Characterization of m-Sequences of Lengths $2^{2 k}-1$ and $2^{k}-1$ with Three-Valued Crosscorrelation

Tor Helleseth and Alexander Kholosha and Geir Jarle Ness
The Selmer Center, Department of Informatics, University of Bergen PB 7800
N-5020 Bergen, Norway
July 26, 2018

Abstract

Considered is the distribution of the crosscorrelation between m-sequences of length $2^{m}-1$, where $m=2 k$, and m-sequences of shorter length $2^{k}-1$. New pairs of m-sequences with three-valued crosscorrelation are found and the complete correlation distribution is determined. Finally, we conjecture that there are no more cases with a three-valued crosscorrelation apart from the ones proven here.

Keywords: m-sequences, crosscorrelation, linearized polynomials.

1 Introduction

Let $\left\{a_{t}\right\}$ and $\left\{b_{t}\right\}$ be two binary sequences of length n. The crosscorrelation function between these two sequences at shift τ, where $0 \leq \tau<n$, is defined by

$$
C(\tau)=\sum_{t=0}^{n-1}(-1)^{a_{t}+b_{t+\tau}}
$$

If the sequences $\left\{a_{t}\right\}$ and $\left\{b_{t}\right\}$ are the same we call it the autocorrelation.
Sequences with good correlation properties are important for many applications in communication systems. A relevant problem is to find the distribution of the crosscorrelation function (i.e., the set of values obtained for all shifts) between two binary m-sequences $\left\{s_{t}\right\}$ and $\left\{s_{d t}\right\}$ of the same length $2^{m}-1$ that differ by a decimation d such that $\operatorname{gcd}\left(d, 2^{m}-1\right)=1$. A survey of some of the basic research on the crosscorrelation between m-sequences of the same length can be found in Helleseth [1] and more recent results in Helleseth and Kumar [2] and Dobbertin et. al. [3]. A basis for many applications is the family of Gold sequences with their three-valued crosscorrelation function.

In a recent paper [4, Ness and Helleseth studied the crosscorrelation between an m-sequence $\left\{s_{t}\right\}$ of length $n=2^{m}-1$ and an m-sequence $\left\{u_{d t}\right\}$ of length $2^{k}-1$, where $m=2 k$ and $\operatorname{gcd}\left(d, 2^{k}-1\right)=1$. Here $\left\{u_{t}\right\}$ denotes the m-sequence used in constructing the small family of Kasami sequences [5]. Recall that this family consists of 2^{k} sequences $\left\{s_{t}\right\}+\left\{u_{t+\tau}\right\}$ for $\tau=0, \ldots, 2^{k}-2$ plus the sequence $\left\{s_{t}\right\}$, where s_{t} and u_{t} are defined in (11) and (2). For the Kasami sequences, the crosscorrelation between $\left\{s_{t}\right\}$ and $\left\{u_{t}\right\}$ takes on only two different values. It is an open problem whether this is possible in other cases. Numerical results show several pairs of m-sequences with three-valued crosscorrelation function between $\left\{s_{t}\right\}$ and $\left\{u_{d t}\right\}$, where $\operatorname{gcd}\left(d, 2^{k}-1\right)=1$ and k is odd. In addition to general results, Ness and Helleseth proved in [4] that the decimation $d=\frac{2^{k}+1}{3}$ gives a three-valued crosscorrelation distribution and in [6] they proved the same distribution for $d=2^{(k+1) / 2}-1$ (in both cases k odd is needed). In this paper, we cover all the cases found by computer experiments that lead to a three-valued
crosscorrelation distribution and completely determine this distribution. Speaking concretely, the decimation d such that $d\left(2^{l}+1\right) \equiv 2^{i}\left(\bmod 2^{k}-1\right)$ for some integer l and $i \geq 0$ with $\operatorname{gcd}(l, k)=1$ and odd k gives a three-valued crosscorrelation distribution. We conjecture that there are no other three-valued cases but these. This result includes the decimations proved in [4, 6] as a particular case that is obtained assuming $l=1$ and $l=\frac{k+1}{2}$.

In Section 2, we present preliminaries needed for proving our main result. In Section 3, we analyze zeros of a particular affine polynomial $A_{a}(v)$. In Section 4, we find the distribution of the number of zeros of a special linearized polynomial $L_{a}(z)$. These two polynomials play a crucial role in finding the distribution of a new three-valued crosscorrelation function. In Section 5, we determine completely the crosscorrelation distribution of the new three-valued decimation.

2 Preliminaries

Let $\mathrm{GF}(q)$ denote a finite field with q elements and let $\operatorname{GF}(q)^{*}=\mathrm{GF}(q) \backslash\{0\}$. The trace mapping from $\operatorname{GF}\left(q^{m}\right)$ to $\operatorname{GF}(q)$ is defined by

$$
\operatorname{Tr}_{m}(x)=\sum_{i=0}^{m-1} x^{q^{i}}
$$

Let $\mathrm{GF}\left(2^{m}\right)$ be a finite field with 2^{m} elements and $m=2 k$ with k odd. Let α be an element of order $n=2^{m}-1$. Then the m-sequence $\left\{s_{t}\right\}$ of length n can be written in terms of the trace mapping as

$$
\begin{equation*}
s_{t}=\operatorname{Tr}_{m}\left(\alpha^{t}\right) \tag{1}
\end{equation*}
$$

Let $\beta=\alpha^{2^{k}+1}$, then β is an element of order $2^{k}-1$. The sequence $\left\{u_{t}\right\}$ of length $2^{k}-1$ (which is used in the construction of the well-known Kasami family) is defined by

$$
\begin{equation*}
u_{t}=\operatorname{Tr}_{k}\left(\beta^{t}\right) \tag{2}
\end{equation*}
$$

In this paper, we consider the crosscorrelation between the m-sequences $\left\{s_{t}\right\}$ and $\left\{v_{t}\right\}=\left\{u_{d t}\right\}$ at shift τ defined by

$$
\begin{equation*}
C_{d}(\tau)=\sum_{t=0}^{n-1}(-1)^{s_{t}+v_{t+\tau}} \tag{3}
\end{equation*}
$$

where $\operatorname{gcd}\left(d, 2^{k}-1\right)=1$ and $\tau=0, \ldots, 2^{k}-2$. One should observe that in this setting, by selecting all decimations d with this condition, we cover the crosscorrelation function between all pairs of m-sequences having these two different
lengths. Using the trace representation, this function can be written as an exponential sum

$$
\begin{aligned}
C_{d}(\tau) & =\sum_{t=0}^{n-1}(-1)^{s_{t}+u_{d(t+\tau)}} \\
& =\sum_{x \in \operatorname{GF}\left(2^{m}\right)^{*}}(-1)^{\operatorname{Tr}_{m}\left(\alpha^{-\tau} x\right)+\operatorname{Tr}_{k}\left(x^{d\left(2^{k}+1\right)}\right)} .
\end{aligned}
$$

Since the two subgroups of $\operatorname{GF}\left(2^{m}\right)^{*}$ of order $2^{k}-1$ and $2^{k}+1$, respectively, only contain the element 1 in common, it is straightforward to see that for any element, say $\alpha^{-\tau} \in \operatorname{GF}\left(2^{m}\right)^{*}$, there is a unique element u, where $u^{2^{k}+1}=1$ such that $\alpha^{-\tau} u=a \in \operatorname{GF}\left(2^{k}\right)^{*}$. Further, distinct values of $\tau=0,1, \ldots, 2^{k}-2$ lead to distinct values of $a \in \operatorname{GF}\left(2^{k}\right)^{*}$. Further, note that for any u with $u^{2^{k}+1}=1$ we have

$$
\sum_{x \in \operatorname{GF}\left(2^{m}\right)^{*}}(-1)^{\operatorname{Tr}_{m}\left(\alpha^{-\tau} u x\right)+\operatorname{Tr}_{k}\left(x^{d\left(2^{k}+1\right)}\right)}=\sum_{x \in \operatorname{GF}\left(2^{m}\right)^{*}}(-1)^{\operatorname{Tr}_{m}\left(\alpha^{-\tau} x\right)+\operatorname{Tr}_{k}\left(x^{d\left(2^{k}+1\right)}\right)} .
$$

Therefore, the set of values of $C_{d}(\tau)+1$ for all $\tau=0,1, \ldots, 2^{k}-2$ is equal to the set of values of

$$
\begin{equation*}
S(a)=\sum_{x \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}(a x)+\operatorname{Tr}_{k}\left(x^{d\left(2^{k}+1\right)}\right)} \tag{4}
\end{equation*}
$$

when $a \in \operatorname{GF}\left(2^{k}\right)^{*}$.
The main result of this paper is formulated in the following corollary that gives a three-valued crosscorrelation function between new pairs of sequences of different lengths. This corollary immediately follows from Theorem 2,

Corollary 1 Let $m=2 k$ and $d\left(2^{l}+1\right) \equiv 2^{i}\left(\bmod 2^{k}-1\right)$ for some odd k and integer l with $0<l<k, \operatorname{gcd}(l, k)=1$ and $i \geq 0$. Then the crosscorrelation function $C_{d}(\tau)$ has the following distribution

$$
\begin{array}{llll}
-1-2^{k+1} & \text { occurs } & \frac{2^{k-1}-1}{3} & \text { times } \\
-1 & \text { occurs } & 2^{k-1}-1 & \text { times } \\
-1+2^{k} & \text { occurs } & \frac{2^{k}+1}{3} & \text { times }
\end{array}
$$

