Characterization of m-Sequences of Lengths $2^{2k} - 1$ and $2^k - 1$ with Three-Valued Crosscorrelation

Tor Helleseth and Alexander Kholosha and Geir Jarle Ness The Selmer Center, Department of Informatics, University of Bergen PB 7800 N-5020 Bergen, Norway

July 26, 2018

Abstract. Considered is the distribution of the crosscorrelation between *m*-sequences of length $2^m - 1$, where m = 2k, and *m*-sequences of shorter length $2^k - 1$. New pairs of *m*-sequences with three-valued crosscorrelation are found and the complete correlation distribution is determined. Finally, we conjecture that there are no more cases with a three-valued crosscorrelation apart from the ones proven here.

Keywords: *m*-sequences, crosscorrelation, linearized polynomials.

1 Introduction

Let $\{a_t\}$ and $\{b_t\}$ be two binary sequences of length n. The crosscorrelation function between these two sequences at shift τ , where $0 \le \tau < n$, is defined by

$$C(\tau) = \sum_{t=0}^{n-1} (-1)^{a_t + b_{t+\tau}}$$

If the sequences $\{a_t\}$ and $\{b_t\}$ are the same we call it the autocorrelation.

Sequences with good correlation properties are important for many applications in communication systems. A relevant problem is to find the distribution of the crosscorrelation function (i.e., the set of values obtained for all shifts) between two binary *m*-sequences $\{s_t\}$ and $\{s_{dt}\}$ of the same length $2^m - 1$ that differ by a decimation *d* such that $gcd(d, 2^m - 1) = 1$. A survey of some of the basic research on the crosscorrelation between *m*-sequences of the same length can be found in Helleseth [1] and more recent results in Helleseth and Kumar [2] and Dobbertin et. al. [3]. A basis for many applications is the family of Gold sequences with their three-valued crosscorrelation function.

In a recent paper [4], Ness and Helleseth studied the crosscorrelation between an *m*-sequence $\{s_t\}$ of length $n = 2^m - 1$ and an *m*-sequence $\{u_{dt}\}$ of length $2^k - 1$, where m = 2k and $gcd(d, 2^k - 1) = 1$. Here $\{u_t\}$ denotes the *m*-sequence used in constructing the small family of Kasami sequences [5]. Recall that this family consists of 2^k sequences $\{s_t\} + \{u_{t+\tau}\}$ for $\tau = 0, \ldots, 2^k - 2$ plus the sequence $\{s_t\}$, where s_t and u_t are defined in (1) and (2). For the Kasami sequences, the crosscorrelation between $\{s_t\}$ and $\{u_t\}$ takes on only two different values. It is an open problem whether this is possible in other cases. Numerical results show several pairs of *m*-sequences with three-valued crosscorrelation function between $\{s_t\}$ and $\{u_{dt}\}$, where $gcd(d, 2^k - 1) = 1$ and k is odd. In addition to general results, Ness and Helleseth proved in [4] that the decimation $d = \frac{2^{k+1}}{3}$ gives a three-valued crosscorrelation distribution and in [6] they proved the same distribution for $d = 2^{(k+1)/2} - 1$ (in both cases k odd is needed). In this paper, we cover all the cases found by computer experiments that lead to a three-valued crosscorrelation distribution and completely determine this distribution. Speaking concretely, the decimation d such that $d(2^l + 1) \equiv 2^i \pmod{2^k - 1}$ for some integer l and $i \ge 0$ with $\gcd(l, k) = 1$ and $\operatorname{odd} k$ gives a three-valued crosscorrelation distribution. We conjecture that there are no other three-valued cases but these. This result includes the decimations proved in [4, 6] as a particular case that is obtained assuming l = 1 and $l = \frac{k+1}{2}$.

In Section 2, we present preliminaries needed for proving our main result. In Section 3, we analyze zeros of a particular affine polynomial $A_a(v)$. In Section 4, we find the distribution of the number of zeros of a special linearized polynomial $L_a(z)$. These two polynomials play a crucial role in finding the distribution of a new three-valued crosscorrelation function. In Section 5, we determine completely the crosscorrelation distribution of the new three-valued decimation.

2 Preliminaries

Let GF(q) denote a finite field with q elements and let $GF(q)^* = GF(q) \setminus \{0\}$. The trace mapping from $GF(q^m)$ to GF(q) is defined by

$$\operatorname{Tr}_m(x) = \sum_{i=0}^{m-1} x^{q^i}$$

Let $GF(2^m)$ be a finite field with 2^m elements and m = 2k with k odd. Let α be an element of order $n = 2^m - 1$. Then the *m*-sequence $\{s_t\}$ of length n can be written in terms of the trace mapping as

$$s_t = \operatorname{Tr}_m(\alpha^t) \quad . \tag{1}$$

Let $\beta = \alpha^{2^{k+1}}$, then β is an element of order $2^{k} - 1$. The sequence $\{u_t\}$ of length $2^{k} - 1$ (which is used in the construction of the well-known Kasami family) is defined by

