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Abstract— A generalization of the problem of writing on dirty
paper is considered in which one transmitter sends a common
message to multiple receivers. Each receiver experiences on its
link an additive interference (in addition to the additive noise),
which is known noncausally to the transmitter but not to any
of the receivers. Applications range from wireless multi-antenna
multicasting to robust dirty paper coding.

We develop results for memoryless channels in Gaussian
and binary special cases. In most cases, we observe that the
availability of side information at the transmitter increa ses
capacity relative to systems without such side information, and
that the lack of side information at the receivers decreases
capacity relative to systems with such side information.

For the noiseless binary case, we establish the capacity when
there are two receivers. When there are many receivers, we show
that the transmitter side information provides a vanishingly small
benefit. When the interference is large and independent across
the users, we show that time sharing is optimal.

For the Gaussian case we present a coding scheme and
establish its optimality in the high signal-to-interference-plus-
noise limit when there are two receivers. When the interference
is large and independent across users we show that time-sharing
is again optimal. Connections to the problem of robust dirty
paper coding are also discussed.

I. I NTRODUCTION

The study of communication over channels controlled by
a random state parameter known only to the transmitter was
initiated by Shannon [21]. Shannon considered the case where
the state sequence is known causally at the encoder. Subse-
quently, Gel’fand and Pinsker [10] analyzed the case where the
state sequence is available noncausally. The noncausal model
has found application in diverse areas, ranging from codingfor
memory with defects [12], [18], to digital watermarking [3],
[4], [20], and to coding for the multiple-input/multiple-output
(MIMO) broadcast channel [1], [25].

Costa [6] considered a version of the Gel’fand-Pinsker
model in which there is an additive white Gaussian inter-
ference (“dirt”), which constitutes the state, in additionto
independent additive white Gaussian noise. The key result in
this “dirty paper coding” scenario is that there is no loss in
capacity if the interference is known only to the transmitter.
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By contrast, there has been very limited work to date
on multiuser channels with state parameters known to the
transmitter(s). In an early work in this area, Gel’fand and
Pinsker [11] show that the Gaussian broadcast channel with
independent messagesincurs no loss in capacity if the inter-
ference sequences are known noncausally to the transmitter.
Some other multiuser settings are also discussed. The degraded
broadcast channel with independent messages and state se-
quence known to the transmitter either causally or non-causally
is examined in [23]. Other works on multiuser channels with
state parameters include [17], [2], [16], [13] and [22].

This paper examines thecommon-messagebroadcast chan-
nel, which we refer to as themulticastchannel. Specifically,
we consider a scenario in which one transmitter broadcasts
a common message to multiple receivers. In addition to
additive noise, associated with the link to each receiver is
a corresponding additive interference. The collection of such
interferences is thus the (random) state of the multiuser
channel. In our model, the transmitter has perfect noncausal
knowledge of all these interference sequences, but none of
the receivers have knowledge of any of them. This model and
its generalizations arise in a variety of multi-antenna wireless
multicasting problems as well as in applications of robust dirty
paper coding where only imperfect knowledge of the state is
available to the transmitter.

The capacity of some binary versions of such multicast
channels is reported in [14], [15]. For more general channels,
[24] reports achievable rates for broadcasting common and
independent messages over a discrete memoryless channel
with noncausal state knowledge at the transmitter. The case
of two-user Gaussian channels with jointly and individually
independent identically distributed (i.i.d.) Gaussian interfer-
ences on each link is also considered in [24], for which it is
conjectured that in the limit of large interference, time-sharing
between the two receivers is optimum even when both are
only interested in a common message. Among other results,
in this paper we establish that this conjecture is true. We upper
bound the capacity of the Gaussian channel and show that it
approaches the time-sharing rate in this limit. In addition, we
also present a coding scheme that is asymptotically optimalin
the limit of high signal-to-interference-plus-noise (SINR) ratio
1.

An outline of the paper is as follows. Section II presents
the general multicast channel model of interest. The binary
special cases of interest are analyzed in Section III, and the
Gaussian special cases of interest are analyzed in Section IV.
Finally, Section V contains some conclusions and directions
for future work. The proofs of the converses are deferred to

1Throughout this work, symbol refers to areal symbol.
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the Appendices.

II. M ULTICAST CHANNEL MODEL

The K-user multicast channel of interest is defined as
follows.

Definition 1: A K-user discrete memoryless multicast
channel with random parameters consists of an input alphabet
X, output alphabetsY1,Y2, . . . ,YK for receivers1, 2, . . . ,K,
respectively, and a state alphabetS. For a given state sequence
sn = (s1, s2, . . . , sn) such thatsi ∈ S and input xn =
(x1, x2, . . . , xn) such thatxi ∈ X, the channel outputs are
distributed according to

p(yn1 , y
n
2 , . . . , y

n
K |xn, sn) =

n
∏

i=1

p(y1i, y2i, . . . yKi|xi, si) (1)

where ynk = (yk1, yk2, . . . , ykn), for all yki ∈ Yk, k =
1, 2, . . . ,K. Moreover, p(sn) =

∏

i p(si). The particular
realizationsn is known noncausally to the transmitter before
using the channel, but not to any of theK receivers.

It is worth emphasizing that the above definition includes
the case where the channel of Userk is controlled by its
own statesnk . In such cases, the joint state is, with slight
abuse of notation,sn = (sn1 , s

n
2 , . . . , s

n
K), so thatp(si) =

p(s1i, s2i, . . . , sKi).
The capacity of the channel of Definition 1 is defined as

follows.
Definition 2: A (2nR, n) code consists of a message set

Wn = {1, 2, . . .2nR}, an encoderfn : Wn × Sn → Xn, and
K decodersgk,n : Yn

k → Wn for k = 1, . . . ,K. The rateR
is achievableif there exists a sequence of codes such that for
W uniformly distributed overWn we have

lim
n→∞

Pn
e = lim

n→∞
Pr

{

K
⋃

k=1

{gk,n(Y n
k ) 6= W}

}

= 0. (2)

Note that the error probability in (2) is averaged over all state
sequences and messages. The capacityC is the supremum of
achievable rates.

In the remainder of the paper, we focus on special cases
of the memoryless channel in Definition 1. In particular, we
focus on binary and Gaussian cases in which the state is an
additive interference; for results on the memory with defects
multicast channel, see, e.g., [14].

III. N OISELESSBINARY CASE

We first consider the noiseless binary special case of Def-
inition 1. Specifically, the channel outputsY n

1 , Y n
2 , . . . , Y n

K

depend on the inputXn and the statesSn
1 , S

n
2 , . . . , S

n
K ac-

cording to
Y n
k = Xn ⊕ Sn

k (3)

where Xi, Ski ∈ {0, 1}, and ⊕ denotes symbol-by-symbol
modulo-two addition (i.e., exclusive-or). In (3), the memo-
ryless case of interest corresponds to the requirement that
the (S1i, S2i, . . . , SKi) for i = 1, 2, . . . , n form an i.i.d.
sequence ofK-tuples. In particular, for eachi the variables
{S1i, S2i, . . . , SKi} may in general be statistically dependent,
and do not need to be identically distributed. As a result, we
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Fig. 1. Two-user memoryless, noiseless binary multicast channel with
additive interference. The encoder maps messageW into codewordXn. The
state takes the form of interference sequencesSn

1
and Sn

2
. Each channel

output Y n

k
= Xn ⊕ Sn

k
, where⊕ denotes symbol-by-symbol modulo-two

addition, is decoded to produce message estimateŴk.

express our results in terms of the properties of a genericK-
tuple in this sequence, which we denote by(S1, S2, . . . , SK).

Note that with only a single receiver (K = 1), the capacity
is trivially 1 [bit per channel use],2 which is achieved by
interference precancellation, i.e., by choosingXn = Sn⊕Bn,
so thatY n = Bn, whereBn is the bit representation for the
messageW . As we will now develop, when there are multiple
receivers, capacity is generally less than this ideal single-user
rate.

A. The Case ofK = 2 Receivers

The case of two receivers, which is depicted in Fig. 1,
is the simplest nontrivial scenario since perfect interference
precancellation is not possible simultaneously for both users.

One lower bound on the two-user capacity corresponds to a
time-sharing approach that precancels the interference ofone
of the receivers at a time, yielding a rate ofRTS = 1/2.
Another lower bound corresponds to ignoring the interference
at the transmitter, i.e., treating each of the channels as a binary
symmetric channel. This strategy yields a rate ofRIS = 1 −
max{H(S1), H(S2)}. It turns out that the former bound is
only tight whenS1 andS2 are independent andB(1/2), and
the latter bound is only tight when bothS1 andS2 areB(0)3.

