p̂Y |XSa)−∆(l) (H.17)

where

∆(l) , 7|Y| |Sa| |Sd|
log2 l

l
. (H.18)
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3. By application of Caratheodory’s theorem, we show that for each p̃Se , the supremum of the
function Er,|U|(p̃Se , pXU |Se , Ãl,U (ǫ),Al(D2; ǫ)) over pXU |Se is achieved for |U| = L given in
(3.15).

4. Combining the results above, we show that Er,L(D
′′
2 ) ≥ Er,|U|(D2) −∆(l). Taking the limit

as |U| → ∞ proves the claim.

Step 1. (Pmf lifting). Denote by

µY (y) =
1

|Y|
and µSaSd(sa, sd) =

1

|Sa| |Sd|

the uniform distributions over Y and Sa × Sd, respectively. The average distortion for the hypo-
thetical attack channel pY |XSa = µY satisfies

Ed(X,Y ) ≤ max
x

Ed(x, Y ) = max
x

1

|Y|

∑

y

d(x, y) = D. (H.19)

To each pY |XSa ∈ A(D′′
2) and p̃Y SaSd|XUSe ∈ Ã, associate the conditional pmf’s

p′Y |XSa(y|x, sa) = (1− ǫ |Y| |Sa| |Sd|) pY |XSa(y|x, sa) + ǫ |Y| |Sa| |Sd|µY (y)

p̃′Y SaSd|XUSe(y, s
a, sd|x, u, se) = (1− ǫ |Y| |Sa| |Sd|) p̃Y SaSd|XUSe(y, sa, sd|x, u, se)

+ǫ |Y| |Sa| |Sd|µY (y)µSaSd(sa, sd), ∀y, x, u, s (H.20)

which are slight modifications of pY |XSa and p̃Y SaSd|XUSe and are lower-bounded by ǫ. We refer to
the mappings in (H.20) as “pmf lifting”.

Since average distortion is a linear functional of the attack channel, the average distortion for
p′Y |XSa is upper bounded by

(1− ǫ |Y| |Sa| |Sd|)D′′
2 + ǫ |Y| |Sa| |Sd|D ≤ D′

2.

Hence p′Y |XSa ∈ A(D′
2; ǫ).

Since Er,|U|(·) takes the form D(·) + |J|U|(·) − R|+, the variation in the error exponent due to
the above pmf lifting operations satisfies the upper bound:

Er,L(p̃Se , pXU |Se , p̃′Y SaSd|XUSe , p
′
Y |XSa)− Er,L(p̃Se , pXU |Se , p̃Y SaSd|XUSe , pY |XSa)

≤ ∆D +∆J|U| (H.21)

where

∆J|U| = J|U|(p̃Se pXU |Se p̃′Y SaSd|XUSe)− J|U|(p̃Se pXU |Se p̃Y SaSd|XUSe)

and

∆D = D(p̃SepXU |Se p̃′Y SaSd|XUSe‖pSpXU |Se p′Y |XSa)−D(p̃SepXU |Se p̃Y SaSd|XUSe‖pSpXU |Se pY |XSa)

= D(p̃′Y SaSd|XUSe‖pSaSd|Se p′Y |XSa | p̃SepXU |Se)−D(p̃Y SaSd|XUSe‖pSaSd|Se pY |XSa | p̃SepXU |Se).
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The last equality follows from the chain rule for Kullback-Leibler divergence,

D(p̃SepXU |Se p̃Y SaSd|XUSe‖pSpXU |Se p′Y |XSa)

= D(p̃Se‖pSe) +D(p̃Y SaSd|XUSe‖pSaSd|Se p′Y |XSa | p̃SepXU |Se).

The effect of pmf lifting on ∆D is as follows. By convexity of conditional Kullback-Leibler
divergence [16], from (H.20) we have

D(p̃′Y SaSd|XUSe‖pSaSd|Se p′Y |XSa | p̃SepXU |Se)

≤ (1− ǫ |Y| |Sa| |Sd|)D(p̃Y SaSd|XUSe‖pSaSd|Se pY |XSa | p̃SepXU |Se)

+ǫ |Y| |Sa| |Sd|D(µY µSaSd‖pSaSd|Se µY | p̃SepXU |Se)

≤ D(p̃Y SaSd|XUSe‖pSaSd|Se pY |XSa | p̃SepXU |Se) + ǫ |Y| |Sa| |Sd| max
s

log
µSaSd(sa, sd)

pSaSd|Se(sa, sd|se)

