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Abstract— A generalization of the problem of writing on dirty By contrast, there has been very limited work to date
paper is considered in which one transmitter sends a common on multiuser channels with state parameters known to the
message to multlple receivers. Each receiver experiences as transmitter(S). In an early work in this area, Gel'fand and

link an additive interference (in addition to the additive noise), . . .
which is known noncausally to the transmitter but not to any Pinsker [11] show that the Gaussian broadcast channel with

of the receivers. Applications range from wireless multi-atenna  independent messageeurs no loss in capacity if the inter-
multicasting to robust dirty paper coding. ference sequences are known noncausally to the transmitter

We develop results for memoryless channels in Gaussian Some other multiuser settings are also discussed. Thedksjra
T o e e s e IOACCAS! ohanmel with independent messages and Stte se-
capacity relative to systems without such side informationand quence I_(now_n to the transmitter either cau_sally or nonaﬂws_
that the lack of side information at the receivers decreases IS €xamined in [23]. Other works on multiuser channels with
capacity relative to systems with such side information. state parameters include [17], [2], [16], [13] and [22].

For the noiselegs binary case, we establish the.capacity whe  This paper examines th@ommon-messad&oadcast chan-
:Egtr?h?er?rgr\\/(s)nrw?t(t:gvs%se' mngrer:‘];EgLe ?g%i?:}sng LZ%?;‘;}?;Z V"Semsa*’l‘l’ nel, which we refer to as thenulticastchannel. Specifically,
benefit. When the interference is IaFl)rge and independe)rqt acss W€ consider a scenario in Wh_l(:h one t_ransmltter brqa_ldcasts
the users, we show that time sharing is optimal. a common message to multiple receivers. In addition to

For the Gaussian case we present a coding scheme ancadditive noise, associated with the link to each receiver is
establish its optimality in the high signal-to-interference-plus- a corresponding additive interference. The collection uafhs
poise limit when there are two receivers. When the interfergce interferences is thus the (random) state of the multiuser
is large and independent across users we show that time-shiag o\ 2hnel 1n our model, the transmitter has perfect non¢ausa
is again optimal. Connections to the problem of robust dirty .
paper coding are also discussed. knowledge of all these interference sequences, but none of

the receivers have knowledge of any of them. This model and
its generalizations arise in a variety of multi-antennaeleiss

|. INTRODUCTION multicastin_g problems as vyell as in applications of roburgy d _
paper coding where only imperfect knowledge of the state is

The study of communication over channels controlled yvailable to the transmitter.

a random state parameter known only to the transmitter wasThe capacity of some binary versions of such multicast
initiated by Shannon [21]. Shannon considered the caseevhghannels is reported in [14], [15]. For more general chas)nel
the state sequence is known causally at the encoder. Sulpsai reports achievable rates for broadcasting common and
quently, Gel'fand and Pinsker [10] analyzed the case whee fndependent messages over a discrete memoryless channel
state sequence is available noncausally. The noncaus® megth noncausal state knowledge at the transmitter. The case
has found application in diverse areas, ranging from cofting of two-user Gaussian channels with jointly and individyall
memory with defects [12], [18], to digital watermarking [3] independent identically distributed (i.i.d.) Gaussiateifer-

[4], [20], and to coding for the multiple-input/multipledtput ences on each link is also considered in [24], for which it is
(MIMO) broadcast channel [1], [25]. conjectured that in the limit of large interference, tinfexsng

Costa [6] considered a version of the Gel'fand-Pinskéyetween the two receivers is optimum even when both are
model in which there is an additive white Gaussian intepnly interested in a common message. Among other results,
ference (“dirt”), which constitutes the state, in addititm in this paper we establish that this conjecture is true. Weeup
independent additive white Gaussian noise. The key resultjound the capacity of the Gaussian channel and show that it
this “dirty paper coding” scenario is that there is no loss igpproaches the time-sharing rate in this limit. In additive
capacity if the interference is known only to the transmitte also present a coding scheme that is asymptotically opiimal

the limit of high signal-to-interference-plus-noise (R)\ratio
This work has been supported in part by the National Sciemeadfation 1

under Grant No. CCF-0515109, and by Hewlett-Packard thrabg MIT/HP ~ ° . . .
Alliance. This work was presented in part at the InternatioBymposium  An outline of the paper is as follows. Sectifuh Il presents

on Information Theory, Chicago, IL, June 2004 and the Itdomal Zurich  the general multicast channel model of interest. The binary

Seminar, February 2006. - . .
A. Khisti and G. W. Wornell are with the Dept. Electrical Engering and special cases of interest are analyzed in Sedfian Ill, aed th

Computer Science, Massachusetts Institute of TechnolBgymbridge, MA, Gaussian special cases of interest are analyzed in Sé&ion |
02139, USA (E-mail{khisti,gww} @mit.edu). U. Erez is with the DepartmentFina”y' Section ¥ contains some conclusions and direstion

of Electrical Engineering-Systems, Tel Aviv UniversityafRat Aviv, 69978,
Israel (E-mail: uri@eng.tau.ac.il). A. Lapidoth is withethnstitute for Infor- for future work. The proofs of the converses are deferred to

mation and Signal Processing, Swiss Federal Institute ohfi@ogy (ETH)
— Zurich, CH-8092, Switzerland (E-mail: lapidoth@isigtaz.ch). 1Throughout this work, symbol refers toraal symbol.


http://arxiv.org/abs/cs/0511095v2

the Appendices. ERREEEEEEEEEE
| il
Il. MULTICAST CHANNEL MODEL L W Decoder 1— W,
X’n,

The K-user multicast channel of interest is defined as W — Encoder
follows. b .

Definition 1: A K-user discrete memoryless multicast ! N Yy Decoder 2— W,
channel with random parameters consists of an input alghabe ]
X, output alphabet¥;,Y,,...,Yx for receiversl, 2, ..., K, Sy
respectively, and a state alphaBefor a given state sequence ) ) ) .

n h thats. S and inputz” — Fig. 1. Two-user memoryless, noiseless binary multicastnohl with
s" = (s1,82,...,8n) SUC 5i € PUutz™ = additive interference. The encoder maps mess&gto codewordX ™. The
(x1,22,...,2,) such thatz; € X, the channel outputs arestate takes the form of interference sequens@sand S3. Each channel
distributed according to outputY;» = X" @ S, where® denotes symt}ol-by-symbol modulo-two

addition, is decoded to produce message estiridte
n

p(y?7yga ) 7y7[L(|:Ena Sn) = Hp(y1i7y2i7 s sz‘|CCi7 Sl) (1)
=1

where v = (yu1, yeo o), for all yu € Yy, k = express our results in terms of the properties of a gerf€ric
k e yr s YRN ) Yk [} —

1,2,...,K. Moreover,p(s") = [[,p(s:). The particular tuple in this sequence, which we denote (8, S, ..., Sk).

realizations™ is known noncausally to the transmitter before I\thtg Itlhat1W|LhtonIy ahsmgltla rezglveri]f‘_((: .1)’ th(;_capgutt)y
using the channel, but not to any of tli receivers. is trivially 1 [bit per channel use], which is achieved by

It is worth emphasizing that the above definition includégtetrrte:}e/r:lciplr;lcanﬁelIa%(lnz "3‘1’ bl))/_tchoosmg T j[gn Gaan'Eh
the case where the channel of Uderis controlled by its S0 tha = 57, where, 1S the bit representation for the

own states. In such cases, the joint state is, with S“ghpes_sagé’[/. As we V_V'" now develop, when ther_e are multlple
receivers, capacity is generally less than this ideal shugler

abuse of notations™ = (s7,s%,...,s%), so thatp(s;) =
rate.
P(81i5 8205+ - -5 SKi)-
The capacity of the channel of Definitidh 1 is defined as
follows. A. The Case of{ = 2 Receivers