A coding theorem for the channel is as follows.
Theorem 1:The capacity of two-user noiseless, memory-

less binary channel with additive interference is given by

C = 1− 1

2
H(S1 ⊕ S2). (4)

Proof: A converse is provided in Appendix I. The
achievability argument is detailed below:

1) Select2nR codewords randomly according to an i.i.d.
B(1/2) distribution in a codebookC of rateR strictly
less than the capacity (4). Denote these codewords as
Bn(1), Bn(2), . . . , Bn(2nR), so a messagew is repre-
sented by codewordBn(w).

2) Select a sequenceAn by flipping a fair coin for each
symbol index (the realization of which is also known at

2From now on, except in the case of ambiguity, the units of “bits per
channel use” will be omitted.

3We useB(q) to denote a Bernoulli random variable with parameterq i.e.
Pr(S = 1) = q,Pr(S = 0) = 1− q.
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Fig. 2. Achievable rates for the two-user noiseless binary multicast channel
with independent and identically distributed interferences, as a function of
the strength of the interference. Capacity is indicated by the solid curve,
time-sharing performance is indicated by the horizontal dashed line, and the
performance of a system that ignores the side information isindicated by the
downward sloping dashed curve.

the decoders [26]). Select the setA1 of symbol indices
whereAi = 1, and precancel the interference at those
indices for user 1, and precancel the interference at
the remaining indicesA2 (with Ai = 0) for user 2.
Specifically, the transmitted sequence is of the form

Xi(w) =

{

Bi(w) ⊕ S1i i ∈ A1

Bi(w) ⊕ S2i i ∈ A2.
(5)

With this encoding, receiver 1 then observes a version of
Bn(w) where |A1| symbols are correct, and the remaining
|A2| symbols are corrupted by interferenceS1i⊕S2i, i ∈ A2,
corresponding to a binary symmetric channel with crossover
probabilityq′ = Pr{S1⊕S2 = 1}. Receiver 2 experiences the
opposite effect. Thus for largen we have, since|A1|/n →
1/2,

1

n
I(Bn;Y n

k |An) → 1

2
+

1

2
(1−H(S1⊕S2)), k = 1, 2, (6)

which isC in (4). As the mutual information expression in (6)
indicates, the decoding ofY n

k to the messagêWk is done by
using the knowledge ofA1 andA2 (i.e.,An) at the decoders.
In particular, receiver 1 selects a codeword which agrees with
the received symbols in the setA1 and which is typical with
noiseS1 ⊕ S2 with the symbols in the setA2. For decoder
2, the order of the sets is reversed. As long asR ≤ C, Ŵk

equalsW with high probability.
Fig. 2 shows the performance gains of optimal coding

relative to time-sharing and disregarding the side-information.
In particular, the achievable rate in the case of independent
interferences is plotted as a function of the strength of the
interference as measured byq = Pr{S1 = 1} = Pr{S2 = 1}.

Three immediate conclusions can be drawn from Theo-
rem 1. First, transmitter-only side information incurs a penalty
relative to system-wide side information unlessS1 andS2 are

completely dependent random variables, i.e., unlessS2 = S1

or S2 = S1. Second, time-sharing is strictly sub-optimal
except whenS1 and S2 are independentB(1/2) random
variables. We emphasize that, by contrast, when there are
independentmessages for each of the receivers in Fig. 1,
time-sharing between the receivers is optimal and there is
no loss in the capacity region with side information only
at the transmitter. Finally ignoring the side information at
the transmitter is strictly suboptimal except whenH(S1) =
H(S2) = 0.

We make a few additional observations.
Some Further Remarks:

1) The achievability argument can also be obtained via a
different, more direct, but perhaps less intuitive route as
follows. First note that a straightforward extension of
the random binning argument for the single user case
[10] shows that the following rate is achievable for the
K-user multicast channel with random parameters.

RK = max
p(U|S),p(X|U,S)

{min
k

I(U ;Yk)− I(U ;S)}, (7)

Here U is an auxiliary random variable (over some
alphabetU) that satisfies the Markov constraintU ↔
(X,S) ↔ Yk for k = 1, 2, . . . ,K.
For the two-user binary channel, the following choice of
U yields the achievability of (4). Let the alphabet ofU
beU = {Ψ1,Ψ2,Ψ3,Ψ4}.

U = A {Ψ1 (X ⊕ S1) + Ψ2 (X ⊕ S1)}
+ Ā {Ψ3 (X ⊕ S2) + Ψ4 (X ⊕ S2)},

(8)

where,X is B(1/2) random variable, independent ofS1

andS2, andA is alsoB(1/2) that is independent ofX ,
S1 and S2, and wherē· denotes the complement of a
(binary-valued) variable.

2) For the code construction outlined above suggests the
transmitter does not require noncausal knowledge of
the interference. We emphasize, however, this result is
specific to the noiseless binary channel model.

3) It is straightforward to verify that random linear codes
are sufficient to achieve the capacity of Theorem 1. It
suffices to use an argument analogous to that used by
Gallager for the binary symmetric channel [9, Sec. 6.2].

4) Theorem 1 can be readily generalized to the case of
state sequences that are not in general i.i.d. In this case
the termH(S1 ⊕ S2) in (4) is simply replaced with the
entropyrate of Sn

1 ⊕ Sn
2 .

5) Our achievability scheme also applies in the presence of
noise. For the channel model

Y1 = X ⊕ S1 ⊕ Z1

Y2 = X ⊕ S2 ⊕ Z2,

whereZ1 and Z2 are mutually independent and iden-
tically distributed Bernoulli random variables and inde-
pendent of all other variables, we can show that a rate

R = 1− 1

2
H(S1 ⊕ S2 ⊕ Z1)−

1

2
H(Z1)
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is achievable and an upper bound is given by

R+ = 1− 1

2
H(S1 ⊕ S2)−

1

2
H(Z1)

Note that time-sharing is optimal in the special case
whenS1 andS2 are independentB(1/2) random vari-
ables.

B. The Case ofK > 2 Receivers

When there are more than two receivers further losses in
capacity ensue, as we now develop. Specifically, we have the
following bounds on capacity.

Theorem 2:The capacity of theK-user noiseless binary
channel in which the genericS1, S2, . . . , SK are mutually
independent and identically distributed4 is bounded according
to:

R− ≤ C ≤ R+, (9a)

where

R+ = 1− 1

K
H(S1 ⊕ S2, S1 ⊕ S3, . . . , S1 ⊕ SK), (9b)

R− = max

{

1−H(S1), 1 −
(

1− 1

K

)

H(S1 ⊕ S2)

}

.

(9c)

Proof: The upper bound (9b) is established in Ap-
pendix II. The lower bound (9c) is obtained via a direct
generalization of the code construction (5) in the case of two
users. Specifically, it suffices to consider a code construction
that divides each codeword intoK equally sized blocks and
precancels the interference for a different user in each of the
blocks. Each user then experiences one clean block andK−1
noisy blocks governed by a binary symmetric channel with
crossover probabilityq′ = Pr{S1 ⊕ S2 = 1} as before.

In general, the lower and upper bounds in (9) do not
coincide.5 However, the associated rate gap decreases mono-
tonically with the number of receiversK. Moreover, even for
K = 3, it is small, as Fig. 3 illustrates.

The rate gap also decays to zero in the limit of largeK,
which follows readily from Theorem 2. In particular,C →
1 − H(S) as K → ∞, whereS denotes a generic random
variable with the distribution of theSk. To see this, it suffices
to recognize that whenS1, S2, . . . , SK are i.i.d.,
(

1− 1

K

)

H(S) ≤ 1

K
H(S1 ⊕ S2, S1 ⊕ S3, . . . , S1 ⊕ SK)

≤ H(S).
(10)

As K → ∞, the lower and upper bounds in (10) converge,
so that the upper bound on capacity (9b) converges toR+ =
1−H(S). However, this rate is achievable by simply treating
the interference as noise at the receivers, so it is the limiting
capacity. It should be emphasized that this implies that when

4Our results actually hold more generally provided the distribu-
tion across the interference sequences is symmetric, i.e.,if for all
m, p(sk1

, sk2
, . . . , skm

) is independent of the specific choice of
k1, k2, . . . , km ∈ {1, 2, . . . , K}.

5A slightly improved lower bound appears in [14], but it, too,does not
match the upper bound.
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Fig. 3. Upper bound and lower bounds on the capacity of the three-
user noiseless binary multicast channel, as a function of the strength of the
interference. The solid curves depict the two bounds of (9).The horizontal
dashed line indicates the performance of time-sharing, while the other dashed
curve indicates the performance of a strategy in which the side information
is ignored by the transmitter.

the number of receivers is large, the side-information available
to the transmitter is essentially useless.

We can also use (10) to bound the rate penalty associated
with ignoring side information as a function of the number of
receiversK. In particular, the gap is at mostH(S)/K.