$$u_t = \operatorname{Tr}_k(\beta^t) \quad . \tag{2}$$

In this paper, we consider the crosscorrelation between the *m*-sequences $\{s_t\}$ and $\{v_t\} = \{u_{dt}\}$ at shift τ defined by

$$C_d(\tau) = \sum_{t=0}^{n-1} (-1)^{s_t + v_{t+\tau}} , \qquad (3)$$

where $gcd(d, 2^k - 1) = 1$ and $\tau = 0, \ldots, 2^k - 2$. One should observe that in this setting, by selecting all decimations d with this condition, we cover the cross-correlation function between all pairs of m-sequences having these two different

lengths. Using the trace representation, this function can be written as an exponential sum

$$C_d(\tau) = \sum_{t=0}^{n-1} (-1)^{s_t + u_{d(t+\tau)}}$$
$$= \sum_{x \in \mathrm{GF}(2^m)^*} (-1)^{\mathrm{Tr}_m(\alpha^{-\tau}x) + \mathrm{Tr}_k(x^{d(2^k+1)})}$$

Since the two subgroups of $\operatorname{GF}(2^m)^*$ of order $2^k - 1$ and $2^k + 1$, respectively, only contain the element 1 in common, it is straightforward to see that for any element, say $\alpha^{-\tau} \in \operatorname{GF}(2^m)^*$, there is a unique element u, where $u^{2^k+1} = 1$ such that $\alpha^{-\tau}u = a \in \operatorname{GF}(2^k)^*$. Further, distinct values of $\tau = 0, 1, \ldots, 2^k - 2$ lead to distinct values of $a \in \operatorname{GF}(2^k)^*$. Further, note that for any u with $u^{2^k+1} = 1$ we have

$$\sum_{x \in \mathrm{GF}(2^m)^*} (-1)^{\mathrm{Tr}_m(\alpha^{-\tau}ux) + \mathrm{Tr}_k(x^{d(2^k+1)})} = \sum_{x \in \mathrm{GF}(2^m)^*} (-1)^{\mathrm{Tr}_m(\alpha^{-\tau}x) + \mathrm{Tr}_k(x^{d(2^k+1)})}$$

Therefore, the set of values of $C_d(\tau) + 1$ for all $\tau = 0, 1, \ldots, 2^k - 2$ is equal to the set of values of

$$S(a) = \sum_{x \in \mathrm{GF}(2^m)} (-1)^{\mathrm{Tr}_m(ax) + \mathrm{Tr}_k(x^{d(2^k+1)})}$$
(4)

when $a \in \mathrm{GF}(2^k)^*$.

The main result of this paper is formulated in the following corollary that gives a three-valued crosscorrelation function between new pairs of sequences of different lengths. This corollary immediately follows from Theorem 2.

Corollary 1 Let m = 2k and $d(2^{l} + 1) \equiv 2^{i} \pmod{2^{k} - 1}$ for some odd k and integer l with 0 < l < k, gcd(l,k) = 1 and $i \ge 0$. Then the crosscorrelation function $C_{d}(\tau)$ has the following distribution

$$\begin{array}{rrrr} -1-2^{k+1} & occurs & \frac{2^{k-1}-1}{3} & times \ , \\ -1 & occurs & 2^{k-1}-1 & times \ , \\ -1+2^k & occurs & \frac{2^k+1}{3} & times \ . \end{array}$$

The result will be proved in a series of lemmas. The outline of the proof is as follows. We have shown that we can write $C_d(\tau) + 1$ for $\tau = 0, 1, \ldots, 2^k - 2$ as an exponential sum S(a) for $a \in \operatorname{GF}(2^k)^*$. In the case when l is even, we can calculate the distribution of this sum directly as an exponential sum $S_0(a)$ and obtain the result. In the case when l is odd, a different approach works. In this case, we need some r being a noncube in $\operatorname{GF}(2^m)$ such that $r^{2^k+1} = 1$ (for instance, we can take $r = \alpha^{2^k - 1}$ with α a primitive element of $\mathrm{GF}(2^m)$) and we show that

$$S(a) = (S_0(a) + S_1(a) + S_2(a))/3$$

for three exponential sums $S_0(a)$, $S_1(a)$ and $S_2(a)$ defined by

$$S_{i}(a) = \sum_{y \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(r^{i}ay^{2^{l}+1}) + \mathrm{Tr}_{k}(y^{2^{k}+1})} \quad \text{for} \quad i = 0, 1$$
$$S_{2}(a) = \sum_{y \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(r^{-1}ay^{2^{l}+1}) + \mathrm{Tr}_{k}(y^{2^{k}+1})} \quad .$$

We determine $S_0(a)$ exactly in Corollary 2 and find $S_1(a)^2$ (that is equal to $S_2(a)^2$) in Lemma 9. Since S(a) is an integer, we can resolve the sign ambiguity of $S_1(a)$ and $S_2(a)$. In order to determine $S_0(a)$ we need to consider zeros in $GF(2^k)$ of the affine polynomial

$$A_a(v) = a^{2^l} v^{2^{2l}} + v^{2^l} + av + 1$$

and this is done in Section 3. To determine the square sums $S_1(a)^2$ and $S_2(a)^2$ we need to find the number of zeros in $GF(2^m)$ of the linearized polynomial

$$L_a(z) = z^{2^{k+l}} + r^{2^l} a^{2^l} z^{2^{2l}} + raz$$

and this task is completed in Section 4.

