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Abstract. Considered is the distribution of the crosscorrelation be-
tween m-sequences of length 2™ — 1, where m = 2k, and m-sequences
of shorter length 2¥ — 1. New pairs of m-sequences with three-valued
crosscorrelation are found and the complete correlation distribution
is determined. Finally, we conjecture that there are no more cases
with a three-valued crosscorrelation apart from the ones proven here.
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1 Introduction

Let {a;} and {b;} be two binary sequences of length n. The crosscorrelation
function between these two sequences at shift 7, where 0 < 7 < n, is defined by
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If the sequences {a;} and {b;} are the same we call it the autocorrelation.

Sequences with good correlation properties are important for many applica-
tions in communication systems. A relevant problem is to find the distribution of
the crosscorrelation function (i.e., the set of values obtained for all shifts) between
two binary m-sequences {s;} and {s4} of the same length 2™ — 1 that differ by a
decimation d such that ged(d, 2™ —1) = 1. A survey of some of the basic research
on the crosscorrelation between m-sequences of the same length can be found in
Helleseth [I] and more recent results in Helleseth and Kumar [2] and Dobbertin
et. al. [3]. A basis for many applications is the family of Gold sequences with
their three-valued crosscorrelation function.

In a recent paper [4], Ness and Helleseth studied the crosscorrelation between
an m-sequence {s;} of length n = 2™ —1 and an m-sequence {uy } of length 2~ —1,
where m = 2k and ged(d, 2¥ — 1) = 1. Here {u;} denotes the m-sequence used
in constructing the small family of Kasami sequences [5]. Recall that this family
consists of 2% sequences {s;} + {us .} for 7 = 0,...,2¥ — 2 plus the sequence
{s:}, where s; and wu,; are defined in () and (2]). For the Kasami sequences, the
crosscorrelation between {s;} and {u,} takes on only two different values. It is
an open problem whether this is possible in other cases. Numerical results show
several pairs of m-sequences with three-valued crosscorrelation function between
{s;} and {ug}, where ged(d,2¥ — 1) = 1 and k is odd. In addition to general
results, Ness and Helleseth proved in [4] that the decimation d = L;l gives a
three-valued crosscorrelation distribution and in [6] they proved the same distri-
bution for d = 2:*1/2 — 1 (in both cases k odd is needed). In this paper, we
cover all the cases found by computer experiments that lead to a three-valued



crosscorrelation distribution and completely determine this distribution. Speak-
ing concretely, the decimation d such that d(2! + 1) = 2! (mod 2* — 1) for some
integer [ and i > 0 with ged(l, k) = 1 and odd k gives a three-valued crosscorre-
lation distribution. We conjecture that there are no other three-valued cases but
these. This result includes the decimations proved in [4, [6] as a particular case
that is obtained assuming [ =1 and [ = %

In Section 2l we present preliminaries needed for proving our main result. In
Section B, we analyze zeros of a particular affine polynomial A,(v). In Section [,
we find the distribution of the number of zeros of a special linearized polynomial
L,(z). These two polynomials play a crucial role in finding the distribution of a
new three-valued crosscorrelation function. In Section[E, we determine completely
the crosscorrelation distribution of the new three-valued decimation.

2 Preliminaries

Let GF(q) denote a finite field with ¢ elements and let GF(¢)* = GF(q) \ {0}.
The trace mapping from GF(¢™) to GF(q) is defined by

m—1

Tr,,(x) = Z .

1=0

Let GF(2™) be a finite field with 2™ elements and m = 2k with k odd. Let
a be an element of order n = 2™ — 1. Then the m-sequence {s;} of length n can
be written in terms of the trace mapping as

sy = Trp(af) . (1)

Let g = a2k+1, then 3 is an element of order 2% — 1. The sequence {u;} of length
2% — 1 (which is used in the construction of the well-known Kasami family) is
defined by

u; = Tr(8Y) . (2)

In this paper, we consider the crosscorrelation between the m-sequences {s;}
and {v;} = {ug} at shift 7 defined by

n—1

Ca(r) =Y _(=1)=tve (3)

t=0

where ged(d, 28 — 1) =1 and 7 = 0,...,2¥ — 2. One should observe that in this
setting, by selecting all decimations d with this condition, we cover the cross-
correlation function between all pairs of m-sequences having these two different



lengths. Using the trace representation, this function can be written as an expo-
nential sum
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z€GF(2m)*

Since the two subgroups of GF(2™)* of order 2¥ — 1 and 2* + 1, respectively,
only contain the element 1 in common, it is straightforward to see that for any
clement, say o™ € GF(2™)*, there is a unique element u, where v ™1 = 1 such
that o "u = a € GF(2%)*. Further, distinct values of 7 =0,1,...,2*¥ — 2 lead to
distinct values of a € GF(2¥)*. Further, note that for any u with u2 ! = 1 we
have

Z (_1)Trm(OéfTu:C)-i-Trk(xd(szfl)) _ Z (_1)Trm(077x)+Trk(xd(2k+1)) ‘

2E€GF(2m)* 2EGF(2m)*

Therefore, the set of values of Cy(7) + 1 for all 7 = 0,1, ...,2¥ — 2 is equal to the
set of values of )
S@= 3 (LT mmEt) ()

zeGF(2™)

when a € GF(2F)*.