Definition 2: A (2"%,n) code consists of a message set The case of two receivers, which is depicted in M. 1,
W, = {1,2,...2"%}, an encoderf,, : W,, x 8" — X", and is the simplest nontrivial scenario since perfect intenfiee

K decoderyyy, ,, : Y2 — W,, for k = 1,..., K. The rateR  precancellation is not possible simultaneously for botérsis
is achievableif there exists a sequence of codes such that for One lower bound on the two-user capacity corresponds to a
W uniformly distributed oveiV,, we have time-sharing approach that precancels the interferenamef
e of the receivers at a time, yielding a rate 8frs = 1/2.
lim P’ = lim Pr { U {grm (YY) # W}} =0. (2) Anotherlower bound corresponds to ignoring the interfeeen
n—reo n—reo P at the transmitter, i.e., treating each of the channels aseayb

Note that the error probability ifl(2) is averaged over adkest symmetric channel. This strategy yields a rateré = 1 —

d “Th atiiy th ¢ max{H(S51), H(S2)}. It turns out that the former bound is
;iﬂ;ig%?g ;r:esmessages € capacily the supremum o only tight whenS; and S, are independent an#i(1/2), and

; ; 3
In the remainder of the paper, we focus on special Cast@%lattzr bouhnd IS onfly t'%ht V\;]hen blo_ﬂ‘l an;:iﬁg are’B(0)".
of the memoryless channel in Definiti@h 1. In particular, we hCO N9 ;:_(r)]rem or the Cf annet s as 1o ?WS'
focus on binary and Gaussian cases in which the state islal:l— g_orem h € Tapﬁflt{jg’t' tWQ't’S?r NoISEless, me[)nory-
additive interference; for results on the memory with defec €SS binary channel with additive interterence 1S given by
i 1
multicast channel, see, e.g., [14]. C—1— 5H(Sl D Sy). (4)

Ill. NOISELESSBINARY CASE

We first consider the noiseless binary special case of Def-h_Prog.fI:. A converse (;S p_:o:jm:)ecli 'rT Appendifl 1. The
inition [. Specifically, the channel output§™, Yy",... Y} achievability argument is detailed below:

depend on the inpuk™ and the states?, Sy, ..., S ac- 1) Select2"® codewords randomly according to an i.i.d.
cording to B(1/2) distribution in a codebook of rate R strictly
Y =X"a®SP (3) less than the capacitf](4). Denote these codewords as
B"(1),B"(2),...,B"(2"f), so a message is repre-
where X;, Si; € {0,1}, and @ denotes symbol-by-symbol sented by codeword™ (w).

modulo-two addition (i.e., exclusive-or). Iiil(3), the memo ) select a sequence™ by flipping a fair coin for each
ryless case of interest corresponds to the requirement that' symbol index (the realization of which is also known at
the (Sy;, Sai,...,Ski) for i = 1,2,...,n form an ii.d.

sequence ofk-tuples. In particular, for each the variables _ “From now on, except in the case of ambiguity, the units ofs'tper
channel use” will be omitted.

{510, S2iy - .-, Sk} may _in ge.neral b_e S_tatiStically dependent, syye yses(q) to denote a Bernoulli random variable with parameére.
and do not need to be identically distributed. As a result, we(s =1) = ¢,Pr(S=0)=1—gq.
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completely dependent random variables, i.e., unkgss- S,

or S = S;. Second, time-sharing is strictly sub-optimal
except whenS; and S, are independen3(1/2) random
variables. We emphasize that, by contrast, when there are
independentmessages for each of the receivers in Hh. 1,
time-sharing between the receivers is optimal and there is
no loss in the capacity region with side information only
at the transmitter. Finally ignoring the side informatioh a
the transmitter is strictly suboptimal except whéf(.S;)

H
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Fig. 2. Achievable rates for the two-user noiseless binamjtioast channel
with independent and identically distributed interferemicas a function of
the strength of the interference. Capacity is indicated Hiy $olid curve,
time-sharing performance is indicated by the horizontahéd line, and the
performance of a system that ignores the side informationdigated by the
downward sloping dashed curve.

the decoders [26]). Select the séf of symbol indices
where A; = 1, and precancel the interference at those
indices for user 1, and precancel the interference at
the remaining indicesd, (with A; = 0) for user 2.
Specifically, the transmitted sequence is of the form

With this encoding, receiver 1 then observes a version of
B"(w) where |A;| symbols are correct, and the remaining
|A2| symbols are corrupted by interferensg @ Sa;, @ € Aa,

Bi(w) @ S1;
Bl(w) D SQZ'

i€ Ay
1 € As.

®)

corresponding to a binary symmetric channel with crossover2)

probability¢’ = Pr{S; & S2 = 1}. Receiver 2 experiences the
opposite effect. Thus for large we have, sincgA,|/n —
1/2,

1 1
“3t3
which isC in @). As the mutual information expression [ (6)
indicates, the decoding af;" to the messagé/;, is done by
using the knowledge ofl; andA; (i.e., A™) at the decoders.

In particular, receiver 1 selects a codeword which agreés wi
the received symbols in the sdt; and which is typical with
noise S; & S, with the symbols in the setl,. For decoder
2, the order of the sets is reversed. As longlask C, Wi
equalsW with high probability. [ ]
Fig. @ shows the performance gains of optimal coding
relative to time-sharing and disregarding the side-infation.
In particular, the achievable rate in the case of independen
interferences is plotted as a function of the strength of the
interference as measured by= Pr{S; =1} = Pr{S; = 1}.
Three immediate conclusions can be drawn from Theo-
rem[d. First, transmitter-only side information incurs aaky
relative to system-wide side information unlegsand S are

1
~I(B";Y}|A") (1-H(5:1©5), k=12, (6)

(S2) =0.
We make a few additional observations.
Some Further Remarks:

1) The achievability argument can also be obtained via a
different, more direct, but perhaps less intuitive route as
follows. First note that a straightforward extension of
the random binning argument for the single user case
[10] shows that the following rate is achievable for the
K-user multicast channel with random parameters.

max

min I(U; Vi) — I(U; S)}, (7
P(U\S),p(X|U,S){ U Y) = I(U; 9)}, (7)

k

Here U is an auxiliary random variable (over some
alphabetl) that satisfies the Markov constraibt «+»
(X,8) Y, fork=1,2... K.

For the two-user binary channel, the following choice of
U yields the achievability off{4). Let the alphabet ©Gf
bel = {\111, \112, \113, \114}

U=A{¥ (X®5)+¥: (XD}

+ A{U3 (X @ )+ Uy (X @ S9)}, ©)

where, X is B(1/2) random variable, independent &f
andSs, and A is alsoB(1/2) that is independent ok,

S1 and S;, and where- denotes the complement of a
(binary-valued) variable.

For the code construction outlined above suggests the
transmitter does not require noncausal knowledge of
the interference. We emphasize, however, this result is
specific to the noiseless binary channel model.

It is straightforward to verify that random linear codes
are sufficient to achieve the capacity of Theof@m 1. It
suffices to use an argument analogous to that used by
Gallager for the binary symmetric channel [9, Sec. 6.2].
Theorem[dl can be readily generalized to the case of
state sequences that are not in general i.i.d. In this case
the termH (S; @ S2) in @) is simply replaced with the
entropyrate of ST & S3.

Our achievability scheme also applies in the presence of
noise. For the channel model

i=X05d 24
E/QZX@SQ@ZQa

3)
4)

5)

where Z; and Z; are mutually independent and iden-
tically distributed Bernoulli random variables and inde-
pendent of all other variables, we can show that a rate

1 1
R:1—§H(51®52@Z1)—5H(Zl)



is achievable and an upper bound is given by

0.9

RT=1- %H(Sl EBSQ) — %H(Zl)
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Note that time-sharing is optimal in the special case -
when S; and S, are independerB(1/2) random vari-
ables.
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B. The Case of{ > 2 Receivers

Rate (bits/symbol)

When there are more than two receivers further losses ir o3
capacity ensue, as we now develop. Specifically, we have thi
following bounds on capacity.