When finding the complete crosscorrelation distribution we make use of the following result from [4] that gives the sum of the crosscorrelation values as well as the sum of their squares.

Lemma 1 ([4]) For any decimation d with $gcd(d, 2^k - 1) = 1$ the sum (of the squares) of the crosscorrelation values defined in (3) is equal to

$$\sum_{\tau=0}^{2^{k}-2} C_{d}(\tau) = 1 ;$$

$$\sum_{\tau=0}^{2^{k}-2} C_{d}(\tau)^{2} = (2^{m}-1)(2^{k}-1) - 2 .$$

3 The Affine Polynomial $A_a(v)$

In this section, we take any k and consider zeros in $GF(2^k)$ of the affine polynomial

$$A_a(v) = a^{2^l} v^{2^{2l}} + v^{2^l} + av + 1 \quad , \tag{5}$$

where l < k is an arbitrary but fixed positive integer with gcd(l,k) = 1 and $a \in GF(2^k)^*$. Let also $l' = l^{-1} \pmod{k}$. The distribution of the zeros in $GF(2^k)$ of (5) will determine to a large extent the distribution of our crosscorrelation function.

We need the following sequences of polynomials that were introduced by Dobbertin in [7] (see also [8]):

$$F_{1}(v) = v ,$$

$$F_{2}(v) = v^{2^{l+1}} ,$$

$$F_{i+2}(v) = v^{2^{(i+1)l}} F_{i+1}(v) + v^{2^{(i+1)l} - 2^{il}} F_{i}(v) \text{ for } i \ge 1 ,$$

$$G_{1}(v) = 0 ,$$

$$G_{2}(v) = v^{2^{l-1}} ,$$

$$G_{i+2}(v) = v^{2^{(i+1)l}} G_{i+1}(v) + v^{2^{(i+1)l} - 2^{il}} G_{i}(v) \text{ for } i \ge 1 .$$

These are used to define the polynomial

$$R(v) = \sum_{i=1}^{l'} F_i(v) + G_{l'}(v) \quad . \tag{6}$$

As noted in [7], the exponents occurring in $F_j(v)$ (resp. in $G_j(v)$) are precisely those of the form

$$e = \sum_{i=0}^{j-1} (-1)^{\epsilon_i} 2^{il}$$
,

where $\epsilon_i \in \{0, 1\}$ satisfy $\epsilon_{j-1} = 0$, $\epsilon_0 = 0$ (resp. $\epsilon_0 = 1$) and $(\epsilon_i, \epsilon_{i-1}) \neq (1, 1)$.

Further, we will essentially need the following result proven in [7, Theorem 5] that the following polynomial

$$D(v) = \frac{\sum_{i=1}^{l'} v^{2^{il}} + l' + 1}{v^{2^{l+1}}}$$
(7)

is a permutation polynomial on $\operatorname{GF}(2^k)^*$. (To be formally more precise, we get a polynomial D(v) if $v^{-(2^l+1)}$ is substituted by $v^{(2^k-1)-(2^l+1)}$.) Moreover, D(v)and $R(v^{-1})$ are inverses of each other [7, Theorem 6], i.e., for any nonzero $x, y \in$ $\operatorname{GF}(2^k)$ with $D(x) = y^{-1}$ it always holds that R(y) = x. In (7) and in the rest of the paper, whenever a positive integer e is added to an element of $\operatorname{GF}(2^k)$, it means that added is the identity element of $\operatorname{GF}(2^k)$ times $e(\mod 2)$.

Also note the fact that since $l'l \equiv 1 \pmod{k}$ then

$$(2^{l}-1)(1+2^{l}+2^{2l}+\cdots+2^{(l'-1)l})=2^{ll'}-1\equiv 1 \pmod{2^{k}-1}$$
.

Therefore, $x^{2^{l'l}} = x^2$ for any $x \in GF(2^k)$ and this identity will be used repeatedly further in the proofs.

In the following lemmas, we always assume that l < k is a positive integer with gcd(l,k) = 1. We also take $A_a(v)$ defined in (5) and R(v) defined in (6). Lemmas 2 and 3 here provide generalization for Lemmas 3, 4 and 6 in [6]. Theorem 1 is a generalization of Lemma 7 in [6].

Lemma 2 For any $a \in GF(2^k)^*$ the element $v_0 = R(a^{-1})$ is a zero of $A_a(v)$ in $GF(2^k)^*$.