The main result of this paper is formulated in the following corollary that
gives a three-valued crosscorrelation function between new pairs of sequences of
different lengths. This corollary immediately follows from Theorem [2

Corollary 1 Let m = 2k and d(2' + 1) = 2° (mod 2% — 1) for some odd k and
integer | with 0 < | < k, ged(l,k) = 1 and i > 0. Then the crosscorrelation
function Cy(1) has the following distribution

k—1__ .
—1 — 21 occurs % times ,
-1 occurs 2F"1 —1 times ,
2k 41

—1+2F occurs times .
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The result will be proved in a series of lemmas. The outline of the proof is
as follows. We have shown that we can write Cy(7) + 1 for 7 = 0,1,...,2% — 2
as an exponential sum S(a) for a € GF(2¥)*. In the case when [ is even, we
can calculate the distribution of this sum directly as an exponential sum Sy(a)
and obtain the result. In the case when [ is odd, a different approach works. In
this case, we need some 7 being a noncube in GF(2™) such that 72"t = 1 (for



2k

instance, we can take r = a® ~! with « a primitive element of GF(2™)) and we

show that
S(a) = (So(a) + Si(a) + Sa(a))/3

for three exponential sums Sy(a), Si(a) and Sy(a) defined by

Sila) = ) (—1) Tl O+ g g
yeGF(2m)

_ l k
Sola)= S (—1)TmTIet IR

yeGF(2m)

We determine Sy(a) exactly in Corollary 2 and find S;(a)? (that is equal to
Ss5(a)?) in Lemma [@ Since S(a) is an integer, we can resolve the sign ambiguity
of Si(a) and Sy(a). In order to determine Sy(a) we need to consider zeros in
GF(2%) of the affine polynomial

A,() = a® o™ + 0¥ +av+ 1

and this is done in Section Bl To determine the square sums Si(a)? and Sy(a)?
we need to find the number of zeros in GF(2™) of the linearized polynomial

k+1 1 ! 21
Lo(2) =2 +r*a*2* +raz

and this task is completed in Section [4l

When finding the complete crosscorrelation distribution we make use of the
following result from [4] that gives the sum of the crosscorrelation values as well
as the sum of their squares.

Lemma 1 ([4]) For any decimation d with ged(d,2% — 1) = 1 the sum (of the
squares) of the crosscorrelation values defined in (3) is equal to

2k 2
> Cy(r)=1;
7=0

2k—2

Gy =@ -2 -1)-2 .

3 The Affine Polynomial A,(v)

In this section, we take any k and consider zeros in GF(2¥) of the affine polynomial
A) =a® o™ + 0 +av+1 | (5)
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where | < k is an arbitrary but fixed positive integer with ged(l,k) = 1 and
a € GF(2%)*. Let also I’ = (7! (mod k). The distribution of the zeros in GF(2*)
of (Bl) will determine to a large extent the distribution of our crosscorrelation
function.

We need the following sequences of polynomials that were introduced by Dob-
bertin in [7] (see also [§]):

Fi(v)=v,
Fy(v) = U21+1 :
Fis(v) = v2(i+1)lﬂ+1(v) + vz(iH)l_Q“Fi(v) for i>1,
Gi(v) =0,
Go(v) = 21

Gi+2(U) = ’U2(i+1)lGi+1(U) + ’U2(i+1)l_2“Gi(U) for 1 Z 1.

These are used to define the polynomial

R(v) = Z Fi(v) + Gu(v) - (6)

As noted in [7], the exponents occurring in Fj(v) (resp. in G;(v)) are precisely
those of the form
e = (_1)51221 ’
where €; € {0, 1} satisfy €;_1 =0, g = 0 (resp. ¢g = 1) and (¢, €-1) # (1,1).
Further, we will essentially need the following result proven in [7, Theorem 5]
that the following polynomial

Il
o

v 2i ’
i v+ U+
D) = 2=t )

is a permutation polynomial on GF(2¥)*. (To be formally more precise, we get
a polynomial D(v) if v=@+D is substituted by v@*~D=2+1 ) Moreover, D(v)
and R(v™!') are inverses of each other [7, Theorem 6], i.e., for any nonzero x,y €
GF(2F) with D(z) = y~! it always holds that R(y) = z. In (@) and in the rest
of the paper, whenever a positive integer e is added to an element of GF(2*), it
means that added is the identity element of GF(2¥) times e(mod 2).

Also note the fact that since I'l =1 (mod k) then

(2= 1A +20 422 4 420D =9 1 =1 (mod 2F — 1) .
Therefore, 22" = 22 for any x € GF(2*) and this identity will be used repeatedly
further in the proofs.



In the following lemmas, we always assume that [ < k is a positive inte-
ger with ged(l, k) = 1. We also take A,(v) defined in (B) and R(v) defined in
([@). Lemmas [2 and Bl here provide generalization for Lemmas 3, 4 and 6 in [6].
Theorem [Iis a generalization of Lemma 7 in [6].

Lemma 2 For any a € GF(2%)* the element vy = R(a™1) is a zero of A,(v) in
GF(2F)*.