Theorem 2:The capacity of theK-user noiseless binary

0.2

0.1

channel in which the generi¢;, S, ..., Sk are mutually 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ LY
. ) X o . X 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
independent and identically distribufeid bounded according Interference Strength q = PH{S,=1}
to:
R_<C< Ry, (98.) Fig. 3.  Upper bound and lower bounds on the capacity of theethr
user noiseless binary multicast channel, as a function efsthength of the
where interference. The solid curves depict the two bounddbf T@ horizontal

dashed line indicates the performance of time-sharinglevthe other dashed

R.=1——H(S So. S S ... S S gp) curve indicates the performance of a strategy in which tde giformation
+ K (518 5,8 ©85,...,5 @ Sk), (9b) is ignored by the transmitter.

R — max{l —H(S1),1 - (1 - %) H(S: @52)}.

(9c) the number of receivers is large, the side-informationlatée

. . . to the transmitter is essentially useless.
|_3roof. The upper boundE(Bb_) IS es_tabllsh_ed n _Ap We can also usd_{lL0) to bound the rate penalty associated
pendix[l. The lower bound[1®c) is obtained via a direct .., - . o : -
- : . Wwith ignoring side information as a function of the number of
generalization of the code constructi@h (5) in the case of tw__ . . )
- ; ) . . receiversK. In particular, the gap is at mos$f (S)/K.
users. Specifically, it suffices to consider a code constmict Finally, we can use Theoref 2 to establish that in the limit
that divides each codeword int equally sized blocks and Y

precancels the interference for a different user in eacthef tOf large interference, time-sharing is optimal for eveky

blocks. Each user then experiences one clean blockénd Specifically, whensj, ~ B(1/2), the capacity i = 1/K

. . : .%nd is achieved through time-sharing. To see this, it suffice
noisy blocks governed by a binary symmetric channel wi |\ specialize the upper bound [EI9b). Specifically S, for
crossover probability’ = Pr{S; ® S; =1} as before. = P PP P Va9 Ok

In general, the lower and upper bounds (9) do n(t]){ﬁe:ji’ir?:t’ .éhér{){p;r;[?iefendem(lﬂ) random variables, so

coincide® However, the associated rate gap decreases mono-
tonically with the number of receiver®. Moreover, even for
K =3, it is small, as Fig[l3 illustrates. IV. GAUSSIAN CASE
The rate gap also decays to zero in the limit of laf§e  In this section we consider a memoryless Gaussian ex-
which follows readily from Theorerfil 2. In particulafi —  tension of Definition[JL and incorporate an average power
1 — H(S) as K — oo, whereS denotes a generic randomconstraint on the input. Unless otherwise stated, we oéstri
variable with the distribution of thé.. To see this, it suffices the two-user & = 2) case. In the scenario of interest, depicted
to recognize that whefyy, S, ..., Sk are i.i.d., in Fig.[d, the state is additive, and the associated intenfsgs
1 1 Sy are zero-mean white Gaussian sequences of pawer
(1 - ?) H(S) < ?H(& © 52,81 @ Ss,...,5 ®Sk)  We first focus on the case of independent interferences and
< H(S) con5|d_e_r the case of _correla}ted interferences in se I\_/
= ‘ In addition, each receiver’s link also has a zero-mean &edit

(10) 15 g :
As K — oo, the lower and upper bounds iET10) converge\zNh'te Gaussian noisg;’ of power N. Thus, the observation

so that the upper bound on capacyl(9b) convergeR to= at receiverk takes the form

1— H(S). However, this rate is achievable by simply treating Y= X"+ 8P+ 27, k=1,2. (11)
the interference as noise at the receivers, so it is theifigit _

capacity. It should be emphasized that this implies thatrwh©®ur power constraint takes the form

40ur results actually hold more generally provided the iistr 1 - 2
tion across the interference sequences is symmetric, ifefor all EE ZXi (W, SILM%Z) <P, (12)
m, P(Sky»Skys--+,Sk,) IS independent of the specific choice of i=1

kl,kz,...,km6{1,2,...,K}. . .
5A slightly improved lower bound appears in [14], but it, taipes not Where the expectation is taken over the ensemble of messages

match the upper bound. and interference sequences. Finally, note that withowt tds
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' xn (15 "1. Decoder 1~ W, B min 1 o P+Q+2yPQ+1
W —~ Encoder T e 2 P VA+p)(Q+1-)p) (17)
I _~ Decoder 2~ T, 1 0 +
,,,,,,,,,,,,,, 4 2P+ (1+p)
Sy 2

Theorem 4:A lower bound on the Gaussian multicast chan-
Fig. 4.  Two-user Gaussian multicast channel model with tagdin- gl Capacity is :
terference. The encoder maps mess&einto codeword X™. The state
takes the form of interference sequenc¥s and S3'. Each channel output 1] 14+ L Q/2<1
Y = X™ 4+ Sp + Z} is decoded to produce message estiniafg. . 2108 Q/2+1
The interference and noise sequences are i.i.d. and mutimaependent. p  — /1 P4Q/241 1 Q
Furthermore,S1, S2 ~ N(0, Q) and Z1, Z> ~ N(0, 1). 2 log Q + 4 log 2 1= Q/2 <P+1
1
7 log(1+ P) Q/2>P+1.
(18)
Proof:

generality, we may selV = 1, and interpret” as the signal- 5 |ower bound (@E) is an explicit expression of the
to-noise ratio (SNR), and) as the interference-to-noise rat'ofollowing maximization:

(INR).
For this channel, we present the following bounds on the
capacity. R_ = (ParPo)? Jmax <P}R(PA,PD) (19a)
Theorem 3:An upper bound on the Gaussian multicast AEpIEASRED =R AT =
channel capacity is : with
Al Py 1
CSHHH{REF,RIJE}, (13) R(PA,PD): §10g <1+W/2+1>+110g(1+PD)
(19b)
wheré -7 Accordingly, we show the achievability of {1I9b). The pro-

1 1 PLQ1+142yPQ pos_ed scheme, compines superp0§iti0n coding, di_rty paper
pl_)1 log(1 + P) + 7log (ﬁ) Q=4 coding, and time-sharing, and exploits a representatidhef
T ) Liog (i) +Llog (M vPQ) Q <4 interferences in the form

4 Q/4+1 Q/4+1 14 A
e e (20)
Sy =A" - D",
1 HP+Q+2vPQ < where
I _ QIOg( 1+Q/2 ) Q=2 A" = (57 + 53)/2
Ry 1] 14+ P+Q+2V/PQ 14 Q + 9 ! : (21)
2 og( V20 )_ [Z Og(2P+2)} Q> D" = (S} — S3)/2.
(15) . . . .
. We list the main steps for codebook generation, encoding
We have presented two different upper bounds denoted f:!l)l){d decoding. The probability of error analysis will be det

11 1! i i i
By and R, since neither bound dominates the other, VS5 it is based on standard typicality arguments. See e.g. [7]

all values of(P, Q). The two bounds have been derived by Codebook Generation:The idea is to generate three code-

slightly different methods. The boun&! is obtained b . .
gnhtly . LT . Y hooks. There is one common codebook which both the users
observing that the channel is non-trivial even if we set on . . .
. L . share and two private codebooks which are intended for the
of the interferences (sa¥;) to 0. Furthermore, it is possible

to show that an upper bound on this modified channel is alggrr@pondmg user. More specifically we follow the follogi

an upper bound on the Gaussian multicast channel of interst P> ]

A complete derivation of this upper bound is presented in 1) Decompose the messaye into two submessaged’s

Appendix[I¥. The expression foR!! is obtained by directly andWp and divide the poweP into two powersP, and
applying a chain of inequalities on the Gaussian multicast ©’» SO thatP = Pa+ Pp. MessagéV, will be decoded
channel and its derivation is presented in Appeifidix I11. by both the receivers while messagg will be decoded

We remark here that the upper bounds are explicit expres- Y Only one receiver at a time. We will transmit it twice
sions of the following maximization: so that both the receivers can decode (see encoding and

decoding rules below for a further description).
I o1 1+ P 1 P+Q+1+2yPQ\ 2) Generate a codebodk, for W4 where the codewords
Ry = min - log (TP) 1 ( Q/2+1—p ) Ul are sampled from i.i.d. a Gaussian distribution
(16) Us = Xa + asA. Here X4 is GaussiarN(0, Py),
independent ofd anday = Pa/(P + Q/2+1). A

BAll logarithms are to the base 2 in this work. Also the notatig]* refers total of 27/(U4iY3) codewords are thus generated and
to max(f,0) in (@3) and throughout the paper.