≤ D(p̃Y SaSd|XUSe‖pSaSd|Se pY |XSa | p̃SepXU |Se) + ǫ |Y| |Sa| |Sd| log
1

|Sa| |Sd| c

where the constant c was defined in the statement of the proposition. Hence

∆D ≤ ǫ |Y| |Sa| |Sd| log
1

|Sa| |Sd| c
. (H.22)

The effect of pmf lifting on J|U|(·) = H(Y Sd)−H(Y Sd|U)−I(U ;Se) is as follows. From (H.20),
we have

‖p̃Y SaSd|XUSe − p̃′Y SaSd|XUSe‖ = ‖ ǫ|Y| |Sa| |Sd| pY SaSd|XUSe − ǫ |Y| |Sa| |Sd|µY µSaSd‖

≤ 2ǫ |Y| |Sa| |Sd| , θ. (H.23)

Analogously to (G.6), we have

|∆J|U|| =
∣∣∣H̃p̃

Y SaSd|XUSe
(Y Sd)− H̃p̃

Y SaSd|XUSe
(Y Sd|U)

−H̃p̃′
Y SaSd|XUSe

(Y Sd) + H̃p̃′
Y SaSd|XUSe

(Y Sd|U)

∣∣∣∣

≤

∣∣∣∣H̃p̃
Y SaSd|XUSe

(Y Sd)− H̃p̃′
Y SaSd|XUSe

(Y Sd)

∣∣∣∣

+

∣∣∣∣H̃p̃
Y SaSd|XUSe

(Y Sd|U) + H̃p̃′
Y SaSd|XUSe

(Y Sd|U)

∣∣∣∣

≤ 2θ log
|Y| |Sd|

θ

= 4ǫ |Y| |Sa| |Sd| log
1

2ǫ |Sa|
(H.24)

where the last inequality follows from (H.23) and Lemmas G.1 and G.2.

Combining (H.21), (H.22), and (H.24), we obtain (H.14).
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Step 2. (Pmf quantization). Consider p′Y |XSa ∈ A(D′
2; ǫ). For each value of (x, sa), apply the

quantization mapping Φl : PY (ǫ) → PY (ǫ) defined in (H.4) to the pmf p′Y |XSa(·|x, sa) and denote

by Φl p
′
Y |XSa ∈ PY |XSa(ǫ) the resulting conditional pmf. Also let

σ(x, sa) =
∑

y

Ql(p
′
Y |XSa(y|x, sa)) ≥ ǫǫ

where the inequality is obtained as in (H.6). Similarly, given p̃′
Y SaSd|XUSe ∈ ÃU (ǫ), define the

quantized conditional pmf Φl p̃
′
Y SaSd|XUSe which belongs to the finite set Ãl,U(ǫ).

The average distortion associated with Φl p
′
Y |XSa is

∑

y,x,sa

d(x, y)Φl p
′
Y |XSa(y|x, sa) pXSa(x, sa)

=
1

σ(x, sa)

∑

y,x,sa

d(x, y)Ql(p
′
Y |XSa(y|x, sa)) pXSa(x, sa)

≤
1

σ(x, sa)

∑

y,x,sa

d(x, y) p′Y |XSa(y|x, sa) pXSa(x, sa)

≤ ǫ−ǫD′
2

= ǫ−ǫ(1 + ǫ ln ǫ)D2

≤ ǫ−ǫeǫ ln ǫD2

= D2.

Therefore Φl p
′
Y |XSa ∈ Al(D2; ǫ).

For any choice of p̃Se , pXU |Se, p̃′
Y SaSd|XUSe ∈ ÃU(ǫ) and p

′
Y |XSa ∈ A(D′

2; ǫ), we now bound the

effect of Φl on the error exponent as follows:

Er,|U|(p̃Se , pXU |Se , p̃′Y SaSd|XUSe , p
′
Y |XSa)− Er,|U|(p̃Se , pXU |Se ,Φl p̃

′
Y SaSd|XUSe ,Φl p

′
Y |XSa)

≤ ∆D +∆J|U|. (H.25)

Here
∆J|U| = J|U|(p̃Se pXU |Se p̃′Y SaSd|XUSe)− J|U|(p̃Se pXU |Se Φl p̃

′
Y SaSd|XUSe)

and

|∆D| =
∣∣∣D(p̃SepXU |Se p̃′Y SaSd|XUSe‖pSpXU |Se p′Y |XSa)