The result will be proved in a series of lemmas. The outline of the proof is as follows. We have shown that we can write $C_{d}(\tau)+1$ for $\tau=0,1, \ldots, 2^{k}-2$ as an exponential sum $S(a)$ for $a \in \operatorname{GF}\left(2^{k}\right)^{*}$. In the case when l is even, we can calculate the distribution of this sum directly as an exponential sum $S_{0}(a)$ and obtain the result. In the case when l is odd, a different approach works. In this case, we need some r being a noncube in $\operatorname{GF}\left(2^{m}\right)$ such that $r^{2^{k}+1}=1$ (for
instance, we can take $r=\alpha^{2^{k}-1}$ with α a primitive element of $\left.\operatorname{GF}\left(2^{m}\right)\right)$ and we show that

$$
S(a)=\left(S_{0}(a)+S_{1}(a)+S_{2}(a)\right) / 3
$$

for three exponential sums $S_{0}(a), S_{1}(a)$ and $S_{2}(a)$ defined by

$$
\begin{aligned}
& S_{i}(a)=\sum_{y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r^{i} a y^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(y^{2^{k}+1}\right)} \text { for } i=0,1 \\
& S_{2}(a)=\sum_{y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r^{-1} a y^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(y^{2^{k}+1}\right)} .
\end{aligned}
$$

We determine $S_{0}(a)$ exactly in Corollary 22 and find $S_{1}(a)^{2}$ (that is equal to $\left.S_{2}(a)^{2}\right)$ in Lemma 9 . Since $S(a)$ is an integer, we can resolve the sign ambiguity of $S_{1}(a)$ and $S_{2}(a)$. In order to determine $S_{0}(a)$ we need to consider zeros in $\operatorname{GF}\left(2^{k}\right)$ of the affine polynomial

$$
A_{a}(v)=a^{2^{l}} v^{2^{2 l}}+v^{2^{l}}+a v+1
$$

and this is done in Section 3. To determine the square sums $S_{1}(a)^{2}$ and $S_{2}(a)^{2}$ we need to find the number of zeros in $\operatorname{GF}\left(2^{m}\right)$ of the linearized polynomial

$$
L_{a}(z)=z^{2^{k+l}}+r^{2^{l}} a^{2^{l}} z^{2^{2 l}}+r a z
$$

and this task is completed in Section 4 .
When finding the complete crosscorrelation distribution we make use of the following result from [4] that gives the sum of the crosscorrelation values as well as the sum of their squares.

Lemma 1 ([4]) For any decimation d with $\operatorname{gcd}\left(d, 2^{k}-1\right)=1$ the sum (of the squares) of the crosscorrelation values defined in (3) is equal to

$$
\begin{aligned}
& \sum_{\tau=0}^{2^{k}-2} C_{d}(\tau)=1 \\
& \sum_{\tau=0}^{2^{k}-2} C_{d}(\tau)^{2}=\left(2^{m}-1\right)\left(2^{k}-1\right)-2 .
\end{aligned}
$$

3 The Affine Polynomial $A_{a}(v)$

In this section, we take any k and consider zeros in $\mathrm{GF}\left(2^{k}\right)$ of the affine polynomial

$$
\begin{equation*}
A_{a}(v)=a^{2^{l}} v^{2^{2 l}}+v^{2^{l}}+a v+1, \tag{5}
\end{equation*}
$$

where $l<k$ is an arbitrary but fixed positive integer with $\operatorname{gcd}(l, k)=1$ and $a \in \operatorname{GF}\left(2^{k}\right)^{*}$. Let also $l^{\prime}=l^{-1}(\bmod k)$. The distribution of the zeros in $\operatorname{GF}\left(2^{k}\right)$ of (5) will determine to a large extent the distribution of our crosscorrelation function.

We need the following sequences of polynomials that were introduced by Dobbertin in [7] (see also [8]):

$$
\begin{aligned}
F_{1}(v) & =v, \\
F_{2}(v) & =v^{2^{l}+1}, \\
F_{i+2}(v) & =v^{2^{(i+1) l}} F_{i+1}(v)+v^{2^{(i+1) l}-2^{i l}} F_{i}(v) \quad \text { for } \quad i \geq 1, \\
G_{1}(v) & =0, \\
G_{2}(v) & =v^{2^{l}-1}, \\
G_{i+2}(v) & =v^{2^{(i+1) l}} G_{i+1}(v)+v^{2^{(i+1) l}-2^{i l}} G_{i}(v) \quad \text { for } \quad i \geq 1 .
\end{aligned}
$$

These are used to define the polynomial

$$
\begin{equation*}
R(v)=\sum_{i=1}^{l^{\prime}} F_{i}(v)+G_{l^{\prime}}(v) . \tag{6}
\end{equation*}
$$

As noted in [7], the exponents occurring in $F_{j}(v)$ (resp. in $G_{j}(v)$) are precisely those of the form

$$
e=\sum_{i=0}^{j-1}(-1)^{\epsilon_{i}} 2^{i l}
$$

where $\epsilon_{i} \in\{0,1\}$ satisfy $\epsilon_{j-1}=0, \epsilon_{0}=0$ (resp. $\epsilon_{0}=1$) and $\left(\epsilon_{i}, \epsilon_{i-1}\right) \neq(1,1)$.
Further, we will essentially need the following result proven in [7, Theorem 5] that the following polynomial

$$
\begin{equation*}
D(v)=\frac{\sum_{i=1}^{l^{\prime}} v^{2^{i l}}+l^{\prime}+1}{v^{2^{l}+1}} \tag{7}
\end{equation*}
$$

is a permutation polynomial on $\operatorname{GF}\left(2^{k}\right)^{*}$. (To be formally more precise, we get a polynomial $D(v)$ if $v^{-\left(2^{l}+1\right)}$ is substituted by $v^{\left(2^{k}-1\right)-\left(2^{l}+1\right)}$.) Moreover, $D(v)$ and $R\left(v^{-1}\right)$ are inverses of each other [7, Theorem 6], i.e., for any nonzero $x, y \in$ $\operatorname{GF}\left(2^{k}\right)$ with $D(x)=y^{-1}$ it always holds that $R(y)=x$. In (7) and in the rest of the paper, whenever a positive integer e is added to an element of $\operatorname{GF}\left(2^{k}\right)$, it means that added is the identity element of $\operatorname{GF}\left(2^{k}\right)$ times $e(\bmod 2)$.

Also note the fact that since $l^{\prime} l \equiv 1(\bmod k)$ then

$$
\left(2^{l}-1\right)\left(1+2^{l}+2^{2 l}+\cdots+2^{\left(l^{\prime}-1\right) l}\right)=2^{l l^{\prime}}-1 \equiv 1\left(\bmod 2^{k}-1\right) .
$$

Therefore, $x^{2^{l^{\prime} l}}=x^{2}$ for any $x \in \mathrm{GF}\left(2^{k}\right)$ and this identity will be used repeatedly further in the proofs.

In the following lemmas, we always assume that $l<k$ is a positive integer with $\operatorname{gcd}(l, k)=1$. We also take $A_{a}(v)$ defined in (5) and $R(v)$ defined in (6). Lemmas 2 and 3 here provide generalization for Lemmas 3,4 and 6 in [6]. Theorem 1 is a generalization of Lemma 7 in [6].

Lemma 2 For any $a \in \operatorname{GF}\left(2^{k}\right)^{*}$ the element $v_{0}=R\left(a^{-1}\right)$ is a zero of $A_{a}(v)$ in $\operatorname{GF}\left(2^{k}\right)^{*}$.

Proof. Since $D(v)$ in (7) is a permutation polynomial on $\operatorname{GF}\left(2^{k}\right)^{*}$, then for any fixed $a \in \mathrm{GF}\left(2^{k}\right)^{*}$ the equation

$$
\begin{equation*}
a v^{2^{l}+1}=\sum_{i=1}^{l^{\prime}} v^{2^{i l}}+l^{\prime}+1 \tag{8}
\end{equation*}
$$

has exactly one solution $v_{0}=R\left(a^{-1}\right)$ in $\operatorname{GF}\left(2^{k}\right)^{*}$. Raising (8) to the power of 2^{l} results in

$$
a^{2^{l}} v^{2^{2 l}+2^{l}}=\sum_{i=2}^{l^{\prime}+1} v^{2^{i l}}+l^{\prime}+1=\sum_{i=2}^{l^{\prime}} v^{2^{i l}}+v^{2^{l+1}}+l^{\prime}+1 .
$$

The latter identity, after being added to (8) and setting $v=v_{0}$, gives

$$
a v_{0}^{2^{l}+1}=a^{2^{l}} v_{0}^{2^{2 l}+2^{l}}+v_{0}^{2^{l}}+v_{0}^{2^{l+1}}
$$

and consecutively, since $v_{0} \neq 0, A_{a}\left(v_{0}\right)=a^{2^{l}} v_{0}^{2^{2 l}}+v_{0}^{2^{l}}+a v_{0}+1=0$.
Lemma 3 For any $a \in \operatorname{GF}\left(2^{k}\right)^{*}$ let z be a zero of $A_{a}(v)$ in $\mathrm{GF}\left(2^{k}\right)$. Then

$$
\operatorname{Tr}_{k}(z)=\operatorname{Tr}_{k}\left(v_{0}\right)
$$

and

$$
\begin{aligned}
\operatorname{Tr}_{k}\left(a z^{2^{2}+1}\right) & =l^{\prime} \operatorname{Tr}_{k}\left(v_{0}\right)+\operatorname{Tr}_{k}\left(l^{\prime}+1\right) & & \text { if } z=v_{0}, \\
& =l^{\prime} \operatorname{Tr}_{k}\left(v_{0}\right)+\operatorname{Tr}_{k}\left(l^{\prime}\right) & & \text { if } z \neq v_{0},
\end{aligned}
$$

where $v_{0}=R\left(a^{-1}\right)$.
Proof. The first identity follows by observing that any zero of $A_{a}(v)$ is obtained as a sum of the zero v_{0} of $A_{a}(v)$ (see Lemma 2) and a zero of its homogeneous part $a^{2^{l}} v^{2^{2 l}}+v^{2^{l}}+a v$. To prove the identity it therefore suffices to show that $\operatorname{Tr}_{k}\left(v_{1}\right)=0$ for any v_{1} with $a^{2^{l}} v_{1}^{2^{2 l}}+v_{1}^{2^{l}}+a v_{1}=0$. This follows from

$$
\begin{aligned}
\operatorname{Tr}_{k}\left(v_{1}\right) & =\operatorname{Tr}_{k}\left(v_{1}^{2^{l+1}}\right) \\
& =\operatorname{Tr}_{k}\left(v_{1}^{2^{l}+2^{l}}\right) \\
& =\operatorname{Tr}_{k}\left(a^{2^{l}} v_{1}^{2^{2 l}+2^{l}}+a v_{1}^{2^{l}+1}\right) \\
& =0
\end{aligned}
$$

To prove the second identity for the case when $z=v_{0}$ we use the fact presented in the proof of Lemma 2 that $a v_{0}^{2^{l}+1}=\sum_{i=1}^{l^{\prime}} v_{0}^{2^{i l}}+l^{\prime}+1$. Then $\operatorname{Tr}_{k}\left(a v_{0}^{2^{l}+1}\right)=$ $l^{\prime} \operatorname{Tr}_{k}\left(v_{0}\right)+\operatorname{Tr}_{k}\left(l^{\prime}+1\right)$.

