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Vector Gaussian Multiple Description with
Individual and Central Receivers1
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Abstract

L multiple descriptions of a vector Gaussian source for individual and central re-

ceivers are investigated. The sum rate of the descriptions with covariance distortion

measure constraints, in a positive semidefinite ordering, is exactly characterized.

For two descriptions, the entire rate region is characterized. Jointly Gaussian de-

scriptions are optimal in achieving the limiting rates. The key component of the

solution is a novel information-theoretic inequality that is used to lower bound the

achievable multiple description rates.

1 Introduction

In the multiple description problem, an information source is encoded into L packets
and these packets are sent through parallel communication channels. There are several
receivers, each of which can receive a subset of the packets and needs to reconstruct
the information source based on the received packets. In the most general case, there
are 2L − 1 receivers and the packets received in each receiver correspond to one of 2L −
1 subsets of {1, . . . , L}. A long standing open problem in the literature [1–10] is
to characterize the information-theoretic rate region subject to the specified distortion
constraints. Practical multiple description codes have been discussed in [11–18] and
recent work [19, 20] has considered the multiple description problem in the context of
the distributed source coding scenario. Optimal descriptions of even the Gaussian source
with quadratic distortion measures have not been fully characterized. In the special
case of two descriptions of a scalar Gaussian source with quadratic distortion measures,
however, the entire rate region has been characterized in [1].

Our focus is on L descriptions of a memoryless vector Gaussian source forwhere L

individual and a single common receiver (cf. Figure 1). Each receiver needs to reconstruct
the original source such that the empirical covariance matrix of the difference is less than,
in the sense of a positive semidefinite ordering, a “distortion” matrix. In this setting, the
symmetric rate multiple description problem of a scalar Gaussian source with symmetric
distortion constraints has been characterized in [7, 8, 10], but a complete understanding
of all other rate-distortion settings is open.

1This research was sponsored in part by NSF CCR-0325924 and a Vodafone US Foundation Fellow-

ship.

2The authors are with the Department of Electrical and Computer Engineering and the Coor-

dinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana IL 61801; e-mail:

{huawang,pramodv}@uiuc.edu

1

http://arxiv.org/abs/cs/0510078v1


channel 1

channel 2

channel L decoder L

central
decoder

encoder 1

encoder 2

encoder L

decoder 2

decoder 1

x̂L

x

x̂1

x̂2

x̂0

Figure 1: MD problem with only individual reconstructions and central reconstruction

Our main result is an exact characterization of the sum rate for any specified L + 1
distortion matrix constraints. With L = 2, we characterize the entire rate region. Our
contribution is two fold:

• First, we derive a novel information-theoretic inequality that provides a lower bound
to the sum of the description rates. The key step is to avoid using the entropy
power inequality, which was a central part of the proof of two descriptions of the
scalar Gaussian source in [1]: the vector entropy power inequality is tight only
with a certain covariance alignment condition, which arbitrary distortion matrix
requirements do not necessarily allow.

• Second, we show that jointly Gaussian descriptions actually achieve the lower bound
not by resorting to a direct calculation and comparison, which appears to be difficult
for L > 2, but instead by arguing the equivalence of certain optimization problems.

Consider another two description problem of a pair of jointly Gaussian memoryless
sources as depicted in Figure 2. There are two encoders that describe this source to
three receivers: receiver i gets the description of encoder i, with i = 1, 2 and the third
receiver receives both the descriptions. Suppose receiver i is interested in reconstructing
the ith marginal of the jointly Gaussian source, with i = 1, 2. The third receiver is
interested in reconstructing the entire vector source. This description problem is closely
related to the vector Gaussian description problem that is the main focus of this paper.
We exploit this connection and characterize the rate region where the reconstructions
have a constraint on the covariance of error at each of the receivers (in the sense of a
positive semidefinite order).

We have organized the results in this paper as follows. In Section 2 we give a formal
description of the problem and summarize our main result. The derivation of a lower
bound is in Section 3. In Section 4 we provide an upper bound and provide conditions for
the achievable sum rate to meet the lower bound. We see in Section 5 that the conditions
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Figure 2: Multiple Descriptions with separate distortion constraints.

are indeed satisfied in the special case of a scalar Gaussian source. The solution in the
case of the more complicated vector Gaussian source is in Section 6. The solution to the
multiple description problem depicted in Figure 2 is the topic of Section 7.1. Finally, while
the characterization of the rate region of general multiple descriptions of the Gaussian
source (with each receiver having access to some subset of the descriptions) is still open,
we can use the insights derived via our sum rate characterization to solve this problem
for a nontrivial set of covariance distortion constraints; this is done in Section 7.2.

A note about the notation in this paper: we use lower case letters for scalars, lower
case and bold face for vectors, upper case and bold face for matrices. The superscript t
denotes matrix transpose. We use I and 0 to denote the identity matrix and the all zero
matrix respectively, and diag{p1, . . . , pn} to denote a diagonal matrix with the diagonal
entries equal to p1, . . . , pn. The partial order≻ (<) denotes positive definite (semidefinite)
ordering: A ≻ B (A < B) means that A−B is a positive definite (semidefinite) matrix.
We write N (µ,Q) to denote a Gaussian random vector with mean µ and covariance Q.
All logarithms in this paper are to the natural base.

2 Problem Setting and Main Results

2.1 Problem Setting

The information source {x[m]} is an i.i.d. random process with the marginal distribution
N (0,Kx), i.e., a collection of i.i.d. Gaussian random vectors. Denoting the dimension
of {x[m]} by N , we suppose that Kx is an N × N positive definite matrix. There are
L encoding functions at the source, encoder l encodes a source sequence, of length n,
xn = (x[1], . . . , x[n])t to a source code C

(n)
l = f

(n)
l (xn), for l = 1 . . . L. This code C

(n)
l

is sent through lth communication channel at the rate Rl =
1
n
log |C(n)

l |. There are L

individual receivers and one central receiver.
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For l = 1, . . . L, the lth individual receiver uses its information (the output of the lth

channel) to generate an estimate x̂n
l = g

(n)
l

(

f
(n)
l (xn)

)

of the source sequence xn. The

central receiver uses the output of all the L channels to generate an estimate x̂n
0 of the

source sequence xn. Since we are interested in covariance constraints, the decoder maps
can be restricted to be the minimal mean square error (MMSE) estimate of the source
sequence based on the received codewords. So,

x̂n
l = E

[

xn|f (n)
l (xn)

]

, l = 1, . . . , L

x̂n
0 = E

[

xn|f (n)
1 (xn), . . . , f

(n)
L (xn)

]

.
(1)

Suppose the reconstructed sequences satisfy the covariance constraints

1

n

n∑

m=1

E

[

(x[m]− x̂l[m])t(x[m]− x̂l[m])
]

4 Dl, l = 1, . . . , L,

1

n

n∑

m=1

E

[

(x[m]− x̂0[m])t(x[m]− x̂0[m])
]

4 D0,

(2)

then we say that multiple descriptions with distortion constraints (D1, . . . , DL, D0) are
achievable at the rate tuple (R1, . . . , RL).

The closure of the set of all achievable rate tuples is called the rate region and is denoted
by R∗(Kx, D1, . . . , DL, D0). Throughout this paper, we suppose that 0 ≺ D0 ≺ Dl ≺
Kx, ∀l = 1, . . . , L.3

2.2 Sum Rate

Our main result is the precise characterization of the sum rate of multiple descriptions
for individual and central receivers.

Theorem 1. For distortion constraints (D1, . . . , DL, D0), the sum rate is

sup
Kz≻0

1

2
log








|Kx||Kx +Kz|(L−1)|D0 +Kz|

|D0|
L∏

l=1

|Dl +Kz|








. (3)

3That D0 4 Dl, is without loss of generality is seen by applying the data processing inequality for

mmse estimation errors; having more access to information can only reduce the covariance of the error in

a positive semidefinite sense. Similarly, Kx 4 D0 is also not interesting; here we simplify this condition

and take D0 ≺ Kx.
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This sum rate is achieved by a jointly Gaussian random multiple description scheme:
let w1, · · · , wL be zero mean jointly Gaussian random vectors independent of x, with
the positive definite covariance matricex (w1, · · · , wL) denoted by Kw. Defining

ul = x+wl, l = 1, . . . , L,

we consider Kw such that

Cov[x|ul]
def
=E

[

(x− E[x|ul])
t(x− E[x|ul])

]

4 Dl, l = 1, . . . , L,

Cov[x|u1, . . . , uL]
def
=E

[

(x− E[x|u1, . . . , uL])
t(x− E[x|u1, . . . , uL])

]

4 D0.
(4)

To construct the code book for the lth description, draw enRl un
l vectors randomly ac-

cording to the marginal of ul. The encoders observe the source sequence xn, look for
codewords (un

1 , . . . , un
L) that are jointly typical with xn and send the index of the re-

sulting un
l through the lth channel, respectively. The lth individual receiver uses this

index and generates a reproduction sequence E[xn|un
l ] for l = 1 . . . L, the central receiver

uses all the L indices to generate a reproduction sequence E[xn|un
1 , . . . , u

n
L]. For every

Kw satisfying (4), the rate tuple (R1, . . . , RL) satisfying

∑

l∈S

Rl ≥
∑

l∈S

h(ul)− h(ul, l ∈ S|x) =
1

2
log

∏

l∈S

|Kx +Kwl
|

|KwS
|

, ∀S ⊆ {1, . . . , L} (5)

is achievable by using this coding scheme, where KwS
is the covariance matrix for all

wl, l ∈ S, and Kwl
= E[wt

lwl]. In particular, the achievable sum rate is

1

2
log

L∏

l=1

|Kx +Kwl
|

|Kw|
. (6)

We denote this ensemble of descriptions, throughout this paper, as the jointly Gaussian
description scheme and the time sharing between them as the jointly Gaussian description
strategy. We show that jointly Gaussian description schemes are optimal in achieving
the sum rate (3).

2.3 Rate Region for Two Description Problem

For two descriptions, we can characterize the entire rate region.

Theorem 2. Given distortion constraints (D1, D2, D0), the rate region for the two

5
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Figure 3: Rate region for two description problem

description problem for an i.i.d. N (0,Kx) vector Gaussian source is

R∗(Kx, D1, D2, D0) =







(R1, R2) :

Rl ≥
1

2
log

|Kx|

|Dl|
, l = 1, 2

R1 +R2 ≥ sup
Kz≻0

1

2
log

|Kx||Kx +Kz||D0 +Kz|

|D0||D1 +Kz||D2 +Kz|







. (7)

We show that if the distortion constraints (D1, D2, D0) satisfy D0+Kx−D1−D2 ≻ 0
and D−1

0 + K−1
x − D−1

1 − D−1
2 ≻ 0, we can get the optimizing Kz by solving a matrix

Riccati equation. An illustration of the rate region is shown in Figure 3. In this case, if
we let Kwl

= [D−1
l −K−1

x ]−1 for l = 0, 1, 2, then the optimizing Kz is

Kz = Kx(Kx −A∗)−1Kx −Kx,

where

A∗ = (Kw1−Kw0)
1
2

[

(Kw1 −Kw0)
− 1

2 (Kw2 −Kw0)(Kw1 −Kw0)
− 1

2

] 1
2
(Kw1−Kw0)

1
2 −Kw0 .