“The trivial upper bound oft log(1 4 P) is sometimes tighter than these 80Our lower bound forQ/2 < 1 was also independently reported by
two bounds, particular in the limit of very smaft. Costa [5].

pe[—1,1] 4



randomly partitioned int@2™/(V4:4) bins. The rate of
this codebook](Ua4;Y;) — I(Ua; A) can be shown to

be°:
_%1og<1+ )

Generate two codebool@D) andCjp () for Wp for the

two receivers as follows. Foﬁ%), the codeword8'}; are

sampled from a i.i.d. Gaussian distributidip, = Xp +

p((1—aa)A+ D), whereXp is GaussiarN(0, Pp),
independent ofA and D and ap = Pp/(Pp + 1).
Generate2™! (UpiY1.Ua)

Py

R - -
A Pp+Q/2+1

(22)

3)

tion for codebooke!?. The rate of each codebotk
I(Up;Y;,Ux) — I(Up; A, D) can be shown to be:

1
Rp == log(l + Pp).

(23)

such codewords and partition
them into27/(Up;4.D) pins, Follow analogous construc- .

Rate (bits/symbol)

I I I I I
-10 0 10

‘ 50
Interference—to—Noise Ratio (dB)
Fig. 5. Upper and lower bounds on the capacity of the two-@Gaussian

multlcast channel, as a function of INR for an SNRP = 33 dB. The
upper two curves depict the two upper bounds frdml (15) 4nd. (The

Encoding: We transmit a superposition of two sequencegarked line is the achievable rate [A)18). The horizontahed line indicates

corresponding td? 4 and W as follows:

1) To encode a messagjé,, find a codeword/?} in the bin
of W4, such thatX = U} — a4 A™ satisfies a power

the performance of time-sharing, while the other dashesecurdicates the
performance of a strategy in which the side information eatied by the
transmitter as additional noise on each link.

constraint of P4. By construction, such a codeword

exists with high probability.

2) Subtract the decoded}; from each ofY;* andYy', so

2) To encodéVp, we decide whether to send it to user 1 or that the residual signal” = Y — U are of the form
2. The users are served alternately. When we decide to
send it to user 1, we select a codewdr in the bin of }71” =Xp+((1—an)A"+ D"+ Z7, (24)
codebook(:’%) corresponding to messag’é,;_, such that Vi = X2+ ((1—ax)A™ — D) + Z2. (25)
Xp =Up —ap{(1 —aa)A™ + D"} satisfies a power
constraint ofPp. When we decide to transmit to user 2, The rateRRp in 023) ensures thal/7} can Qe decoded
we select a codeworti; in the bin of codebooleg) from eitherY;” or Y3* so that the resultingVp equals
corresponding to messag&p such thatXp = Up — Wp with high probability at the corresponding receiver.
ap{(l — ay)A™ — D"} satisfies the power constraint Specifically, for the fraction of time that the transmit-
of Pp. Since there ar@™ (Uri4:P) codewords in each ter encodesVp for interference(l — a4)A™ + D",
bin, such a codeword exists with high probability. user 1 can recovei¥p, while for the fraction of
3) Send the superpositioX™ = X% + X7, which has time that the transmitter encod&g, for interference

power P, over the channel.

(1 —as)A™ — D™, user 2 can recovéiVp.

Decoding: The decoding exploits successive cancellation From this coding strategy, we see that the average rate

(stripping) and proceeds as follows:

1) DecodeU?} from Y7* or Y3 treating X7 as part of the
noise. The received signals are of the form

Y = X4+ A" + (D" + 27 + X})

=UT+(1— A" +

(D" + Z7 + X)),

(=D"+Z3 + X7)

=U)l+(1—aa)A" + (-D"+ Z3 + XP).

SinceD™ + Z* + X}, is an i.i.d. GaussiatN(0, Pp +
Q/2 + 1) sequence, independent df*, our choice of
rate R4 in @2) ensures that the resultiids, equals
W4 with high probability at both the receivers.

9Using a symmetry argument or otherwise, note tH&t/4;Y1) =
I(U4;Y>2), so we use the generic terfifU 4; Y;) to denote either of these.

1ONotice that the codebooks can be the same for two users. Fatioral
convenience while dealing with the two users we keep thelmmales separate
since a codeword typical with[> will not in general be typical withy".
See the encoding rules below.

delivered to each receiver is identical, i.&4 + (1/2)Rp.
Maximizing this rate over the choices ¢4 and Pp subject
to the constraintP = P4 + Pp optimizes the lower bound,
whence [19a).

[ |

From [IB), we obtain several useful insights. First, nog th
in the high INR regime @/2 > P + 1), our lower bound
reduces to time-sharing, while in the low INR regint@/@ <
1) it reduces to dirty paper coding with respect 4%. In
the moderate interference regime, our bound shows that one
can generally achieve a gain over these two strategies by a
superposition coding approach that combines them.

The behavior of the bounds as a function of INR is depicted
in Fig.[ for a fixed SNR ofP = 33 dB. When the INR is
very small ( < 1), Fig.[d reflects the rather obvious fact that
the side information can be ignored by the transmitter witho
sacrificing rate. Similarly, when the INR is largg(>> 1),
Fig.[ reflects that time-sharing between the two users egehie
the capacity. More generally,
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be expressed a§(P) = 1
as P — oo. For @ < 2 it can be expressed aS(P)
% log (
Q — oo, time-sharing between the two users is optimal and
the capacity can be expressed@s’) = 1 log(1+ P)+o(1),
whereo(1) — 0 as@ — oo.

Finally, we show in AppendiXTIl=B that a universal constant
that bounds the difference between our upper and lower
bounds is given by:

6 the limit of high SINR P — oo, @ is fixed). ForQ > 2 it can

= 5 log (\/%) +o(1), whereo(1) — 0

1+g_/2) + o(1). Finally, for the case of fixed® and

sup RE —R_=

11og (§ + \/§> =0.7716  (30)
PO 2 2

We conclude this section with a few additional observations

Fig. 6. Upper and lower bounds on the capacity of the two-@&aussian
multicast channel, as a function of SNIRfor an INRQ = 15 dB. The upper
two curves depict the two upper bounds[inl(15) (14). Théeaable rate
in @A) is also shown. The dashed curve indicates the pediocen of time-
sharing, while the dash-dotted curve indicates the pedoage of a strategy
in which the side information is treated by the transmitteradditional noise
on each link.

1)

QliinmC < thnoo R = (02151100 R = ilog(l +P), (26)
which can be achieved by time-sharing between the two users
and doing Costa dirty paper coding for each user being served
We note that this result settles the conjecture made in [24].