Now note that since $A_{a}(v)$ is obtained by adding the 2^{l}-th power of (8) to itself we have for $z \neq 0$

$$
A_{a}(z)=0 \quad \text { if and only if } \quad a z^{2^{l}+1}+\sum_{i=1}^{l^{\prime}} z^{2^{i l}}+l^{\prime}+1 \in\{0,1\}
$$

Since v_{0} is the only solution of (8), then for $z \neq v_{0}$ with $A_{a}(z)=0$ we have $a z^{2^{l}+1}+\sum_{i=1}^{l^{\prime}} z^{2^{i l}}+l^{\prime}+1=1$ and

$$
\operatorname{Tr}_{k}\left(a z^{2^{l}+1}\right)=l^{\prime} \operatorname{Tr}_{k}(z)+\operatorname{Tr}_{k}\left(l^{\prime}\right)=l^{\prime} \operatorname{Tr}_{k}\left(v_{0}\right)+\operatorname{Tr}_{k}\left(l^{\prime}\right)
$$

using already proved identity that $\operatorname{Tr}_{k}(z)=\operatorname{Tr}_{k}\left(v_{0}\right)$.
Now we introduce a particular sequence of polynomials over GF $\left(2^{k}\right)$ and prove some important properties of these that will be used further for getting the main result of this section about zeros of $A_{a}(v)$. Denote

$$
e(i)=1+2^{l}+2^{2 l}+\cdots+2^{(i-1) l} \text { for } \quad i=1, \ldots, l^{\prime}
$$

so, in particular, $e\left(l^{\prime}\right)=\left(2^{l}-1\right)^{-1}\left(\bmod 2^{k}-1\right)$. Now take every additive term v^{e} with $e \neq 0$ in the polynomial $1+(1+v)^{e(i)}$ and replace the exponent e with the cyclotomic equivalent number obtained by shifting the binary expansion of e maximally (till you get an odd number) in the direction of the least significant bits. We call this reduction procedure. Recall that two exponents e_{1} and e_{2} are cyclotomic equivalent if $2^{i} e_{1} \equiv e_{2}\left(\bmod 2^{k}-1\right)$ for some $i<k$. For instance, $v^{2^{i l}}$ is reduced to v and $v^{2^{i l}+2^{j l}}$ is reduced to $v^{1+2^{(j-i) l}}$ if $i<j$ and so on. The obtained reduced polynomials are denoted as $H_{i}(v)$ and we use square brackets to denote application of the described reduction procedure to a polynomial, so $H_{i}(v)=\left[1+(1+v)^{e(i)}\right]$ for $i=1, \ldots, l^{\prime}$. The first few polynomials in the sequence (after eliminating all pairs of equal terms) are

$$
\begin{aligned}
H_{1}(v) & =v \\
H_{2}(v) & =\left[v+v^{2^{l}}+v^{1+2^{l}}\right]=v+v+v^{1+2^{l}}=v^{1+2^{l}} \\
H_{3}(v) & =\left[v+v^{2^{l}}+v^{2^{2 l}}+v^{1+2^{l}}+v^{1+2^{2 l}}+v^{2^{l}+2^{2 l}}+v^{1+2^{l}+2^{2 l}}\right] \\
& =v+v+v+v^{1+2^{l}}+v^{1+2^{2 l}}+v^{1+2^{l}}+v^{1+2^{l}+2^{2 l}}=v+v^{1+2^{2 l}}+v^{1+2^{l}+2^{2 l}} .
\end{aligned}
$$

Lemma 4 If polynomials $H_{i}(v)$ are defined as above then

$$
\operatorname{Tr}_{k}\left(H_{i}(v)\right)=\operatorname{Tr}_{k}\left(1+(1+v)^{e(i)}\right)
$$

for any $v \in \operatorname{GF}\left(2^{k}\right)$ and $i=1, \ldots, l^{\prime}$. Also let $Q(v)=\left(x_{0}^{2^{l}+1}+x_{0}\right) v^{2^{l}}+x_{0}^{2} v+x_{0}$ for any $x_{0} \in \operatorname{GF}\left(2^{k}\right)^{*}$. Then

$$
Q\left(H_{l^{\prime}}\left(x_{0}^{-1}\right)\right)=\left(1+x_{0}\right)\left(1+x_{0}^{-1}\right)^{e\left(l^{\prime}\right)} .
$$

Proof. The trace identity for $H_{l^{\prime}}(v)$ we get obviously from the definition. Further, for any $i \in\left\{2, \ldots, l^{\prime}\right\}$

$$
\begin{aligned}
H_{i}(v) & =\left[1+(1+v)^{e(i)}\right] \\
& =\left[1+(1+v)^{e(i-1)}(1+v)^{2^{(i-1) l}}\right] \\
& =\left[H_{i-1}(v)+v^{2^{(i-1) l}}(1+v)^{e(i-1)}\right] \\
& \stackrel{(*)}{=} v(1+v)^{e(i)-1}+H_{i-1}(v),
\end{aligned}
$$

where $\left(^{*}\right)$ follows from the following argumentation. First, note that the exponents of additive terms in $v(1+v)^{e(i)-1}$ are exactly all 2^{i-1} distinct integers of the form $1+t_{1} 2^{l}+\cdots+t_{i-1} 2^{(i-1) l}$ with $t_{j} \in\{0,1\}$ for $j=1, \ldots, i-1$ and the reduction does not apply to any of these so

$$
\left[v(1+v)^{e(i)-1}\right]=v(1+v)^{e(i)-1}
$$

On the other hand, the number of terms in $\left[v^{2^{(i-1) l}}(1+v)^{e(i-1)}\right]$ is also equal to 2^{i-1} since the exponents in these terms are exactly all the integers of the form $t_{0}+t_{1} 2^{l}+\cdots+t_{i-2} 2^{(i-2) l}+2^{(i-1) l}$ with $t_{j} \in\{0,1\}$ for $j=0, \ldots, i-2$ and none of these become equal after the reduction. Moreover, every such an exponent, after reduction, can be found in $v(1+v)^{e(i)-1}$ so

$$
\left[v^{2^{(i-1) l}}(1+v)^{e(i-1)}\right]=v(1+v)^{e(i)-1}
$$

Also note that all terms of $H_{i-1}(v)$ are also present in $v(1+v)^{e(i)-1}$. Thus, the number of terms in $H_{i}(v)$ that remain after eliminating all pairs of equal terms and denoted as $\# H_{i}$ is equal to $2^{i-1}-\# H_{i-1}$. Unfolding the obtained recursive expression for $H_{i}(v)$ starting from $H_{1}(v)=v$ we get that

$$
H_{i}(v)=v\left(1+(1+v)^{2^{l}}+(1+v)^{2^{l}+2^{2 l}}+\cdots+(1+v)^{e(i)-1}\right)
$$

Now we can evaluate

$$
\begin{aligned}
Q & \left(H_{l^{\prime}}\left(x_{0}^{-1}\right)\right)= \\
= & \left(x_{0}^{2^{l}+1}+x_{0}\right) H_{l^{\prime}}\left(x_{0}^{-1}\right)^{2^{l}}+x_{0}^{2} H_{l^{\prime}}\left(x_{0}^{-1}\right)+x_{0} \\
= & \left(x_{0}+x_{0}^{-2^{l}+1}\right)\left(1+\left(1+x_{0}^{-1}\right)^{2^{2 l}}+\left(1+x_{0}^{-1}\right)^{2^{2 l}+2^{3 l}}+\cdots+\left(1+x_{0}^{-1}\right)^{2^{2 l}+\cdots+2^{l^{l}}}\right) \\
& +x_{0}\left(1+\left(1+x_{0}^{-1}\right)^{2^{l}}+\left(1+x_{0}^{-1}\right)^{2^{l}+2^{2 l}}+\cdots+\left(1+x_{0}^{-1}\right)^{e\left(l^{\prime}\right)-1}\right)+x_{0} \\
= & \left(\left(x_{0}+x_{0}^{-2^{l}+1}\right)+x_{0}\left(1+x_{0}^{-1}\right)^{2^{l}}\right)\left(1+\left(1+x_{0}^{-1}\right)^{2^{2 l}}+\cdots+\left(1+x_{0}^{-1}\right)^{2^{2 l}+\cdots+2^{\left(l^{\prime}-1\right) l}}\right) \\
& +\left(x_{0}+x_{0}^{-2^{l}+1}\right)\left(1+x_{0}^{-1} 2^{2^{2 l}+\cdots+2^{l^{\prime} l}}+x_{0}+x_{0}\right. \\
= & x_{0}\left(1+x_{0}^{-1}\right)^{2^{l}+2^{2 l}+\cdots+2^{l^{\prime} l}} \\
= & x_{0}\left(1+x_{0}^{-1}\right)^{2+2^{l}+2^{2 l}+\cdots+2^{\left(l^{\prime}-1\right) l}} \\
= & \left(1+x_{0}\right)\left(1+x_{0}^{-1}\right)^{e\left(l^{\prime}\right)}
\end{aligned}
$$

as claimed.
Lemma 5 For any $a \in \operatorname{GF}\left(2^{k}\right)^{*}$ let $x_{0} \in \operatorname{GF}\left(2^{k}\right)$ satisfy $x_{0}^{2^{l}+1}+x_{0}=a$. Then

$$
\operatorname{Tr}_{k}\left(1+\left(1+x_{0}^{-1}\right)^{e\left(l^{\prime}\right)}\right)=\operatorname{Tr}_{k}\left(R\left(a^{-1}\right)\right) .
$$