Proof. Since D(v) in () is a permutation polynomial on GF(2%)*, then for
any fixed a € GF(2%)* the equation

l/
av? T = Z o 141 (8)

i=1

has exactly one solution vy = R(a™!) in GF(2%)*. Raising (§) to the power of 2'
results in

U'+1
22 szll +l 41 = ZUT +? iyt

The latter identity, after being added to () and setting v = vy, gives

2l 1 2l 22l 2l 2l 2l+1
avg Tt =a’ vy 7+ g v
. . 21
and consecutively, since vy # 0, A,(vg) = a vg + US +avg+1=0. O

Lemma 3 For any a € GF(2%)* let z be a zero of Au(v) in GF(2%). Then
Tri(2) = Tri(vo)

and
Trk(az2l+1) = Z’Trk(vo) + Trk(l’ + 1) Zf Z =17 ,
= U'Tri(vg) + Try(l") if z# v,
where vg = R(a™).
Proof. The first identity follows by observing that any zero of A,(v) is
obtained as a sum of the zero vy of A,(v) (see Lemma ) and a zero of its

homogeneous part a?v?” + 0?2 + av. To prove the identity it therefore suffices to
show that Tri(vy) = 0 for any v; with a?'v 2 s vfl + av; = 0. This follows from

Try(v1) = Trp(v2 )

— Tr, ( 2l+2l)
= Trp(a® v + @2 )
=0 .



To prove the second identity for the case when z = vy we use the fact presented
in the proof of Lemma B that av? +' = S0 2" + I/ + 1. Then Try(av? ') =
U'Tr(vo) + Trp(I" + 1).

Now note that since A,(v) is obtained by adding the 2-th power of (§) to
itself we have for z # 0

l/
Au(z) =0 ifand only if az®*' + Z 24 +1€{0,1} .

i=1

Since vy is the only solution of (§]), then for z # vy with A,(z) = 0 we have
az? 4+ Zi/:l 24 '+1=1and

Try(az? ™) = I'Tr(2) + Trp(l) = U'Trg(vo) + Trg(l)

using already proved identity that Tri(z) = Tri(vo). O

Now we introduce a particular sequence of polynomials over GF(2*) and prove
some important properties of these that will be used further for getting the main
result of this section about zeros of A,(v). Denote

e(i) =142 422 4. 420D for j=1,...,1

so, in particular, e(l') = (2! — 1)~ (mod 2*¥ — 1). Now take every additive term
v® with e # 0 in the polynomial 1 + (1 + v)*® and replace the exponent e with
the cyclotomic equivalent number obtained by shifting the binary expansion of e
maximally (till you get an odd number) in the direction of the least significant
bits. We call this reduction procedure. Recall that two exponents e; and ey are
cyclotomic equivalent if 2%e; = ey (mod 2% — 1) for some i < k. For instance,
v?" is reduced to v and v2"*?" is reduced to v'*2""" if i < j and so on. The
obtained reduced polynomials are denoted as H;(v) and we use square brackets
to denote application of the described reduction procedure to a polynomial, so
H;(v) = [1+(14v)*@] fori = 1,...,I'. The first few polynomials in the sequence
(after eliminating all pairs of equal terms) are

Hl(U) =
Hy(v) = [v+v* + 0] = v+ v+ 0t =12
Hs('v> _ [U + /U2l _'_ 'U22l + /U1+2l + /U1+22l _'_ U2l+22l _'_ 'U1+2l+22l]

i 21 l 14921 21 14921
—v4+v+ov+ U1+2 4 U1+2 4 U1+2 4 U1+2 +27 v+ U1+2 + U1+2 +2 )

Lemma 4 If polynomials H;(v) are defined as above then

Tey (Hi(v)) = o (1+ (1+0)°0)



for any v € GF(2F) and i =1,...,I'. Also let Q(v) = (z2 1! + 20)v? + z2v + zg
for any xo € GF(2%)*. Then

Q(Hy(wg")) = (1+x0)(1 + a5

Proof. The trace identity for Hy(v) we get obviously from the definition.
Further, for any 7 € {2,...,l'}

Hi(v) = [1+ (1 +v)*®)
= [1+ (1040
= [Hiy () + 0" (1 4 0)0)]
9 (1 o) O Hoy(v)

where (*) follows from the following argumentation. First, note that the expo-
nents of additive terms in v(1 + v)*@~! are exactly all 2"~ distinct integers of
the form 1+ 2! + - + ¢, 1207V with t; € {0,1} for j = 1,...,i — 1 and the
reduction does not apply to any of these so

[0(1 4 v) D] = p(1 + v)<@~!
On the other hand, the number of terms in [v2"™"” (1 4+ v)*=] is also equal to
2¢=1 since the exponents in these terms are exactly all the integers of the form
to+ 112 - 19207 4 20D with t; € {0,1} for j =0,...,7—2 and none of
these become equal after the reduction. Moreover, every such an exponent, after

reduction, can be found in v(1 4 v)*@~1 so

v o(i— 1)1(1 X )e(i—l)] = (1 +U)e(i)—1

Also note that all terms of H;_;(v) are also present in v(1 + v)*®~!. Thus, the
number of terms in H;(v) that remain after eliminating all pairs of equal terms
and denoted as #H; is equal to 2°~' — #H,_,. Unfolding the obtained recursive
expression for H;(v) starting from H;(v) = v we get that