Letting Rsum denote the optimal sum rate, the two corner points in Figure 3 are

B1 =

(
1

2
log

|Kx|

|D1|
, Rsum −

1

2
log

|Kx|

|D1|

)

, and

B2 =

(

Rsum −
1

2
log

|Kx|

|D2|
,
1

2
log

|Kx|

|D2|

)

.
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3 Lower Bound

By fairly procedural steps, we have the following lower bound to the sum rate of the
multiple descriptions:

n

L∑

l=1

Rl ≥
L∑

l=1

H(Cl) =
L∑

l=1

H(Cl)−H(C1, . . . , CL|x
n)

=

L∑

l=1

H(Cl)−H(C1, · · · , CL) +H(C1, . . . , CL)−H(C1, . . . , CL|x
n)

=I(C1;C2; . . . ;CL) + I(C1, . . . , CL;x
n),

(8)

where we have defined

I(C1;C2; . . . ;CL)
def
=

L∑

l=1

H(Cl)−H(C1, . . . , CL) =

L∑

l=2

I(Cl;C1 . . . Cl−1),

and called it the symmetric mutual information between C1, . . . , CL. Note that
I(C1;C2; . . . ;CL) ≥ 0 and is also well defined even when C1, . . . , CL are continuous
random variables. Our main result is the following information theoretic inequality which
gives a lower bound to the sum of symmetric mutual information between (C1, C2, . . . , CL)
and mutual information between C1, C2, . . . , CL and xn for given covariance constraints.

Lemma 1. Let xn = (x[1], . . . , x[n]), where x[m]’s are i.i.d. N (0,Kx) Gaussian ran-
dom vectors for m = 1, . . . , n. Let C1, . . . , CL be random variables jointly distributed
with xn. Let x̂n

0 = E[xn|C1, . . . , CL] and x̂n
l = E[xn|Cl] for l = 1, . . . , L. Given positive

definite matrices D1, . . . , DL, D0, if

1

n

n∑

m=1

E[(x[m]− x̂l[m])t(x[m]− x̂l[m])] 4 Dl, l = 1, . . . , L,

1

n

n∑

m=1

E[(x[m]− x̂0[m])t(x[m]− x̂0[m])] 4 D0,

(9)

then

I(C1;C2; . . . ;CL)+I(C1, . . . , CL;x
n) ≥ sup

Kz≻0

n

2
log

|Kx||Kx +Kz|(L−1)|D0 +Kz|

|D0|
L∏

l=1

|Dl +Kz|

. (10)

Furthermore, there exists a jointly Gaussian distribution of (C1, . . . , CL,x
n) such that the

inequality in (10) is tight.
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This is a fundamental information-theoretic inequality which involves only the joint
distribution4 between C1, C2, . . . , CL and xn and bounds on mean square error estimation
of xn from C1, C2, . . . , CL; we delegate the proof of this result to Appendix B. We can
now use Lemma 1 to derive a lower bound to the sum rate

L∑

l=1

Rl ≥ sup
Kz≻0

1

2
log

|Kx||Kx +Kz|(L−1)|D0 +Kz|

|D0|
L∏

l=1

|Dl +Kz|

. (11)

By letting L = 1 in the lemma above, we can derive a simple lower bound to the rate
of the individual descriptions as well:

Rl ≥
1

n
H(Cl) =

1

n

(
H(Cl)−H(Cl|x

n)
)

=
1

n
I(xn;Cl)

≥
1

2
log

|Kx|

|Dl|
, l = 1, . . . , L.

(12)

This bound is actually the point-to-point rate-distortion function for individual receivers,
since each individual receiver only faces a point-to-point compression problem.

Note that for any positive definite Kz,

1

2
log

|Kx||Kx +Kz|(L−1)|D0 +Kz|

|D0|
L∏

l=1

|Dl +Kz|

is a lower bound to the sum rate of the multiple descriptions. Two special choices of Kz

are of particular interest:

• Letting Kz = ǫI and 0 ǫ → 0+, we have the following lower bound:

L∑

l=1

Rl ≥
1

2
log

|Kx|L

|D1| . . . |DL|
. (13)

This bound is actually the summation of the bounds on the individual rates.

• Letting some eigenvalues of Kz goes to infinity, we have the following lower bound:

L∑

l=1

Rl ≥
1

2
log

|Kx|

|D0|
. (14)

4This inequality holds even when C1, C2, . . . , CL are not simply functions of x
n and can also be

continuous random variables.
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This bound is the point-to-point rate-distortion function when we only have the
central distortion constraint.

We will see later that for some distortion constraints (D1, . . . , DL, D0), (13) and (14)
can be tight.

4 Upper Bound

In the previous section we gave a lower bound to the sum rate. Now we give a upper
bound to the sum rate by using the jointly Gaussian description scheme described in
Section 2.2.

4.1 Jointly Gaussian Multiple Description Scheme

First we give a sketch of the achievable rate region by using jointly Gaussian description
scheme. Given the source sequence xn, as long as we can find a combination of codewords
(un

1 , . . . , u
n
L) that are jointly typical with xn, all the receivers can generate reproduction

sequences that satisfy their given distortion constraints. An intuitive way to understand
(5) is the following: since (un

1 , . . . , un
L) are jointly typical with xn, then for any S ⊆

{1, . . . , L}, we have that un
l , l ∈ S are jointly typical with xn. Now the probability that

a randomly generated combination of codewords un
l , l ∈ S are jointly typical with xn is

roughly
enh(ul,l∈S|x)

∏

l∈S

enh(ul)
,

and the number of possible combination of codewords un
l , l ∈ S are

∏

l∈S

enRl. Thus, as

long as
∑

l∈S

Rl ≥
∑

l∈S

h(ul)− h(ul, l ∈ S|x), (15)

we can find a combination of codewords un
l , l ∈ S that are jointly typical with xn.

Rigorously speaking, we need to show that as long as (15) is satisfied, then for any
given source sequence xn we can find a combination of codewords (un

1 , . . . , un
L) such

that un
l , l ∈ S are jointly typical with xn for all S ⊆ {1, . . . , L}. The second moment

method [21] is commonly used to address this aspect, and a proof can be found in [7].

Evaluating (15) based on the jointly Gaussian distribution of x and u1, . . . , uL, we
get that all the rate tuples (R1, . . . , RL) satisfying

∑

l∈S

Rl ≥
∑

l∈S

h(ul)− h(ul, l ∈ S|x) =
1

2
log

∏

l∈S

|Kx +Kwl
|

|KwS
|

, ∀S ⊆ {1, . . . , L} (16)

9



are achievable by the jointly Gaussian description scheme. In particular, we have that
the achievable sum rate is

L∑

l=1

h(ul)− h(u1, . . . , uL|x) =
1

2
log

L∏

l=1

|Kx +Kwl
|

|Kw|
. (17)

The resulting distortions (D∗
1, . . . , D

∗
L, D

∗
0) by using jointly Gaussian description scheme

can be calculated as

D∗
l =Cov[x|ul] = [K−1

x +K−1
wl
]−1, l = 1, . . . , L,

D∗
0 =Cov[x|u1, . . . , uL] = [K−1

x + (I, . . . , I)K−1
w (I, . . . , I)t]−1.

(18)

4.2 Combinatorial Property of the Achievable Region

The achievable region given in (15) has useful combinatorial properties; in particular
it belongs to the class of contra-polymatroids [22]. Certain rate regions of the multiple
access channel [23] and distributed source coding problems [24] are also known to have
this specific combinatorial property. To see this, let

φ(S)
def
=
∑

l∈S

h(ul)− h(ul, l ∈ S|x), S ⊆ {1, . . . , L}.

We can readily verify that

φ(S ∪ {t}) ≥ φ(S), ∀t ∈ {1, . . . , L},

φ(S ∪ T ) + φ(S ∩ T ) ≥ φ(S) + φ(T ).
(19)

By definition, we conclude that the achievable rate region of a jointly Gaussian multiple
description scheme is a contra-polymatroid. The key advantage of this combinatorial
propety is that we can exactly characterize the vertices of the achievable rate region
(15). Letting π to be a permutation on {1, . . . , L}, define

b
(π)
i

def
= φ({π1, π2, . . . , πi})− φ({π1, π2, . . . , πi−1}), i = 1, . . . , L,

and b(π) =
(

b
(π)
1 , . . . , b

(π)
L

)

. Then the L! points {b(π), π a permutation} are the vertices

of the contra-polymatroid (15).

4.3 Comparison of Upper Bound and the Lower Bound

Our goal is to show that the jointly Gaussian description scheme achieves the lower
bound to the sum rate. In general it does not seem facile to do a direct calculation and

10



comparison. We forgo this strategy and, instead, provide an alternative characterization
of the achievable sum rate which is much easier to compare with the lower bound.

Similar to the derivation of the lower bound (in Appendix B), we consider an N (0,Kz)
Gaussian random vector z, independent of x and all wl’s. Defining y = x + z, we have
the following achievable sum rate:

L∑

l=1

Rl =

L∑

l=1

h(ul)− h(u1, . . . , uL|x)

=
L∑

l=1

h(ul)− h(u1, . . . , uL) + h(u1, . . . , uL)− h(u1, . . . , uL|x)

=

L∑

l=1

h(ul)− h(u1, · · · ,uL) + I(u1, . . . , uL;x)

(a)

≥
L∑

l=1

h(ul)− h(u1, · · · ,uL) + I(u1, . . . , uL;x)−

(
L∑

l=1

h(ul|y)− h(u1, . . . , uL|y)

)

=

L∑

l=1

(
h(y)− h(y|ul)

)
− h(y) + h(y|u1, . . . , uL) + h(x)− h(x|u1, . . . , uL)

= h(x) + (L− 1)h(y)−
L∑

l=1

h(y|ul) + h(y|u1, . . . , uL)− h(x|u1, . . . , uL)

=
1

2
log

∣
∣
∣Kx

∣
∣
∣

∣
∣
∣Kx +Kz

∣
∣
∣

(L−1)∣
∣
∣Cov[x|u1, . . . , uL] +Kz

∣
∣
∣

∣
∣
∣Cov[x|u1, . . . , uL]

∣
∣
∣

L∏

l=1

∣
∣
∣Cov[x|ul] +Kz

∣
∣
∣

, (20)

where the last step is from a procedural Gaussian MMSE calculation.