Proof. Denote $\Gamma=x_{0}^{2^{l}-1}+x_{0}^{-1}$ (obviously $\Gamma \neq 0$ since $x_{0} \neq 1$), $\Delta=\Gamma^{-e\left(l^{\prime}\right)}$ and further, using Lemma 4, evaluate

$$
Q\left(H_{l^{\prime}}\left(x_{0}^{-1}\right)\right) x_{0}^{e\left(l^{\prime}\right)}=\left(1+x_{0}\right)\left(1+x_{0}\right)^{e\left(l^{\prime}\right)}=\left(1+x_{0}^{2^{l}}\right)^{e\left(l^{\prime}\right)}
$$

and thus, $Q\left(H_{l^{\prime}}\left(x_{0}^{-1}\right)\right)^{2^{l}-1}=\Gamma$ or, equivalently,

$$
\begin{equation*}
Q\left(H_{l^{\prime}}\left(x_{0}^{-1}\right)\right)=\Delta^{-1} \tag{9}
\end{equation*}
$$

In what follows, we use the technique suggested by Dobbertin for proving [7, Theorem 1]. Note that

$$
\begin{aligned}
A_{a}(v) & =a^{2^{l}} v^{2^{2 l}}+x_{0}^{2^{l+1}} v^{2^{l}}+x_{0}^{2^{l}}+\left(x_{0}^{2^{l}-1}+x_{0}^{-1}\right)\left(\left(x_{0}^{2^{l}+1}+x_{0}\right) v^{2^{l}}+x_{0}^{2} v+x_{0}\right) \\
& =Q(v)^{2^{l}}+\Gamma Q(v)=Q(v)\left(Q(v)^{2^{l}-1}+\Delta^{-\left(2^{l}-1\right)}\right)
\end{aligned}
$$

for $x_{0}^{2^{l}+1}+x_{0}=a$ and therefore, by (9),$A_{a}\left(H_{l^{\prime}}\left(x_{0}^{-1}\right)\right)=0$. Consider the equation

$$
\begin{equation*}
Q(v)+\Delta^{-1}=0 \tag{10}
\end{equation*}
$$

whose roots are also the zeros of $A_{a}(v)$. We will show that (10) has exactly two roots with $H_{l^{\prime}}\left(x_{0}^{-1}\right)$ and $R\left(a^{-1}\right)$ being among them (however, we do not claim
that $\left.R\left(a^{-1}\right) \neq H_{l^{\prime}}\left(x_{0}^{-1}\right)\right)$. Multiplying (10) by $\mu=\left(x_{0}^{2} \Delta\right)^{-1}$ and using that $\left(x_{0}^{2^{l}+1}+x_{0}\right) \Delta^{2^{l}-1}=x_{0}^{2}$ gives

$$
\mu\left(\left(x_{0}^{2^{l}+1}+x_{0}\right) v^{2^{l}}+x_{0}^{2} v+x_{0}+\Delta^{-1}\right)=(v / \Delta)^{2^{l}}+v / \Delta+x_{0} \mu+x_{0}^{2} \mu^{2}=0
$$

which has exactly two solutions $z_{0}=H_{l^{\prime}}\left(x_{0}^{-1}\right)$ (see (9)) and $z_{1}=H_{l^{\prime}}\left(x_{0}^{-1}\right)+\Delta$ since its linearized homogeneous part $(v / \Delta)^{2^{l}}+v / \Delta$ has exactly two roots $v=0$ and $v=\Delta$. Thus, $z_{0}+z_{1}=\Delta=\left(\frac{x_{0}}{1+x_{0}^{2^{l}}}\right)^{e\left(l^{\prime}\right)}$. Using $\left(x_{0}^{2^{l}}+1\right) \Delta^{2^{l}-1}=x_{0}$ it is easy to see that $\Delta^{2^{l}}=x_{0} \Delta+\left(x_{0} \Delta\right)^{2^{l}}$ and we have $\operatorname{Tr}_{k}(\Delta)=0$.

Now we show that none of the possible roots of $Q(v)=0$ is a solution of (8). In fact, suppose that $Q(z)=0$. Then, since $x_{0} \neq 0$, we have $z^{2^{l}}=\left(x_{0} z\right)^{2^{l}}+x_{0} z+1$ and $a z^{2^{l}}=x_{0}^{2} z+x_{0}$ (since $a=x_{0}^{2^{l}+1}+x_{0}$). We put such a z into (8) and compute

$$
\begin{aligned}
a z^{2^{l}+1} & +\sum_{i=1}^{l^{\prime}} z^{2^{i l}}+l^{\prime}+1 \\
& =\left(x_{0}^{2} z+x_{0}\right) z+\sum_{i=0}^{l^{\prime}-1}\left(x_{0} z\right)^{2^{i l}}+\sum_{i=1}^{l^{\prime}}\left(x_{0} z\right)^{2^{i l}}+l^{\prime}+l^{\prime}+1 \\
& =1 .
\end{aligned}
$$

Therefore, recalling the proved identity $A_{a}(v)=Q(v)\left(Q(v)^{2^{l}-1}+\Delta^{-\left(2^{l}-1\right)}\right)$ and keeping in mind that $\operatorname{gcd}\left(2^{l}-1,2^{k}-1\right)=1$ we see that $v_{0}=R\left(a^{-1}\right)$ which is the unique solution of (8) and, by Lemma 2, also the root of $A_{a}(v)=0$, satisfies $Q\left(v_{0}\right)=\Delta^{-1}$. Recall that (10) has exactly two solutions $z_{0}=H_{l^{\prime}}\left(x_{0}^{-1}\right)$ and $z_{1}=H_{l^{\prime}}\left(x_{0}^{-1}\right)+\Delta$. Thus, $R\left(a^{-1}\right)+H_{l^{\prime}}\left(x_{0}^{-1}\right)=\Delta$ or $R\left(a^{-1}\right)=H_{l^{\prime}}\left(x_{0}^{-1}\right)$ (although we do not need in our proof that $R\left(a^{-1}\right) \neq H_{l^{\prime}}\left(x_{0}^{-1}\right)$, we believe that this holds) and, by Lemma 4 ,

$$
\operatorname{Tr}_{k}\left(R\left(a^{-1}\right)\right)=\operatorname{Tr}_{k}\left(H_{l^{\prime}}\left(x_{0}^{-1}\right)\right)=\operatorname{Tr}_{k}\left(1+\left(1+x_{0}^{-1}\right)^{e\left(l^{\prime}\right)}\right)
$$

as claimed.
Theorem 1 For any $a \in \operatorname{GF}\left(2^{k}\right)^{*}$ and a positive integer $l<k$ with $\operatorname{gcd}(l, k)=1$, let $A_{a}(v)$ be defined as in (5). Also let

$$
\begin{equation*}
M_{i}=\left\{a \mid A_{a}(v) \text { has exactly } i \text { zeros in } \mathrm{GF}\left(2^{k}\right)\right\} . \tag{11}
\end{equation*}
$$

Then $A_{a}(v)$ has either one, two or four zeros in $\mathrm{GF}\left(2^{k}\right)$. For $i \in\{1,2,4\}$, we have $a \in M_{i}$ if and only if $p_{a}(x)=x^{2^{l}+1}+x+a$ has exactly $i-1$ zeros in $\operatorname{GF}\left(2^{k}\right)$. The following distribution holds for k odd (resp. k even)

$$
\begin{array}{ll}
\left|M_{1}\right|=\frac{2^{k}+1}{3} & \left(\text { resp. } \frac{2^{k}-1}{3}\right), \\
\left|M_{2}\right|=2^{k-1}-1 & \left(\text { resp. } 2^{k^{k-1}}\right), \\
\left|M_{4}\right|=\frac{2^{k-1}-1}{3} & \left(\text { resp. } \frac{2^{k-1}-2}{3}\right) .
\end{array}
$$

Furthermore, $a \in M_{2}$ if and only if $\operatorname{Tr}_{k}\left(R\left(a^{-1}\right)+1\right)=1$, where $R(v)$ is defined in (6).

Proof. In Lemma 2 it was shown that $v_{0}=R\left(a^{-1}\right)$ is a zero of $A_{a}(v)$ in $\mathrm{GF}\left(2^{k}\right)^{*}$. Let N_{a} be the number of zeros of $A_{a}(v)$ in $\mathrm{GF}\left(2^{k}\right)$. Since $A_{a}(v)$ has a zero in $\operatorname{GF}\left(2^{k}\right), N_{a}$ is equal to the number of zeros of its homogeneous part $a^{2^{l}} v^{2^{2 l}}+v^{2^{l}}+a v$ in $\mathrm{GF}\left(2^{k}\right)$. Dividing the latter polynomial by $a^{-1} v$, then raising it to power 2^{k-1} and replacing $\left(a v^{2^{L}-1}\right)^{2^{k-1}}$ by x leads to

$$
p_{a}(x)=x^{2^{l}+1}+x+a,
$$

which, since $\operatorname{gcd}\left(2^{l}-1,2^{k}-1\right)=1$, has $N_{a}-1$ zeros in $\operatorname{GF}\left(2^{k}\right)$. It is therefore sufficient to study the number of zeros of this polynomial in $\operatorname{GF}\left(2^{k}\right)$.