Proof. Since D(v) in (7) is a permutation polynomial on $GF(2^k)^*$, then for any fixed $a \in GF(2^k)^*$ the equation

$$av^{2^{l}+1} = \sum_{i=1}^{l'} v^{2^{il}} + l' + 1 \tag{8}$$

has exactly one solution $v_0 = R(a^{-1})$ in $GF(2^k)^*$. Raising (8) to the power of 2^k results in

$$a^{2^{l}}v^{2^{2l}+2^{l}} = \sum_{i=2}^{l'+1} v^{2^{il}} + l' + 1 = \sum_{i=2}^{l'} v^{2^{il}} + v^{2^{l+1}} + l' + 1 .$$

The latter identity, after being added to (8) and setting $v = v_0$, gives

$$av_0^{2^l+1} = a^{2^l}v_0^{2^{2^l}+2^l} + v_0^{2^l} + v_0^{2^{l+1}}$$

and consecutively, since $v_0 \neq 0$, $A_a(v_0) = a^{2^l} v_0^{2^{2l}} + v_0^{2^l} + av_0 + 1 = 0$.

Lemma 3 For any $a \in GF(2^k)^*$ let z be a zero of $A_a(v)$ in $GF(2^k)$. Then

$$\operatorname{Tr}_k(z) = \operatorname{Tr}_k(v_0)$$

and

$$\begin{aligned} \operatorname{Tr}_k(az^{2^{i+1}}) &= l'\operatorname{Tr}_k(v_0) + \operatorname{Tr}_k(l'+1) & \text{if } z = v_0 , \\ &= l'\operatorname{Tr}_k(v_0) + \operatorname{Tr}_k(l') & \text{if } z \neq v_0 , \end{aligned}$$

where $v_0 = R(a^{-1})$.

Proof. The first identity follows by observing that any zero of $A_a(v)$ is obtained as a sum of the zero v_0 of $A_a(v)$ (see Lemma 2) and a zero of its homogeneous part $a^{2^l}v^{2^{2l}} + v^{2^l} + av$. To prove the identity it therefore suffices to show that $\operatorname{Tr}_k(v_1) = 0$ for any v_1 with $a^{2^l}v_1^{2^{2l}} + v_1^{2^l} + av_1 = 0$. This follows from

$$\begin{aligned} \operatorname{Tr}_{k}(v_{1}) &= \operatorname{Tr}_{k}(v_{1}^{2^{l+1}}) \\ &= \operatorname{Tr}_{k}(v_{1}^{2^{l}+2^{l}}) \\ &= \operatorname{Tr}_{k}(a^{2^{l}}v_{1}^{2^{2l}+2^{l}} + av_{1}^{2^{l}+1}) \\ &= 0 \end{aligned}$$

To prove the second identity for the case when $z = v_0$ we use the fact presented in the proof of Lemma 2 that $av_0^{2^l+1} = \sum_{i=1}^{l'} v_0^{2^{il}} + l' + 1$. Then $\operatorname{Tr}_k(av_0^{2^l+1}) = l'\operatorname{Tr}_k(v_0) + \operatorname{Tr}_k(l'+1)$.

Now note that since $A_a(v)$ is obtained by adding the 2^l-th power of (8) to itself we have for $z \neq 0$

$$A_a(z) = 0$$
 if and only if $az^{2^l+1} + \sum_{i=1}^{l'} z^{2^{il}} + l' + 1 \in \{0,1\}$.

Since v_0 is the only solution of (8), then for $z \neq v_0$ with $A_a(z) = 0$ we have $az^{2^l+1} + \sum_{i=1}^{l'} z^{2^{il}} + l' + 1 = 1$ and

$$\operatorname{Tr}_k(az^{2^l+1}) = l'\operatorname{Tr}_k(z) + \operatorname{Tr}_k(l') = l'\operatorname{Tr}_k(v_0) + \operatorname{Tr}_k(l')$$

using already proved identity that $\operatorname{Tr}_k(z) = \operatorname{Tr}_k(v_0)$.

Now we introduce a particular sequence of polynomials over $GF(2^k)$ and prove some important properties of these that will be used further for getting the main result of this section about zeros of $A_a(v)$. Denote

$$e(i) = 1 + 2^{l} + 2^{2l} + \dots + 2^{(i-1)l}$$
 for $i = 1, \dots, l'$

so, in particular, $e(l') = (2^l - 1)^{-1} \pmod{2^k - 1}$. Now take every additive term v^e with $e \neq 0$ in the polynomial $1 + (1 + v)^{e(i)}$ and replace the exponent e with the cyclotomic equivalent number obtained by shifting the binary expansion of e maximally (till you get an odd number) in the direction of the least significant bits. We call this *reduction* procedure. Recall that two exponents e_1 and e_2 are cyclotomic equivalent if $2^i e_1 \equiv e_2 \pmod{2^k - 1}$ for some i < k. For instance, $v^{2^{il}}$ is reduced to v and $v^{2^{il+2^{jl}}}$ is reduced to $v^{1+2^{(j-i)l}}$ if i < j and so on. The obtained reduced polynomials are denoted as $H_i(v)$ and we use square brackets to denote application of the described reduction procedure to a polynomial, so $H_i(v) = [1 + (1+v)^{e(i)}]$ for $i = 1, \ldots, l'$. The first few polynomials in the sequence (after eliminating all pairs of equal terms) are