Perhaps more interestingly, our proposed achievable rate
is optimal in the limit of high SINR. The behavior of the
bounds as a function of SNR is depicted in Fig. 6 for a 2
fixed INR of @ = 15 dB. We note that the expression for
R coincides withR_ in this limit. Note that the base-line
schemes do not achieve a rate particularly close to caphaaity
the superposition dirty paper coding strategy correspanth
our lower bound does. More generally, we can show that:

lim (C — R_) (27)

P—oo

< I n_p oy
_PIEEMOO(RJr R)=0

To verify Z1) for@Q > 2, sinceP — oo, the middle case of
the lower bound{18) applies which we can alternately expres 3)
in the form

1 P+Q/2+1
[ P a7

fomghe < V2Q >

Comparing [ZB) with the upper bound]15) we have

R R _ 1 PHQ+1+2VPQ
T2

(28)

V2Q
L PrQ2t1 (29)
EERR A

which in the limit P — oo gives [2Y). The casé€ < 2, can
be similarly verified. We summarize the optimality propesti
in the following corollary.
Corollary 1: For the Gaussian multicast channel in Fig-
ure[d, the proposed achievable rate in Thedikm 4 is optimal in

Some Further Remarks:

Extension to K receiver©ur upper bounding technique
for R in (IH) can be extended to the case Kf
receivers each with independent interference. We show
in AppendixII=d that the following upper bound holds
for the case ofK receivers:

1 K-1
ngglog(P—f—Q—i—l—i—?s/PQ)— Ve log Q
1 1 Q +
" or el - [ﬁ log (7K<p+1>)}

(31)
By taking the limitQ — oo in @), it can be sown that
time-sharing is optimal for any number of users in the
high INR limit.
Correlation between noise sequenc€he upper bound
in Theorem[B is valid even when the nois&$ and
Z% are not independent. The argument is analogous to
that for the standard broadcast channel (e.g. [7, Ch.
14]). We exploit this observation to derive the upper
bound expressions. Furthermore analogous to the result
in [4], even if the noise is not Gaussian our lower bound
in (I83) is achievable when the decoder treats the noise
as Gaussian.
Feedback does not help muchAs discussed in Ap-
pendix-A andIV-A, the expressions fak! and R!!
in (I8) and [IF) continue to hold in the presence of
perfect causal feedback, provided we do not optimize
over the parametep, but set it to equal the actual
correlation between the noise terms.
The capacity-achieving strategy for the binary channel
does not extend immediately to the Gaussian channel.
While one might speculate that an adaptation of the
achievability approach in Theorefh 1 for the Gaussian
channel would improve on the lower boufid{l19a) in The-
orem4, the obvious generalizations do not. In particular,
strategies which precancel the interference in part of the
codeword for each user achieved lower rates than our
superposition dirty paper coding; for a further discussion
see [14].



A. Correlated Interferences and Robust Dirty Paper Codingn Theoren{b can be written as

Consider the a memoryless Gaussian point-to-point channel RS _ llog(P) — T(Qq) + o(1), (35)
model with output 2
" " n N where the ternp(1) approaches 0 a® — oo and Q1, Q2
Yh=X"+5"+2% (32)  fixed andT'(Qg) is given in [3%).

To establish an achievable rate, we will consider a mod-
ification to our lower bound in Theoreld 4 which considers

e case of independent interferences. To deal with the case
of correlated interferences, we will require that the emcod
and decoders have access to a common source of randomness

whereX™ is the channel input subject to power constraht
S™ is a white Gaussian interference sequence of pawent
known to decoder, and™ is a white Gaussian noise sequenc
of unit power. When the interferenc#" is perfectly known to
the encoder, Costa’s dirty paper coding is capacity achigvi

However, in many applications, only imperfect knowledg¥Nich will be used as a dither sequence.
of 5" is available to the encoder. One special case is theCONSider & superposition dirty paper coding strategy anal-

case ofcausalknowledge considered by Shannon. Anothgtd0us to that in the proof Of_ the lower bound in _Theom 4,
is the case ofioisy noncausal knowledge. For these kinds Owhereby we decompose the mterf_ergnces accordiriglo (20). |
generalizations, there is interest in understanding tpadisy S case, we have thdf{21) specializes to
of such channels and the structure of the associated cgpacit A™ = Ba S§
achieving codes, which we refer to mbustdirty paper codes. D" = fp 8o, (36)
It is often natural to analyze such problems via their equiv-
alent Gaussian multicast model. As an illustration, suppo¥here B 5
that the interference if(B2) is of the forf" = 58Sy where Ba= (B +P2)/ (37)
S¢ ~ N(0,QI) is known to the encoder byt is not. Then if Bp = (Br = B2)/2.
f is from a finite alphabet (or can be approximated as beingwhen we turn to implement the encoding step in the proof
s0), i.e., 8 € {f1,P2,..., Bk}, the problem is equivalent of the lower bound of Theorer 4, in whicH" is treated
to a Gaussian multicast problem with' users where the ag interference and)” as noise, the results of [6] cannot
interference for thetth user isg;.S . be directly applied since the interferencd$ and D" in
From this example it is apparent that for at least som@g) are correlated. On the other hand, if we assume that the
applications, there is a need to accommodaigelatedin- encoder and decoder(s) have access to a source of common
terferences in the Gaussian multicast model. In what falowandomness in the form of a dither sequence, we can use the
we focus on that case where there are two receivers igtice coding strategy in [8]. In this scheme, the transedit
B € {B1,B:2}. Extensions to the case of more than twgequence is statistically independent of the interferearu
receivers are possible, but will not be explored. noise sequences. It can be easily shown that for such schemes
We first provide a general upper bound for the case gbrrelation between the interference and noise sequemess d
correlated, jointly Gaussian interference sequences e tnot change the achievable rate relative to the case when the
specialize it to the case of scaled interferences. The genefoise and interference sequences are indepeftiémth this
upper bound might be of independent interest and is deriveégheme, we obtain the following lower bound.
in Appendix[M. Theorem 6:An achievable rate for our example multicast
Theorem 5:Consider a two receiver channel modét = channel with correlated interferences and common randesne
X"+ S+ Z" for i = 1,2 when Z" is ii.d. N(0,1) at the encoder and decoders is given by:
noise, ST and S% are i.i.d. jointly Gaussian with marginal 8 5
distributionsN(0, @, ) andN(0, Q) respectively and suppose € (P) = ((Pa,Pp):Pa>0.Fp >0 PA+PD<P}R (Pa. Pp),
that the distribution ofS; — S5 is N(0, Q). An upper bound 7 T - (38a)
on the common message rate for this channel under a pouwgrere
constraintP at the transmitter is given by:

1 Py
RP(P4, Pp) = =1 14—
. 2 4 (Pa, Pp) 20g<+1+Qd/4+PD> (38h)
RY = — log(P i+ 1+2/PQ;)—T 33
e X lslPrQir142VPQ) ~T@Q0) (39 + Mgt 4 7).
where whereQq 2 (81 — $2)2Q is the variance of5; — S,.
ilog(Qd), Qq > 4 Optimizing overP4 and Pp, gives the following achievable
T(Qa) =1 Qu (34) rate:
Log(1+%), Qu<4

%1og 1+ﬁ), Qa4 <4

We note that the upper bound is of most interest in the highk” (P) = 1log w) . A< Qe<A(P+1)

signal-to-interference-plus-noise limit i.e. when we €,Q2 1 VQa

and takeP — oo. In this limit we have the following: 1log(1+ P), Qa > 4P +4 2
Corollary 2: In the high SINR limit (01, Q- fixed, P — (39)

00), the upper bound on the case of correlated interference&in fact, the result in [8] holds for an arbitrary interferensequence.