From now on assume that $N_{a} \geq 2$. Then $p_{a}(x)$ has a zero $x_{0} \in \operatorname{GF}\left(2^{k}\right)$. Now we replace x in $p_{a}(x)$ with $x+x_{0}$ to get

$$
\left(x+x_{0}\right)^{2^{l}+1}+\left(x+x_{0}\right)+a=0
$$

or

$$
x^{2^{l}+1}+x_{0} x^{2^{l}}+x_{0}^{2^{l}} x+x_{0}^{2^{l}+1}+x+x_{0}+a=0
$$

which implies

$$
x^{2^{l}+1}+x_{0} x^{2^{l}}+\left(x_{0}^{2^{l}}+1\right) x=0 .
$$

Since $x=0$ corresponds to x_{0} being the zero of $p_{a}(x)$, we can divide the latter equation by x and after substituting $y=x^{-1}$ we note that if $p_{a}(x)$ has a zero then the reciprocal equation, given by

$$
\begin{equation*}
\left(x_{0}^{2^{l}}+1\right) y^{2^{l}}+x_{0} y+1=0 \tag{12}
\end{equation*}
$$

has $N_{a}-2$ zeros. This affine equation has either zero roots in $\operatorname{GF}\left(2^{k}\right)$ or the same number of roots as its homogeneous part $\left(x_{0}^{2^{l}}+1\right) y^{2^{l}}+x_{0} y$ which is seen to have exactly two solutions, the zero solution and a unique nonzero solution, since $\operatorname{gcd}\left(2^{l}-1,2^{k}-1\right)=1$. Therefore, it can be concluded that $p_{a}(x)=0$ can have either zero, one or three solutions or, equivalently, $A_{a}(v)$ has either one, two or four zeros in GF (2^{k}).

Now we need to find the conditions when there exists a solution of (12). Let $y=t w$, where $t^{2^{l}-1}=c$ and $c=\frac{x_{0}}{x_{0}^{l}+1}$. Since $\operatorname{gcd}\left(2^{l}-1,2^{k}-1\right)=1$, there is a one-to-one correspondence between t and c. Then (12) is equivalent to

$$
w^{2^{l}}+w+\frac{1}{c t\left(x_{0}^{2^{l}}+1\right)}=0
$$

Hence, (12) has no solutions if and only if

$$
\operatorname{Tr}_{k}\left(\frac{1}{c t\left(x_{0}^{\left.2^{l}+1\right)}\right.}\right)=1 .
$$

This easily follows from the fact that the linear operator $L(\omega)=\omega^{2^{l}}+\omega$ on $\operatorname{GF}\left(2^{k}\right)$ has the kernel of dimension one and, thus, the number of elements in the image of L is 2^{k-1}. Since all the elements $\omega^{2^{l}}+\omega$ have the trace zero and the total number of such elements in $\operatorname{GF}\left(2^{k}\right)$ is 2^{k-1}, we conclude that the image of L contains all the elements in $\mathrm{GF}\left(2^{k}\right)$ having trace zero.

Since $c=t^{2^{l}-1}$ then $t=c^{e\left(l^{\prime}\right)}$. Thus, from the definition of c and t we get

$$
\begin{aligned}
& \operatorname{Tr}_{k}\left(\frac{1}{c t\left(x_{0}^{2^{l}}+1\right)}\right)=\operatorname{Tr}_{k}\left(\left(\frac{x_{0}^{2^{l}}+1}{x_{0}}\right)^{1+e\left(l^{\prime}\right)}\left(\frac{1}{x_{0}^{2^{l}}+1}\right)\right) \\
& \quad=\operatorname{Tr}_{k}\left(\frac{\left(x_{0}^{2^{l}}+1\right)^{e\left(l^{\prime}\right)}}{x_{0}^{1+e\left(l^{\prime}\right)}}\right)=\operatorname{Tr}_{k}\left(\frac{\left(x_{0}+1\right)^{2^{l} e\left(l^{\prime}\right)}}{x_{0}^{2^{l} e\left(l^{\prime}\right)}}\right)=\operatorname{Tr}_{k}\left(\left(1+x_{0}^{-1}\right)^{e\left(l^{\prime}\right)}\right) .
\end{aligned}
$$

We conclude that $p_{a}(x)$ has exactly one zero (which is x_{0}) if and only if

$$
\begin{equation*}
\operatorname{Tr}_{k}\left(\left(1+x_{0}^{-1}\right)^{e\left(l^{\prime}\right)}\right)=1 \tag{13}
\end{equation*}
$$

It means that $A_{a}(v)$ has exactly two zeros in $\operatorname{GF}\left(2^{k}\right)$ (i.e., $N_{a}=2$) only for such a that $a=x_{0}^{2^{l}+1}+x_{0}$ with (13) holding. Combining this with the result of Lemma 5 , we conclude that $A_{a}(v)$ has exactly two zeros in $\mathrm{GF}\left(2^{k}\right)$ if and only if

$$
\operatorname{Tr}_{k}\left(R\left(a^{-1}\right)+1\right)=1 .
$$

In the case of one or four zeros, $\operatorname{Tr}_{k}\left(R\left(a^{-1}\right)+1\right)=0$.
Now note that since $e\left(l^{\prime}\right)=1+2^{l}+2^{2 l}+\cdots+2^{\left(l^{\prime}-1\right) l}$ is invertible modulo $2^{k}-1$ with the multiplicative inverse equal to $2^{l}-1$ then $\operatorname{gcd}\left(e\left(l^{\prime}\right), 2^{k}-1\right)=1$ and thus, $\left(1+v^{-1}\right)^{e\left(l^{\prime}\right)}$ is a one-to-one mapping of $\mathrm{GF}\left(2^{k}\right)^{*}$ onto $\mathrm{GF}\left(2^{k}\right) \backslash\{1\}$. Therefore, if k is odd (resp. k is even) then the number of $x_{0} \in \mathrm{GF}\left(2^{k}\right)^{*}$ satisfying (13) is equal to $2^{k-1}-1$ (resp. 2^{k-1}) and obviously $x_{0} \neq 1$. On the other hand, if $N_{a}=2$ then $x^{2^{2}+1}+x=a$ has a unique solution x_{0} and so the number of nonzero values $a \in \operatorname{GF}\left(2^{k}\right)^{*}$ with $N_{a}=2$ for k odd (resp. k even) is $\left|M_{2}\right|=2^{k-1}-1$ (resp. $\left.2^{k-1}\right)$. Now note that if $a=0$ then $p_{a}(x)=x^{2^{l}+1}+x+a$ has exactly two zeros $x=\{0,1\}$. Thus, considering the mapping $x \mapsto x^{2^{l}+1}+x$ for x running through $\operatorname{GF}\left(2^{k}\right) \backslash\{0,1\}$ it is easy to see that $\left|M_{2}\right|+3\left|M_{4}\right|=2^{k}-2$ and, knowing $\left|M_{2}\right|$, we can find $\left|M_{4}\right|$. Finally, the last remaining unknown $\left|M_{1}\right|$ can be evaluated from the obvious equation $\left|M_{1}\right|+\left|M_{2}\right|+\left|M_{4}\right|=\left|\mathrm{GF}\left(2^{k}\right)^{*}\right|=2^{k}-1$.

Note the paper [9] by Bluher where $x^{p^{l}+1}+a x+b$ and the related polynomials similar to the linearized part of $A_{a}(v)$ over an arbitrary field of characteristic p are studied. In particular, the possible number of zeros and corresponding values of $\left|M_{i}\right|$, in the notations of our Theorem 11, were found (see [9, Theorems 5.6, 6.4]). This was also done earlier for odd k in [10, Lemma 9].

4 The Linearized Polynomial $L_{a}(z)$

The distribution of the three-valued crosscorrelation function to be determined in Section 5 depends on the detailed distribution of the number of zeros in $\operatorname{GF}\left(2^{m}\right)$ of the linearized polynomial

$$
\begin{equation*}
L_{a}(z)=z^{2^{k+l}}+r^{2^{l}} a^{2^{l}} z^{2^{2 l}}+r a z \tag{14}
\end{equation*}
$$

where $a \in \operatorname{GF}\left(2^{k}\right), r \in \mathrm{GF}\left(2^{m}\right)$ and $m=2 k$. Some additional conditions on the parameters will be imposed later. For the details on linearized polynomials in general, the reader is referred to Lidl and Niederreiter [11]. In the following lemmas, we always take $L_{a}(z)$ defined in (14).

Lemma 6 Let l and k be integers with $\operatorname{gcd}(l, k)=1, a \in \operatorname{GF}\left(2^{k}\right)$ and $r \in$ $\mathrm{GF}\left(2^{m}\right)$. If $L_{a}(z)=0$ for some $z \in \mathrm{GF}\left(2^{m}\right)$ then

$$
a \operatorname{Tr}_{k}^{m}\left(r z^{2^{l}+1}\right) \in\{0,1\}
$$

where $\operatorname{Tr}_{k}^{m}(x)=x+x^{2^{k}}$ is a trace mapping from $\operatorname{GF}\left(2^{m}\right)$ to $\operatorname{GF}\left(2^{k}\right)$.
Proof. For any $z \in \operatorname{GF}\left(2^{m}\right)$ with $L_{a}(z)=0$ we have

$$
z^{2^{l}} L_{a}(z)=r a z^{2^{l}+1}+\left(r a z^{2^{l}+1}\right)^{2^{l}}+z^{2^{l}\left(2^{k}+1\right)}=0
$$

and $z^{2^{l}\left(2^{k}+1\right)} \in \mathrm{GF}\left(2^{k}\right)$. Thus, $\operatorname{Tr}_{k}^{m}\left(r a z^{2^{l}+1}\right)+\left(\operatorname{Tr}_{k}^{m}\left(r a z^{2^{l}+1}\right)\right)^{2^{l}}=0$ meaning that $a \operatorname{Tr}_{k}^{m}\left(r z^{2^{l}+1}\right) \in \operatorname{GF}\left(2^{l}\right) \cap \operatorname{GF}\left(2^{k}\right)=\{0,1\}$.