$$H_{1}(v) = v$$

$$H_{2}(v) = [v + v^{2^{l}} + v^{1+2^{l}}] = v + v + v^{1+2^{l}} = v^{1+2^{l}}$$

$$H_{3}(v) = [v + v^{2^{l}} + v^{2^{2l}} + v^{1+2^{l}} + v^{1+2^{2l}} + v^{2^{l}+2^{2l}} + v^{1+2^{l}+2^{2l}}]$$

$$= v + v + v + v^{1+2^{l}} + v^{1+2^{l}} + v^{1+2^{l}} + v^{1+2^{l}+2^{2l}} = v + v^{1+2^{2l}} + v^{1+2^{l}+2^{2l}}$$

Lemma 4 If polynomials $H_i(v)$ are defined as above then

$$\operatorname{Tr}_k(H_i(v)) = \operatorname{Tr}_k(1 + (1+v)^{e(i)})$$

for any $v \in GF(2^k)$ and i = 1, ..., l'. Also let $Q(v) = (x_0^{2^l+1} + x_0)v^{2^l} + x_0^2v + x_0$ for any $x_0 \in GF(2^k)^*$. Then

$$Q(H_{l'}(x_0^{-1})) = (1+x_0)(1+x_0^{-1})^{e(l')}$$

Proof. The trace identity for $H_{l'}(v)$ we get obviously from the definition. Further, for any $i \in \{2, \ldots, l'\}$

$$H_{i}(v) = [1 + (1 + v)^{e(i)}]$$

= $[1 + (1 + v)^{e(i-1)}(1 + v)^{2^{(i-1)l}}]$
= $[H_{i-1}(v) + v^{2^{(i-1)l}}(1 + v)^{e(i-1)}]$
 $\stackrel{(*)}{=} v(1 + v)^{e(i)-1} + H_{i-1}(v) ,$

where (*) follows from the following argumentation. First, note that the exponents of additive terms in $v(1+v)^{e(i)-1}$ are exactly all 2^{i-1} distinct integers of the form $1 + t_1 2^l + \cdots + t_{i-1} 2^{(i-1)l}$ with $t_j \in \{0,1\}$ for $j = 1, \ldots, i-1$ and the reduction does not apply to any of these so

$$[v(1+v)^{e(i)-1}] = v(1+v)^{e(i)-1} .$$

On the other hand, the number of terms in $[v^{2^{(i-1)l}}(1+v)^{e(i-1)}]$ is also equal to 2^{i-1} since the exponents in these terms are exactly all the integers of the form $t_0 + t_1 2^l + \cdots + t_{i-2} 2^{(i-2)l} + 2^{(i-1)l}$ with $t_j \in \{0, 1\}$ for $j = 0, \ldots, i-2$ and none of these become equal after the reduction. Moreover, every such an exponent, after reduction, can be found in $v(1+v)^{e(i)-1}$ so

$$[v^{2^{(i-1)l}}(1+v)^{e(i-1)}] = v(1+v)^{e(i)-1} .$$

Also note that all terms of $H_{i-1}(v)$ are also present in $v(1+v)^{e(i)-1}$. Thus, the number of terms in $H_i(v)$ that remain after eliminating all pairs of equal terms and denoted as $\#H_i$ is equal to $2^{i-1} - \#H_{i-1}$. Unfolding the obtained recursive expression for $H_i(v)$ starting from $H_1(v) = v$ we get that

$$H_i(v) = v(1 + (1 + v)^{2^l} + (1 + v)^{2^l + 2^{2l}} + \dots + (1 + v)^{e(i)-1}) .$$