Note that if we have

L∑

l=1

h(ul|y)− h(u1, . . . , uL|y) = 0, (21)

then (a) in (20) is actually an equality. Thus, if our choice of Kw and Kz satisfy the
following two conditions:

• (21) is true.

• distortion constraints are met with equality, i.e.,

Cov[x|ul] = Dl, l = 1, . . . , L,

Cov[x|u1, . . . , uL] = D0,
(22)

11



then the upper bound matches the lower bound and we have characterized the sum rate.
In the following we examine under what circumstances the above two conditions are true.

First, we give a necessary and sufficient condition for (21) to be true, delegating the
proof to Appendix C.

Proposition 1. There exists some choice of positive definite Kz such that (21) is true
if and only if Kw, the covariance matrix of (w1, · · · , wL), takes the following form

Kw =









Kw1 −A −A . . . −A
−A Kw2 −A . . . −A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−A . . . −A KwL−1
−A

−A . . . −A −A KwL









, (23)

where 0 ≺ A ≺ Kx.

Next, we look at the conditions for (22) to be true. From (18), we have

D−1
l = Cov[x|ul]

−1 = K−1
x +K−1

wl
, l = 1, . . . , L

D−1
0 = Cov[x|u1, . . . , uL]

−1 = K−1
x + (I, . . . , I)K−1

w (I, . . . , I)t.
(24)

(I, I, . . . , I)K−1
w (I, I, . . . , I)t, is calculated in the following lemma; the proof is

available in Appendix D.

Lemma 2. Let

Kw =









Kw1 −A −A . . . −A
−A Kw2 −A . . . −A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−A . . . −A KwL−1
−A

−A . . . −A −A KwL
.









.

If Kw ≻ 0 and A � 0, then

(I, I, . . . , I)K−1
w (I, I, . . . , I)t =





(
L∑

l=1

(Kwl
+A)−1

)−1

−A





−1

.

Using this lemma, from (24) we arrive at

[
(D−1

0 −K−1
x )−1 +A

]−1
=

L∑

l=1

[
(D−1

l −K−1
x )−1 +A

]−1
. (25)

Defining
Kw0 = (D−1

0 −K−1
x )−1, (26)
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(24) is equivalent to

[Kw0 +A]−1 =
L∑

l=1

[Kwl
+A]−1

. (27)

Thus, if there exists a positive definite solution A to (27), and the corresponding Kw is
positive definite, then the distortion constraints are met with equality, i.e., (22) holds.
It turns out that as long as A is a solution to (27), the resulting Kw is always positive
definite; we state this formally below, delegating the proof to Appendix E.

Lemma 3. If for some Kw0 ≻ 0 and A ≻ 0 (27) is true, then the covariance matrix Kw

defined in (23) is positive definite.

We summarize the state of affairs in the following theorem.

Theorem 3. Given distortion constraints (D1, . . . , DL,D0), let

Kwl
= (D−1

l −K−1
x )−1, l = 0, 1, . . . , L. (28)

If there exists an solution A∗ to (27) and 0 ≺ A∗ ≺ Kx, then the jointly Gaussian
description scheme with Kw defined in (23) with A = A∗ achieves the optimal sum rate,
and the optimal Kz for lower bound (11) is Kz = Kx(Kx −A∗)−1Kx −Kx.

Thus we show that if the given distortion constraints (D1, . . . , DL,D0) satisfy the
condition for Theorem 3, then the jointly Gaussian description scheme achieves the op-
timal sum rate and we can calculate the optimal Kw by solving a matrix equation.
However, for arbitrarily given distortion constraints, (27) may not have a solution A∗

such that 0 ≺ A∗ ≺ Kx. In this case, we can show that there exists a jointly Gaussian
description scheme that achieves the sum rate lower bound, and resulting in distortions
(D∗

1, . . . , D
∗
L,D

∗
0) such that D∗

l 4 Dl for l = 0, 1, . . . , L. In the following we first study
the relatively simpler case of scalar Gaussian source, and then move to discuss the vector
Gaussian source.

5 Scalar Gaussian Source

Here we suppose that the information source is an i.i.d. sequence of N (0, σ2
x) scalar

Gaussian random variables. Let individual distortion constraints be (d1, . . . , dL) and
the central distortion constraints be d0, where 0 < d0 < dl < σ2

x for l = 1, . . . , L. We
consider the jointly Gaussian description scheme with the following covariance matrix
for w1, . . . , wl.

Kw =









σ2
1 −a −a . . . −a

−a σ2
2 −a . . . −a

. . . . . . . . . . . . . . . . . . . . . . . .

−a . . . −a σ2
L−1 −a

−a . . . −a −a σ2
L









. (29)
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Consider the condition for Theorem 3 to hold: to meet the individual distortion con-
straint with equality, we need

σ2
l = (d−1

l − σ−2
x )−1 =

dlσ
2
x

σ2
x − dl

, l = 1, . . . , L. (30)

Let

σ2
0

def
= (d−1

0 − σ−2
x )−1 =

d0σ
2
x

σ2
x − d0

, (31)

we need
[
σ2
0 + a

]−1
=

L∑

l=1

[
σ2
l + a

]−1
(32)

to have a solution a∗ ∈ (0, σ2
x), to meet the central distortion constraint with equality.

Towards this, define

f(a)
def
=

1

σ2
0 + a

−
L∑

l=1

1

σ2
l + a

, (33)

and we have

f(0) =
1

σ2
0

−
L∑

l=1

1

σ2
l

=
1

d0
+

L− 1

σ2
x

−
L∑

l=1

1

dl
,

f(σ2
x) =

1

σ2
0 + σ2

x

−
L∑

l=1

1

σ2
l + σ2

x

=
1

σ4
x

(
L∑

l=1

dl − d0 − (L− 1)σ2
x

)

.

(34)

Using induction, we can show that

(
L∑

l=1

1

dl
−

L− 1

σ2
x

)−1

≥
L∑

l=1

dl − (L− 1)σ2
x. (35)

Thus we have

f(0) ≤ 0 ⇒ f(σ2
x) ≤ 0,

f(σ2
x) ≥ 0 ⇒ f(0) ≥ 0.

Then given distortions (d1, . . . , dL, d0), f(0) and f(σ2
x) falls into the following three

cases.

Case 1: f(0) > 0 and f(σ2
x) < 0.

In this case, since f(a) is a continuous function, there exists an a∗ ∈ (0, σ2
x) such that

f(a∗) = 0. In this case the condition for Theorem 3 holds and from Theorem 3 we know
that jointly Gaussian description scheme with covariance matrix for w1, . . . , wl being
(29) with a = a∗ achieves the optimal sum rate.
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Case 2: f(0) ≤ 0. Alternatively, 1
d0

+ L−1
σ2
x

−
L∑

l=1

1
dl
≤ 0.

In this case, the condition for Theorem 3 does not hold. But the jointly Gaussian
description scheme can still achieve the sum rate. To see this, choosing a = 0 in Kw we
can meet individual distortions with equality and get a central distortion d′0. From (24)
we have

1

d′0
=

1

σ2
x

+ (1 1 . . . 1)K−1
w (1 1 . . . 1)t

=
1

σ2
x

+

L∑

l=1

1

σ2
l

=

L∑

l=1

1

dl
−

L− 1

σ2
x

≥
1

d0
.

(36)

Hence we have achieved distortion (d1, . . . , dL, d
′
0) where d′0 ≤ d0, and from (17) the

achievable sum rate is
L∑

l=1

Rl ≥
1

2
log

σ2L
x

d1d2 · · · dL
, (37)

which equals the sum of our bounds on individual rates.

Case 3: f(σ2
x) ≥ 0, Alternatively,

L∑

l=1

dl − d0 − (L− 1)σ2
x ≥ 0.

In this case, the conditions for Theorem 3 do not hold as well. But the jointly Gaussian
description strategy still achieves the sum rate. To see this, note that we can find a d′L
such that 0 < d′L ≤ dL and

L−1∑

l=1

dl + d′L − d0 − (L− 1)σ2
x = 0, (38)

and we choose a = σ2
x, σ

2
l = (d−1

l − σ−2
x )−1 for l = 1, · · · , L− 1, and σ2

L = (d′−1
L − σ−2

x )−1

in Kw. Defining σ2
0 = (d−1

0 − σ−2
x )−1, (38) is equivalent to the following equation:

[
σ2
0 + σ2

x

]−1
=

L∑

l=1

[
σ2
l + σ2

x

]−1
. (39)

From Lemma 3, our choice of Kw is positive definite. Thus the resulting distortions are
(d1, . . . , dL−1, d

′
L, d0), where 0 < d′L ≤ dL.

15



Using the determinant equation

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

σ2
1 −σ2

x −σ2
x −σ2

x . . . −σ2
x

−σ2
x σ2

2 −σ2
x −σ2

x . . . −σ2
x

−σ2
x −σ2

x σ2
3 −σ2

x . . . −σ2
x

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−σ2
x . . . −σ2

x −σ2
x σ2

L−1 −σ2
x

−σ2
x . . . −σ2

x −σ2
x −σ2

x σ2
L

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
(

1−
L∑

l=1

σ2
x

σ2
l + σ2

x

) L∏

l=1

(σ2
l + σ2

x) (40)

and (39), we have an achievable sum rate

L∑

l=1

Rl =
1

2
log

σ2
x

d0
. (41)

We conclude that in this case the point-to-point rate-distortion bound for the central
receiver is achievable.

In summary, we have shown that the jointly Gaussian description scheme achieves the
lower bound on the sum rate. Further, the sum rate can be calculated either trivially
(by choosing a∗ = 0 in case II or a∗ = 1 in case III) or by solving a polynomial equation
in a single variable (case I).

6 Vector Gaussian Source

The essence of our proof of the optimality of jointly Gaussian description scheme for
scalar Gaussian sources is the use of the intermediate value theorem for scalar continuous
functions. However, there is no natural extension of this theorem for vector valued
functions. To avoid this problem, we first explicitly solve the two description problem and
characterize the optimality of jointly Gaussian description scheme. Next, we show that
the jointly Gaussian description scheme is optimal for L ≥ 2 by showing an equivalence
of certain optimization problems. In the last part of this section, we show that the jointly
Gaussian description strategy can achieve the optimal rate region for the two description
problem.

6.1 Explicit Solutions for Some Cases of Two Description Prob-
lem

With only two descriptions, we can explicitly solve (27), thus generalizing the corre-
sponding solution for the scalar Gaussian source, derived in [1].

16



Suppose the distortion constraints are denoted by (D1, D2, D0) and let

Kw =

(
Kw1 −A∗

−A∗ Kw2

)

.