Hy(v) = v(1+ (14+0)% + (1+0)72 4o (14 0) O



Now we can evaluate

QHu(a7") =
l J—
— ( 2+1—|—:L'0)Hl/(1'0 )2 +517(2)Hl’(5501)+£80
= (20 +15°") <1+(1+1’o_1)2 F (1 +zgH)? T o 1+ )T +2”>

+ X (1 +(1+ xgl)zl +(1+ $51)2z+22z 4+ (14 x(?l)e(l,)*) 4
= (o + 25" +ao( 25 ) ) (14 (b ag )™ 4o (a2

+ (w0 4 25 (1 4+ a5 ) 2" 4 2o + 0

_ 1’0(1 + x_1)2l+22l+ +2l l

= :Eo(l + x—1)2+2l+221+ =1y

= (14 a0) (1 4 x5 h)e®

as claimed. -

Lemma 5 For any a € GF(2%)* let 2y € GF(2%) satisfy 932 4 20 = a. Then
Tri (14 (142 )) = Tre(R(a™)) -

Proof. Denote I' = 933 !4 25! (obviously T' # 0 since z # 1), A = ')
and further, using Lemma [4] evaluate

QUHy (15" = (14 w0)(1+ 20 = (14 2 ) )
and thus, Q(Hy (z51))? ' =T or, equivalently,
Q(Hy(zg')) =A™ (9)

In what follows, we use the technique suggested by Dobbertin for proving [7,
Theorem 1]. Note that

Auw) = a®o® + 2270 42 + (2 + 2 (( 2 4 go)o? + 2o+ xo)
= Q)" +TQ(v) = Q)(Q(v)* " + A1)
for 22" 4 29 = a and therefore, by (@), A(Hy(x5")) = 0. Consider the equation
Q) +A™ =0 (10)

whose roots are also the zeros of A,(v). We will show that (I0) has exactly two
roots with Hy(x;') and R(a™!) being among them (however, we do not claim

9



that R(a™') # Hy(zy')). Multiplying (I0) by g = (22A)~! and using that
(224! 4 29) A2 1 = 22 gives

(2 ™+ 20)v” + 2fv + o+ A7) = (v/A)* + /A + wop + g’ =0

which has exactly two solutions zy = Hy(xy') (see @) and 2 = Hy(zy') + A
since its linearized homogenecous part (v/A)% +v/A has exactly two roots v = 0
e(l)
and v = A. Thus, zp+2; = A = (JOQI) . Using (22 +1)A?~! = gy it is easy
Zo

to see that A2 = zgA + (2oA)? and we have Tr(A) = 0.

Now we show that none of the possible roots of Q(v) = 0 is a solution of (§).
In fact, suppose that Q(z) = 0. Then, since xy # 0, we have 22 = (xoz)zl +xoz+1

2t _ 2 ; _ 24 :
and az® = x{z+x (since a = x5 "~ +x0). We put such a z into (§) and compute

l/
az? 4 Z Py
i1

-1 4

= (a§z + o)z + ) (002)" + Y (w02 +U+1 41
1=0 1=1

=1.

Therefore, recalling the proved identity A,(v) = Q(v)(Q(v)* ! + A~F-1)
and keeping in mind that ged(2! —1,2% — 1) = 1 we see that vy = R(a™!) which is
the unique solution of (§) and, by Lemma [2] also the root of A,(v) = 0, satisfies
Q(vo) = A™'. Recall that (I0) has exactly two solutions 2y = Hy(zy') and
21 = Hy(zy")+A. Thus, R(a™Y) + Hy(x5') = A or R(a™') = Hy(zy") (although
we do not need in our proof that R(a™') # Hy(xy'), we believe that this holds)
and, by Lemma [,

Trk(R(@_l)) = Trk(Hl,(xgl)) = Trp(1+ (1+ %—1)6(1'))
as claimed. -

Theorem 1 For any a € GF(2%)* and a positive integer | < k with ged(l, k) = 1,
let Aqu(v) be defined as in (3). Also let

M; = {a | A,(v) has exactly i zeros in GF(2F)} . (11)

Then Aq(v) has either one, two or four zeros in GF(2%). Fori € {1,2,4}, we
have a € M; if and only if p,(z) = 22T 4 2+ a has ezactly i — 1 zeros in GF(2").
The following distribution holds for k odd (resp. k even)
|M,| = 2k§r1 (resp. 2k3_1
|My| =281 — 1 (resp. 2871

b
1M, = X5 (resp. £=2) .

10



Furthermore, a € My if and only if Tri,(R(a™') + 1) = 1, where R(v) is defined

Proof. In Lemma [ it was shown that vy = R(a™!) is a zero of A,(v) in
GF(2%)*. Let N, be the number of zeros of A,(v) in GF(2¥). Since A,(v) has
a zero in GF(2%), N, is equal to the number of zeros of its homogeneous part
a?v?" +v? 4+ av in GF(2%). Dividing the latter polynomial by a~ v, then raising
it to power 2871 and replacing (av? ~1)2""" by z leads to

Pa(x) = 2y rta ,

which, since ged(2! —1,2% — 1) = 1, has N, — 1 zeros in GF(2¥). It is therefore
sufficient to study the number of zeros of this polynomial in GF(2*).