Now we can evaluate

$$\begin{aligned} Q(H_{l'}(x_0^{-1})) &= \\ &= (x_0^{2^{l}+1} + x_0)H_{l'}(x_0^{-1})^{2^l} + x_0^2H_{l'}(x_0^{-1}) + x_0 \\ &= (x_0 + x_0^{-2^{l}+1})\left(1 + (1 + x_0^{-1})^{2^{2l}} + (1 + x_0^{-1})^{2^{2l}+2^{3l}} + \dots + (1 + x_0^{-1})^{2^{2l}+\dots+2^{l'l}}\right) \\ &+ x_0\left(1 + (1 + x_0^{-1})^{2^l} + (1 + x_0^{-1})^{2^{l}+2^{2l}} + \dots + (1 + x_0^{-1})^{e(l')-1}\right) + x_0 \\ &= \left((x_0 + x_0^{-2^{l}+1}) + x_0(1 + x_0^{-1})^{2^l}\right)\left(1 + (1 + x_0^{-1})^{2^{2l}} + \dots + (1 + x_0^{-1})^{2^{2l}+\dots+2^{(l'-1)l}}\right) \\ &+ (x_0 + x_0^{-2^{l}+1})(1 + x_0^{-1})^{2^{2l}+\dots+2^{l'l}} + x_0 + x_0 \\ &= x_0(1 + x_0^{-1})^{2^{l}+2^{2l}+\dots+2^{l'l}} \\ &= x_0(1 + x_0^{-1})^{2^{l+2^{2l}+\dots+2^{l'l-1}l}} \\ &= (1 + x_0)(1 + x_0^{-1})^{e(l')} \end{aligned}$$

as claimed.

Lemma 5 For any $a \in GF(2^k)^*$ let $x_0 \in GF(2^k)$ satisfy $x_0^{2^l+1} + x_0 = a$. Then $\operatorname{Tr}_k(1 + (1 + x_0^{-1})^{e(l')}) = \operatorname{Tr}_k(R(a^{-1}))$.

Proof. Denote $\Gamma = x_0^{2^l-1} + x_0^{-1}$ (obviously $\Gamma \neq 0$ since $x_0 \neq 1$), $\Delta = \Gamma^{-e(l')}$ and further, using Lemma 4, evaluate

$$Q(H_{l'}(x_0^{-1}))x_0^{e(l')} = (1+x_0)(1+x_0)^{e(l')} = (1+x_0^{2^l})^{e(l')}$$

and thus, $Q(H_{l'}(x_0^{-1}))^{2^l-1} = \Gamma$ or, equivalently,

$$Q(H_{l'}(x_0^{-1})) = \Delta^{-1} . (9)$$

In what follows, we use the technique suggested by Dobbertin for proving [7, Theorem 1]. Note that

$$A_{a}(v) = a^{2^{l}}v^{2^{2l}} + x_{0}^{2^{l+1}}v^{2^{l}} + x_{0}^{2^{l}} + (x_{0}^{2^{l}-1} + x_{0}^{-1})\left((x_{0}^{2^{l}+1} + x_{0})v^{2^{l}} + x_{0}^{2}v + x_{0}\right)$$

= $Q(v)^{2^{l}} + \Gamma Q(v) = Q(v)(Q(v)^{2^{l}-1} + \Delta^{-(2^{l}-1)})$

for $x_0^{2^l+1} + x_0 = a$ and therefore, by (9), $A_a(H_{l'}(x_0^{-1})) = 0$. Consider the equation $Q(v) + \Delta^{-1} = 0$ (10)

whose roots are also the zeros of $A_a(v)$. We will show that (10) has exactly two roots with $H_{l'}(x_0^{-1})$ and $R(a^{-1})$ being among them (however, we do not claim that $R(a^{-1}) \neq H_{l'}(x_0^{-1})$. Multiplying (10) by $\mu = (x_0^2 \Delta)^{-1}$ and using that $(x_0^{2^l+1} + x_0)\Delta^{2^l-1} = x_0^2$ gives

$$\mu((x_0^{2^l+1}+x_0)v^{2^l}+x_0^2v+x_0+\Delta^{-1})=(v/\Delta)^{2^l}+v/\Delta+x_0\mu+x_0^2\mu^2=0$$

which has exactly two solutions $z_0 = H_{l'}(x_0^{-1})$ (see (9)) and $z_1 = H_{l'}(x_0^{-1}) + \Delta$ since its linearized homogeneous part $(v/\Delta)^{2^l} + v/\Delta$ has exactly two roots v = 0and $v = \Delta$. Thus, $z_0 + z_1 = \Delta = \left(\frac{x_0}{1+x_0^{2^l}}\right)^{e(l')}$. Using $(x_0^{2^l} + 1)\Delta^{2^l-1} = x_0$ it is easy to see that $\Delta^{2^l} = x_0\Delta + (x_0\Delta)^{2^l}$ and we have $\operatorname{Tr}_k(\Delta) = 0$.

Now we show that none of the possible roots of Q(v) = 0 is a solution of (8). In fact, suppose that Q(z) = 0. Then, since $x_0 \neq 0$, we have $z^{2^l} = (x_0 z)^{2^l} + x_0 z + 1$ and $az^{2^l} = x_0^2 z + x_0$ (since $a = x_0^{2^l+1} + x_0$). We put such a z into (8) and compute

$$az^{2^{l}+1} + \sum_{i=1}^{l'} z^{2^{il}} + l' + 1$$

= $(x_0^2 z + x_0)z + \sum_{i=0}^{l'-1} (x_0 z)^{2^{il}} + \sum_{i=1}^{l'} (x_0 z)^{2^{il}} + l' + l' + 1$
= 1.