We now solve (24), which is equivalent to (27), for Kw1, Kw2 and A∗. From (24) we get

Kwl
= (D−1

l −K−1
x )−1, l = 1, 2, (42)

and
D−1

0 = K−1
x + (I I)K−1

w (I I)t. (43)

Expanding out K−1
w using Lemma 6 in Appendix A, we get

D−1
0 −K−1

x = K−1
w1

+ (I+K−1
w1
A∗)(Kw2 −A∗K−1

w1
A∗)−1(I+A∗K−1

w1
). (44)

Taking inverse on both sides, we have

(D−1
0 −K−1

x )−1 = Kw1 − (Kw1 +A∗)(Kw1 +Kw2 + 2A∗)−1(Kw1 +A∗). (45)

Defining Kw0 as

Kw0

def
= [D−1

0 −K−1
x ]−1, (46)

(45) is equivalent to

Kw1 −Kw0 = (Kw1 +A∗)(Kw1 +Kw2 + 2A∗)−1(Kw1 +A∗). (47)

Defining

X
def
= Kw1 +A∗,

(47) is equivalent to

Kw1 −Kw0 = X(2X+Kw2 −Kw1)
−1X, (48)

which is further equivalent to

X(Kw1 −Kw0)
−1X = 2X+Kw2 −Kw1 . (49)

This is a version of the so-called algebraic Riccati equation; the corresponding Hamiltonian
is readily seen to be positive semidefinite and we can even write down the following
explicit solution:

X =Kw1 −Kw0

+ (Kw1 −Kw0)
1
2

[

(Kw1 −Kw0)
− 1

2 (Kw2 −Kw0)(Kw1 −Kw0)
− 1

2

] 1
2
(Kw1 −Kw0)

1
2 .

(50)
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Thus

A∗ = (Kw1−Kw0)
1
2

[

(Kw1 −Kw0)
− 1

2 (Kw2 −Kw0)(Kw1 −Kw0)
− 1

2

] 1
2

(Kw1−Kw0)
1
2 −Kw0 .

(51)
Now, if 0 ≺ A∗ ≺ Kx then we can appeal to Theorem 3 and arrive at the explicit
jointly Gaussian description scheme parameterized by Kw that achieves the sum rate.
Analogous to the scalar case (cf. [1]), we have the following sufficient condition for when
this is true; the proof is available in Appendix F.

Proposition 2. If the distortion constraints (D1, D2, D0) satisfy

D0 +Kx −D1 −D2 ≻ 0

and D−1
0 +K−1

x −D−1
1 −D−1

2 ≻ 0,
(52)

then 0 ≺ A∗ ≺ Kx.

We now complete the proof by considering the cases that are not covered by the con-
ditions in Proposition 2.

• When
D−1

0 +K−1
x −D−1

1 −D−1
2 4 0,

we can chooseA∗ = 0 to achieve the sum of point-to-point individual rate-distortion
functions. Thus in this case, the sum rate is equal to this natural lower bound.

• When
D0 +Kx −D1 −D2 4 0,

we can choose A∗ = Kx to achieve the point-to-point rate distortion-function for
central receiver, also a natural lower bound.

• When neither D0 + Kx − D1 − D2 nor D−1
0 + K−1

x − D−1
1 − D−1

2 is positive or
negative semidefinite (this case cannot happen in the scalar case), we cannot use
Theorem 3, and the trivial choice of A∗ = 0 or A∗ = Kx does not meet the lower
bound. In the next subsection we will address this case and prove that the jointly
Gaussian description scheme indeed achieves the lower bound on the sum rate for
L ≥ 2.

If we let the source to be scalar Gaussian, our result reduces to Ozarow’s solution of
the two description problem for a scalar Gaussian source [1]: this is because the last case
described above does not happen in the scalar case.

18



6.2 Solutions for L ≥ 2

While we exactly characterized the optimal jointly Gaussian description scheme and
used this characterization in arguing that it achieves the fundamental lower bound to
the sum rate, such exact calculations do not appear to be as immediate when L > 2. So,
we eschew this somewhat brute-force approach and resort to a more subtle proof that
involves exploring the structure of the solution to an optimization problem. First, note
that by a linear transformation at the encoders and the decoders, we have the following
result on rate region for multiple description with individual and central receivers.

Proposition 3.

R∗(Kx, D1, . . . , ,DL, D0) = R∗(I, K
− 1

2
x D1K

− 1
2

x , . . . , ,K
− 1

2
x DLK

− 1
2

x , K
− 1

2
x D0K

− 1
2

x ).
(53)

Thus, throughout this subsection we will suppose, for notation simplicity, that Kx = I.

Given distortion constraints (D1, . . . DL, D0), let

Kwl
= (D−1

l − I)−1, l = 0, 1, . . . , L, (54)

and define

f(A)
def
= [Kw0 +A]−1 −

L∑

l=1

[Kwl
+A]−1

, (55)

F (A)
def
= log |Kw0 +A| −

L∑

l=1

log |Kwl
+A|. (56)

Note that
dF (A)

dA
= f(A). (57)

Consider the following optimization problem:

max
04A4I

F (A). (58)

Now, since F (A) is a continuous map and 0 4 A 4 I is a compact set, there exists an op-
timal solution A∗ to (58) where A∗ satisfies the Karush-Kuhn-Tucker (KKT) conditions:
there exist Λ1 < 0 and Λ2 < 0 such that

f(A∗) +Λ1 −Λ2 = 0 (59)

Λ1A
∗ = 0 (60)

Λ2(A
∗ − I) = 0. (61)

Now A∗ falls into the following four cases.
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Case 1: 0 ≺ A∗ ≺ I. Alternatively, 0 and 1 are not eigenvalues of A∗. In this case,
Λ1 = 0 and Λ2 = 0; thus the KKT conditions in (59) reduce to

f(A∗) = 0.

Equivalently,

[Kw0 +A∗]−1 =
L∑

l=1

[Kwl
+A∗]−1

. (62)

From Theorem 3, the jointly Gaussian description scheme with covariance matrix for
w1, . . . , wL being

Kw =









Kw1 −A∗ −A∗ . . . −A∗

−A∗ Kw2 −A∗ . . . −A∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−A∗ . . . −A∗ KwL−1
−A∗

−A∗ . . . −A∗ −A∗ KwL









(63)

achieves the lower bound to the sum rate. Thus in this case, we have characterized the
optimality of the jointly Gaussian description scheme parameterized by (63) in terms of
achieving the sum rate.

Case 2: 0 4 A∗ ≺ I. Alternatively, some eigenvalues of A∗ are 0, but no eigenvalues
of A∗ are 1. Thus Λ2 = 0 and the KKT conditions in (59) reduce to

(Kw0 +A∗)−1 −
L∑

l=1

(Kwl
+A∗)−1 +Λ1 = 0, (64)

for some Λ1 < 0 satisfying Λ1A
∗ = 0. The key idea now is to see that the distortion

constraint on the central receiver is too loose and we can in fact achieve a lesser distortion
(in the sense of positive semidefinite ordering) for the same sum rate. We first identify
this lower distortion: defining

K∗
w0

=
(
K−1

w0
+Λ1

)−1
,

consider the smaller distortion matrix on the central receiver

D∗
0 =

(
K∗

w0

−1 + I
)−1

=
(
I+K−1

w0
+Λ1

)−1
= (D−1

0 +Λ1)
−1 ≺ D0.

This new distortion matrix on the central receiver satisfies two key properties, that we
state as a lemma (whose proof is available in Appendix G).

Lemma 4.

(Kw0 +A∗)−1 +Λ1 = (K∗
w0

+A∗)−1, (65)

|D0 +Kz|

|D0|
=

|D∗
0 +Kz|

|D∗
0|

. (66)
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Comparing (64) with (65), we have

[
K∗

w0
+A∗

]−1
=

L∑

l=1

[Kwl
+A∗]−1

. (67)

Now, the corresponding Kz = (I − A∗)−1 − I is singular. If it hadnt been, then by
Theorem 3 we could have concluded that jointly Gaussian description scheme achieves
the lower bound to the sum rate. We now address this technical difficulty.

Our first observation is that there exists δ > 0 such that for all ǫ ∈ (0, δ) we have
0 ≺ A+ ǫI ≺ I, and 0 ≺ K∗

w0
− ǫI, 0 ≺ Kwl

− ǫI, and we can rewrite (67) as

[
(K∗

w0
− ǫI) + (A∗ + ǫI)

]−1
=

L∑

l=1

[
(Kwl

− ǫI) + (A∗ + ǫI)
]−1

. (68)

Thus if the distortion constraints were (D1(ǫ), . . . , DL(ǫ), D0(ǫ)) with

Dl(ǫ) =
[
(Kwl

− ǫI)−1 + I
]−1

, l = 1, . . . , L,

D0(ǫ) =
[
(K∗

w0
− ǫI)−1 + I

]−1
,

then A∗+ ǫI is a solution to (68). This situation corresponds to that discussed in Case I;
we can conclude that sum rate for this modified distortion multiple description problem
is

1

2
log

|I+Kz(ǫ)|
(L−1)|D0(ǫ) +Kz(ǫ)|

|D0(ǫ)|
L∏

l=1

|Dl(ǫ) +Kz(ǫ)|

, (69)

where Kz(ǫ) = [I− (A∗ + ǫI)]−1 − I. We would like to let ǫ approach zero and consider
the limiting multiple description problem. In particular, we show that

Dl(ǫ) → Dl, l = 1, . . . , L, (70)

D0(ǫ) → D∗
0, (71)

as ǫ → 0 in Appendix H. Further, we show that

Kz(ǫ) → (I−A∗)−1 − I, (72)

as ǫ → 0 in Appendix I. Thus we can conclude that the sum rate approaches, using (66),

1

2
log

|I+Kz|(L−1)|D0 +Kz|

|D0|
L∏

l=1

|Dl +Kz|

, (73)

as ǫ → 0; here Kz = (I −A∗)−1 − I. We observe that this sum rate is achievable using
the jointly Gaussian multiple scheme. Further, this sum rate is identical to the lower
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bound to sum rate for the original distortions (D1, . . . , DL, D0). Thus we conclude the
optimality of the jointly Gaussian description scheme in this case as well.

Case 3: 0 ≺ A∗ 4 I. Alternatively, some eigenvalues of A∗ are 1, but no eigenvalues
of A∗ are 0. In this case, the Λ1 = 0 and the KKT conditions in (59) reduce to

(Kw0 +A∗)−1 −
L∑

l=1

(Kwl
+A∗)−1 −Λ2 = 0, (74)

for some Λ2 < 0 satisfying Λ2(A
∗ − I) = 0. Defining

K∗
wl

=
[
(Kwl

+ I)−1 +Λ2

]−1
− I,

we have, as in (65), that

(Kwl
+A∗)−1 +Λ2 = (K∗

wl
+A∗)−1. (75)

The observation

(Kwl
+A∗)−1 +Λ2 = [(Kwl

+ I) + (A∗ − I)]−1 +Λ2,

combined with the proof of (65) suffices to justify (75). Now, from (75),

(Kw0 +A∗)−1 −
L−1∑

l=1

(Kwl
+A∗)−1 − (K∗

wL
+A∗)−1 = 0. (76)

As in the previous case, the key step is to identify smaller distortion matrices at each of
the individual receivers (ordered in the positive semidefinite sense) that is achievable at
the same sum rate:

D∗
l =

[
K∗

wl

−1 + I
]−1

, l = 1, . . . , L.