Lemma 7 Let l and k be odd with $\operatorname{gcd}(l, k)=1, a \in \mathrm{GF}\left(2^{k}\right)$ and r be a noncube in $\mathrm{GF}\left(2^{m}\right)$ such that $2^{2^{k}+1}=1$. Then the following holds.
(i) The number of zeros of $L_{a}(z)$ in $\mathrm{GF}\left(2^{m}\right)$ is 1 or 4 .
(ii) If, additionally, $a \neq 0$ and $\operatorname{Tr}_{k}\left(v_{0}\right)=0$ (where $v_{0}=R\left(a^{-1}\right)$ and $R(v)$ is defined in (61)) then $L_{a}(z)$ has $z=0$ as its only zero in $\mathrm{GF}\left(2^{m}\right)$.

Proof. First of all, let $\bar{z}=z^{2^{k}}$ for any $z \in \mathrm{GF}\left(2^{m}\right)$ and also let $U=r z^{2^{l}+1}$. If $z \neq 0$ and $L_{a}(z)=0$ then, since l is odd and r is a noncube in $\operatorname{GF}\left(2^{m}\right)$ with $r^{2^{k}+1}=1$ we have that $U \neq \bar{U}$ and thus, by Lemma 6, and denoting $V=a U$

$$
\begin{equation*}
a \operatorname{Tr}_{k}^{m}(U)=V+V^{2^{k}}=1 \tag{15}
\end{equation*}
$$

(i) If $a=0$ then $L_{a}(z)$ has a unique zero root so we further assume that $a \neq 0$. The polynomial $L_{a}(z)$ is a linearized polynomial and its zeros form a vector subspace over $\operatorname{GF}(2)$ (and even over $\operatorname{GF}\left(2^{2}\right)$ since $k+l$ is even). We will
study the number of solutions of $L_{a}(z)=0$ in $\operatorname{GF}\left(2^{m}\right)$. Note that $L_{a}(z)=0$ is equivalent to

$$
\bar{z}^{2^{l}}=r^{2^{l}} a^{2^{l}} z^{2^{2 l}}+r a z
$$

Further, we obtain

$$
\begin{aligned}
\bar{U}^{2^{l}}= & r^{-2^{l} \bar{z}^{2^{l}\left(2^{l}+1\right)}} \\
= & r^{-2^{l}}\left(r^{2^{l}} a^{2^{l}} z^{2^{2 l}}+r a z\right)^{2^{l}+1} \\
= & r^{-2^{l}}\left(r^{2^{l}\left(2^{l}+1\right)} a^{2^{l}\left(2^{l}+1\right)} z^{2^{2 l}\left(2^{l}+1\right)}+r^{2^{2 l}+1} a^{2^{2 l}+1} z^{2^{3 l}+1}\right) \\
& +r^{-2^{l}}\left(r^{2^{l+1}} a^{2^{l+1}} z^{2^{2 l}+2^{l}}+r^{2^{l}+1} a^{2^{2}+1} z^{2^{l}+1}\right) \\
= & r^{2^{2 l}} a^{2^{l}\left(2^{l}+1\right)} z^{2^{2 l}\left(2^{l}+1\right)}+r^{2^{2 l}-2^{l}+1} a^{2^{2 l}+1} z^{3^{3 l}+1}+r^{2^{l}} a^{2^{l+1}} z^{2^{2 l}+2^{l}}+r a^{2^{l}+1} z^{2^{l}+1} \\
= & a^{2^{l}\left(2^{l}+1\right)} U^{2^{2 l}}+a^{2^{2 l}+1} U^{2^{2 l}-2^{l}+1}+a^{2^{l+1}} U^{2^{l}}+a^{2^{l}+1} U .
\end{aligned}
$$

From now on assume $z \neq 0$. Since $a^{-2^{l}}=U^{2^{l}}+\bar{U}^{2^{l}}$ we have

$$
\begin{aligned}
1 & =a^{2^{l}} U^{2^{l}}+a^{2^{l}} \bar{U}^{2^{l}} \\
& =a^{2^{l}} U^{2^{l}}+a^{2^{2 l}+2^{l+1}} U^{2^{2 l}}+a^{2^{2 l}+2^{l}+1} U^{2^{2 l}-2^{l}+1}+a^{2^{l+1}+2^{l}} U^{2^{l}}+a^{2^{l+1}+1} U
\end{aligned}
$$

which leads to

$$
a^{2^{2 l}+2^{l+1}} U^{2^{2 l}}+a^{2^{2 l}+2^{l}+1} U^{2^{2 l}-2^{l}+1}+\left(a^{2^{l}}+a^{2^{l+1}+2^{l}}\right) U^{2^{l}}+a^{2^{l+1}+1} U+1=0 .
$$

Substituting $V=a U$ and multiplying by $b=a^{-2^{l+1}}$, simplifies the equation to

$$
V^{2^{2 l}}+V^{2^{2 l}-2^{l}+1}+(1+b) V^{2^{l}}+V+b=0
$$

which after multiplying by $V^{2^{l}}$ gives

$$
\begin{equation*}
\left(V^{2^{l}}+V\right)^{2^{l}+1}+b V^{2^{l}}\left(V^{2^{l}}+1\right)=0 \tag{16}
\end{equation*}
$$

Since

$$
\frac{\left(V^{2^{l}}+V\right)^{2^{l}+1}}{V^{2^{l}}\left(V^{2^{l}}+1\right)}=(V+1)^{2^{2 l}-2^{l}+1}+V^{2^{2 l}-2^{l}+1}+1
$$

we obtain

$$
(V+1)^{2^{2 l}-2^{l}+1}+V^{2^{2 l}-2^{l}+1}+1=b .
$$

As proved in [7. Corollary 2], the monomial function $f(x)=x^{2^{2 l}-2^{l}+1}$ is almost perfect nonlinear (APN) when $\operatorname{gcd}(l, m)=1$, which is the case here since l is odd and $\operatorname{gcd}(l, k)=1$. This means that the number of solutions $V \in \operatorname{GF}\left(2^{m}\right)$ of the latter equation is at most 2 for any b in $\operatorname{GF}\left(2^{m}\right)$. Since $V=r a z^{2^{l}+1}$ and $\operatorname{gcd}\left(2^{l}+1,2^{m}-1\right)=3$ it follows that the number of zeros in $\mathrm{GF}\left(2^{m}\right)^{*}$ of the linearized polynomial $L_{a}(z)$ is at most 6 , which implies that the number of zeros in $\operatorname{GF}\left(2^{m}\right)$ is 1 or 4 since the zeros of $L_{a}(z)$ form a vector subspace over $\operatorname{GF}\left(2^{2}\right)$.
(ii) Let $x=V^{2^{l}}+V$ and assume $z \neq 0$. After rewriting $z^{2^{l}} L_{a}(z)=z^{2^{l}\left(2^{k}+1\right)}+$ $x=0$ observe that this implies that $x \in \mathrm{GF}\left(2^{k}\right)$.

Using (16) we have

$$
b^{-1} x^{2^{l}+1}=\sum_{i=1}^{\tilde{l}} x^{2^{i l}}
$$

where $\tilde{l} l=1(\bmod m)$. Such an \tilde{l} exists since l is $\operatorname{odd}, \operatorname{gcd}(l, k)=1$ and therefore, $\operatorname{gcd}(l, m)=1$. Raising the latter identity to the power 2^{l} and adding to itself implies

$$
c^{2^{l}} x^{2^{2 l}+2^{l}}+c x^{2^{l}+1}=x^{2^{(\tilde{l}+1) l}}+x^{2^{l}},
$$

where $c=b^{-1}=a^{2^{l+1}}$. Dividing by $x^{2^{l}}(x \neq 0$ since otherwise the only zero of $L_{a}(z)$ is $z=0$) implies

$$
c^{2^{l}} x^{2^{2 l}}+x^{2^{l}}+c x+1=0
$$

By Theorem [1, the latter equation has exactly two roots in $\operatorname{GF}\left(2^{k}\right)$ if and only if $\operatorname{Tr}_{k}\left(R\left(c^{-1}\right)\right)=\operatorname{Tr}_{k}\left(R\left(a^{-2^{l+1}}\right)\right)=\operatorname{Tr}_{k}\left(v_{0}\right)=0$ and $R\left(a^{-2^{l+1}}\right)=v_{0}^{2^{l+1}}$ is one of its roots. From Lemma 3 it also follows that all the roots of this equation have the same trace as v_{0}. Therefore, in the case when $\operatorname{Tr}_{k}\left(v_{0}\right)=0$ both roots have trace zero. However, since $x=V^{2^{l}}+V \in \operatorname{GF}\left(2^{k}\right)$ and $V \notin \mathrm{GF}\left(2^{k}\right)$ (recall that $V=a U$ and $U \neq \bar{U}$) we have

$$
\begin{aligned}
\operatorname{Tr}_{k}(x) & =\sum_{i=0}^{k-1} x^{2^{i}}=\sum_{i=0}^{k-1} x^{2^{l i}}=\sum_{i=0}^{k-1}\left(V^{2^{l(i+1)}}+V^{2^{l i}}\right) \\
& =V^{2^{k l}}+V \stackrel{(*)}{=} 1 \neq \operatorname{Tr}_{k}\left(v_{0}\right)
\end{aligned}
$$

where $\left(^{*}\right)$ holds since $V^{2^{l k}}=V^{2^{k}}$ for odd l and $V^{2^{k}}+V \neq 0$ if $V \notin \operatorname{GF}\left(2^{k}\right)$. Therefore, if $\operatorname{Tr}_{k}\left(v_{0}\right)=0$ then there is no solutions $x \in \mathrm{GF}\left(2^{k}\right)$ having the form $x=V^{2^{l}}+V$. We have therefore shown that in the case $\operatorname{Tr}_{k}\left(v_{0}\right)=0$ there are no nonzero solutions of $L_{a}(z)=0$ in $\operatorname{GF}\left(2^{m}\right)$.