Therefore, recalling the proved identity $A_a(v) = Q(v)(Q(v)^{2^{l-1}} + \Delta^{-(2^{l-1})})$ and keeping in mind that $gcd(2^l - 1, 2^k - 1) = 1$ we see that $v_0 = R(a^{-1})$ which is the unique solution of (8) and, by Lemma 2, also the root of $A_a(v) = 0$, satisfies $Q(v_0) = \Delta^{-1}$. Recall that (10) has exactly two solutions $z_0 = H_{l'}(x_0^{-1})$ and $z_1 = H_{l'}(x_0^{-1}) + \Delta$. Thus, $R(a^{-1}) + H_{l'}(x_0^{-1}) = \Delta$ or $R(a^{-1}) = H_{l'}(x_0^{-1})$ (although we do not need in our proof that $R(a^{-1}) \neq H_{l'}(x_0^{-1})$, we believe that this holds) and, by Lemma 4,

$$\operatorname{Tr}_k(R(a^{-1})) = \operatorname{Tr}_k(H_{l'}(x_0^{-1})) = \operatorname{Tr}_k(1 + (1 + x_0^{-1})^{e(l')})$$

as claimed.

Theorem 1 For any $a \in GF(2^k)^*$ and a positive integer l < k with gcd(l, k) = 1, let $A_a(v)$ be defined as in (5). Also let

$$M_i = \{a \mid A_a(v) \text{ has exactly } i \text{ zeros in } \operatorname{GF}(2^k)\}$$
(11)

Then $A_a(v)$ has either one, two or four zeros in $GF(2^k)$. For $i \in \{1, 2, 4\}$, we have $a \in M_i$ if and only if $p_a(x) = x^{2^l+1} + x + a$ has exactly i - 1 zeros in $GF(2^k)$. The following distribution holds for k odd (resp. k even)

$$\begin{array}{ll} |M_1| = \frac{2^k + 1}{3} & (resp. \ \frac{2^k - 1}{3}) \ , \\ |M_2| = 2^{k-1} - 1 & (resp. \ 2^{k-1}) \ , \\ |M_4| = \frac{2^{k-1} - 1}{3} & (resp. \ \frac{2^{k-1} - 2}{3}) \ . \end{array}$$

Furthermore, $a \in M_2$ if and only if $\operatorname{Tr}_k(R(a^{-1}) + 1) = 1$, where R(v) is defined in (6).

Proof. In Lemma 2 it was shown that $v_0 = R(a^{-1})$ is a zero of $A_a(v)$ in $GF(2^k)^*$. Let N_a be the number of zeros of $A_a(v)$ in $GF(2^k)$. Since $A_a(v)$ has a zero in $GF(2^k)$, N_a is equal to the number of zeros of its homogeneous part $a^{2^l}v^{2^{2l}} + v^{2^l} + av$ in $GF(2^k)$. Dividing the latter polynomial by $a^{-1}v$, then raising it to power 2^{k-1} and replacing $(av^{2^l-1})^{2^{k-1}}$ by x leads to

$$p_a(x) = x^{2^l + 1} + x + a$$

which, since $gcd(2^{l} - 1, 2^{k} - 1) = 1$, has $N_{a} - 1$ zeros in $GF(2^{k})$. It is therefore sufficient to study the number of zeros of this polynomial in $GF(2^{k})$.

From now on assume that $N_a \ge 2$. Then $p_a(x)$ has a zero $x_0 \in GF(2^k)$. Now we replace x in $p_a(x)$ with $x + x_0$ to get

$$(x+x_0)^{2^{\iota}+1} + (x+x_0) + a = 0$$

or

$$x^{2^{l}+1} + x_0 x^{2^{l}} + x_0^{2^{l}} x + x_0^{2^{l}+1} + x + x_0 + a = 0$$

which implies

$$x^{2^{l}+1} + x_0 x^{2^{l}} + (x_0^{2^{l}} + 1)x = 0 .$$

Since x = 0 corresponds to x_0 being the zero of $p_a(x)$, we can divide the latter equation by x and after substituting $y = x^{-1}$ we note that if $p_a(x)$ has a zero then the reciprocal equation, given by

$$(x_0^{2^l} + 1)y^{2^l} + x_0y + 1 = 0 (12)$$

has $N_a - 2$ zeros. This affine equation has either zero roots in $GF(2^k)$ or the same number of roots as its homogeneous part $(x_0^{2^l} + 1)y^{2^l} + x_0y$ which is seen to have exactly two solutions, the zero solution and a unique nonzero solution, since $gcd(2^l - 1, 2^k - 1) = 1$. Therefore, it can be concluded that $p_a(x) = 0$ can have either zero, one or three solutions or, equivalently, $A_a(v)$ has either one, two or four zeros in $GF(2^k)$.