To see that this is indeed a smaller distortion matrix, observe that since Kw is positive
definite, it follows that K∗

wl
≻ 0 and

D∗
l =

[
K∗

wl

−1 + I
]−1

=

[((
(Kwl

+ I)−1 +Λ2

)−1
− I
)−1

+ I

]−1

=
[
I− (Kwl

+ I)−1 −Λ2

]

= [I+Kwl
]−1 −Λ2

= Dl −Λ2, l = 1, . . . , L.

(77)

Since Λ2 < 0, it follows that 0 ≺ D∗
l 4 Dl, l = 1, . . . , L. Define

Dl(ǫ) =
[
(Kwl

+ ǫI)−1 + I
]−1

, l = 0, 1, . . . , L− 1,

DL(ǫ) =
[
(K∗

wL
+ ǫI)−1 + I

]−1
,

(78)
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then there exists δ > 0 such that for all ǫ ∈ (0, δ) we have 0 ≺ A∗ − ǫI ≺ I, and
0 ≺ Dl(ǫ) ≺ I. We can rewrite (76) as

[(Kw0 + ǫI) + (A∗ − ǫI)]−1 =
L−1∑

l=1

[(Kwl
+ ǫI) + (A∗ − ǫI)]−1+

[
(K∗

wL
+ ǫI) + (A∗ − ǫI)

]−1
.

(79)
Thus if the distortion constraints were (D1(ǫ), . . . , DL(ǫ), D0(ǫ)), then A∗ − ǫI is a
solution to (79). This situation corresponds to that discussed in Case I; we conclude that
the sum rate for this modified distortion multiple description problem is

1

2
log

|I+Kz(ǫ)|(L−1)|D0(ǫ) +Kz(ǫ)|

|D0(ǫ)|
L∏

l=1

|Dl(ǫ) +Kz(ǫ)|

, (80)

where Kz(ǫ) = [I− (A∗ − ǫI)]−1 − I. We would like to let ǫ approach zero and consider
the limiting multiple description problem. Similar to equations (70) and (71), we have

Dl(ǫ) → Dl, l = 1, . . . L,

D0(ǫ) → D∗
0.

(81)

Further, we show that

lim
ǫ→0

|I+Kz(ǫ)|
(L−1)|D0(ǫ) +Kz(ǫ)|

|
L∏

l=1

|Dl(ǫ) +Kz(ǫ)|

= 1 (82)

in Appendix J. We can now conclude that the sum rate approaches

1

2
log

1

|D0|
(83)

as ǫ approaches 0. In other words, the point-to-point rate-distortion function for central
receiver with distortion D0 can be achieved by using the jointly Gaussian description
scheme, and the resulting distortion is (D1, . . . , D∗

L, D0) where 0 ≺ D∗
L 4 DL. In

conclusion, the jointly Gaussian description scheme is also optimal in this case.

Case 4: 0 4 A∗ 4 I. i.e., both 0 and 1 are eigenvalues of A∗. In this case, the KKT
conditions are: there exist Λ1 < 0 and Λ2 < 0 such that equations (59), (60) and (61)
hold. We can combine equations (65) and (75) to get

(K∗
w0

+A∗)−1 =
L−1∑

l=1

(Kwl
+A∗)−1 + (K∗

wL
+A∗)−1, (84)

where

K∗
w0

=
(
K−1

w0
+Λ1

)−1
,

K∗
wL

=
[
(KwL

+ I)−1 +Λ2

]−1
− I.
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As in cases 2 and 3, we want to show the optimality of the jointly Gaussian multiple
description scheme through a limiting procedure. We do this by first perturbing A∗ so
that it has no eigenvalue equal to 0 or 1 as follows.

Without loss of generality, suppose that A∗ has p eigenvalues equal to 0 and q eigen-
values equal 1, where p > 0 and q > 0, and there exists N ×N orthogonal matrix Q such
that

QA∗Qt = diag{0, . . . , 0
︸ ︷︷ ︸

p

, 1, . . . , 1
︸ ︷︷ ︸

q

, ap+q+1, . . . , aN},

with 0 < ap+q+1 < 1, . . . , 0 < aN < 1. We need to perturb the eigenvalues of A∗ away
from both 0 and 1. Towards this, we define two N ×N diagonal matrices:

E1 = diag(1, . . . , 1
︸ ︷︷ ︸

p

, 0, . . . , 0, 0, . . . , 0
︸ ︷︷ ︸

N−p

),

E2 = diag(0, . . . , 0
︸ ︷︷ ︸

p

, 1, . . . , 1
︸ ︷︷ ︸

q

, 0, . . . , 0),

Also define

A∗(ǫ1, ǫ2) = A∗ +Qt(ǫ1E1 − ǫ2E2)Q,

Kz(ǫ1, ǫ2) = (I−A∗(ǫ1, ǫ2))
−1 − I,

Kwl
(ǫ1, ǫ2) = Kwl

−Qt(ǫ1E1 − ǫ2E2)Q, l = 1, . . . , L− 1,

KwL
(ǫ1, ǫ2) = K∗

wL
−Qt(ǫ1E1 − ǫ2E2)Q,

Kw0(ǫ1, ǫ2) = K∗
w0

−Qt(ǫ1E1 − ǫ2E2)Q.

Further, defining

Dl(ǫ1, ǫ2) = (I+Kwl
(ǫ1, ǫ2))

−1, l = 1, . . . , L, (85)

there exists δ > 0 such that for all ǫ1 ∈ (0, δ) and ǫ2 ∈ (0, δ) we have 0 ≺ A∗(ǫ1, ǫ2) ≺ I,
and 0 ≺ Dl(ǫ1, ǫ2) ≺ I. Now, we can rewrite (84) as

[

Kw0(ǫ1, ǫ2) +A∗(ǫ1, ǫ2)
]−1

=
L∑

l=1

[

Kwl
(ǫ1, ǫ2) +A∗(ǫ1, ǫ2)

]−1

. (86)

Thus if the distortion constraints were (D1(ǫ1, ǫ2), . . . , DL(ǫ1, ǫ2), D0(ǫ1, ǫ2)), then
A∗(ǫ1, ǫ2) is a solution to (86). This situation corresponds to that discussed in Case I;
we conclude that the sum rate for this modified distortion multiple description problem
is

1

2
log

|I+Kz(ǫ1, ǫ2)|(L−1)|D0(ǫ1, ǫ2) +Kz(ǫ1, ǫ2)|

|D0(ǫ1, ǫ2)|
L∏

l=1

|Dl(ǫ1, ǫ2) +Kz(ǫ1, ǫ2)|

, (87)
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where Kz(ǫ1, ǫ2) = [I−A∗(ǫ1, ǫ2)]
−1−I. We would like to let ǫ1 and ǫ2 approach zero and

consider the limiting multiple description problem. Similar to equations (70) and (71),
when ǫ1 and ǫ2 approach 0, we get

Dl(ǫ1, ǫ2) → Dl, l = 1, . . . , L− 1,

DL(ǫ1, ǫ2) → D∗
L,

D0(ǫ1, ǫ2) → D∗
0,

(88)

where D∗
L = DL − Λ2 as in case 3 and D∗

0 = [D−1
0 + Λ−1

1 ]−1 as in case 2. Further, we
show that

lim
ǫ2→0

lim
ǫ1→0

1

2
log

|I+Kz(ǫ1, ǫ2)|(L−1)|D0(ǫ1, ǫ2) +Kz(ǫ1, ǫ2)|

|D0(ǫ1, ǫ2)|
L∏

l=1

|Dl(ǫ1, ǫ2) +Kz(ǫ1, ǫ2)|

=
1

2
log

1

|D0|
(89)

in Appendix K. We conclude that the sum rate approaches

1

2
log

1

|D0|
(90)

as ǫ1 and ǫ2 approach 0. Thus the point-to-point rate-distortion function for central
receiver with distortion D0 can be achieved by using the jointly Gaussian description
scheme, and the resulting distortions are (D1, . . . , D∗

L, D∗
0) where 0 ≺ D∗

L 4 DL and
0 ≺ D∗

0 4 D0. In other words, the jointly Gaussian multiple description scheme is also
optimal in this case.

To summarize, we see that the jointly Gaussian description scheme achieves the limiting
sum rate. The limiting sum rate is the solution to an optimization problem. For some
specific distortion constraints, the sum rate can be characterized as the solution to a
matrix polynomial equation (Case I).

6.3 Rate Region for Two Descriptions

Applying the result in Section 6.2 to the case of L = 2, i.e., the two description problem,
we can see that jointly Gaussian description scheme achieves the optimal sum rate. This
resolves the case left out in Section 6.1. It also turns out that in the two description
problem, we can show that jointly Gaussian description strategy achieves the entire rate
region. This is the main result of this subsection.

From Section 3 we have a outer bound to the rate region for the two description problem

Rout(Kx, D1, D2, D0) =







(R1, R2) :

Rl ≥
1

2
log

|Kx|

|Dl|
, l = 1, 2

R1 +R2 ≥ sup
Kz≻0

1

2
log

|Kx||Kx +Kz||D0 +Kz|

|D0||D1 +Kz||D2 +Kz|







. (91)
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Following the discussion in Section 6.2, we show in the following that the jointly Gaus-
sian description strategy (jointly Gaussian multiple description schemes and the time
sharing between them) achieves the outer bound to the rate region.

Let
Kwl

= (D−1
l −K−1

x )−1, l = 0, 1, 2

and
F (A) = log |Kw0 +A| − log |Kw1 +A| − log |Kw2 +A|.

Now consider the optimization problem:

max
04A4Kx

F (A). (92)

As in Section 6.2, the optimal solution A∗ falls into four cases.

Case 1: 0 ≺ A∗ ≺ Kx. In this case, we know from Section 4 that the rate pair
(R1, R2) satisfying







(R1, R2) :

Rl ≥
1

2
log

|Kx +Kwl
|

|Kwl
|

, l = 1, 2

R1 +R2 ≥
1

2
log

|Kx +Kw1||Kx +Kw2|

|Kw|







(93)

is achievable using the jointly Gaussian multiple description scheme with the covariance
matrix of w1, w2 being

Kw =

(
Kw1 −A∗

−A∗ Kw2

)

.