Finally, we can use Theorem 2 to establish that in the limit
of large interference, time-sharing is optimal for everyK.
Specifically, whenSk ∼ B(1/2), the capacity isC = 1/K
and is achieved through time-sharing. To see this, it suffices
to specialize the upper bound in (9b). Specifically,S1⊕Sk for
k = 2, 3, . . . ,K are independentB(1/2) random variables, so
the joint entropy isK − 1.

IV. GAUSSIAN CASE

In this section we consider a memoryless Gaussian ex-
tension of Definition 1 and incorporate an average power
constraint on the input. Unless otherwise stated, we restrict to
the two-user (K = 2) case. In the scenario of interest, depicted
in Fig. 4, the state is additive, and the associated interferences
Sn
k are zero-mean white Gaussian sequences of powerQ.

We first focus on the case of independent interferences and
consider the case of correlated interferences in section IV-A.
In addition, each receiver’s link also has a zero-mean additive
white Gaussian noiseZn

k of powerN . Thus, the observation
at receiverk takes the form

Y n
k = Xn + Sn

k + Zn
k , k = 1, 2. (11)

Our power constraint takes the form

1

n
E

[

n
∑

i=1

X2
i (W,Sn

1 , S
n
2 )

]

≤ P, (12)

where the expectation is taken over the ensemble of messages
and interference sequences. Finally, note that without loss of
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The interference and noise sequences are i.i.d. and mutually independent.
Furthermore,S1, S2 ∼ N(0, Q) andZ1, Z2 ∼ N(0, 1).

generality, we may setN = 1, and interpretP as the signal-
to-noise ratio (SNR), andQ as the interference-to-noise ratio
(INR).

For this channel, we present the following bounds on the
capacity.

Theorem 3:An upper bound on the Gaussian multicast
channel capacity is :

C ≤ min{RI
+, R

II
+}, (13)

where6 ,7

RI
+ =







1
4 log(1 + P ) + 1

4 log
(

P+Q+1+2
√
PQ

Q

)

Q ≥ 4

1
4 log

(

1+P
Q/4+1

)

+ 1
4 log

(

P+Q+1+2
√
PQ

Q/4+1

)

Q < 4

(14)

RII
+ =







1
2 log

(

1+P+Q+2
√
PQ

1+Q/2

)

Q ≤ 2

1
2 log

(

1+P+Q+2
√
PQ√

2Q

)

−
[

1
4 log

(

Q
2P+2

)]+

Q > 2

(15)
We have presented two different upper bounds denoted by

RII
+ and RI

+ since neither bound dominates the other, over
all values of(P,Q). The two bounds have been derived by
slightly different methods. The boundRI

+ is obtained by
observing that the channel is non-trivial even if we set one
of the interferences (sayS1) to 0. Furthermore, it is possible
to show that an upper bound on this modified channel is also
an upper bound on the Gaussian multicast channel of interest.
A complete derivation of this upper bound is presented in
Appendix IV. The expression forRII

+ is obtained by directly
applying a chain of inequalities on the Gaussian multicast
channel and its derivation is presented in Appendix III.

We remark here that the upper bounds are explicit expres-
sions of the following maximization:

RI
+ = min

ρ∈[−1,1]

1

4
log

(

1 + P

1 + ρ

)

+
1

4
log

(

P +Q+ 1 + 2
√
PQ

Q/2 + 1− ρ

)

(16)

6All logarithms are to the base 2 in this work. Also the notation [f ]+ refers
to max(f, 0) in (15) and throughout the paper.

7The trivial upper bound of1
2
log(1 + P ) is sometimes tighter than these

two bounds, particular in the limit of very smallP .

RII
+ = min

ρ∈[−1,1]

1

2
log

(

P +Q+ 2
√
PQ+ 1

√

(1 + ρ)(Q + 1− ρ)

)

−
[

1

4
log

(

Q

2P + (1 + ρ)

)]+
(17)

Theorem 4:A lower bound on the Gaussian multicast chan-
nel capacity is :

R− =















1
2 log

(

1 + P
Q/2+1

)

Q/2 < 1

1
2 log

(

P+Q/2+1
Q

)

+ 1
4 log

(

Q
2

)

1 ≤ Q/2 < P + 1

1
4 log(1 + P ) Q/2 ≥ P + 1.

(18)
Proof:

The lower bound8 (18) is an explicit expression of the
following maximization:

R− = max
{(PA,PD):PA≥0,PD≥0,PA+PD≤P}

R(PA, PD) (19a)

with

R(PA, PD)
∆
=

1

2
log

(

1 +
PA

PD +Q/2 + 1

)

+
1

4
log (1 + PD) .

(19b)
Accordingly, we show the achievability of (19b). The pro-

posed scheme, combines superposition coding, dirty paper
coding, and time-sharing, and exploits a representation ofthe
interferences in the form

Sn
1 = An +Dn

Sn
2 = An −Dn,

(20)

where
An = (Sn

1 + Sn
2 )/2

Dn = (Sn
1 − Sn

2 )/2.
(21)

We list the main steps for codebook generation, encoding
and decoding. The probability of error analysis will be omitted
as it is based on standard typicality arguments. See e.g. [7].

Codebook Generation:The idea is to generate three code-
books. There is one common codebook which both the users
share and two private codebooks which are intended for the
corresponding user. More specifically we follow the following
steps:

1) Decompose the messageW into two submessagesWA

andWD and divide the powerP into two powersPA and
PD so thatP = PA+PD. MessageWA will be decoded
by both the receivers while messageWD will be decoded
by only one receiver at a time. We will transmit it twice
so that both the receivers can decode (see encoding and
decoding rules below for a further description).

2) Generate a codebookCA for WA where the codewords
Un
A are sampled from i.i.d. a Gaussian distribution

UA = XA + αAA. Here XA is GaussianN(0, PA),
independent ofA and αA = PA/(P + Q/2 + 1). A
total of 2nI(UA;Yi) codewords are thus generated and

8Our lower bound forQ/2 < 1 was also independently reported by
Costa [5].



6

randomly partitioned into2nI(UA;A) bins. The rate of
this codebook,I(UA;Yi) − I(UA;A) can be shown to
be 9:

RA =
1

2
log

(

1 +
PA

PD +Q/2 + 1

)

. (22)

3) Generate two codebooksC(1)
D andC

(2)
D for WD for the

two receivers as follows. ForC(1)
D , the codewordsUn

D are
sampled from a i.i.d. Gaussian distributionUD = XD+
αD((1−αA)A+D), whereXD is GaussianN(0, PD),
independent ofA and D and αD = PD/(PD + 1).
Generate2nI(UD ;Y1,UA) such codewords and partition
them into2nI(UD ;A,D) bins. Follow analogous construc-
tion for codebookC(2)

D . The rate of each codebook10

I(UD;Yi, UA)− I(UD;A,D) can be shown to be:

RD =
1

2
log(1 + PD). (23)

Encoding: We transmit a superposition of two sequences
corresponding toWA andWD as follows:

1) To encode a messageWA, find a codewordUn
A in the bin

of WA, such thatXn
A = Un

A − αAA
n satisfies a power

constraint ofPA. By construction, such a codeword
exists with high probability.

2) To encodeWD, we decide whether to send it to user 1 or
2. The users are served alternately. When we decide to
send it to user 1, we select a codewordUn

D in the bin of
codebookC(1)

D corresponding to messageWD such that
Xn

D = Un
D − αD{(1− αA)A

n +Dn} satisfies a power
constraint ofPD. When we decide to transmit to user 2,
we select a codewordUn

D in the bin of codebookC(2)
D

corresponding to messageWD such thatXn
D = Un

D −
αD{(1 − αA)A

n − Dn} satisfies the power constraint
of PD. Since there are2nI(UD;A,D) codewords in each
bin, such a codeword exists with high probability.

3) Send the superpositionXn = Xn
A + Xn

D, which has
powerP , over the channel.

Decoding: The decoding exploits successive cancellation
(stripping) and proceeds as follows:

1) DecodeUn
A from Y n

1 or Y n
2 treatingXn

D as part of the
noise. The received signals are of the form

Y n
1 = Xn

A +An + (Dn + Zn
1 +Xn

D)

= Un
A + (1− αA)A

n + (Dn + Zn
1 +Xn

D),

Y n
2 = Xn

A +An + (−Dn + Zn
2 +Xn

D)

= Un
A + (1− αA)A

n + (−Dn + Zn
2 +Xn

D).

SinceDn + Zn
i +Xn

D is an i.i.d. GaussianN(0, PD +
Q/2 + 1) sequence, independent ofAn, our choice of
rate RA in (22) ensures that the resultinĝWA equals
WA with high probability at both the receivers.

9Using a symmetry argument or otherwise, note thatI(UA; Y1) =
I(UA; Y2), so we use the generic termI(UA; Yi) to denote either of these.

10Notice that the codebooks can be the same for two users. For notational
convenience while dealing with the two users we keep the codebooks separate
since a codeword typical withY n

1
will not in general be typical withY n

2
.