From now on assume that N, > 2. Then p,(z) has a zero zy € GF(2%). Now
we replace x in p,(z) with = + z¢ to get

(z + 20)* T + (x+20) +a =0

or
[ l 1 [
M pggr® vatr+al Tt rg+a=0

which implies l l l
2> g + (25 + 1)z =0 .

Since x = 0 corresponds to zy being the zero of p,(z), we can divide the latter
equation by z and after substituting y = 2! we note that if p,(z) has a zero
then the reciprocal equation, given by

(:):gl + 1)y2l +xoy+1=0 (12)

has N, — 2 zeros. This affine equation has either zero roots in GF(2¥) or the
same number of roots as its homogeneous part (x%l + 1)yzl + 2oy which is seen to
have exactly two solutions, the zero solution and a unique nonzero solution, since
ged(2! — 1,2% — 1) = 1. Therefore, it can be concluded that p,(z) = 0 can have
either zero, one or three solutions or, equivalently, A,(v) has either one, two or
four zeros in GF(2%).

Now we need to find the conditions when there exists a solution of (I2)). Let
y = tw, where t* 7! = ¢ and ¢ = w;fil. Since ged(2! — 1,2% — 1) = 1, there is a
one-to-one correspondence betweenot and c. Then (I2]) is equivalent to

2l 1
w fwt ———— =0
ct(zd + 1)

11



Hence, ([I2]) has no solutions if and only if

1
T, (7) 1
ct(zt +1)

This easily follows from the fact that the linear operator L(w) = w? + w on
GF(2%) has the kernel of dimension one and, thus, the number of elements in the
image of L is 2¥~1. Since all the elements w? 4 w have the trace zero and the
total number of such elements in GF(2¥) is 2¥=! we conclude that the image of
L contains all the elements in GF(2*) having trace zero.

Since ¢ = 2~ then ¢ = ¢*?). Thus, from the definition of ¢ and ¢ we get

1 204 e 1
m () () ()
ct(xd +1) T 3 +1

(ZL’2l + 1)e(l') (xO + 1)215(1’) el
= Tl"k (7(;1_1_60,) = Tl"k —x2le(l’) = Tl"k((l + Lo 1) (¢ )) .

0 0

We conclude that p,(x) has exactly one zero (which is zg) if and only if
T, (1 + 25 ")) =1 . (13)

It means that A4,(v) has exactly two zeros in GF(2¥) (i.e., N, = 2) only for such a
that a = Iglﬂ +xo with (I3]) holding. Combining this with the result of Lemma(5]
we conclude that A,(v) has exactly two zeros in GF(2*) if and only if

Tre(R(@a™)+1)=1 .

In the case of one or four zeros, Try(R(a™!) + 1) = 0.

Now note that since e(l’) = 142422 4 ..+ 2=Vl j5 invertible modulo 2 —1
with the multiplicative inverse equal to 2! — 1 then ged(e(l’),2¥ —1) = 1 and thus,
(1+ v 1" is a one-to-one mapping of GF(2%)* onto GF(2¥) \ {1}. Therefore,
if k is odd (resp. k is even) then the number of xy € GF(2%)* satisfying (I3)) is
equal to 2871 —1 (resp. 2"7!) and obviously zy # 1. On the other hand, if N, = 2
then z2 T + 2 = a has a unique solution zy and so the number of nonzero values
a € GF(2%)* with N, = 2 for k odd (resp. k even) is |My| = 2¥=1 — 1 (resp.
2k=1). Now note that if a = 0 then p,(z) = 22 +! + z + a has exactly two zeros
2 = {0,1}. Thus, considering the mapping z — 22! + z for 2 running through
GF(2%)\ {0, 1} it is easy to see that |Ma|+3|M,| = 2 —2 and, knowing | M|, we
can find |My|. Finally, the last remaining unknown |M;| can be evaluated from
the obvious equation |M;| + |Ma| + |My| = |GF(2%)*] = 2F — 1. O

Note the paper [9] by Bluher where ¥t 4 az +b and the related polynomials
similar to the linearized part of A,(v) over an arbitrary field of characteristic p are
studied. In particular, the possible number of zeros and corresponding values of
| M;|, in the notations of our Theorem [I], were found (see [9, Theorems 5.6, 6.4]).
This was also done earlier for odd k in [10, Lemma 9.

12



4 The Linearized Polynomial L,(z)

The distribution of the three-valued crosscorrelation function to be determined in
Section [Bl depends on the detailed distribution of the number of zeros in GF(2™)
of the linearized polynomial

Lo(2) = 22" 4% 2% +raz | (14)

where a € GF(2F), r € GF(2™) and m = 2k. Some additional conditions on
the parameters will be imposed later. For the details on linearized polynomials
in general, the reader is referred to Lidl and Niederreiter [I1]. In the following
lemmas, we always take L,(z) defined in (I4)).

Lemma 6 Let | and k be integers with ged(l,k) = 1, a € GF(2¥) and r €
GF(2™). If La(2) = 0 for some z € GF(2™) then

aTef (rz* 1) € {0,1}
where Ty (z) = x + 22" is a trace mapping from GF(2™) to GF(2F).
Proof. For any z € GF(2™) with L,(z) = 0 we have
z2lLa(z) —raz® T+ (ra22l+1)zl 4+ 20

and 222+ € GF(2F). Thus, Tr(raz® 1) 4 (Try(raz?+1))? = 0 meaning that
aTr™(rz2+1) € GF(2) N GF(2¥) = {0,1}. O

Lemma 7 Letl and k be odd with gcd(l, k) = 1, a € GF(2%) and r be a noncube
in GF(2™) such that r2"+t1 = 1. Then the following holds.