Denoting the resulting distortions as (D1, D2, D0), we readily calculate

1

2
log

|Kx +Kwl
|

|Kwl
|

=
1

2
log |Kx||K

−1
wl

+K−1
x | =

1

2
log

|Kx|

|Dl|

for l = 1, 2. From the discussion in Section 6.2, we know that the lower bound to sum
rate is achieved using this jointly Gaussian description scheme. Thus, in this case, the
jointly Gaussian description scheme achieves the rate region. As an aside, we note in this
case that, A∗ satisfies

[
K∗

w0
+A∗

]−1
= [Kw1 +A∗]−1 + [Kw2 +A∗] ,

and, from the discussion in Section 6.1, that a sufficient condition for this case to happen
is (52).

Case 2: 0 4 A∗ ≺ Kx. This case is similar to case 1: the jointly Gaussian description
scheme with covariance matrix for w1, w2 being

Kw =

(
Kw1 −A∗

−A∗ Kw2

)

.
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achieves the lower bound on the rate region. We note that in this case the resulting
distortions are (D1, D2, D∗

0), with D∗
0 4 D0. Further, we know from the discussion in

6.1, that a sufficient condition for this case to happen is

D−1
0 +K−1

x −D−1
1 −D−1

2 4 0.

Case 3: 0 ≺ A∗
4 Kx. In this case, we know from the discussion in Section 6.2 that

for another two description problem with distortions (D1, D
∗
2, D0) such that D∗

2 4 D2,
the jointly Gaussian description scheme with covariance matrix for w1, w2 being

Kw =

(
Kw1 −A∗

−A∗ K∗
w2

)

achieves the lower bound to sum rate
(

1
2
log |Kx|

|D0|

)

to the original distortions (D1, D2, D0).

We can see, from the contra-polymatroid structure of the achievable region of jointly
Gaussian description scheme, that the corner point

B1 =

(
1

2
log

|Kx|

|D1|
,
1

2
log

|Kx|

|D0|
−

1

2
log

|Kx|

|D1|

)

in Figure 3 is achievable by this jointly Gaussian description scheme.

Now observe that the discussion in case 3 of Section 6.2 is symmetric with respect to
the individual receivers. Thus, by exchanging the role of receiver 1 and receiver 2, we
can achieve the other corner point

B2 =

(
1

2
log

|Kx|

|D0|
−

1

2
log

|Kx|

|D2|
,
1

2
log

|Kx|

|D2|

)

in Figure 3 by another appropriate jointly Gaussian description scheme. Finally, time
sharing between these two jointly Gaussian multiple description schemes allows us to
achieve the lower bound on the rate region. As an aside, we note, as a consequence of
the discussion in Section 6.1, that a sufficient condition for this case to happen is

D0 +Kx −D1 −D2 4 0.

Case 4: 0 4 A∗ 4 Kx. In this case, we know, from the discussion in Section 6.2, that
for another two description problem with distortions (D1, D∗

2, D∗
0) such that D∗

2 4 D2

andD∗
0 4 D0, the jointly Gaussian description scheme with covariance matrix for w1, w2

being

Kw =

(
Kw1 −A∗

−A∗ K∗
w2

)

achieves the lower bound to sum rate
(

1
2
log |Kx|

|D0|

)

to the original distortions (D1, D2, D0).

Using an argument entirely analogous to that applied that the jointly Gaussian descrip-
tion strategy achieves the rate region.
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To summarize: the jointly Gaussian description strategy achieves the rate region for
the two description problem. For a class of distortion constraints, the corner points of
the rate region can be characterized by solving a matrix polynomial equation, as already
seen in Section 6.1.

7 Discussions

Although multiple description for individual and central receivers is a special case of the
most general multiple description problem, the solution to this problem sheds substantial
insight to the issue-at-large. In this section, we discuss two instances of other multiple
description problems that can be resolved using the insights developed so far. In partic-
ular, we discuss the problem of two descriptions with separate distortion constraints and
the general multiple description problem for some special sets of distortion constraints.

7.1 Two Description with Separate Distortion Constraints

The problem of two descriptions with separate distortion constraints is ilustrated in
Figure 2. Suppose the vector Gaussian source x[m] = (x1[m],x2[m]), the dimension of
x1[m] is N1 and the dimension of x2[m] is N2. This implies that the dimension of x[m] is
N = N1+N2. Let Kx = E[x[m]tx[m]], Kx1 = E[x1[m]tx1[m]], andKx2 = E[x2[m]tx2[m]].
There are two encoders at the source providing two descriptions of x[m]. There are three
receivers: the individual receivers 1 and 2 are only interested in generating reproduction
of x1[m] with mean square distortion constraint D1 (an N1×N1 positive definite matrix)
from description 1 and x2[m] with mean square distortion constraint D2 (an N2 × N2

positive definite matrix) from description 2, respectively. The central receiver uses both
descriptions to generate a reproduction of x[m] with the error covariance meeting a
distortion constraint D0 (an N ×N positive definite matrix) from both descriptions.

This situation is closely related to the two description problem and we can harness our
results thus far to completely characterize the rate region of the problem at hand.

Theorem 4. The rate region of two description with separate distortion constraints is

R(D1, D2, D0) =
⋃

Υ(D′
1, D

′
2)

R∗(D
′
1, D

′
2, D0), (94)

where Υ(D′
1, D

′
2) is defined as

Υ(D′
1, D

′
2)

def
=
{

(D′
1, D

′
2) : (D′

1){1,...,N1} 4 D1, (D
′
2){N1+1,...,N} 4 D2

}
. (95)
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Proof. It is clear that any rate pair (R1, R2) ∈ R∗(D
′
1, D′

2, D0) for some (D′
1, D′

2) ∈
Υ(D′

1, D′
2) is in the rate region for the two description with separate distortion con-

straints, and so
R∗(D

′
1, D

′
2, D0) ⊆ R(D1, D2, D0).

On the other hand, although receiver 1 (2) is only interested in reconstructing x1 (x2),
they can actually reconstruct the entire source x based on their received descriptions.
Hence, any coding scheme for the two description with separate distortion constraints
will result in some achievable distortions (D′

1, D′
2, D′

0) with (D′
1, D′

2) ∈ Υ(D′
1, D′

2)
and D′

0 4 D0. Thus any rate pair (R1, R2) ∈ R(D1, D2, D0) achieved by this coding
scheme is in the rate region R∗(D

′
1, D

′
2, D0) for the two description problem. Thus

R(D1, D2, D0) ⊆
⋃

Υ(D′
1, D

′
2)

R∗(D
′
1, D

′
2, D0).

From equivalence of the two regions in (94), the proof is now complete.

7.2 General Gaussian Multiple Description Problem for Special
Choices of Distortion Constraints

Consider the general Gaussian multiple description problem with source covariance Kx

and 2L − 1 distortion constraints DS for each S ⊆ {1, . . . , L}.

Following arguments similar to that used in arriving at the lower bound (11) for sum
rate, we have an outer bound on the rate region:

Rout(Kx, D1, . . . , DL, D0) =







(R1, . . . , RL) :
∑

l∈S

Rl ≥
1
2
log |Kx||Kx+Kz |(|S|−1)|DS+Kz|

|DS |
∏

l∈S

|Dl+Kz|
, ∀S ⊆ {1, . . . , L}






.

(96)
Following arguments similar to those used in arriving at the upper bound (20) for the
sum rate, we can use a jointly Gaussian description scheme with covariance matrix of
wl’s (Kw) taking the form (23), any tuple (R1, . . . , RL) satisfying







(R1, . . . , RL) :

∑

l∈S

Rl ≥
1
2
log

∣
∣
∣Kx

∣
∣
∣

∣
∣
∣Kx+Kz

∣
∣
∣

(|S|−1)∣
∣
∣Cov[x|ul, l∈S]+Kz

∣
∣
∣

∣
∣
∣Cov[x|ul, l∈S]

∣
∣
∣
∏

l∈S

∣
∣
∣Cov[x|ul]+Kz

∣
∣
∣

, ∀S ⊆ {1, . . . , L}







(97)

is achievable. Thus if we can find a Kw of the form in (23) such that all of the 2L − 1
distortion constraints are met with equality, i.e.,

DS = Cov[x|ul, l ∈ S] = [K−1
x + (I, . . . , I)K−1

wS
(I, . . . , I)t]−1, ∀S ⊆ {1, . . . , L},

(98)
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where KwS
is the covariance matrix for all Kwl

, l ∈ S, then the achievable region matches
the outer bound and we would have characterized the rate region of the multiple descrip-
tion problem.

From the above discussion, we see that for some choice of distortion constraints of
the multiple description problem, we can indeed do this: First choose L + 1 distortions
(D1, D2, . . . , DL, D0) such that they satisfy the condition for Theorem 3 for the
multiple description problem with individual and central receivers. Next we can solve
for the Kw which is the covariance matrix of (w1, . . . , wL) for the sum-rate-achieving
jointly Gaussian description scheme. For any other S ⊆ {1, . . . , L}, this scheme results
in distortion DS = [K−1

x +(I, . . . , I)K−1
wS
(I, . . . , I)t]−1. Finally we choose these DS’s as

the other distortion constraints. Now we have a general multiple description problem with
2L − 1 distortion constraints DS for each S ⊆ {1, . . . , L}, and hence we can find a Kw

of form (23) such that all of the 2L−1 distortion constraints are met with equality. Thus
(96) is actually the rate region and it can be achieved by a jointly Gaussian description
scheme.

Appendix

A Useful Matrix Lemmas

In this appendix we provide some useful results in matrix analysis that are extensively
used in this paper.

Lemma 5 (Matrix Inversion Lemma). [25, Theorem 2.5] Let A be an m×m non-
singular matrix and B be an n × n nonsingular matrix and let C and D be m × n and
n×m matrices, respectively. If the matrix A+CBD is nonsingular, then

(A+CBD)−1 = A−1 −A−1C(B−1 +DA−1C)−1DA−1

Lemma 6. [25, Theorem 2.3] Suppose that the partitioned matrix

M =

(
A B
C D

)

is invertible and that the inverse is conformally partitioned as

M−1 =

(
X Y
U V

)

.
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If A is a nonsingular principal sub-matrix of M, then

X =A−1 +A−1B(D−CA−1B)−1CA−1,

Y =−A−1B(D−CA−1B)−1,

U =− (D−CA−1B)−1CA−1,

V =(D−CA−1B)−1.

(99)

Lemma 7. [25, Theorem 6.13] Let E ∈ Mn be a positive definite matrix and let F be an
n×m matrix. Then for any m×m positive definite matrix G,

(
E F
Ft G

)

≻ 0 ⇐⇒ G ≻ FtE−1F. (100)

Lemma 8. [25, Theorem 6.8 and 6.9] Let A and B be positive definite matrices such
that A ≻ B (A < B). Then,

|A| ≻ |B| (|A| < |B|),

A−1 ≺ B−1 (A−1
4 B−1),

A1/2 ≻ B1/2 (A1/2
< B1/2).