See the encoding rules below.
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Fig. 5. Upper and lower bounds on the capacity of the two-userGaussian
multicast channel, as a function of INRQ for an SNRP = 33 dB. The
upper two curves depict the two upper bounds from (15) and (14). The
marked line is the achievable rate in (18). The horizontal dashed line indicates
the performance of time-sharing, while the other dashed curve indicates the
performance of a strategy in which the side information is treated by the
transmitter as additional noise on each link.

2) Subtract the decodedUn
A from each ofY n

1 andY n
2 , so

that the residual signals̃Y n
i = Y n

i −Un
A are of the form

Ỹ n
1 = Xn

D + ((1− αA)A
n +Dn) + Zn

1 , (24)

Ỹ n
2 = Xn

D + ((1− αA)A
n −Dn) + Zn

2 . (25)

The rateRD in (23) ensures thatUn
D can be decoded

from eitherỸ n
1 or Ỹ n

2 so that the resultinĝWD equals
WD with high probability at the corresponding receiver.
Specifically, for the fraction of time that the transmit-
ter encodesWD for interference(1 − αA)A

n + Dn,
user 1 can recoverWD, while for the fraction of
time that the transmitter encodesWD for interference
(1− αA)A

n −Dn, user 2 can recoverWD.

From this coding strategy, we see that the average rate
delivered to each receiver is identical, i.e.,RA + (1/2)RD.
Maximizing this rate over the choices ofPA andPD subject
to the constraintP = PA + PD optimizes the lower bound,
whence (19a).

From (18), we obtain several useful insights. First, note that
in the high INR regime (Q/2 ≥ P + 1), our lower bound
reduces to time-sharing, while in the low INR regime (Q/2 ≤
1) it reduces to dirty paper coding with respect toAn. In
the moderate interference regime, our bound shows that one
can generally achieve a gain over these two strategies by a
superposition coding approach that combines them.

The behavior of the bounds as a function of INR is depicted
in Fig. 5 for a fixed SNR ofP = 33 dB. When the INR is
very small (Q ≪ 1), Fig. 5 reflects the rather obvious fact that
the side information can be ignored by the transmitter without
sacrificing rate. Similarly, when the INR is large(Q ≫ 1),
Fig. 5 reflects that time-sharing between the two users achieves
the capacity. More generally,
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Fig. 6. Upper and lower bounds on the capacity of the two-userGaussian
multicast channel, as a function of SNRP for an INRQ = 15 dB. The upper
two curves depict the two upper bounds in (15) and (14). The achievable rate
in (18) is also shown. The dashed curve indicates the performance of time-
sharing, while the dash-dotted curve indicates the performance of a strategy
in which the side information is treated by the transmitter as additional noise
on each link.

.

lim
Q→∞

C ≤ lim
Q→∞

RI
+ = lim

Q→∞
RII

+ =
1

4
log(1 + P ), (26)

which can be achieved by time-sharing between the two users
and doing Costa dirty paper coding for each user being served.
We note that this result settles the conjecture made in [24].

Perhaps more interestingly, our proposed achievable rate
is optimal in the limit of high SINR. The behavior of the
bounds as a function of SNR is depicted in Fig. 6 for a
fixed INR of Q = 15 dB. We note that the expression for
RII

+ coincides withR− in this limit. Note that the base-line
schemes do not achieve a rate particularly close to capacity, but
the superposition dirty paper coding strategy corresponding to
our lower bound does. More generally, we can show that:

lim
P→∞

(C −R−) ≤ lim
P→∞

(RII
+ −R−) = 0 (27)

To verify (27) forQ ≥ 2, sinceP → ∞, the middle case of
the lower bound (18) applies which we can alternately express
in the form

R− =
1

2
log

(

P +Q/2 + 1√
2Q

)

(28)

Comparing (28) with the upper bound (15) we have

RII
+ −R− =

1

2
log

P +Q+ 1 + 2
√
PQ√

2Q

− 1

2
log

P +Q/2 + 1√
2Q

,

(29)

which in the limit P → ∞ gives (27). The caseQ ≤ 2, can
be similarly verified. We summarize the optimality properties
in the following corollary.

Corollary 1: For the Gaussian multicast channel in Fig-
ure 4, the proposed achievable rate in Theorem 4 is optimal in

the limit of high SINR (P → ∞, Q is fixed). ForQ > 2 it can
be expressed asC(P ) = 1

2 log
(

P√
2Q

)

+o(1), whereo(1) → 0

as P → ∞. For Q ≤ 2 it can be expressed asC(P ) =
1
2 log

(

P
1+Q/2

)

+ o(1). Finally, for the case of fixedP and
Q → ∞, time-sharing between the two users is optimal and
the capacity can be expressed asC(P ) = 1

4 log(1+P )+o(1),
whereo(1) → 0 asQ → ∞.

Finally, we show in Appendix III-B that a universal constant
that bounds the difference between our upper and lower
bounds is given by:

sup
P,Q

RII
+ −R− =

1

2
log

(

3

2
+
√
2

)

= 0.7716 (30)

We conclude this section with a few additional observations.

Some Further Remarks:

1) Extension to K receivers: Our upper bounding technique
for RII

+ in (15) can be extended to the case ofK
receivers each with independent interference. We show
in Appendix III-C that the following upper bound holds
for the case ofK receivers:

RK
+ ≤ 1

2
log(P +Q+ 1 + 2

√

PQ)− K − 1

2K
logQ

− 1

2K
logK −

[

1

2K
log

(

Q

K(P + 1)

)]+

(31)
By taking the limitQ → ∞ in (31), it can be sown that
time-sharing is optimal for any number of users in the
high INR limit.

2) Correlation between noise sequences: The upper bound
in Theorem 3 is valid even when the noisesZn

1 and
Zn
2 are not independent. The argument is analogous to

that for the standard broadcast channel (e.g. [7, Ch.
14]). We exploit this observation to derive the upper
bound expressions. Furthermore analogous to the result
in [4], even if the noise is not Gaussian our lower bound
in (19a) is achievable when the decoder treats the noise
as Gaussian.

3) Feedback does not help much. As discussed in Ap-
pendix III-A and IV-A, the expressions forRI

+ andRII
+

in (16) and (17) continue to hold in the presence of
perfect causal feedback, provided we do not optimize
over the parameterρ, but set it to equal the actual
correlation between the noise terms.

4) The capacity-achieving strategy for the binary channel
does not extend immediately to the Gaussian channel.
While one might speculate that an adaptation of the
achievability approach in Theorem 1 for the Gaussian
channel would improve on the lower bound (19a) in The-
orem 4, the obvious generalizations do not. In particular,
strategies which precancel the interference in part of the
codeword for each user achieved lower rates than our
superposition dirty paper coding; for a further discussion
see [14].
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A. Correlated Interferences and Robust Dirty Paper Coding

Consider the a memoryless Gaussian point-to-point channel
model with output

Y n = Xn + Sn + Zn, (32)

whereXn is the channel input subject to power constraintP ,
Sn is a white Gaussian interference sequence of powerQ not
known to decoder, andZn is a white Gaussian noise sequence
of unit power. When the interferenceSn is perfectly known to
the encoder, Costa’s dirty paper coding is capacity achieving.
However, in many applications, only imperfect knowledge
of Sn is available to the encoder. One special case is the
case ofcausal knowledge considered by Shannon. Another
is the case ofnoisynoncausal knowledge. For these kinds of
generalizations, there is interest in understanding the capacity
of such channels and the structure of the associated capacity-
achieving codes, which we refer to asrobustdirty paper codes.

It is often natural to analyze such problems via their equiv-
alent Gaussian multicast model. As an illustration, suppose
that the interference in (32) is of the formSn = βSn

0 where
Sn
0 ∼ N(0, QI) is known to the encoder butβ is not. Then if

β is from a finite alphabet (or can be approximated as being
so), i.e., β ∈ {β1, β2, . . . , βK}, the problem is equivalent
to a Gaussian multicast problem withK users where the
interference for thekth user isβkS

n
0 .

From this example it is apparent that for at least some
applications, there is a need to accommodatecorrelated in-
terferences in the Gaussian multicast model. In what follows
we focus on that case where there are two receivers i.e.
β ∈ {β1, β2}. Extensions to the case of more than two
receivers are possible, but will not be explored.

We first provide a general upper bound for the case of
correlated, jointly Gaussian interference sequences and then
specialize it to the case of scaled interferences. The general
upper bound might be of independent interest and is derived
in Appendix V.