We note that in the limit of high SINR, our expression fowhere [41) follows by using the Fano inequalifyJ(4@L1(42)
R” in @9) is given byr” = 1log(P)—T(Qa)+o(1), where follows from the chain rule and the fact that conditioning
T(Qg) is given as in[[34). This coincides with the upper bouneduces the entropy, anl{43) follows from the fact that each
in (39) and thus establishes the optimality of our scheme 13, is binary valued. We can similarly bound the rate on the

the high SINR limit. second user’s channel as
Corollary 3: The proposed achievable rate in Theofdm 6 is n
optimal in the fimit of high SINR (fixed2:, Qs P — o) i.e. nR < nen +n— HYZ'|W). (44)
limp_,oc C7(P) — RZ(P) = 0. Combining [4B) and[{44), we obtain
V. CONCLUDING REMARKS nf < n —max{HYY"|W), H(Y3' W)} + nen
1 n n
We introduced the multicast channel model and analyzed the <n—S{HQ W) + H(YZ' W)} + nen
special cases of binary and Gaussian channels with additive 1 R
interference. Our main observation in this work is that kenli =n- §H(Yl Y5 W) + nen (45)
the single user case, the lack of side information at thevece 1 " n
strongly limits capacity. We show that in both the binary and =n- §H(Y1 @Y W) + ney (46)
Gaussian cases if the interfering sequences are independen B 1 " "
time-sharing is optimal in the limit of large interferen@dso T §H(Sl ® 57) + nen (47)
certain achievable rates and their optimality propertiageh B 1 48
been discussed. The capacity has been established fordhe tw =n(l- §H(81 ®S82) +en ), (48)

user noiseless binary case and for the Gaussian case in the .
high signal-to-interference-plus-noise ratio limit. Sewhat where [2h) follows from the fact that conditioning reduces

surprisingly, the optimal schemes are very different foz thentropy, .LZ‘.B) follqws fro;n tt:e fact thary" © Yy' is a
WO Cases. deterministic function of Y;*, Y3*), (@) follows from the fact

It may be possible to extend the upper bounding techniq Qgtyl &Y =5 EB 592' and [_ZJ_S)_foIIows from the fact that
in this paper to more general channel models and perhaps hSlna_nd 5 are i.id. so _the_ J.Omt entropy of the sequence
also sharpen the results for the Gaussian and binary ca ts® 57 is the sum of the individual terms.

We emphasize however that the proposed bounds indicate an

important engineering insight that there is a significasslm APPENDIXII

dealing with more than one interference sequence at the-tran PROOF OF UPPER BOUNC{GH) IN THEOREMIA

mitter, even when they are correlated. An interesting divtec  The upper bound mirrors the converse for two-user case. In
of future work would be to investigate the connections Oéthtgarticular, following the same steps as in the two-user tase

result with a recent result on MIMO broadcast channel Witherive [2%), we have that any achievable rate satisfies
imperfect channel state information at the transmitter],[19

where again it was shown that lack of perfect CSI strongly nR<n— iH(Yf,YQ”, L YRIW) + e, (49)
limits the broadcast channel capacity. K
Proceeding from[{49) we obtain

APPENDIX | nR — ne,
PROOF OF THECONVERSE INTHEOREM[I

1 n n n
We have to show that for any sequence(®f, n) codes sn- EH(Yl g Vg IW)

. o ) , . 1
\&;h P — 0, we must haveR < C, whereC is defined in . gH(Ylnanl SY, .. Y B YRW) (50)
Si iver i 1
Since each receiver is able to decode the message we have_ , _ CH(X" @ ST, ST @ ST, ..., ST @ SL|W)

from Fano’s inequality |
=n— =H(ST®Sy,...,57 & SK|W)

HW|YY) <ne,,  fork=12, (40) K
——HX"® St|ST®Sy,...87 @ Sk, W
wheree,, is a sequence that approaclieadsn — co. We can K ( 151 2 ! i W)
use Fano’s inequality to bound the rate as =n - %H(Sl ®Sa,...,51 B Sk)
_ 1
nk=H(W) - pH(X" e St|st e 87, 87 @ Sk, W) (51)
=HW") + I(W;Y)") < noe oS g
< ey + H(YT) — HOYP|W) (4 SnTRHEES 58K,
- n where [BD) follows from the fact that the mapping
§n6n+ZH(Y1]) —H(Y1 |W) (42) (}/In’}anvyKn) N (}qn’ylnea}én”yln@}én) |S invert-

=1 . ible, and [Bl1) follows from the fact that}’, 53, ... Sy are all
<nen +n— HY"[W), (43) ii.d. and independent o#.
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APPENDIXIII We first upper bound?; as
PROOF OFUPPERBOUND IN THEOREME
@3 & nRy < IW;Y)") + ney,

We now derive[(T5) for?'!. We first note that the capacity — h(Yln) — WY W) + ney
of the channel only depends on the marginal distributions
p(Y1"| X", 5T, 57) and p(Y3'[X™,, 5T, 53) and not on the < Zh h(Y'|W) + ne, (54)

joint distributionp(Y7", Y3*| X", ST, S%). Allowing correlation
between the noise¢Z; and Z, does not change capacity. " q
Specifically, we have Z slog2me(P+1+Q + 2P h(Y{"|W) + nep.
Lemma 1:Let P}* be the probability of decoding error in =1 (55)
@). If P is bounded away from zero for a certain correlation n
betweenZ; and Z; above then it is bounded away from zero < —log2me(P + 1+ Q + 21/ PQ) — h(Y*|W) + ne,,
for any other correlation betwee#; and Zs. 2 (56)
Proof: The argument is essentially the same as given i
[7, Ch 14, Page 454]. We repeat it here for completeness. L
PL™ and P2™ denote the error probabilities in decoding al
receiver 1 and 2 respectively. We have

[\D

ere [Bh) follows from the chain rule and the fact that
onditioning reduces entropy, arld(55) follows from thet fac
that eachy; has a variance no larger thath+ 1+ Q +2/P;Q
and its differential entropy can be upper bounded by that of
P = Pr (g (Y{") # W) a Gaussian RV. Finally[156) is a consequence of Jensen’s

on " inequality.
Pet =Pr(gaY5") # W) Similarly applying the above chain of inequalities on User
2, we have
Pr=Pr| [J {o(i") # W} n
k=1,2 nRy < 510g2ﬂ'e(P—|—1+Q+2\/PQ) — h(Y3}|W) + ne,.
(57)
Next, note that Now we can find an upper bound on the common informa-
max{ Pl p2ny < pr < pln 4 paa (52) tion rate using[[36) and(b7):
nR =nmin(R;, Ry) < 2(R1 + Rs)
where the left inequality in{%2) follows from the fact that b 2
definition P* > Pk™ for k = 1,2, and the right inequality < log2me(P 4+ 1+ Q +2/PQ) — lh(y{lm/)
follows from the union bound. In turn, note that bag" and T2 1 2
P2m™ do not depend on the correlation betwe#gn and Z,. — —h(Y3|W) + ne,
Accordingly, both the left and right hand terms [0}(52) do not n 2
depend on the correlation betweeh and Z,. In particular 5 log2me(P 4+ 1+ Q + 2+/P h(Y", Y3 W) + ney,

if P} is bounded away frond for some correlation between (58)
Z, and Z,, then necessarily one d@t!'" and P?" is bounded . .

away from zero. Thus the probability of error is bounded awdyhere the last inequality(58) follows from the fact that
from zero for all possible correlations. m conditioning reduces the differential entropy.

In the rest of the section we will fi¥?[Z,Z,] = p and We now need to lower bound(Y;",Y7’ |Wg +|2 what
derive an upper bound. Thereafter, we will optimize oveto  follows n""enW'" also use the notatiorb}; = =—== and
tighten the upper bound. We will need the following additibn S™ = 5152 Note thatS, andS_ are mutually independent,
properties ofZ, and Z,, which are readily computed. GaussiariN(0, Q).