(101)

B Proof of Lemma 1

Define an i.i.d. random process {z[m]}, m = 1, . . . , n of N (0,Kz) Gaussian random
vectors, where z[m], m = 1, . . . , n are independent of xn and Cl, l = 1, . . . , L. Form a
random process yn = (y[1], . . . , y[n])t by

y[m] = x[m] + z[m], m = 1, . . . , n.
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It follows that {y[m]} is an i.i.d. random process of N (0,Ky) Gaussian random vectors,
where Ky = Kx +Kz. Then

I(C1; C2; . . . ; CL) + I(C1, . . . , CL;x
n)

=

L∑

l=1

H(Cl)−H(C1, · · · , CL) + I(C1, . . . , CL;x
n)

≥
L∑

l=1

H(Cl)−H(C1, · · · , CL) + I(C1, . . . , CL;x
n)

−
( L∑

l=1

H(Cl|y
n)−H(C1, . . . , CL|y

n)
)

=

L∑

l=1

(h(yn)− h(yn|Cl))− h(yn) + h(yn|C1, . . . , CL) + h(xn)− h(xn|C1, . . . , CL)

=h(xn) + (L− 1)h(yn)−
L∑

l=1

h(yn|Cl) + h(yn|C1, . . . , CL)− h(xn|C1, . . . , CL).

(102)

Since xn and yn are Gaussian vectors, for the first two terms in (102), we have

h(xn) =
1

2
log(2πe)Nn|Kx|

n,

h(yn) =
1

2
log(2πe)Nn|Ky|

n =
1

2
log(2πe)Nn|Kx +Kz|

n.

(103)
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We also have the following bound on h(yn|Cl) for l = 1, . . . , L:

h(yn|Cl) ≤
n∑

m=1

h(y[m]|Cl)

≤
n∑

m=1

1

2
log(2πe)N

∣
∣Cov[y[m]|Cl]

∣
∣

≤
1

2
log(2πe)Nn +

n

2
log

∣
∣
∣
∣
∣

1

n

n∑

m=1

Cov[y[m]|Cl]

∣
∣
∣
∣
∣

=
1

2
log(2πe)Nn +

n

2
log

∣
∣
∣
∣
∣

1

n

n∑

m=1

Cov[(x[m] + z[m])|Cl]

∣
∣
∣
∣
∣

=
1

2
log(2πe)Nn +

n

2
log

∣
∣
∣
∣
∣

1

n

n∑

m=1

Cov[x[m]|Cl] +Kz

∣
∣
∣
∣
∣

≤
1

2
log(2πe)Nn +

n

2
log |Dl +Kz|

=
1

2
log(2πe)Nn |Dl +Kz|

n
.

(104)

Next we bound the last two terms of (102) as follows.

h(yn|C1, . . . , CL)− h(xn|C1, . . . , CL)

= h(yn|C1, . . . , CL)− h(xn|zn, C1, . . . , CL)

= h(yn|C1, . . . , CL)− h(yn|zn, C1, . . . , CL)

= I(yn; zn|C1, . . . , CL).

(105)

Letting

Kc[m]
def
= Cov[x[m]− x̂0[m]], (106)
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we have

I(yn; zn|C1, . . . , CL) = h(zn|C1, . . . , CL)− h(zn|yn, C1, . . . , CL)

= h(zn)− h(zn|yn − x̂n
0 , C1, . . . , CL)

≥ h(zn)− h(zn|yn − x̂n
0 )

=
n∑

m=1

(
h(z[m])− h(z[m]|z[1], . . . , z[m− 1],yn − x̂n

0 )
)

≥
n∑

m=1

(
h(z[m])− h(z[m]|y[m]− x̂0[m])

)

=
n∑

m=1

I(z[m];x[m]− x̂0[m] + z[m])

(a)

≥
n∑

m=1

1

2
log

|Kc[m] +Kz[m]|

|Kc[m]|

(b)

≥
n

2
log

|D0 +Kz|

|D0|
,

(107)

where (a) is from (106) and [26, Lemma II.2]. The justfication for (b) is from the convexity

of log |A+B|
|B|

in A and (9). From (105) and (107) we have

h(yn|C1, . . . , CL)− h(xn|C1, . . . , CL) ≥
n

2
log

|D0 +Kz|

|D0|
. (108)

Combining (102), (103) and (108), we have

I(C1; C2; . . . ; CL) + I(C1, . . . , CL;x
n) ≥

n

2
log

|Kx||Kx +Kz|
(L−1)|D0 +Kz|

|D0|
L∏

l=1

|Dl +Kz|

. (109)

Taking the supremum over all positive definite Kz, we can sharpen the lower bound in
(109):

L∑

l=1

I(C1;C2; . . . ;CL) + I(C1, . . . , CL;x
n) ≥ sup

Kz≻0

n

2
log

|Kx||Kx +Kz|(L−1)|D0 +Kz|

|D0|
L∏

l=1

|Dl +Kz|

.

(110)
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C Proof of Proposition 1

Conditioned on y, the collection of random variables (u1, . . . , uL) are jointly Gaussian
and thus we have

L∑

l=1

h(ul|y)− h(u1, . . . , uL|y) =
1

2
log

L∏

l=1

|Cov[ul|y]|
∣
∣Cov[u1, . . . , uL|y]

∣
∣
. (111)

From MMSE of ul from y we have

Cov[ul|y] = Kx +Kwl
−Kx(Kx +Kz)

−1Kx, l = 1, . . . , L (112)

and
Cov(u1, . . . , uL|y) = J⊗Kx +Kw − J⊗

(
Kx(Kx +Kz)

−1Kx

)
, (113)

where J is an L× L matrix of all ones and ⊗ is the Kronecker Product.

By Fischer inequality (the block matrix version of Hadamard inequality, see [25, The-

orem 6.10]) we know that
L∏

l=1

|Cov[ul|y]| =
∣
∣Cov[u1, . . . , uL|y]

∣
∣ if and only if the off-

diagonal block matrices of Cov[u1, . . . , uL|y] are all zero matrices. Thus we have

L∑

l=1

h(ul|y)− h(u1, . . . , uL|y) = 0

if and only if
Kx −A = Kx(Kx +Kz)

−1Kx, (114)

or equivalently, if and only if

Kz = Kx(Kx −A)−1Kx −Kx. (115)

To get a valid Kz ≻ 0, we need the additional condition 0 ≺ A ≺ Kx.

D Proof of Lemma 2

First we assume A ≻ 0, and hence
[
A−1 + (I I . . . I)K−1

w (I I . . . I)t
]−1

=A−A (I I . . . I)
[
Kw + (I I . . . I)tA (I I . . . I)

]−1
(I I . . . I)tA

=A−A (I I . . . I)
[

diag{Kw1 +A, Kw2 +A, . . . KwL
+A}

]−1

(I I . . . I)tA

=A−A

L∑

l=1

[Kwl
+A]−1A.

(116)
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Thus,

(I I . . . I)K−1
w (I I . . . I)t

=

[

A−A

L∑

l=1

(Kwl
+A)−1A

]−1

−A−1

=A−1 −A−1A



−

(
L∑

l=1

(Kwl
+A)−1

)−1

+AA−1A





−1

AA−1 −A−1

=





(
L∑

l=1

(Kwl
+A)−1

)−1

−A





−1

.

(117)

When A is singular, we can choose δ > 0 such that A + ǫI ≻ 0 for ǫ ∈ (0, δ), and thus
we can apply the previous argument and let ǫ → 0+ in the end.

E Proof of Lemma 3

We use induction. First consider the matrix

∆2 =

(
Kw1 −A
−A Kw2

)

.

We have

∆2 ≻ 0 ⇐⇒ Kw2 ≻ AK−1
w1
A

⇐⇒ Kw2 +A ≻ AK−1
w1
A+A

⇐⇒ (Kw2 +A)−1 ≺ (AK−1
w1
A+A)−1

⇐⇒ (Kw2 +A)−1 ≺ A−1 − (Kw1 +A)−1

⇐⇒ (Kw1 +A)−1 + (Kw2 +A)−1 ≺ A−1

⇐=

L∑

l=1

(Kwl
+A)−1 ≺ A−1

(a)
⇐⇒ (Kw0 +A)−1 ≺ A−1

⇐⇒ Kw0 +A ≻ A

⇐⇒ Kw0 ≻ 0,

(118)

where (a) is from (27).
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Next we define

∆k =









Kw1 −A −A . . . −A
−A Kw2 −A . . . −A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−A . . . −A Kwk−1
−A

−A . . . −A −A Kwk









and suppose ∆k ≻ 0 for k = 3, . . . , l − 1. Then

∆l ≻ 0 ⇐⇒ Kwl
≻ A(I, I, . . . , I)∆−1

l−1(I, I, . . . , I)
tA

⇐⇒ Kwl
≻ A





(
l−1∑

k=1

(KWk
+A)−1

)−1

−A





−1

A

⇐⇒ Kwl
+A ≻ A





(
l−1∑

k=1

(Kwk
+A)−1

)−1

−A





−1

A+A

⇐⇒ (Kwl
+A)−1 ≺



A





(
l−1∑

k=1

(Kwk
+A)−1

)−1

−A





−1

A+A





−1

⇐⇒ (Kwl
+A)−1 ≺ A−1 −





(
l−1∑

k=1

(Kwk
+A)−1

)−1

−A+A





−1

⇐⇒ (Kwl
+A)−1 ≺ A−1 −

l−1∑

k=1

(Kwk
+A)−1

⇐=

L∑

k=1

(Kwk
+A)−1 ≺ A−1

(b)
⇐⇒ (Kw0 +A)−1 ≺ A−1

⇐⇒ Kw0 +A ≻ A

⇐⇒ Kw0 ≻ 0,

(119)

where (b) is from (27).

F Proof of Proposition 2

First we prove that

D−1
0 +K−1

x −D−1
1 −D−1

2 ≻ 0 ⇒ A∗ ≻ 0.
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Proof. We have

A∗ = (Kw1−Kw0)
1
2

[

(Kw1 −Kw0)
− 1

2 (Kw2 −Kw0)(Kw1 −Kw0)
− 1

2

] 1
2

(Kw1−Kw0)
1
2 −Kw0 .