Theorem 5:Consider a two receiver channel modelY n
i =

Xn + Sn
i + Zn for i = 1, 2 when Zn is i.i.d. N(0, 1)

noise,Sn
1 and Sn

2 are i.i.d. jointly Gaussian with marginal
distributionsN(0, Q1) andN(0, Q2) respectively and suppose
that the distribution ofS1 − S2 is N(0, Qd). An upper bound
on the common message rate for this channel under a power
constraintP at the transmitter is given by:

RC
+ =

2
∑

i=1

1

4
log(P +Qi + 1+ 2

√

PQi)− T (Qd) (33)

where

T (Qd) =

{

1
4 log(Qd), Qd > 4
1
2 log

(

1 + Qd

4

)

, Qd ≤ 4
(34)

We note that the upper bound is of most interest in the high
signal-to-interference-plus-noise limit i.e. when we fixQ1,Q2

and takeP → ∞. In this limit we have the following:
Corollary 2: In the high SINR limit (Q1, Q2 fixed, P →

∞), the upper bound on the case of correlated interferences

in Theorem 5 can be written as

RC
+ =

1

2
log(P )− T (Qd) + o(1), (35)

where the termo(1) approaches 0 asP → ∞ and Q1, Q2

fixed andT (Qd) is given in (34).
To establish an achievable rate, we will consider a mod-

ification to our lower bound in Theorem 4 which considers
the case of independent interferences. To deal with the case
of correlated interferences, we will require that the encoder
and decoders have access to a common source of randomness
which will be used as a dither sequence.

Consider a superposition dirty paper coding strategy anal-
ogous to that in the proof of the lower bound in Theorem 4,
whereby we decompose the interferences according to (20). In
this case, we have that (21) specializes to

An = βA Sn
0

Dn = βD Sn
0 ,

(36)

where
βA = (β1 + β2)/2

βD = (β1 − β2)/2.
(37)

When we turn to implement the encoding step in the proof
of the lower bound of Theorem 4, in whichAn is treated
as interference andDn as noise, the results of [6] cannot
be directly applied since the interferencesAn and Dn in
(36) are correlated. On the other hand, if we assume that the
encoder and decoder(s) have access to a source of common
randomness in the form of a dither sequence, we can use the
lattice coding strategy in [8]. In this scheme, the transmitted
sequence is statistically independent of the interferenceand
noise sequences. It can be easily shown that for such schemes,
correlation between the interference and noise sequences does
not change the achievable rate relative to the case when the
noise and interference sequences are independent11. With this
scheme, we obtain the following lower bound.

Theorem 6:An achievable rate for our example multicast
channel with correlated interferences and common randomness
at the encoder and decoders is given by:

Cβ(P ) ≥ max
{(PA,PD):PA≥0,PD≥0,PA+PD≤P}

Rβ(PA, PD),

(38a)
where

Rβ(PA, PD) =
1

2
log

(

1 +
PA

1 +Qd/4 + PD

)

+
1

4
log (1 + PD) .

(38b)

whereQd
∆
= (β1 − β2)

2Q is the variance ofS1 − S2.
Optimizing overPA andPD, gives the following achievable
rate:

Rβ
−(P ) =















1
2 log

(

1 + P
1+Qd/4

)

, Qd < 4

1
2 log

(

P+1+Qd/4√
Qd

)

, 4 ≤ Qd ≤ 4(P + 1)

1
4 log(1 + P ), Qd ≥ 4P + 4

(39)

11In fact, the result in [8] holds for an arbitrary interference sequence.
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We note that in the limit of high SINR, our expression for
Rβ

− in (39) is given byRβ
− = 1

2 log(P )−T (Qd)+o(1), where
T (Qd) is given as in (34). This coincides with the upper bound
in (35) and thus establishes the optimality of our scheme in
the high SINR limit.

Corollary 3: The proposed achievable rate in Theorem 6 is
optimal in the limit of high SINR (fixedQ1, Q2, P → ∞) i.e.
limP→∞ Cβ(P )−Rβ

−(P ) = 0.

V. CONCLUDING REMARKS

We introduced the multicast channel model and analyzed the
special cases of binary and Gaussian channels with additive
interference. Our main observation in this work is that unlike
the single user case, the lack of side information at the receiver
strongly limits capacity. We show that in both the binary and
Gaussian cases if the interfering sequences are independent,
time-sharing is optimal in the limit of large interference.Also
certain achievable rates and their optimality properties have
been discussed. The capacity has been established for the two
user noiseless binary case and for the Gaussian case in the
high signal-to-interference-plus-noise ratio limit. Somewhat
surprisingly, the optimal schemes are very different for the
two cases.

It may be possible to extend the upper bounding techniques
in this paper to more general channel models and perhaps
also sharpen the results for the Gaussian and binary cases.
We emphasize however that the proposed bounds indicate an
important engineering insight that there is a significant loss in
dealing with more than one interference sequence at the trans-
mitter, even when they are correlated. An interesting direction
of future work would be to investigate the connections of this
result with a recent result on MIMO broadcast channel with
imperfect channel state information at the transmitter [19],
where again it was shown that lack of perfect CSI strongly
limits the broadcast channel capacity.

APPENDIX I
PROOF OF THECONVERSE INTHEOREM 1

We have to show that for any sequence of(2nR, n) codes
with Pn

e → 0, we must haveR ≤ C, whereC is defined in
(4).

Since each receiver is able to decode the message we have
from Fano’s inequality

H(W |Y N
k ) ≤ nεn, for k = 1, 2, (40)

whereεn is a sequence that approaches0 asn → ∞. We can
use Fano’s inequality to bound the rate as

nR = H(W )

= H(W |Y n
1 ) + I(W ;Y n

1 )

≤ nεn +H(Y n
1 )−H(Y n

1 |W ) (41)

≤ nεn +

n
∑

j=1

H(Y1j)−H(Y n
1 |W ) (42)

≤ nεn + n−H(Y n
1 |W ), (43)

where (41) follows by using the Fano inequality (40), (42)
follows from the chain rule and the fact that conditioning
reduces the entropy, and (43) follows from the fact that each
Y1j is binary valued. We can similarly bound the rate on the
second user’s channel as

nR ≤ nεn + n−H(Y n
2 |W ). (44)

Combining (43) and (44), we obtain

nR ≤ n−max{H(Y n
1 |W ), H(Y n

2 |W )}+ nǫn

≤ n− 1

2
{H(Y n

1 |W ) +H(Y n
2 |W )}+ nǫn

≤ n− 1

2
H(Y n

1 , Y n
2 |W ) + nǫn (45)

≤ n− 1

2
H(Y n

1 ⊕ Y n
2 |W ) + nǫn (46)

= n− 1

2
H(Sn

1 ⊕ Sn
2 ) + nǫn (47)

= n

(

1− 1

2
H(S1 ⊕ S2) + ǫn

)

, (48)

where (45) follows from the fact that conditioning reduces
entropy, (46) follows from the fact thatY n

1 ⊕ Y n
2 is a

deterministic function of(Y n
1 , Y n

2 ), (47) follows from the fact
that Y1 ⊕ Y2 = S1 ⊕ S2, and (48) follows from the fact that
bothS1 andS2 are i.i.d. so the joint entropy of the sequence
Sn
1 ⊕ Sn

2 is the sum of the individual terms.

APPENDIX II
PROOF OF UPPER BOUND(9b) IN THEOREM 2

The upper bound mirrors the converse for two-user case. In
particular, following the same steps as in the two-user caseto
derive (45), we have that any achievable rate satisfies

nR ≤ n− 1

K
H(Y n

1 , Y n
2 , . . . , Y n

K |W ) + nǫn. (49)

Proceeding from (49) we obtain

nR− nǫn

≤ n− 1

K
H(Y n

1 , Y n
2 , . . . , Y n

K |W )

= n− 1

K
H(Y n

1 , Y n
1 ⊕ Y n

2 , . . . , Y n
1 ⊕ Y n

K |W ) (50)

= n− 1

K
H(Xn ⊕ Sn

1 , S
n
1 ⊕ Sn

2 , . . . , S
n
1 ⊕ Sn

K |W )

= n− 1

K
H(Sn

1 ⊕ Sn
2 , . . . , S

n
1 ⊕ Sn

K |W )

− 1

K
H(Xn ⊕ Sn

1 |Sn
1 ⊕ Sn

2 , . . . S
n
1 ⊕ Sn

K ,W )

= n− n

K
H(S1 ⊕ S2, . . . , S1 ⊕ SK)

− 1

K
H(Xn ⊕ Sn

1 |Sn
1 ⊕ Sn

2 , . . . S
n
1 ⊕ Sn

K ,W ) (51)

≤ n− n

K
H(S1 ⊕ S2, . . . , S1 ⊕ SK),

where (50) follows from the fact that the mapping
(Y n

1 , Y n
2 , . . . Y n

K) → (Y n
1 , Y n

1 ⊕ Y n
2 , . . . , Y n

1 ⊕ Y n
2 ) is invert-

ible, and (51) follows from the fact thatSn
1 , S

n
2 , . . . S

n
K are all

i.i.d. and independent ofW .
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APPENDIX III
PROOF OFUPPERBOUND (15) IN THEOREM 3

We now derive (15) forRII
+. We first note that the capacity

of the channel only depends on the marginal distributions
p(Y n

1 |Xn, Sn
1 , S

n
2 ) and p(Y n

2 |Xn, , Sn
1 , S

n
2 ) and not on the

joint distributionp(Y n
1 , Y n

2 |Xn, Sn
1 , S

n
2 ). Allowing correlation

between the noiseZ1 and Z2 does not change capacity.
Specifically, we have

Lemma 1:Let Pn
e be the probability of decoding error in

(2). If Pn
e is bounded away from zero for a certain correlation

betweenZ1 andZ2 above then it is bounded away from zero
for any other correlation betweenZ1 andZ2.