(i) The number of zeros of L,(z) in GF(2™) is 1 or 4.

(ii) If, additionally, a # 0 and Try(ve) = 0 (where vo = R(a™') and R(v) is
defined in (0)) then L,(z) has z =0 as its only zero in GF(2™).

Proof. First of all, let 7 = 22 for any z € GF(2™) and also let U = rz2+1.
If 2 # 0 and L,(z) = 0 then, since [ is odd and r is a noncube in GF(2™) with
721 = 1 we have that U # U and thus, by Lemma 6] and denoting V = alU

aTt?(U) =V +V¥ =1, (15)

(i) If a = 0 then L,(z) has a unique zero root so we further assume that
a # 0. The polynomial L,(z) is a linearized polynomial and its zeros form a
vector subspace over GF(2) (and even over GF(2?) since k + [ is even). We will

13



study the number of solutions of L,(z) = 0 in GF(2™). Note that L,(z) = 0 is

equivalent to
ol I 9l o2l
72 = a2 22 +raz .

Further, we obtain

U2l o ,r_2lz2l(2l+1)

ol ol ol o2 !
=r2(r*a? 2% +raz)® !

_9ol Lol Lol 2l (9l 21 21 3l
2 (2O 2GR 2R 2% 22 20y

_ol I+1 ol+1 9214 9l l i l
4y 2 (7”2 a2 22 +2 4 7,2 +1(L2 +IZ2 +1)

21 Lol 21 (ol 20 _9l 21 31 1 I+1 21 1 1 1
P2 g2 @) 222 1) 222l 92y 981 ol ottD 22gal L ol ol

Lol 21 21 2l _9l 1+1 l !
_ QX @D 2 2222yl otipal ol
. _2l 2l —2l
From now on assume z # 0. Since a™* = U* + U  we have

1=a?U? + 2T
—2U? + P AN + P Y A +a2l+1+2lU21 +a2l+1+1U
which leads to
QPTG R222l (azl + a2l+1+2l)U21 +2"MMyL1=0 .
Substituting V' = aU and multiplying by b = a=2"" simplifies the equation to
Vv L1V 4V +b=0

which after multiplying by V2 gives

(V2 + V) v (V2 1) =0 1o
Since (V2l n V)Zl“ S 2ol
Ty = (VDT v
we obtain

(V4 )22y 224y

As proved in [7, Corollary 2], the monomial function f(x) is almost
perfect nonlinear (APN) when ged(l,m) = 1, which is the case here since [ is
odd and ged(l, k) = 1. This means that the number of solutions V' € GF(2™)
of the latter equation is at most 2 for any b in GF(2™). Since V = raz? 1 and
ged(28 +1,2™ — 1) = 3 it follows that the number of zeros in GF(2™)* of the
linearized polynomial L,(z) is at most 6, which implies that the number of zeros
in GF(2™) is 1 or 4 since the zeros of L,(z) form a vector subspace over GF(2?).

— p2%-241
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(ii) Let 2 = VZ + V and assume z # 0. After rewriting 22 L, (z) = 22 @1 4
x = 0 observe that this implies that = € GF(2F).
Using (I6) we have

l

— l il
b 1$2+1:§ LE’2 ’

i=1

where Il = 1(mod m). Such an [ exists since [ is odd, ged(l, k) = 1 and therefore,
ged(l,m) = 1. Raising the latter identity to the power 2! and adding to itself
implies )

2 g2+ + et — 20 + 22 ’
where ¢ = b~! = a2"". Dividing by 2% (z # 0 since otherwise the only zero of
L,(2) is z = 0) implies

chme +x2l +cx+1=0.

By Theorem [, the latter equation has exactly two roots in GF(2*) if and only
if Trp(R(c™Y)) = Trp(R(a=2"")) = Tr(vo) = 0 and R(a=2"") = 02" is one of its
roots. From Lemma [3l it also follows that all the roots of this equation have the
same trace as vy. Therefore, in the case when Try(vy) = 0 both roots have trace
zero. However, since z = V? +V € GF(2F) and V ¢ GF(2¥) (recall that V = aU
and U # U) we have

?F
-
ko
_

Tiy (o (V2 oy

Mw
||

1=0

R VSIS ® 1 # Trg(vo)

~
Il

o
Il

o

i

where (¥) holds since V2" = V2 for odd [ and V2 +V £ 0 if V & GF(2k).
Therefore, if Try(vg) = 0 then there is no solutions # € GF(2*) having the form
z = V? 4 V. We have therefore shown that in the case Trz(vy) = 0 there are no
nonzero solutions of L,(z) = 0 in GF(2™). O

5 Three-Valued Crosscorrelation

In this section, we prove our main result formulated in Corollary [Il We start by
considering the following exponential sum denoted Sy(a) that to some extent is
determined by the following lemma that repeats Lemma 10 in [6]. It is assumed
everywhere that m = 2k.
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Lemma 8 ([6]) For an odd k, integer | < k and a € GF(2%) let Sy(a) be defined
by
Sol@) = 3 (—1)Tm@ HEIGT
yeGF(2m)

Then |
S =2 S (et

VEGF(2%), Aq (v)=0

where A, (v) is defined in (3).
We can now determine Sy(a) completely in the following corollary.