5 Three-Valued Crosscorrelation

In this section, we prove our main result formulated in Corollary 1. We start by considering the following exponential sum denoted $S_{0}(a)$ that to some extent is determined by the following lemma that repeats Lemma 10 in [6]. It is assumed everywhere that $m=2 k$.

Lemma 8 ([6]) For an odd k, integer $l<k$ and $a \in \mathrm{GF}\left(2^{k}\right)$ let $S_{0}(a)$ be defined by

$$
S_{0}(a)=\sum_{y \in \mathrm{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(a y^{2^{2}+1}\right)+\operatorname{Tr}_{k}\left(y^{2^{k}+1}\right)} .
$$

Then

$$
S_{0}(a)=2^{k} \sum_{v \in \operatorname{GF}\left(2^{k}\right), A_{a}(v)=0}(-1)^{\operatorname{Tr}_{k}\left(a(l+1) v^{2^{2}+1}+v\right)},
$$

where $A_{a}(v)$ is defined in (5).
We can now determine $S_{0}(a)$ completely in the following corollary.
Corollary 2 Under the conditions of Lemma 8 and, additionally, assuming $a \neq$ 0 and $\operatorname{gcd}(l, k)=1$ let M_{i} be defined as in (11). Then the distribution of $S_{0}(a)$ for l even is as follows:

$$
\begin{array}{cll}
-2^{k+1} & \text { if } & a \in M_{4} \\
0 & \text { if } & a \in M_{2}, \\
2^{k} & \text { if } & a \in M_{1}
\end{array}
$$

and for l odd

$$
\begin{array}{cll}
-2^{k+2} & \text { if } & a \in M_{4} \\
2^{k+1} & \text { if } & a \in M_{2} \\
-2^{k} & \text { if } & a \in M_{1} .
\end{array}
$$

Proof. Let $l^{\prime}=l^{-1}(\bmod k)$. The distribution follows directly from Lemmas 3 and 8 since these imply that for l even

$$
S_{0}(a)=2^{k}(-1)^{\left(l^{\prime}+1\right) \operatorname{Tr}_{k}\left(v_{0}\right)+l^{\prime}}\left(N_{a}-2\right)
$$

and for l odd

$$
S_{0}(a)=2^{k}(-1)^{\operatorname{Tr}_{k}\left(v_{0}\right)} N_{a},
$$

where N_{a} is the number of zeros of $A_{a}(v)$ in $\operatorname{GF}\left(2^{k}\right)$ and $v_{0}=R\left(a^{-1}\right)$. Finally, using Theorem 1, we get the claimed result.

Lemma 9 Let k be odd and r be a noncube in $\operatorname{GF}\left(2^{m}\right)$ such that $r^{2^{k}+1}=1$. Let also $a \in \mathrm{GF}\left(2^{k}\right)$ and

$$
\begin{aligned}
& S_{1}(a)=\sum_{y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r a y^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(y^{2^{k}+1}\right)}, \\
& S_{2}(a)=\sum_{y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r^{-1} a y^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(y^{2^{k}+1}\right)} .
\end{aligned}
$$

Then
(i) $S_{1}(a)=S_{2}(a)$.
(ii) Furthermore, if, additionally, l is odd with $\operatorname{gcd}(l, k)=1$ then for $i=1,2$ holds

$$
S_{i}(a)^{2}=2^{m} T_{a}
$$

where T_{a} is the number of zeros in $\mathrm{GF}\left(2^{m}\right)$ of $L_{a}(z)$ defined in (14).
Proof. (i) Using definitions, straightforward calculations lead to

$$
\begin{aligned}
& S_{1}(a)=\sum_{y \in \mathrm{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r a 2^{2^{2}+1}\right)+\operatorname{Tr}_{k}\left(y^{2^{k}+1}\right)} \\
& =\sum_{y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r^{2^{k}} a^{2^{k}} y^{\left(2^{l}+1\right) 2^{k}}\right)+\operatorname{Tr}_{k}\left(y^{\left(2^{k}+1\right) 2^{k}}\right)} \\
& =\sum_{z \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r^{-1} a z^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(z^{2^{k}+1}\right)} \\
& =S_{2}(a) \text {. }
\end{aligned}
$$

(ii) First, it can be noticed that here we are with the hypothesis of Lemma 7 Item (ii). Using substitution $z=x+y$ we obtain

$$
\begin{aligned}
S_{1}(a)^{2} & =\sum_{x, y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r a\left(x^{2^{l}+1}+y^{2^{l}+1}\right)\right)+\operatorname{Tr}_{k}\left(x^{2^{k}+1}+y^{2^{k}+1}\right)} \\
& =\sum_{y, z \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r a\left((z+y)^{2^{l}+1}+y^{2^{l}+1}\right)\right)+\operatorname{Tr}_{k}\left((z+y)^{2^{k}+1}+y^{2^{k}+1}\right)} \\
& =\sum_{y, z \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r a\left(z^{2^{l}} y+z y^{2^{l}}+z^{2^{l}+1}\right)+y z^{2^{k}}\right)+\operatorname{Tr}_{k}\left(z^{2^{k}+1}\right)} \\
& =\sum_{z \in{\operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r a z^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(z^{2^{k}+1}\right)} \sum_{y \in \operatorname{GFF}^{m}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(y^{2^{l}}\left(z^{2^{k+l}}+r^{2^{l}} a^{a^{l}} z^{2^{2 l}}+r a z\right)\right)}}=2^{m} \sum_{z \in \operatorname{GF}\left(2^{m}\right), L_{a}(z)=0}(-1)^{\operatorname{Tr}_{m}\left(r a z^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(z^{2^{k}+1}\right)},
\end{aligned}
$$

where $L_{a}(z)=z^{2^{k+l}}+r^{2^{l}} a^{2^{l}} z^{2^{2 l}}+r a z$.
It remains to show that $f(z)=\operatorname{Tr}_{m}\left(r a z^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(z^{2^{k}+1}\right)=0$ for any root z of L_{a}. If $z=0$ then this fact is obvious. If $z \neq 0$ then, by (15) from Lemma (7, $\operatorname{Tr}_{k}^{m}(V)=V+V^{2^{k}}=1$, where $V=r a z^{2^{l}+1}$ implying that $\operatorname{Tr}_{m}(V)=1$. Moreover, multiplying $L_{a}(z)=0$ by $z^{2^{l}}$ we obtain $V+V^{2^{l}}+z^{2^{l}\left(2^{k}+1\right)}=0$. Thus,

$$
f(z)=1+\operatorname{Tr}_{k}\left(z^{2^{k}+1}\right)=1+\operatorname{Tr}_{k}\left(V+V^{2^{l}}\right) .
$$

But

$$
\begin{aligned}
& \operatorname{Tr}_{k}\left(V+V^{2^{l}}\right)= \\
& =\left(V+\cdots+V^{2^{l}}+\cdots+V^{2^{k-1}}\right)+\left(V^{2^{l}}+\cdots+V^{2^{k-1}}+\cdots+V^{2^{l+k-1}}\right) \\
& =\left(V+V^{2^{k}}\right)+\left(V+V^{2^{k}}\right)^{2}+\cdots+\left(V+V^{2^{k}}\right)^{2^{l-1}}=l(\bmod 2)=1
\end{aligned}
$$

and thus, $f(z)=0$.
In particular, since $S_{1}(a)=\sum_{y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{f(y)} \neq 0$ the Boolean function $f(z)$ can not be balanced. Quadratic functions including those similar to $f(z)$ are studied in [12].

We are now in position to completely determine the distribution of $S(a)$ defined in (4) for $a \in \operatorname{GF}\left(2^{k}\right)^{*}$. Since this is equivalent to the distribution of $C_{d}(\tau)+1$ for $\tau=0,1, \ldots, 2^{k}-2$, our main result in Corollary 1 is a consequence of the theorem below. Note that for any d with the prescribed property we have $\operatorname{gcd}\left(d, 2^{k}-1\right)=1$.

Theorem 2 Let $m=2 k$ and $d\left(2^{l}+1\right) \equiv 2^{i}\left(\bmod 2^{k}-1\right)$ for some odd k and integer l with $0<l<k, \operatorname{gcd}(l, k)=1$ and $i \geq 0$. Then the exponential sum $S(a)$ defined in (4) for $a \in \operatorname{GF}\left(2^{k}\right)^{*}$ (and $C_{d}(\tau)+1$ for $\tau=0,1, \ldots, 2^{k}-2$) have the following distribution

$$
\begin{array}{clll}
-2^{k+1} & \text { occurs } & \frac{2^{k-1}-1}{3} & \text { times }, \\
0 & \text { occurs } & 2^{k-1}-1 & \text { times } \\
2^{k} & \text { occurs } & \frac{2^{k+1}}{3} & \text { times }
\end{array}
$$

Proof: To determine the distribution of the crosscorrelation function $C_{d}(\tau)+1$ we need to compute the distribution of $S(a)$ as in (4) for $a \in \mathrm{GF}\left(2^{k}\right)^{*}$. We divide the proof into two cases depending on the parity of l.