Proof: The argument is essentially the same as given in
[7, Ch 14, Page 454]. We repeat it here for completeness. Let
P 1,n
e andP 2,n

e denote the error probabilities in decoding at
receiver 1 and 2 respectively. We have

P 1,n
e = Pr (g1(Y

n
1 ) 6= W )

P 2,n
e = Pr (g2(Y

n
2 ) 6= W )

Pn
e = Pr





⋃

k=1,2

{gk(Y n
k ) 6= W}





Next, note that

max{P 1,n
e , P 2,n

e } ≤ Pn
e ≤ P 1,n

e + P 2,n
e , (52)

where the left inequality in (52) follows from the fact that by
definition Pn

e ≥ P k,n
e for k = 1, 2, and the right inequality

follows from the union bound. In turn, note that bothP 1,n
e and

P 2,n
e do not depend on the correlation betweenZ1 andZ2.

Accordingly, both the left and right hand terms in (52) do not
depend on the correlation betweenZ1 andZ2. In particular
if Pn

e is bounded away from0 for some correlation between
Z1 andZ2, then necessarily one ofP 1,n

e andP 2,n
e is bounded

away from zero. Thus the probability of error is bounded away
from zero for all possible correlations.

In the rest of the section we will fixE[Z1Z2] = ρ and
derive an upper bound. Thereafter, we will optimize overρ, to
tighten the upper bound. We will need the following additional
properties ofZ1 andZ2, which are readily computed.

Lemma 2:Let Z1 and Z2 be standard normal, jointly
Gaussian random variables with correlationρ. DefineZ−

∆
=

(Z1 − Z2)/
√
2 andZ+

∆
= (Z1 + Z2)/

√
2. ThenZ+ andZ−

are independent zero-mean Gaussian random variables with
variances1 + ρ and1− ρ, respectively.

To obtain our upper bound we show that a sequence of
(2nR, n) codes that can be decoded by both the receivers with
Pn
e → 0 must satisfyR ≤ RII

+ in (17). Note that our power
constraint is of the formE[X2

i ] ≤ Pi with
∑n

i=1 Pi ≤ nP .
SupposeR1 and R2 denote the rates at which the two

receivers can reliably decode the common message. The rate
of the common message must satisfyR ≤ min(R1, R2).

From Fano’s inequality, we have that for some sequenceεn,
which approaches 0 asn → ∞,

H(W |Y n
k ) ≤ nεn, for k = 1, 2. (53)

We first upper boundR1 as

nR1 < I(W ;Y n
1 ) + nǫn

= h(Y n
1 )− h(Y n

1 |W ) + nǫn

≤
n
∑

i=1

h(Yi)− h(Y n
1 |W ) + nǫn (54)

≤
n
∑

i=1

1

2
log 2πe(Pi + 1 +Q+ 2

√

PiQ)− h(Y n
1 |W ) + nǫn.

(55)

≤ n

2
log 2πe(P + 1 +Q+ 2

√

PQ)− h(Y n
1 |W ) + nǫn,

(56)

where (54) follows from the chain rule and the fact that
conditioning reduces entropy, and (55) follows from the fact
that eachYi has a variance no larger thanPi+1+Q+2

√
PiQ

and its differential entropy can be upper bounded by that of
a Gaussian RV. Finally, (56) is a consequence of Jensen’s
inequality.

Similarly applying the above chain of inequalities on User
2, we have

nR2 ≤ n

2
log 2πe(P + 1 +Q + 2

√

PQ)− h(Y n
2 |W ) + nǫn.

(57)
Now we can find an upper bound on the common informa-

tion rate using (56) and (57):

nR = nmin(R1, R2) ≤
n

2
(R1 +R2)

≤ n

2
log 2πe(P + 1 +Q+ 2

√

PQ)− 1

2
h(Y n

1 |W )

− 1

2
h(Y n

2 |W ) + nεn

≤ n

2
log 2πe(P + 1 +Q+ 2

√

PQ)− 1

2
h(Y n

1 , Y n
2 |W ) + nεn

(58)

where the last inequality (58) follows from the fact that
conditioning reduces the differential entropy.

We now need to lower boundh(Y n
1 , Y n

2 |W ). In what
follows we will also use the notationSn

+ =
Sn

1
+Sn

2√
2

and

Sn
− =

Sn

1
−Sn

2√
2

. Note thatS+ andS− are mutually independent,
GaussianN(0, Q).

h(Y n
1 , Y n

2 |W )

= h

(

Y n
1 − Y n

2√
2

,
Y n
1 + Y n

2√
2

∣

∣

∣

∣

∣

W

)

(59)

= h(Sn
− + Zn

−,
√
2Xn + Sn

+ + Zn
+|W ) (60)

= h(Sn
− + Zn

−|W ) + h(
√
2Xn + Sn

+ + Zn
+|W,Sn

− + Zn
−)
(61)

= h(Sn
− + Zn

−) + I(Sn
+;

√
2Xn + Sn

+ + Zn
+|W,Sn

− + Zn
−)

+ h(
√
2Xn + Sn

+ + Zn
+|W,Sn

− + Zn
−, S

n
+) (62)

≥ h(Sn
− + Zn

−) + I(Sn
+;

√
2Xn + Sn

+ + Zn
+|W,Sn

− + Zn
−)

+ h(
√
2Xn + Sn

+ + Zn
+|W,Sn

− + Zn
−, S

n
+, X

n) (63)

= h(Sn
− + Zn

−) + I(Sn
+;

√
2Xn + Sn

+ + Zn
+|W,Sn

− + Zn
−)

+ h(Zn
+) (64)
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The above steps are justified as follows. In (59) we have
used the fact that the differential entropy is invariant to a
transformation of unit determinant. We substitute forY1 and
Y2 in (60). (61) follows from the chain rule. In (62), we first
drop the conditioning overW in the first term, since(Sn

−, Z
n
−)

are jointly independent ofW and expand the second term.
Finally (63) follows from the fact that conditioning onXn

further reduces the differential entropy while (64) is a conse-
quence fromZn

+ being independent of(Xn, Sn
+, S

n
−, Z

n
−,W ).

SinceSn
−, Z

n
+, Z

n
− are all i.i.d. Gaussian with powersQ,

1 + ρ and1− ρ respectively, we have from (64)

h(Y n
1 , Y n

2 |W ) ≥ I(Sn
+;

√
2Xn + Sn

+ + Zn
+|W,Sn

− + Zn
−)

+
n

2
log 2πe(Q+ 1− ρ) +

n

2
log 2πe(1 + ρ)

(65)
It remains to lower bound the mutual information term

in (65). We first note that sinceSn
+ is independent of

(W,Sn
−, Z

n
−) one can drop the conditioning in the mutual

information expression.
Lemma 3:For each n ≥ 1 and for any distribution

p(Xn|Sn
−, S

n
+,W ) such that

∑n
i=1 E[X2

i ] ≤ nP , The mutual
information term in (65) can be lower bounded as

I(Sn
+;

√
2Xn + Sn

+ + Zn
+|W,Sn

− + Zn
−)

≥ I(Sn
+;

√
2Xn + Sn

+ + Zn
+) ≥

[

n

2
log

(

Q

2P + 1 + ρ

)]+

(66)

Proof: The left hand inequality follows immediately by
expandingI(Sn

+;
√
2Xn + Sn

+ + Zn
+|W,Sn

− + Zn
−) and using

the fact thatSn
+ is independent of(Sn

−, Z
n
−,W ).