Lemma 2:Let Z; and Z; be standard normal, jointly

Gaussian random variables with correlatienDefine Z_ 2

h(Y)", Y3 W)

(Z1 = Z2)/[V2 and Zy 2 (Zy + 2)/V2. ThenZy andZ_ _, (W= Y8 VP4V 1y, 59
are independent zero-mean Gaussian random variables with V2 V2
variancesl + p and1 — p, respectively. (S 12X 5+ 2wy 0)

To obtain our upper bound we show that a sequence of N . . . .
(2%, n) codes that can be decoded by both the receivers with~ h(S™ + Z"|W) + h(V2X" + S+ ZY W, 8" + Z27)

P — 0 must satisfyR < R in [Id). Note that our power (61)

constraint is of the fornE[X?] < P, with 3" | P, < nP. =h(S" +Z") + I(ST;V2X™ + ST + Z|W, 8" + Z")
SupposeR; and Ry denote the rates at which the two _|_h(\/_Xn_|_Sn + 20 W, 8™+ 2", ST (62)

receivers can reliably decode the common message. The rate

of the common message must satigfy< min(R;, Rs). h(S™ + Z%) + I(S1; V2 X" + S + Z W, 8™ + Z7)
From Fano's inequality, we have that for some sequence + h(\/_X" + ST+ Z W, 8" + 27, ST, X" (63)

which approaches 0 as — oo, = h(S™ +Z") + 1(S7;V2X" + S + ZH|W, S + Z™)

H(WI[Y]") < ney, for k =1,2. (53) +hZY) (64)
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The above steps are justified as follows. [0](59) we havike differential entropy with a fixed variance is maximized
used the fact that the differential entropy is invariant to for a Gaussian distribution an@{71) follows from Jensen’s
transformation of unit determinant. We substitute ¥grand inequality. This establisheE{|66). ]

Y, in @0). (&1) follows from the chain rule. INC{B2), we first  Finally, by substituting,[{86)[165) intd_(58), we get
drop the conditioning ovel¥” in the first term, sincéS™, Z™)

are jointly independent of/ and expand the second term. 1 P+Q+1+2/PQ

Finally (&3) follows from the fact that conditioning oA ™ R< 510% N

further reduces the differential entropy whileX(64) is a ®n P +p

quence fromz? being independent dfX™, S, 5™, Z™, W), _ [} log ( Q )} e 73)
Since S, 7%}, Z" are all i.i.d. Gaussian with powerg, 2P+1+p "

1+ p and1 — p respectively, we have froni{b54)
Finally, sincep is a free parameter of choice, we can select

WY, Y3 W) = I(SY5V2X" + ST + Z3|W, 8™ + Z27) it to be the value that minimize§{73) and th{is](17) follows.
+ 2 1Og 2me(Q +1— p) + 2 og 2me(1 + p) 1O obtain the tightest possible bound we can optimize ower th
(65) value of p. We obtain [Ib) by selecting the following choice

It remains to lower bound the mutual information terrrﬁOr p-
in @5). We first note that sinceS is independent of ) Q2 fQR<2
(W,8™,Z™) one can drop the conditioning in the mutual r(@Q) = 1 if Q> 2. (74)
information expression.

Lemma 3:For eachn > 1 and for any distribution

p(X"|S™, ST, W) such thaty~" | E[X7] <nP, The mutual o cains from Eeedback
information term in[[8b) can be lower bounded as

In the presence of feedback, the transmitted symbol at time
I(S"; V2X™ + 8" + Z7|W, S + Z") P y

i depends on the past output i®. = f(w,yi ', ys !, s").
In this situationZ, ; is still independent of W, Z™, S™, X1).
This condition suffices, for deriving the bounds IE](SEBII)(GS
) and [66). Lemm4]1l does not hold however, since now the
joint distribution between noise sequences does mattdren t
Proof: The left hand inequality follows immediately by probability of error. So while the expressidii73) holdsgon
expandingl (S7; vV2X™ + ST + Z7|W,S™ 4+ Z") and using cannot optimize ovep, but must select the value to be the
the fact thatS”! is mdependent O(SE zZn W), actual correlation coefficient in the channel.
The right-hand side is a consequence of the rate-
distortion theorem for i.i.d. Gaussian sources. Note that
B[, (V2Xi + Z13)") <n(2P + 1+ p). Thus if the right g yniversal Gap between Upper and Lower Bounds
inequality were violated, for a certain distributipQX™|S? ),
we could use it as a test channel in quantizing a n- _dimenkionaln this section we verify[[30), the gap between upper and
i.i.d. Gaussian source and do better than the rate distorti@wer bounds for all values of” and Q). We consider three

+

n Q
> n., n n n > | =
> I(ST;V2X" + ST+ Z7) > [2log(2p+1+p)

bound. Alternately, note that different cases.
For Q < 2, we have
I(S™; V2 X"+ 87 +Z7)
= h(S7}) — h(S}IV2X" + ST + Z7) RI_R_= %log (P+PQ+11 +2V2PQ) (75)
= h(ST) — h(V2X" + ZU|V2X" + ST + Z7)  (87) +1+Q/
> h(ST) — h(V2X" + Z7) (68) It can be verified that the maximum fét > 0 and0 < Q < 2
n occurs forQ = 2 andP = 1/4(9—+/17). The maximum value
> h(ST) = Y h(V2X; + Z5) (69) s 1/21og((5 + VI7)/4) ~ 0.5947.
=1 For the case2 < @ < 2(P + 1) the difference is also
n 1 given by [Z5). The supremum is attained when we @et
> — -y - : :
-2 log @ Z; 2 log(2F: + 1+ ) (70) 2(P+1) and letP — oco. The supremum value is/2 log((3+
n . 2v/2)/2) ~ 0.7716.
2 5log@ - 51 8(2FP +1+p) (71) Finally for the caseQ > 2(P + 1), the difference between
n Q + the bounds is given by
2%\ 2Ppri+, (72)
pp L (PHQ+1+2VPQ
Here [&Y) follows from the fact thab(X|Y) = A(Y — D Q

X|Y), @8) from the fact that removing the conditioning on
V2X"+ 8"+ Z7 only increases the differential entroplz]69)The supremum is obtained by takin= 2(P+1) and letting
follows from the chain rule,[T70) follows from the fact thatP — oo and again equals/2log((3 + 2v/2)/2).
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C. The case of K receivers
We consider the case where there B’reepeivers. To getan 6 ‘ v -Dmderz Wy
upper bound, we assume perfect correlation between the noi8” -
N .

sequences i.e. receiver=1,2,... K getsY;” = X" + S + Wi

Z™, where the interferences; are mutually independent and
i.i.d. N(0,Q) and Z" is i.i.d. N(0, 1). Zi
TO_ upper bound the common rate for the case JOf iy 7. Two-user Gaussian Channel with one-interferencriaeces. We
receivers, first note that the derivation that leads[Id (%8) cderive upper bound on the capacity of this channel and shawttis is also
be straightforwardly generalized to yieId an upper bound for the two-interference channel in Hig. 4eHmly receiver
2 experiences additive white Gaussian interference otinae(.

Encoder

nR < g log 2me(P + Q + 1 + 2/PQ)
- ?h(yl Y5 YRIW) 4 ney The justification for the above steps is as follows. [I0l (78)
; . — have use the fact that the differential entropy is invdria
We now consider generalizing our derivation for[](65 € hav ; .
to lower boundh(Y",Yy,...Y2[W). Let us consider a Xlrotatmn, while [[79) follows from Clanﬁ].l. Ii(80) anﬂ;{Sl)
we have used the fact thal* are mutually independent, i.i.d.

set of K orthogonal vectorsvy, v, ... vic, Where vy = and independent dfV’. Eq. [83) follows by additionally con-

L 1,1,...,1] and va,... bitrarily ch . Let® . : :
%[—7 ’(anY]"an ‘1”27’1) d‘éﬁotzreth:% I—rtinl); t;forseecr;ivez ditioning the entropy term ir {8$2) wittX™ and using the fact
AL S22 T K P that Z™ is independent of W, X", T7*,... T}%). Finally (84)
sequences. PG n K
L o . follows from fact that sinc&?" is independent of 7"} * , and
Claim 1: The component-wise inner product & with | hJ J 3
satisfies: W we can use an argument analogous to that in Lerfiima
Vis--H VK : to have I(T"; vVKX" + VKZ" + TPTy ... TR, W) >
<Yn,v1> = \/HKX +.\/EZ + 1] 77) [5 1O_g %)} . Finally, substituting [[84) in[{26), we
(Y",v;) =T forj=2,3,...K. obtain [31).
WhereTy, Ty, ... TR are mutually independent, i.i.d. Gaus-
sianN(0, @) sequences. APPENDIX IV
Proof: The expression fo{Y™,vy) can be verified by PROOF OFUPPERBOUND ([Id) IN THEOREME

direct substitution. Herd" = —L(S{ + S + ... + Sg). _ _
K
Sincev; andv; are mutually orthogonal foj > 2, we have Our proof is gtructure_d as_follows. We derlvg an upper
S v = 0. Hence (Y™, v;) = 325 v;,8". We denote bound for a particular single-interference Gaussian cenn
- - and reason that the capacity of the two-interference channe
of interest in Theorerfll3 cannot be higher.