Case 1: (l even)
In this case, $\operatorname{gcd}\left(2^{l}+1,2^{m}-1\right)=1$. Therefore, substituting $x=y^{2^{l}+1}$ in the expression for $S(a)$ and since $d\left(2^{l}+1\right)\left(2^{k}+1\right) \equiv 2^{i}\left(2^{k}+1\right)\left(\bmod 2^{m}-1\right)$, we are lead to

$$
S(a)=\sum_{y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(a y^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(y^{2^{k}+1}\right)}=S_{0}(a),
$$

where $S_{0}(a)$ is defined in Lemma 8. The distribution of $S(a)$ for even values of l follows, therefore, from the distribution of $S_{0}(a)$ given in Corollary 2,

Case 2: (l odd)
To calculate $S(a)$, we first observe that $\operatorname{gcd}\left(2^{l}+1,2^{m}-1\right)=3$. Therefore, if we let $x=y^{2^{l}+1}$, then x runs through all cubes in $\operatorname{GF}\left(2^{m}\right)$ three times when y runs through $\operatorname{GF}\left(2^{m}\right)$. Thereafter, let $x=r y^{2^{l}+1}$, where r is a noncube in $\operatorname{GF}\left(2^{m}\right)$ and finally $x=r^{-1} y^{2^{l}+1}$. When y runs through $\operatorname{GF}\left(2^{m}\right)$ then x will run through
$\mathrm{GF}\left(2^{m}\right)$ three times. We select r as a noncube in $\mathrm{GF}\left(2^{m}\right)$ such that $r^{2^{k}+1}=1$. Further, since $d\left(2^{l}+1\right)\left(2^{k}+1\right) \equiv 2^{i}\left(2^{k}+1\right)\left(\bmod 2^{m}-1\right)$, we obtain

$$
\begin{aligned}
3 S(a)= & \sum_{y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(a y^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(y^{2^{k}+1}\right)} \\
& +\sum_{y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r a y^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(y^{2^{k}+1}\right)} \\
& +\sum_{y \in \operatorname{GF}\left(2^{m}\right)}(-1)^{\operatorname{Tr}_{m}\left(r^{-1} a y^{2^{l}+1}\right)+\operatorname{Tr}_{k}\left(y^{2^{k}+1}\right)} \\
= & \sum_{i=0}^{2} S_{i}(a)
\end{aligned}
$$

where $S_{i}(a)$ are defined as in Lemmas 8 and 9 .
By Lemma 9 we also have that $S_{1}(a)=S_{2}(a)$ and

$$
S_{1}(a)^{2}=2^{m} T_{a}
$$

where T_{a} is the number of zeros in $\operatorname{GF}\left(2^{m}\right)$ of $L_{a}(z)=z^{2^{k+l}}+r^{2^{l}} a^{2^{l}} z^{2^{2 l}}+r a z$. From Lemma 7 Item (ii) it follows that $T_{a}=1$ or $T_{a}=4$ and, therefore, by Lemma 9, we have $S_{1}(a)=S_{2}(a)= \pm 2^{k}$ or $S_{1}(a)=S_{2}(a)= \pm 2^{k+1}$.

Case a: In the case when $\operatorname{Tr}_{k}\left(v_{0}\right)=0$, where $v_{0}=R\left(a^{-1}\right)$ and $R(v)$ is defined in (6), which by Theorem 1, occurs for $2^{k-1}-1$ distinct values of $a \in M_{2}$, it follows from Lemma 7 Item (iii) that $T_{a}=1$. Therefore, by Lemma 9 we have $S_{1}^{2}(a)=2^{m}$, i.e., $S_{1}(a)=S_{2}(a)= \pm 2^{k}$. Since $a \in M_{2}$ and by Corollary 2 , $S_{0}(a)=2^{k+1}$. Furthermore, since $S(a)=\left(S_{0}(a)+S_{1}(a)+S_{2}(a)\right) / 3$ is an integer, it follows that only $S_{1}(a)=S_{2}(a)=-2^{k}$ is possible and, therefore, $S(a)=0$.

Case b: In the case when $\operatorname{Tr}_{k}\left(v_{0}\right)=1$ and $A_{a}(v)=a^{2^{l}} v^{2^{2 l}}+v^{2^{l}}+a v+1$ has four zeros in $\operatorname{GF}\left(2^{k}\right)$, which by Theorem 1 , occurs for $\left(2^{k-1}-1\right) / 3$ distinct values of $a \in M_{4}$, by Corollary 2 we have $S_{0}(a)=-2^{k+2}$. Since $S_{1}(a)=S_{2}(a)= \pm 2^{k}$ or $S_{1}(a)=S_{2}(a)= \pm 2^{k+1}$ and $S(a)$ is an integer, only two of the four sign combinations are possible, leading in this case to $S(a)=0$ or $S(a)=-2^{k+1}$.

Case c: In the case when $\operatorname{Tr}_{k}\left(v_{0}\right)=1$ and $A_{a}(v)$ has one zero in $\operatorname{GF}\left(2^{k}\right)$, which by Theorem 1, occurs for $\left(2^{k}+1\right) / 3$ distinct values of $a \in M_{1}$, Corollary 2 gives $S_{0}(a)=-2^{k}$. Since $S_{1}(a)=S_{2}(a)= \pm 2^{k}$ or $S_{1}(a)=S_{2}(a)= \pm 2^{k+1}$ and $S(a)$ is an integer, only two of the four sign combinations are possible, leading to $S(a)=-2^{k}$ or $S(a)=2^{k}$.

The three cases above give in total the possible values $0, \pm 2^{k},-2^{k+1}$ for $S(a)$. We next use the expressions for the sum and the square sum of $C_{d}(\tau)+1$ to obtain a set of equations to determine the complete correlation distribution.

Suppose the crosscorrelation function $C_{d}(\tau)+1$ takes on the value zero r times, the value 2^{k} is taken on s times, the value -2^{k} occurs t times and the

Table 1: Exponents d giving three-valued crosscorrelation

m	Proved in [4]	Proved in [6]	Newly found
6	3	3	
10	11	7	
14	43	15	27
18	171	31	103
22	683	63	$231,365,411$
26	2731	127	$911,1243,1639$

value -2^{k+1} occurs v times. From Lemma 1 it follows that

$$
\begin{aligned}
r+s+t+v & =2^{k}-1 \\
2^{k} s-2^{k} t-2^{k+1} v & =2^{k} \\
2^{2 k} s+2^{2 k} t+2^{2 k+2} v & =2^{m}\left(2^{k}-1\right)
\end{aligned}
$$

This implies

$$
\begin{aligned}
r+s+t+v & =2^{k}-1 \\
s-t-2 v & =1 \\
s+t+4 v & =2^{k}-1
\end{aligned}
$$

Since $S(a)= \pm 2^{k}$ is only possible in Case 3 , when $\operatorname{Tr}_{k}\left(v_{0}\right)=1$ and $A_{a}(v)$ has one zero in $\operatorname{GF}\left(2^{k}\right)$, which occurs $\left(2^{k}+1\right) / 3$ times, we get $s+t=\left(2^{k}+1\right) / 3$. From the last equation this leads to $v=\left(2^{k-1}-1\right) / 3$ and therefore from the first equation $r=2^{k-1}-1$. Finally, using the second equation, we get $t=0$ and $s=\left(2^{k}+1\right) / 3$.

In the following, we conjecture that all the cases with the three-valued crosscorrelation fall under the conditions of our main theorem. The conjecture has been verified numerically for all $m \leq 26$ and these results are presented in Table $\mathbb{1}$.

Conjecture 1 Only those cases described in Corollary $\mathbb{\square}$ lead to the three-valued crosscorrelation between two m-sequences of different lengths $2^{m}-1$ and $2^{k}-1$, where $m=2 k$.

6 Conclusion

We have identified new pairs of m-sequences having different lengths $2^{m}-1$ and $2^{k}-1$, where $m=2 k$, with three-valued crosscorrelation and we have completely determined the crosscorrelation distribution. These pairs differ from the
sequences in the Kasami family by the property that instead of the decimation $d=1$ we take such a d that $d\left(2^{l}+1\right) \equiv 2^{i}\left(\bmod 2^{k}-1\right)$ for some integer l and $i \geq 0$, where k is odd and $\operatorname{gcd}(l, k)=1$. We conjecture that our result covers all the three-valued cases for the crosscorrelation of m-sequences with the described parameters.

Acknowledgment

The authors would like to thank the anonymous reviewers for suggesting a shorter proof of Lemmas 6 and 9 and for thorough reviews containing constructive comments and valuable suggestions that helped to improve the manuscript significantly.

References

[1] T. Helleseth, "Some results about the cross-correlation function between two maximal linear sequences," Discrete Mathematics, vol. 16, no. 3, pp. 209-232, November 1976.
[2] T. Helleseth and P. V. Kumar, "Sequences with low correlation," in Handbook of Coding Theory, V. Pless and W. Huffman, Eds. Amsterdam: Elsevier, 1998, vol. 2, ch. 21, pp. 1765-1853.
[3] H. Dobbertin, P. Felke, T. Helleseth, and P. Rosendahl, "Niho type crosscorrelation functions via Dickson polynomials and Kloosterman sums," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 613-627, February 2006.
[4] G. J. Ness and T. Helleseth, "Cross correlation of m-sequences of different lengths," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1637-1648, April 2006.
[5] T. Kasami, "Weight distribution formula for some classes of cyclic codes," Technical report R-285 (AD 637524), Coordinated Science Laboratory, University of Illinois, Urbana, April 1966.
[6] G. J. Ness and T. Helleseth, "A new three-valued cross correlation between m-sequences of different lengths," IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4695-4701, October 2006.
[7] H. Dobbertin, "Kasami power functions, permutation polynomials and cyclic difference sets," in Difference Sets, Sequences and their Correlation Properties, ser. NATO Science Series, Series C: Mathematical and Physical Sciences, A. Pott, P. V. Kumar, T. Helleseth, and D. Jungnickel, Eds. Dordrecht: Kluwer Academic Publishers, 1999, vol. 542, pp. 133-158.
[8] J. F. Dillon and H. Dobbertin, "New cyclic difference sets with Singer parameters," Finite Fields and Their Applications, vol. 10, no. 3, pp. 342-389, July 2004.
[9] A. W. Bluher, "On $x^{q+1}+a x+b$," Finite Fields and Their Applications, vol. 10, no. 3, pp. 285-305, July 2004.
[10] T. Helleseth and V. Zinoviev, "Codes with the same coset weight distributions as the \mathbf{Z}_{4}-linear Goethals codes," IEEE Trans. Inf. Theory, vol. 47, no. 4, pp. 1589-1595, May 2001.
[11] R. Lidl and H. Niederreiter, Finite Fields, ser. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1997, vol. 20.
[12] N. Y. Yu and G. Gong, "Constructions of quadratic bent functions in polynomial forms," IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 3291-3299, July 2006.