The right-hand side is a consequence of the rate-
distortion theorem for i.i.d. Gaussian sources. Note that
E[
∑n

i=1(
√
2Xi + Z+i)

2] ≤ n(2P + 1 + ρ). Thus if the right
inequality were violated, for a certain distributionp(Xn|Sn

+),
we could use it as a test channel in quantizing a n-dimensional
i.i.d. Gaussian source and do better than the rate distortion
bound. Alternately, note that

I(Sn
+;

√
2Xn + Sn

+ + Zn
+)

= h(Sn
+)− h(Sn

+|
√
2Xn + Sn

+ + Zn
+)

= h(Sn
+)− h(

√
2Xn + Zn

+|
√
2Xn + Sn

+ + Zn
+) (67)

≥ h(Sn
+)− h(

√
2Xn + Zn

+) (68)

≥ h(Sn
+)−

n
∑

i=1

h(
√
2Xi + Z+,i) (69)

≥ n

2
logQ−

n
∑

i=1

1

2
log(2Pi + 1 + ρ) (70)

≥ n

2
logQ− n

2
log(2P + 1 + ρ) (71)

=
n

2

[

log

(

Q

2P + 1 + ρ

)]+

(72)

Here (67) follows from the fact thath(X |Y ) = h(Y −
X |Y ), (68) from the fact that removing the conditioning on√
2Xn+Sn

++Zn
+ only increases the differential entropy, (69)

follows from the chain rule, (70) follows from the fact that

the differential entropy with a fixed variance is maximized
for a Gaussian distribution and (71) follows from Jensen’s
inequality. This establishes (66).

Finally, by substituting, (66), (65) into (58), we get

R ≤ 1

2
log

(

P +Q+ 1 + 2
√
PQ

√

(Q+ 1− ρ)(1 + ρ)

)

−
[

1

4
log

(

Q

2P + 1 + ρ

)]+

+ εn (73)

Finally, sinceρ is a free parameter of choice, we can select
it to be the value that minimizes (73) and thus (17) follows.
To obtain the tightest possible bound we can optimize over the
value ofρ. We obtain (15) by selecting the following choice
for ρ:

ρ∗(Q) =

{

Q/2 if Q ≤ 2

1 if Q > 2.
(74)

A. Gains from Feedback

In the presence of feedback, the transmitted symbol at time
i depends on the past output i.e.xi = f(w, yi−1

1 , yi−1
2 , sn).

In this situationZ+,i is still independent of(W,Zn
−, S

n, X i
1).

This condition suffices, for deriving the bounds in (58), (65)
and (66). Lemma 1 does not hold however, since now the
joint distribution between noise sequences does matter in the
probability of error. So while the expression (73) holds, one
cannot optimize overρ, but must select the value to be the
actual correlation coefficient in the channel.

B. Universal Gap between Upper and Lower Bounds

In this section we verify (30), the gap between upper and
lower bounds for all values ofP andQ. We consider three
different cases.

For Q ≤ 2, we have

RII
+ −R− =

1

2
log

(

P +Q+ 1 + 2
√
PQ

P + 1 +Q/2

)

(75)

It can be verified that the maximum forP ≥ 0 and0 ≤ Q ≤ 2
occurs forQ = 2 andP = 1/4(9−

√
17). The maximum value

is 1/2 log((5 +
√
17)/4) ≈ 0.5947.

For the case2 ≤ Q ≤ 2(P + 1) the difference is also
given by (75). The supremum is attained when we setQ =
2(P+1) and letP → ∞. The supremum value is1/2 log((3+
2
√
2)/2) ≈ 0.7716.

Finally for the caseQ ≥ 2(P + 1), the difference between
the bounds is given by

RII
+ −R− =

1

2
log

(

P +Q+ 1 + 2
√
PQ

Q

)

The supremum is obtained by takingQ = 2(P+1) and letting
P → ∞ and again equals1/2 log((3 + 2

√
2)/2).
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C. The case of K receivers

We consider the case where there areK receivers. To get an
upper bound, we assume perfect correlation between the noise
sequences i.e. receiverk = 1, 2, . . .K getsY n

k = Xn + Sn
k +

Zn, where the interferencesSn
k are mutually independent and

i.i.d. N(0, Q) andZn is i.i.d. N(0, 1).
To upper bound the common rate for the case ofK

receivers, first note that the derivation that leads to (58) can
be straightforwardly generalized to yield

nR ≤ n

2
log 2πe(P +Q+ 1 + 2

√

PQ)

− 1

K
h(Y n

1 , Y n
2 , . . . Y n

K |W ) + nεn

(76)

We now consider generalizing our derivation for (65)
to lower boundh(Y n

1 , Y n
2 , . . . Y n

K |W ). Let us consider a
set of K orthogonal vectorsv1,v2, . . .vK , where v1 =
1√
K
[1, 1, . . . , 1] and v2, . . .vK are arbitrarily chosen. Let

Y
n = (Y n

1 , Y n
2 , . . . , Y n

K) denote theK−tuple of received
sequences.

Claim 1: The component-wise inner product ofYn with
v1, . . . ,vK satisfies:

〈Yn,v1〉 =
√
KXn +

√
KZn + T n

1

〈Yn,vj〉 = T n
j for j = 2, 3, . . .K.

(77)

WhereT n
1 , T

n
2 , . . . T

n
K are mutually independent, i.i.d. Gaus-

sianN(0, Q) sequences.
Proof: The expression for〈Yn,v1〉 can be verified by

direct substitution. HereT n
1 = 1√

K
(Sn

1 + Sn
2 + . . . + Sn

K).
Sincevj andv1 are mutually orthogonal forj ≥ 2, we have
∑K

i=1 vji = 0. Hence〈Yn,vj〉 =
∑K

i=1 vjiS
n
i . We denote

T n
j =

∑K
i=1 vjiS

n
i . Since theSn

j are mutually independent
and i.i.d. andvj are mutually orthogonal it follows thatT n

j

are all mutually independent and i.i.d.N(0, Q).
We can now lower boundh(Y n

1 , Y n
2 , . . . Y n

K |W ) in a manner
analogous to the derivation in (65).

h(Y n
1 , Y n

2 , . . . Y n
K |W )

= h(〈Yn
1 ,v1〉 , 〈Yn

2 ,v2〉 , . . . 〈Yn
K ,vK〉 |W ) (78)

= h(
√
KXn +

√
KZn + T n

1 , T
n
2 , . . . T

n
K |W ) (79)

= h(T n
2 ) + . . .+ h(T n

K)

+ h(
√
KXn +

√
KZn + T n

1 |T n
2 , . . . , T

n
K ,W ) (80)

=
n(K − 1)

2
log 2πeQ

+ h(
√
KXn +

√
KZn + T n

1 |W, {T n
j }Kj=2) (81)

=
n(K − 1)

2
log 2πeQ

+ h(
√
KXn +

√
KZn + T n

1 |W, {T n
j }Kj=1)

+ I(T n
1 ;

√
KXn +

√
KZn + T n

1 |T n
2 . . . T n

K ,W ) (82)

≥ n(K − 1)

2
log 2πeQ+

n

2
log 2πeK

+ I(T n
1 ;

√
KXn +

√
KZn + T n

1 |T n
2 . . . T n

K ,W ) (83)

≥ n(K − 1)

2
log 2πeQ+

n

2
log 2πeK +

[

n

2
log

(

Q

K(P + 1)

)]+

(84)

Encoder

Decoder 2

Decoder 1

PSfrag replacements

W

Sn

Xn

Zn
2

Zn
1

Y n
2

Y n
1 Ŵ1

Ŵ2

Fig. 7. Two-user Gaussian Channel with one-interference sequences. We
derive upper bound on the capacity of this channel and show that this is also
an upper bound for the two-interference channel in Fig. 4. Here only receiver
2 experiences additive white Gaussian interference of varianceQ.

The justification for the above steps is as follows. In (78)
we have use the fact that the differential entropy is invariant to
a rotation, while (79) follows from Claim 1. In (80) and (81)
we have used the fact thatT n

j are mutually independent, i.i.d.
and independent ofW . Eq. (83) follows by additionally con-
ditioning the entropy term in (82) withXn and using the fact
that Zn is independent of(W,Xn, T n

1 , . . . T
n
K). Finally (84)

follows from fact that sinceT n
1 is independent of{T n

j }Kj=2 and
W we can use an argument analogous to that in Lemma 3
to have I(T n

1 ;
√
KXn +

√
KZn + T n

1 |T n
2 . . . T n

K ,W ) ≥
[

n
2 log

(

Q
K(P+1)

)]+

. Finally, substituting (84) in (76), we
obtain (31).

APPENDIX IV
PROOF OFUPPERBOUND (14) IN THEOREM 3

Our proof is structured as follows. We derive an upper
bound for a particular single-interference Gaussian channel,
and reason that the capacity of the two-interference channel
of interest in Theorem 3 cannot be higher.

As shown in Figure 7, the single-interference channel is
one in whichSn

1 = 0 andSn
2 = Sn. Only the second receiver

experiences interference.
The subsequent two Lemmas establish that an upper bound

on the capacity of the single interference channel is also an
upper bound on the capacity of the two-interference channel
in Figure 4.

Lemma 4:Suppose that for the single interference channel
model in Figure 7, the encoder and decoder 1 have access
to a source of common randomnessΘ, which is independent
of the messageW and (S,Z1, Z2). Then the capacity of the
single interference Gaussian channel is at-least as large as the
channel with two independent interferences in Figure 4.