Corollary 2 Under the conditions of Lemmal8 and, additionally, assuming a #
0 and ged(l, k) = 1 let M; be defined as in (I1]). Then the distribution of Sp(a)
for 1 even is as follows:
—2k+1 Zf a € M4 s
0 if a€ My,
2k Zf a € Ml

and for | odd
—2k+2 Zf a € M4 ,
2k+1 Zf a € M2 ,
—2k Zf a € M1 .

Proof. Let I’ = [7' (mod k). The distribution follows directly from Lem-
mas [3] and [§ since these imply that for [ even

SQ(CL) _ Qk(_l)(l’-i-l)'l‘rk(vo)—i-l’(Na o 2)
and for [ odd
So(a) = 2F(—1) Tl N,

where N, is the number of zeros of A,(v) in GF(2*) and vy = R(a™!). Finally,
using Theorem [I we get the claimed result. O

Lemma 9 Let k be odd and r be a noncube in GF(2™) such that ¥ *+' = 1. Let
also a € GF(2F) and

l k
Sl((L) = Z (_1)Trm(7‘ay2 +1)+Trk(y2 +1) ’

yeGF(2™m)

Sala)= ) (—1)Tm (a4 T2 )
yeGF(2m)

Then
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(i) Si(a) = Sy(a).

(i) Furthermore, if, additionally, | is odd with ged(l, k) = 1 then for i = 1,2
holds
Si(a)* = 2T, ,

where T, is the number of zeros in GF(2™) of L,(z) defined in (17).

Proof. (i) Using definitions, straightforward calculations lead to

Sifa) = D0 (1T I
yeGF(2m)
= Z (—I)Trm(’“Qkany(2l+1)2k)+Trk(y(2’“+1)zk)
yEGF(2m)
zeGF(2m)

= SQ(CL) .

(ii) First, it can be noticed that here we are with the hypothesis of Lemma [7]
Item (). Using substitution z = x + y we obtain

Si(a)? =Y (_1)Trm(m(:v2l“+y2l“))+Trk(x2k+1+y2k+1)

z,yeGF(2™)

= > (= 1) Do el o )T (o)? Ly )
y,2€GF(2™)

— Z (_1)Trm(7“a(z2ly+zy2l+z2l+1)+yz2k)+Trk(22k+1)
y,2€GF(2™)

! k L, oktl | ol ol 52l

— Z (_1>Trm(ra22 U+ Trg (227 ) Z (_1)Trm(y2 2 2 e 2 ey

2€GF(2m) yeGF(2m)

— om > (—1)Tfm<mz2l+1>+m<z2’““>
2z€GF(2™), Lo(2)=0

Y

where Lo(z) = 22" + 1% a2 22" + raz.

It remains to show that f(z) = Tr,,(raz? 1) + Try(22 1) = 0 for any root z
of L,. If z =0 then this fact is obvious. If z # 0 then, by (I8) from Lemma [1
Ty (V) = V4+V?2 =1, where V = raz?+! implying that Tr,, (V) = 1. Moreover,
multiplying Lq(z) = 0 by 22" we obtain V + V? + 22 @"+1) = 0. Thus,

F(2) =1+ Tr(z2 ) = 1+ Trp(V + V) |
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But

Tiy(V + V?) =
= (VA Ve VY (V2 Vv Y
= V4V + (V2 (v VE) T = (mod 2) =1

2l+k71)

and thus, f(z) = 0.

In particular, since Si(a) = ZyEGF(Zm)(_]‘)f(y) # 0 the Boolean function f(z)
can not be balanced. Quadratic functions including those similar to f(z) are
studied in [12]. O

We are now in position to completely determine the distribution of S(a) de-
fined in @) for @ € GF(2%)*. Since this is equivalent to the distribution of
Cy(t)+1for 7 =0,1,...,2% — 2, our main result in Corollary [lis a consequence

of the theorem below. Note that for any d with the prescribed property we have
ged(d, 2% — 1) = 1.

Theorem 2 Let m = 2k and d(2' + 1) = 2° (mod 2 — 1) for some odd k and
integer I with 0 <1 < k, ged(l,k) =1 and i > 0. Then the ezponential sum S(a)
defined in () for a € GF(2%)* (and Cyq(7) + 1 for 7 =0,1,...,2% —2) have the
following distribution

R—1_ )
=28 occurs 5= times |
0 occurs 281 — 1 times ,

k .
2k occurs L times .

3

Proof: To determine the distribution of the crosscorrelation function Cy(7)+1
we need to compute the distribution of S(a) as in (@) for a € GF(2%)*. We divide
the proof into two cases depending on the parity of [.