(120)
Thus

A∗ ≻ 0

⇐⇒ (Kw1 −Kw0)
1
2

[

(Kw1 −Kw0)
− 1

2 (Kw2 −Kw0)(Kw1 −Kw0)
− 1

2

] 1
2
(Kw1 −Kw0)

1
2 ≻ Kw0

⇐⇒
[

(Kw1 −Kw0)
− 1

2 (Kw2 −Kw0)(Kw1 −Kw0)
− 1

2

] 1
2
≻ (Kw1 −Kw0)

− 1
2Kw0(Kw1 −Kw0)

− 1
2

⇐= (Kw1 −Kw0)
− 1

2 (Kw2 −Kw0)(Kw1 −Kw0)
− 1

2

≻ (Kw1 −Kw0)
− 1

2Kw0(Kw1 −Kw0)
−1Kw0(Kw1 −Kw0)

− 1
2

⇐⇒ Kw2 −Kw0 ≻ Kw0 (Kw1 −Kw0)
−1Kw0

⇐⇒ Kw2 −Kw0 ≻ Kw0

(
−I + (Kw1 −Kw0)

−1
)
Kw1

⇐⇒ Kw2 −Kw0 ≻ −Kw0 +Kw0(Kw1 −Kw0)
−1Kw1

⇐⇒ Kw2 ≻ Kw0(Kw1 −Kw0)
−1Kw1

⇐⇒ Kw2 ≻ Kw0K
−1
w0
(K−1

w0
−K−1

w1
)−1K−1

w1
Kw1

⇐⇒ Kw2 ≻ (K−1
w0

−K−1
w1
)−1

⇐⇒ K−1
w1

+K−1
w2

≺ K−1
w0

⇐⇒ D−1
0 +K−1

x −D−1
1 −D−1

2 ≻ 0.

(121)

The proof of
D0 +Kx −D1 −D2 ≻ 0 ⇒ A∗ ≺ Kx

is similar and hence is omitted.

G Proof of Lemma 4

[
(Kw0 +A∗)−1 +Λ1

]−1
=
[
(Kw0 +A∗)−1(I+ (Kw0 +A∗)Λ1)

]−1

(a)
= (I+Kw0Λ1)

−1(Kw0 +A∗)

= (I+Kw0Λ1)
−1(Kw0 +A∗ − (I+Kw0Λ1)A

∗) +A∗

(b)
= (I+Kw0Λ1)

−1Kw0 +A∗

=
(
K−1

w0
(I+Kw0Λ1)

)−1
+A∗

=
(
K−1

w0
+Λ1

)−1
+A∗,

(122)
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where (a) and (b) are from Λ1A
∗ = 0.

|D∗
0 +Kz|

|D∗
0|

= |I+D∗
0
−1Kz|

= |I+ (D−1
0 +Λ1)Kz|

= |I+D−1
0 Kz +Λ1Kz|

= |I+D−1
0 Kz +Λ1

(
(I−A∗)−1 − I

)
|

(c)
= |I+D−1

0 Kz +Λ1(I−A∗)
(
(I−A∗)−1 − I

)
|

= |I+D−1
0 Kz|

=
|D0 +Kz|

|D0|
,

(123)

where (c) is from Λ1A
∗ = 0.

H Proof of Equations (70) and (71)

We first prove the following lemma.

Lemma 9. Let D be an N × N matrix such that 0 ≺ D ≺ I. Let K = (D−1 − I)−1.
Choose ǫ > 0 such that K− ǫI ≻ 0. Define

D(ǫ)
def
=
[
(K− ǫI)−1 + I

]−1
.

Then, there exist constants b1 ≥ b2 > 0, such that

D− b1ǫI+ o(ǫ) ≺ D(ǫ) ≺ D− b2ǫI+ o(ǫ)

Proof. There exists an N ×N orthogonal matrix Q such that

QKQt = diag{k1, . . . , kN},

where ki > 0 are eigenvalues of K. We have

QDQt = Q(K−1 + I)−1Qt

= diag

{
k1

1 + k1
, . . . ,

kN

1 + kN

}

,
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and

QD(ǫ)Qt = Q
[

(K− ǫI)−1 + I
]−1

Qt

=
[

(diag{k1, . . . , kN} − ǫI)−1 + I
]−1

= diag

{
k1 − ǫ

1 + k1 − ǫ
, . . . ,

kN − ǫ

1 + kN − ǫ

}

= diag

{
k1

1 + k1
−

ǫ

(1 + k1)2
+ o(ǫ), . . . ,

kN

1 + kN
−

ǫ

(1 + kN)2
+ o(ǫ)

}

.

We now have

QDQt − b1ǫI+ o(ǫ) ≺ QD(ǫ)Qt ≺ QDQt − b2ǫI + o(ǫ),

where b1 ≥ b2 > 0 are some constants. Hence

D− b1ǫI+ o(ǫ) ≺ D(ǫ) ≺ D− b2ǫI + o(ǫ).

Equations (70) and (71) are a direct consequence of this lemma.

I Proof of Equation (72)

We first prove the following lemma.

Lemma 10. Let A be an N ×N matrix such that 0 4 A ≺ I. Let Kz = (I−A)−1 − I.
Choose ǫ > 0 such that A+ ǫI ≺ I. Define

Kz(ǫ)
def
= [I− (A+ ǫI)]−1 − I.

Then, there exist constants c1 ≥ c2 > 0 such that

Kz − c1ǫI+ o(ǫ) ≺ Kz(ǫ) ≺ Kz − c2ǫI + o(ǫ).

Proof. There exists an N ×N orthogonal matrix Q such that

QAQt = diag{a1, . . . , aN}

where ai > 0 are the eigenvalues of A. We have

QKzQ
t = Q((I−A)−1 − I)Qt

= diag

{
a1

1− a1
, . . . ,

aN

1− aN

}

,
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and

QKz(ǫ)Q
t = Q((I− (A+ ǫI))−1 − I)Qt

= diag

{
a1 + ǫ

1− a1 − ǫ
, . . . ,

aN + ǫ

1− aN − ǫ

}

= diag

{
a1

1− a1
−

(2a1 − 1)ǫ

(1− a1)2
+ o(ǫ), . . . ,

aN

1− aN
−

(2aN − 1)ǫ

(1− aN )2
+ o(ǫ)

}

.

We now have

QKzQ
t − c1ǫI+ o(ǫ) ≺ QKz(ǫ)Q

t ≺ QKzQ
t − c2ǫI + o(ǫ),

where c1 ≥ c2 > 0 are some constants. Hence

Kz − c1ǫI+ o(ǫ) ≺ Kz(ǫ) ≺ Kz − c2ǫI + o(ǫ).

Equation (72) is a direct result of this lemma.

J Proof of equation (82)

We first prove the following lemma.

Lemma 11. Let A be an N × N matrix such that 0 ≺ A 4 I. Choose ǫ > 0 such that
A− ǫI ≻ 0. Define

Kz(ǫ)
def
= [I− (A− ǫI)]−1 − I.

Then, for any E and F such that 0 ≺ E 4 I and 0 ≺ F 4 I, we have

lim
ǫ→0

|E+Kz(ǫ)|

|F+Kz(ǫ)|
= 1.

Proof. There exists an N ×N orthogonal matrix Q such that

QAQt = diag{a1, . . . , aN},

where 0 < ai ≤ 1 are eigenvalues of A. Without loss of generality, we suppose a1 =
1, . . . , ap = 1, ap+1 < 1, . . . , aN < 1.

We have

QKz(ǫ)Q
t = Q((I− (A− ǫI))−1 − I)Qt

= diag

{
1− ǫ

ǫ
, . . . ,

1− ǫ

ǫ
,

ap+1 − ǫ

1− ap+1 + ǫ
,

aN − ǫ

1− aN + ǫ

}

,
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and since
|I+Kz(ǫ)|

|Kz(ǫ)|
≥

|E+Kz(ǫ)|

|F+Kz(ǫ)|
≥

|Kz(ǫ)|

|I+Kz(ǫ)|
,

we have

lim
ǫ→0

|E+Kz(ǫ)|

|F+Kz(ǫ)|
= 1.

Equation (82) is a direct consequence of this lemma.

K Proof of Equation (89)

We would like to have a property similar to (66), as ǫ1 approaches zero, and a property
similar to (82), as ǫ2 approaches zero. To see this is the case, we need the following
lemma.

Lemma 12.
Λ1Kz(ǫ1 = 0, ǫ2) = 0

Proof. Since
QΛ1Q

tQA∗Qt = 0

and

QA∗Qt = diag(0, . . . , 0
︸ ︷︷ ︸

p

, 1, . . . , 1
︸ ︷︷ ︸

q

, ap+q+1, . . . , as)

QA∗Qt − ǫ2E2 = diag(0, . . . , 0
︸ ︷︷ ︸

p

, 1− ǫ2, . . . , 1− ǫ2
︸ ︷︷ ︸

q

, ap+q+1, . . . , as),

we have that
QA∗Qt(QA∗Qt − ǫ2E2) = 0.

Thus

QΛ1Kz(ǫ1 = 0, ǫ2)Q
t = QΛ1Q

tQ
(
(I−A∗ +Qtǫ2E2Q)−1 − I

)
Qt

= QΛ1Q
t
(
(I−QA∗Qt + ǫ2E2)

−1 − I
)

= QΛ1Q
t(I−QA∗Qt + ǫ2E2)

(
(I−QA∗Qt + ǫ2E2)

−1 − I
)

= 0.
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Using this lemma, we can show a property similar to (66) as ǫ1 approaches zero. First
note that similar to case 2, we have

D−1
0 +Λ1 − e2ǫ2I+ o(ǫ2) ≺ D−1

0 (ǫ1, ǫ2) ≺ D−1
0 +Λ1 + e1ǫ1I+ o(ǫ1)

where e1 > 0 and e2 > 0 are constants. Hence we have

|D0(ǫ1 = 0, ǫ2) +Kz(ǫ1 = 0, ǫ2)|

|D0(ǫ1 = 0, ǫ2)|
= |I+D−1

0 (ǫ1 = 0, ǫ2)Kz(ǫ1 = 0, ǫ2)|

≥ |I+ (D−1
0 +Λ1 − e2ǫ2I)Kz(ǫ1 = 0, ǫ2)|

= |I+D−1
0 Kz(ǫ1 = 0, ǫ2)− e2ǫ2Kz(ǫ1 = 0, ǫ2)|

=
|D0 +Kz(ǫ1 = 0, ǫ2)− e2ǫ2D0Kz(ǫ1 = 0, ǫ2)|

|D0|
.

Similarly, we have

|D0(ǫ1 = 0, ǫ2) +Kz(ǫ1 = 0, ǫ2)|

|D0(ǫ1 = 0, ǫ2)|
≤

|D0 +Kz(ǫ1 = 0, ǫ2)|

|D0|
.

Thus

lim
ǫ2→0

lim
ǫ1→0

1

2
log

|I+Kz(ǫ1, ǫ2)|(L−1)|D0(ǫ1, ǫ2) +Kz(ǫ1, ǫ2)|

|D0(ǫ1, ǫ2)|
L∏

l=1

|Dl(ǫ1, ǫ2) +Kz(ǫ1, ǫ2)|

= lim
ǫ2→0

1

2
log

|I+Kz(ǫ1 = 0, ǫ2)|(L−1)|D0 +Kz(ǫ1 = 0, ǫ2)|

|D0|
L∏

l=1

|Dl(ǫ1 = 0, ǫ2) +Kz(ǫ1 = 0, ǫ2)|

=
1

2
log

1

|D0|
,

(124)

where the last step is similar to (82).
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