−D(p̃SepXU |SeΦl p̃
′
Y SaSd|XUSe‖pSpXU |SeΦl p

′
Y |XSa)

∣∣∣

=
∣∣∣D(p̃′Y SaSd|XUSe‖p

′
Y |XSa pSaSd|Se | p̃SepXU |Se)

−D(Φl p̃
′
Y SaSd|XUSe‖Φl p

′
Y |XSa pSaSd|Se | p̃SepXU |Se)

∣∣∣

≤ 2(|Y| |Sa| |Sd|+ 1)
log2 l

l

≤ 3|Y| |Sa| |Sd|
log2 l

l
(H.26)
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where the first inequality is obtained by application of Lemma H.2, and the second because |Y| ≥ 2.
Next, we have

‖p̃′Y SaSd|XUSe)− Φl p̃
′
Y SaSd|XUSe‖ ≤ (|Y| |Sa| |Sd|+ 1)

ln l

l
, θ.

where the inequality is a straightforward generalization of (H.8). Similarly to (H.24), we obtain

|∆J|U|| ≤ 2θ log
|Y| |Sd|

θ
= 2(|Y| |Sa| |Sd|+ 1)

ln l

l
log

l

|Sa| ln l

≤ 2|Y| |Sa| |Sd|
log2 l

l
(H.27)

where the last inequality holds because log e < 2
3 and |Sa| ln l > 1.

Combining (H.25), (H.26) and (H.27), we obtain

|Er,|U|(p̃Se , pXU |Se , p̃Y SaSd|XUSe , p′Y |XSa)− Er,|U|(p̃Se , pXU |Se ,Φl p̃Y SaSd|XUSe ,Φl p
′
Y |XSa)|

≤ |∆D|+ |∆J|U|| ≤ 5|Y| |Sa| |Sd|
log2 l

l
,

which establishes (H.15).

Combining (H.11), (H.14) and (H.15), for any choice of p̃Se we obtain

Er,|U|(p̃Se , ÃU ,A(D′′
2))− Er,|U|(p̃Se , Ãl,U ,Al(D2; ǫ))

≥ −5|Y| |Sa| |Sd|
log2 l

l
−

4

l
|Y| |Sa| |Sd| log

l

2|Sa|5/4|Sd|1/4c1/4

= −∆(l) +
2

l
|Y| |Sa| |Sd|

[
log2 l − 2 log

l

2|Sa|5/4|Sd|1/4c1/4

]

= −∆(l) +
2

l
|Y| |Sa| |Sd|

[
log2 l − 2 log l +

1

2
log(16|Sa|5 |Sd| c)

]

≥ −∆(l) (H.28)

where ∆(l) was defined in (H.18). The term in brackets is positive when (H.16) is satisfied.

Step 3. (Caratheodory). Define

J̃|U|(p̃Se , pX|Se,U=u, p̃Y SaSd|XSe,U=u)

, H(Y Sd)−H(Y Sd|U = u)−H(Se) +H(Se|U = u), ∀u ∈ U

where the quintuple (SeSaSdXY ), conditioned on U = u, is distributed as
p̃Se pX|Se,U=u p̃Y SaSd|XSe,U=u. Likewise, we view the conditional divergence

D(p̃Y SaSd|XSe,U=u‖pY |XSa pSaSd|Se |pX|Se,U=u p̃Se)

as a function of p̃Se , pX|Se,U=u, p̃Y SaSd|XSe,U=u, and pY |XSa. We may thus write

D(p̃Y SaSd|XUSe‖pY |XSapSaSd|Se |pX|USe p̃Se)

=
∑

u∈U

pU (u)D(p̃Y SaSd|XSe,U=u‖pY |XSa pSaSd|Se |pX|Se,U=u p̃Se)

J|U|(p̃Se , pXU |Se , p̃Y SaSd|XUSe) =
∑

u∈U

pU (u)J̃|U|(p̃Se , pX|Se,U=u, p̃Y SaSd|XSe,U=u)
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and

Er,|U|(p̃Se , pXU |Se , p̃Y SaSd|XUSe , pY |XSa)

= D(p̃Se‖pSe) +
∑

u∈U

pU (u)D(p̃Y SaSd|XSe,U=u‖pY |XSa pSaSd|Se |pX|Se,U=u p̃Se)

+

∣∣∣∣∣
∑

u∈U

pU(u)J̃|U|(p̃Se , pX|Se,U=u, p̃Y SaSd|XSe,U=u)−R

∣∣∣∣∣

+

.