Case 1: (I even)

In this case, ged(2 4+ 1,2™ — 1) = 1. Therefore, substituting 2 = y**! in the
expression for S(a) and since d(2! +1)(2F + 1) = 2¢(2¥ + 1) (mod 2™ — 1), we are
lead to l N

S(CL) _ Z (_1)Trm(ay2 T+ T (v ) So(a) ,
yeGF(2m)

where Sy(a) is defined in Lemma B The distribution of S(a) for even values of
follows, therefore, from the distribution of Sy(a) given in Corollary

Case 2: (/ odd)

To calculate S(a), we first observe that ged(2! + 1,2™ — 1) = 3. Therefore, if
we let 2 = 42+, then z runs through all cubes in GF(2™) three times when y
runs through GF(2™). Thereafter, let z = ry®+!, where r is a noncube in GF(2™)
and finally z = 7~ 'y* 1. When y runs through GF(2™) then z will run through
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GF(2™) three times. We select 7 as a noncube in GF(2™) such that 72+ = 1.
Further, since d(2! + 1)(2*¥ + 1) = 2/(2*¥ + 1) (mod 2™ — 1), we obtain

l k
3S(a) = Z (_1)Trm(ay2 )Ty (2 1)

yeGF(2™m)
+ > (=t (ray ) +Tr (v 1)

yEGF(2m)
+ Y (e g2 )T (7 )

where S;(a) are defined as in Lemmas [§ and [0
By Lemma [0 we also have that Si(a) = Ss(a) and

Si(a)* =2"T, ,

where T}, is the number of zeros in GF(2™) of L,(z) = 22" + % a2 22" + raz.
From Lemma [0 Item (i) it follows that 7, = 1 or T, = 4 and, therefore, by
Lemma [0 we have S;(a) = Sy(a) = £2% or S)(a) = Sy(a) = £2F+1,

Case a: In the case when Tri(vy) = 0, where vy = R(a™!) and R(v) is
defined in (@), which by Theorem [, occurs for 2¥=! — 1 distinct values of a € Mo,
it follows from Lemma [7 Item (@) that 7, = 1. Therefore, by Lemma [0 we
have S%(a) = 2™, i.e., Si(a) = Sy(a) = £2*. Since a € M, and by Corollary 2]
So(a) = 281, Furthermore, since S(a) = (Sp(a) + Si(a) + Sa(a))/3 is an integer,
it follows that only S;(a) = Sy(a) = —2F is possible and, therefore, S(a) =0.

Case b: In the case when Try,(vg) = 1 and A,(v) = a2 v? + 02 4+ av +1 has
four zeros in GF(2*), which by Theorem [, occurs for (287! —1)/3 distinct values
of a € My, by Corollary B we have Sy(a) = —2""2. Since S)(a) = Sy(a) = +2*
or Si(a) = Sy(a) = £2F1 and S(a) is an integer, only two of the four sign
combinations are possible, leading in this case to S(a) = 0 or S(a) = —2F+1,

Case c: In the case when Trj(vy) = 1 and A,(v) has one zero in GF(2F),
which by Theorem [, occurs for (2% + 1) /3 distinct values of a € M;, Corollary
gives Sp(a) = —2%. Since S)(a) = Sao(a) = +2% or Si(a) = Sy(a) = £2* and
S(a) is an integer, only two of the four sign combinations are possible, leading to
S(a) = —2% or S(a) = 2*.

The three cases above give in total the possible values 0, 2%, —2**1 for S(a).
We next use the expressions for the sum and the square sum of Cy(7) + 1 to
obtain a set of equations to determine the complete correlation distribution.

Suppose the crosscorrelation function Cy(7) + 1 takes on the value zero r
times, the value 2* is taken on s times, the value —2* occurs t times and the
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Table 1: Exponents d giving three-valued crosscorrelation

m | Proved in [4] | Proved in [6] | Newly found

6 |3 3

10 | 11 7

14 | 43 15 27

18 | 171 31 103

22 | 683 63 231, 365, 411
26 | 2731 127 911, 1243, 1639

value —25t1 occurs v times. From Lemma [ it follows that

r o+ s + t + v o= 2"-1
oks — 2kt okHly = ok
2%ks 4 2%t 4 2%y = om(2k _ 1) .

This implies

s + + v = 21
s — — 2v =1

s + t 4+ 4v = 2F—1 .

r o+ t
t

Since S(a) = 42* is only possible in Case 3, when Try(vy) = 1 and A,(v) has
one zero in GF(2%), which occurs (2% + 1)/3 times, we get s +t = (28 +1)/3.
From the last equation this leads to v = (2871 — 1) /3 and therefore from the first
equation 7 = 2¥=! — 1. Finally, using the second equation, we get t = 0 and
s=(2"+1)/3. O

In the following, we conjecture that all the cases with the three-valued cross-
correlation fall under the conditions of our main theorem. The conjecture has
been verified numerically for all m < 26 and these results are presented in Table[ll

Conjecture 1 Only those cases described in Corollaryl lead to the three-valued
crosscorrelation between two m-sequences of different lengths 2™ — 1 and 2F — 1,
where m = 2k.

6 Conclusion
We have identified new pairs of m-sequences having different lengths 2™ — 1 and

28 — 1, where m = 2k, with three-valued crosscorrelation and we have com-
pletely determined the crosscorrelation distribution. These pairs differ from the
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sequences in the Kasami family by the property that instead of the decimation
d = 1 we take such a d that d(2' + 1) = 2! (mod 2% — 1) for some integer [ and
i > 0, where k is odd and ged(l, k) = 1. We conjecture that our result covers all
the three-valued cases for the crosscorrelation of m-sequences with the described
parameters.
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