Proof: The proof follows by observing that using the
source of common randomnessΘ, we can generate an i.i.d.
GaussianN(0, Q) sequenceSn

C , for any value ofn. This
sequence is independent of all other channel parameters and
is known to both the encoder and decoder 1. It is used to
simulate the two independent interference channel as follows.
Decoder 1, simply adds this sequence to the received output,
and ignores its knowledge in decoding. The encoder has to deal
with two sequences(Sn

C , S
n), both i.i.d. GaussianN(0, Q).

With this transformation, any coding scheme for the two
interference channel in Figure 4 can be used over this channel
with arbitrarily small probability of error.
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Lemma 5:A source of common randomnessΘ, which is
independent of the messageW and the channel parameters
(S,Z1, Z2) cannot increase the capacity of the single interfer-
ence channel in Figure 7.

Proof: Our proof is analogous to the proof that common
randomness does not increase the capacity in the single-user
case in [8]. We argue that for any sequence of codes, given
a stochastic encoder and decoder that depends on the shared
random variableΘ, there exists a deterministic encoder and
decoder with a smaller probability of error.

Given the messagem and state sequencesn, and a realiza-
tion θ of the shared random variable, the encoding function
(c.f. Definition 1) be given byxn = f(m, sn, θ). Similarly
the decoding functions are given bŷmk = gk(y

n
k , θ) for

k = 1, 2, . . . ,K. The average probability of error for the rate
R randomized code is then defined by

Pn,randomized
e

=
1

2nR

2nR

∑

m=1

EΘ





∑

yn:∃k:gk(yn

k
,θ) 6=m

∑

sn

p(sn)p(yn|f(m, sn, θ))





= EΘ





1

2nR

2nR

∑

m=1

∑

yn:∃k:gk(yn

k
,θ) 6=m

∑

sn

p(sn)p(yn|f(m, sn, θ))





= EΘ

[

Pr

{

K
⋃

k=1

{g(Y n
k , θ) 6= W}

}∣

∣

∣

∣

∣

Θ = θ

]

,

where the second equality follows by interchanging the expec-
tation and summation overm, and the third equality follows
by observing that given a realization of the random variable
Θ, the encoding and decoding are both deterministic and we
can use the definition of the average probability of error in (2).
Finally note that there must be some value ofθ for which the
term inside the expectation is minimized. We can design the
encoding and decoding function for this deterministic value of
θ and our probability of error will be lower than the average.
Thus having access to common randomness cannot decrease
the probability of error for the channel of interest.

Lemma 4 and 5 imply that an upper bound on the capacity
of the single interference channel in Figure 7 is also an
upper bound on the two independent-interference channel in
Figure 4. So we will derive an upper bound for the former.

Invoking the result of Lemma 1, we can letE[Z1Z2] = ρ,
whereρ ∈ [−1, 1] will be optimized later. As in the previous

Appendix defineZ−
∆
= (Z1 − Z2)/

√
2 and Z+

∆
= (Z1 +

Z2)/
√
2.

SupposeR1 and R2 denote the rates at which the two
receivers can reliably decode the common message. The rate of
the common message must satisfyR ≤ min(R1, R2). Similar
to our derivation in Appendix III, we use Fano’s inequality to
boundR1 andR2 as

nR1 ≤ n

2
log 2πe(P + 1)− h(Y n

1 |W ) + nǫn, (85)

nR2 ≤ n

2
log 2πe(P + 1 +Q+ 2

√

PQ)− h(Y n
2 |W ) + nǫn.

(86)

Our bound forR follows the derivation analogous to that
for (58) and is given by

nR ≤ n

4
log 2πe(P + 1 +Q+ 2

√

PQ)

+
n

4
log 2πe(P + 1)− 1

2
h(Y n

1 , Y n
2 |W ) + 2nεn

(87)

It remains to lower bound the joint-entropy term in (87).

h(Y n
1 , Y n

2 )

= h

(

Y n
1 + Y n

2√
2

,
Y n
1 − Y n

2√
2

∣

∣

∣

∣

∣

W

)

(88)

= h

(

√
2Xn + Zn

+ +
1√
2
Sn,− 1√

2
Sn + Zn

−

∣

∣

∣

∣

∣

W

)

= h

(

− 1√
2
Sn + Zn

−

∣

∣

∣

∣

∣

W

)

+ h

(

√
2Xn + Zn

+ +
1√
2
Sn

∣

∣

∣

∣

∣

W,− 1√
2
Sn + Zn

−

)

≥ h

(

− 1√
2
Sn + Zn

−

)

+ h

(

√
2Xn + Zn

+ +
1√
2
Sn

∣

∣

∣

∣

∣

W,− 1√
2
Sn + Zn

−, S
n, Xn

)

(89)

= h

(

− 1√
2
Sn + Zn

−

)

+ h(Zn
+) (90)

=
n

2
log 2πe

(

Q

2
+ 1− ρ

)

+
n

2
log 2πe (1 + ρ) (91)

In the above steps, (88) follows from the fact that differential
transformation is invariant under a pure rotation, (89) follows
from the fact that the pair(Sn, Zn

−) is independent ofW and
conditioning on additional terms only reduces the second term,
while (90) is follows from the fact thatZn

+ is independent of
all other variables in the second term.

Substituting (91) into (87) and rearranging, we get

R ≤ 1

4
log

(

1 + P

1 + ρ

)

+
1

4
log

(

P +Q+ 1 + 2
√
PQ

Q/2 + 1− ρ

)

+ εn,

(92)

Thus we have shown the expression for (16). To obtain the
tightest bound we minimize the right hand side of the above
over ρ. The tightest bounds is obtained with the choice

ρ∗(Q) =

{

Q/4 if Q ≤ 4

1 if Q > 4.
(93)

Substituting this value ofρ, in (92) yields (14).

A. Gains from Feedback

As noted in Appendix III-A,in the presence of causal feed-
back it still holds thatZ+,i is independent of(W,Zn

−, S
n, X i

1).
It can be verified that with this condition, the derivation that
leads to (91) continues to hold and the upper bound in (92)
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remains valid. One cannot however optimize overρ in the
presence of feedback as Lemma 1 fails to hold in the presence
of feedback.

APPENDIX V
CASE OFCORRELATED INTERFERENCES

In this section, we present the derivation of the upper bound
in Theorem 5. The derivation is a minor modification of the
derivation for the case of independent interferences. So only
the steps that need to be modified will be presented. As in the
statement of the Theorem, we assume thatS1 ∼ N(0, Q1),
S2 ∼ N(0, Q2) andS1 − S2 ∼ N(0, Qd).

We first note that using Fano’s inequality and the steps that
lead to (58) in Appendix III, an upper bound on the common
rate can be shown to be

nR ≤ 1

2
h(Y n

1 ) +
1

2
h(Y n

2 )− 1

2
h(Y n

1 , Y n
2 |W ) + nεn (94)

Using the power constraint, we upper boundh(Y n
i ) ≤

n
2 log 2πe(P + Qi + 1 + 2

√
PQi) for i = 1, 2. It remains to

lower bound the joint entropy term. In what follows, we denote
Zn
+ =

Zn

1
+Zn

2

2 andZn
− = Zn

1 −Zn
−. Note thatZn

+ andZn
− are

mutually independent and i.i.d. samples fromN(0, (1+ ρ)/2)
andN(0, 2(1− ρ)) respectively.

h(Y n
1 , Y n

2 |W ) = h

(

Y n
1 − Y n

2 ,
Y n
1 + Y n

2

2
|W
)

(95)

= h

(

Sn
1 − Sn

2 + Zn
−, X

n +
Sn
1 + Sn

2

2
+ Zn

+|W
)

= h(Sn
1 − Sn

2 + Zn
−) + h

(

Xn +
Sn
1 + Sn

2

2
+ Zn

+|W
)

(96)

≥ h(Sn
1 − Sn

2 + Zn
−) + h(Zn

+) (97)

=
n

2
log 2πe(Qd + 2(1− ρ)) +

n

2
log 2πe

(

1 + ρ

2

)

Here (95) follows from the fact that the transformation
[

1 −1
1/2 1/2

]

has unit determinant and the differential en-

tropy is invariant to this transformation, (96) from the fact
that Sn

1 − Sn
2 + Zn

− is independent ofW and (97) from the
fact thatZn

+ is independent of all other variables. The optimal
value ofρ, which yields the largest value for the lower bound
is given byρ∗ = min(1, Qd/4) and the corresponding lower
bound is given by:

h(Y n
1 , Y n

2 ) ≥
{

n log(2πe)2
(

1 + Qd

4

)

if Qd ≤ 4

n
2 log(2πe)2Qd if Qd > 4.

(98)

Finally substituting (98) in (94) gives us the expression in(33).
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