The cardinality of the discretized set Al(D2; ǫ) of attack channels p̂Y |XSa is less than l|Y| |X | |Sa|.

Likewise the cardinality of the discretized set Ãl(ǫ) of channels p̂Y SaSd|XSe is less than l|Y| |X | |S|.

We now define the following L functionals over PSXY (recall that S = (Se, Sa, Sd)):

fi(pSXY |U=u) = p̃Se(se) pX|Se(x|se), 1 ≤ i(x, se) ≤ |X | |Se| − 1,

fi(pSXY |U=u) = D(p̂Y SaSd|XSe,U=u‖ p̂Y |XSa pSaSd|Se |pX|Se,U=u p̃Se)

|X | |Se| ≤ i(p̂Y SaSd|XSe , p̂Y |XSa) ≤ |X | |Se|+ |Ãl(ǫ)| |Al(D2; ǫ)| − 1,

fi(pSXY |U=u) = J̃L(p̃Se , pX|Se,U=u, p̂Y SaSd|XSe,U=u)

|X | |Se|+ |Ãl| |Al| ≤ i(p̂Y SaSd|XSe)

≤ |X | |Se|+ |Ãl(ǫ)| (1 + |Al(D2; ǫ)|)− 1.

The first |X | |Se| − 1 functions correspond to the marginals of pXSe except one, and the next

|Ãl(ǫ)| (1 + |Al(D2; ǫ)|) ≤ l|Y| |X | (|S|+|Sa|)

functions are indexed by the channels p̂Y |XSa ∈ Al(D2, ǫ) and p̂Y SaSd|XSe ∈ Ãl(ǫ). Hence, applying
Caratheodory’s theorem, we conclude there exist L nonnegative numbers α1, · · · , αL summing to
1 and a random variable U ′ ∈ UL such that

pSU ′XY (s, u
′, x, y) = pXSe|U(x, s

e|uu′)αu′ p̂Y SaSd|XUSe(y, sa, sd|x, uu′ , s
e)

∀s, u′, x, y,

Er,L(p̃Se , pXU ′|Se , p̂Y SaSd|XU ′Se , p̂Y |XSa) = Er,|U|(p̃Se , pXU |Se , p̂Y SaSd|XUSe, p̂Y |XSa),

∀p̂Y |XSa ∈ Al(D2; ǫ), p̂Y SaSd|XUSe ∈ Ãl,U(ǫ).

Hence, given any p̃Se , it suffices to consider

|U| = L = |X | |Se|+ l|Y| |X | (|S|+|Sa|) − 1

to achieve

max
pXU|Se∈PXU|Se(|U|,D1)

min
p̂Y |XSa∈Al(D2;ǫ)

min
p̂
Y SaSd|XUSe∈Ãl(ǫ)

Er,|U|(p̃Se , pXU ′|Se , p̂Y SaSd|XUSe , p̂Y |XSa).

Hence
Er,|U|(p̃Se , Ãl,U(ǫ),Al(D2; ǫ)) = Er,L(p̃Se , Ãl,UL

(ǫ),Al(D2; ǫ)). (H.29)
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Step 4. Let p̃∗Se achieve the minimum in

Er,L(D
′′
2) = min

p̃Se

Er,L(p̃Se , ÃUL
,A(D′′

2 )).

It follows from the previous steps that

Er,L(D
′′
2 )

(a)
= Er,L(p̃

∗
Se , ÃUL

,A(D′′
2 ))

(b)

≥ Er,L(p̃
∗
Se , Ãl,UL

(ǫ),Al(D2; ǫ))−∆(l)

(c)
= Er,|U|(p̃

∗
Se , Ãl,U(ǫ),Al(D2; ǫ))−∆(l)

(d)

≥ Er,|U|(p̃
∗
Se , ÃU ,A(D2))−∆(l)

≥ min
p̃Se

Er,|U|(p̃Se , ÃU ,A(D2))−∆(l)

= Er,|U|(D2)−∆(l) (H.30)

where (a) follows from the definition of p̃∗Se , (b) follows from (H.28) with U = UL, (c) follows from
(H.29), and (d) holds because Ãl,U(ǫ) ⊂ ÃU and Al(D2; ǫ) ⊂ A(D2).

Equation (H.30) holds for any U , hence

Er,L(D
′′
2 ) ≥ lim

|U|→∞
Er,|U|(D2)−∆(l)

= Er(D2)−∆(l),

which concludes the proof. ✷
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