As shown in Figurdd7, the single-interference channel is
one in whichS} = 0 and S§ = S™. Only the second receiver
experiences interference.

The subsequent two Lemmas establish that an upper bound

T = SR ;8P Since theS} are mutually independent
and i.i.d. andv; are mutually orthogonal it follows thaf;
are all mutually independent and i.i.84(0, Q). [ |

We can now lower boundl(Yy", Yy, ... Y2|W) in a manner
analogous to the derivation if{65).

h(Y", Y, L YRW) on the capacity of the single interference channel is also an
= h((Y7,v1) , (Y3, va) .. (Y% vi) W) (78) upper boand on the capacity of the two-interference channel
n n n n in Figure[4.
- h(\/EX +VEZ" + LT3, Tr[W) (79) Lemma 4:Suppose that for the single interference channel
=hMT3) + ...+ h(TE) model in Figurell7, the encoder and decoder 1 have access
+ h(\/EX” +VKZ" + Ty, .. TR W) (80) to a source of common randomne3swhich is independent
n(K —1) of the messagéV and (S, Z1, Z>). Then the capacity of the
=5 log 2me() single interference Gaussian channel is at-least adsnlasrgmea
" " - K channel with two independent interferences in Fidire 4.
+hVEX" + VEZ" + TIWATIY,) (81) Proof: The proof follows by observing that using the
= MK -1) log 2meQ source of common randomne&s we can generate an i.i.d.
2 GaussianN(0, Q)) sequenceSg, for any value ofn. This
+h(VEX" + VKZ" + TP W T}, sequence is independent of all other channel parameters and
+ (T VEX® +VKZ" + TP Ty ... TR, W) (82) i; known to both the encoder and decoder 1. It is used to
n(K —1) n simulate the two independent interference channel aswsllo
> 5 log 2me@ + 5 log 2mre K Decoder 1, simply adds this sequence to the received output,
n n n R o and ignores its knowledge in decoding. The encoder has to dea
+ (T VEX" +VEZ" + T3 - T, W) (83) Wi1t_h two sequences$Sg, S™), both ii.d. GaussiatN(0, Q).
n(K —1) n n Q th this transformation, any coding scheme for the two
2 2 log 2meQ + 2 log 2me K + [5 log <K(P + 1))i terference channel in Figutg 4 can be used over this channe

(84) with arbitrarily small probability of error. [ ]
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Lemma 5:A source of common randomnegs which is Our bound forR follows the derivation analogous to that
independent of the messad®& and the channel parametersor (&8) and is given by
(S, Z1, Z5) cannot increase the capacity of the single interfer- n
ence channel in Figulg 7. nk < Tlog2me(P +1+Q+2vPQ)

Proof: Our proof is analogous to the proof that common n 1 n on
randomness does not increase the capacity in the singte-use + 1 log 2me(P +1) — §h(Y1 JYSHUW) 4 2ney,
case in [8]. We argue that for any sequence of codes, givent remains to lower bound the joint-entropy term [@l(87).
a stochastic encoder and decoder that depends on the shared
random variabled, there exists a deterministic encoder and

(87)

decoder with a smaller probability of error. h(Y1", Y3")
Given the message: and state sequencé, and a realiza- YY) YR -YY
tion 0 of the shared random variable, the encoding functiom 2 R w (88)
(c.f. Definition[d) be given byz™ = f(m,s™,6). Similarly
the decoding functions are given by, = gi(yp,0) for n n, L en 1 on "
k=1,2,...,K. The average probability of error for the rate h{V2X™+ 23+ \/QS ’ \/§S +Z2\W
1

R randomized code is then defined by
=h ( St4+Zn

w
V2 )
1 2nR ] 1 1

= 5w 2 Fe S e m o)) | B VX 2 ST W ST 4 2T
y":3k:gr (yi,0)#m s"

2"k >h (—LS"+ZE>

Pn,randomizcd
e

1
= Fe [%—R > > > p(s™py"|f(m, 5", 6)) V2
m=1ym:3k:gr (yg,0)F#m " 4 R V2XT 4+ 2T+ iS" w, —LS" + 2z, 85" X"
K V2 V2
= Ee |Pre [ J{o(V0) # W} @ =01, (89)
k=1
1
: . . =h|-——728"+2" ) +n(Z] 90
where the second equality follows by interchanging the expe ( V2 > (Z%) (%0)
tation and summation oven, and the third equality follows  n Q n
by observing that given a realization of the random variablg 3 10827€¢ | 5 +1—p | + 5 log2me (1+p) (91)

0, the encoding and decoding are both deterministic and
can use the definition of the average probability of erron (
Finally note that there must be some valug)dbr which the

term inside the expectation is minimized. We can design t e L
b g conditioning on additional terms only reduces the secord,te

encoding and decoding function for this deterministic eadd . . n i
6 and our probability of error will be lower than the averagev.vhIIe () is follows from the fact tha} is independent of

Thus having access to common randomness cannot decrea:yigther. va_rlables n the second term. .
ubstituting [[A1) into[[87) and rearranging, we get

¥ the above steps_(B8) follows from the fact that diffeiaint
transformation is invariant under a pure rotatidn] (89)cfeb
rom the fact that the paifS™, Z™) is independent of/” and

the probability of error for the channel of interest. [ ]

Lemmal# and5 imply that an upper bound on the capacity R< 1 1 1+ P

. . . . . < -—log | ——

of the single interference channel in Figuk 7 is also an 4 1+p 92
upper bound on the two independent-interference channel in 1 P+Q+1+2/PQ (92)
Figure[3. So we will derive an upper bound for the former. + 1 log ( 02+1—p ) Ens

Invoking the result of LemmBl 1, we can &7, Z5] = p, . .
wherep € [—1, 1] will be optimized later. As in the previous . Thus we have ShO\.Nn the expression (1.6)' To obtain the
A dix definez. 2 (Zy — 75)/2 and Z A (Z1 + tightest bound we minimize the right hand side of the above
Zp)p/e\% -~ 2 + =\l over p. The tightest bounds is obtained with the choice

2 .

SupposeR; and R, denote the rates at which the two . _JQ/4 it <4 (93)
receivers can reliably decode the common message. Thefrate o rr@)= 1 if Q> 4.

the common message must satisfy< min(R;, R2). Similar o ) ) _
to our derivation in AppendikTll, we use Fano's inequaligy t Substituting this value op, in (92) yields [1H).
boundR; and R, as
A. Gains from Feedback
an

IN

As noted in AppendiXTIl=A,in the presence of causal feed-

g log 2me(P + 1) — h(Y{|W) + nen, (85)
n By n back it still holds thatZ. ; is independent of W, Z", S™, X}).
nhz < 2 log2me(P +1+ Q + 2V PQ) — h(Y5'|W) + nen. It can be verified that with this condition, the derivatiorath

(86) leads to [[BI) continues to hold and the upper boundih (92)

AN
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