Now we need to find the conditions when there exists a solution of (12). Let y = tw, where $t^{2^l-1} = c$ and $c = \frac{x_0}{x_0^{2^l}+1}$. Since $gcd(2^l - 1, 2^k - 1) = 1$, there is a one-to-one correspondence between t and c. Then (12) is equivalent to

$$w^{2^{l}} + w + \frac{1}{ct(x_{0}^{2^{l}} + 1)} = 0$$
.

Hence, (12) has no solutions if and only if

$$\operatorname{Tr}_k\left(\frac{1}{ct(x_0^{2^l}+1)}\right) = 1 \ .$$

This easily follows from the fact that the linear operator $L(\omega) = \omega^{2^l} + \omega$ on $\operatorname{GF}(2^k)$ has the kernel of dimension one and, thus, the number of elements in the image of L is 2^{k-1} . Since all the elements $\omega^{2^l} + \omega$ have the trace zero and the total number of such elements in $\operatorname{GF}(2^k)$ is 2^{k-1} , we conclude that the image of L contains all the elements in $\operatorname{GF}(2^k)$ having trace zero.

Since $c = t^{2^{l-1}}$ then $t = c^{e(l')}$. Thus, from the definition of c and t we get

$$\operatorname{Tr}_{k}\left(\frac{1}{ct(x_{0}^{2^{l}}+1)}\right) = \operatorname{Tr}_{k}\left(\left(\frac{x_{0}^{2^{l}}+1}{x_{0}}\right)^{1+e(l')}\left(\frac{1}{x_{0}^{2^{l}}+1}\right)\right)$$
$$= \operatorname{Tr}_{k}\left(\frac{(x_{0}^{2^{l}}+1)^{e(l')}}{x_{0}^{1+e(l')}}\right) = \operatorname{Tr}_{k}\left(\frac{(x_{0}+1)^{2^{l}e(l')}}{x_{0}^{2^{l}e(l')}}\right) = \operatorname{Tr}_{k}\left((1+x_{0}^{-1})^{e(l')}\right) .$$

We conclude that $p_a(x)$ has exactly one zero (which is x_0) if and only if

$$\operatorname{Tr}_k((1+x_0^{-1})^{e(l')}) = 1$$
 (13)

It means that $A_a(v)$ has exactly two zeros in $GF(2^k)$ (i.e., $N_a = 2$) only for such a that $a = x_0^{2^l+1} + x_0$ with (13) holding. Combining this with the result of Lemma 5, we conclude that $A_a(v)$ has exactly two zeros in $GF(2^k)$ if and only if

$$\operatorname{Tr}_k(R(a^{-1})+1) = 1$$
.

In the case of one or four zeros, $\operatorname{Tr}_k(R(a^{-1})+1)=0$.

Now note that since $e(l') = 1 + 2^l + 2^{2l} + \cdots + 2^{(l'-1)l}$ is invertible modulo $2^k - 1$ with the multiplicative inverse equal to $2^l - 1$ then $gcd(e(l'), 2^k - 1) = 1$ and thus, $(1 + v^{-1})^{e(l')}$ is a one-to-one mapping of $GF(2^k)^*$ onto $GF(2^k) \setminus \{1\}$. Therefore, if k is odd (resp. k is even) then the number of $x_0 \in GF(2^k)^*$ satisfying (13) is equal to $2^{k-1} - 1$ (resp. 2^{k-1}) and obviously $x_0 \neq 1$. On the other hand, if $N_a = 2$ then $x^{2^l+1} + x = a$ has a unique solution x_0 and so the number of nonzero values $a \in GF(2^k)^*$ with $N_a = 2$ for k odd (resp. k even) is $|M_2| = 2^{k-1} - 1$ (resp. 2^{k-1}). Now note that if a = 0 then $p_a(x) = x^{2^l+1} + x + a$ has exactly two zeros $x = \{0, 1\}$. Thus, considering the mapping $x \mapsto x^{2^l+1} + x$ for x running through $GF(2^k) \setminus \{0, 1\}$ it is easy to see that $|M_2| + 3|M_4| = 2^k - 2$ and, knowing $|M_2|$, we can find $|M_4|$. Finally, the last remaining unknown $|M_1|$ can be evaluated from the obvious equation $|M_1| + |M_2| + |M_4| = |GF(2^k)^*| = 2^k - 1$.

Note the paper [9] by Bluher where $x^{p^{l}+1} + ax + b$ and the related polynomials similar to the linearized part of $A_a(v)$ over an arbitrary field of characteristic p are studied. In particular, the possible number of zeros and corresponding values of $|M_i|$, in the notations of our Theorem 1, were found (see [9, Theorems 5.6, 6.4]). This was also done earlier for odd k in [10, Lemma 9].

4 The Linearized Polynomial $L_a(z)$

The distribution of the three-valued crosscorrelation function to be determined in Section 5 depends on the detailed distribution of the number of zeros in $GF(2^m)$ of the linearized polynomial

$$L_a(z) = z^{2^{k+l}} + r^{2^l} a^{2^l} z^{2^{2l}} + raz \quad , \tag{14}$$

where $a \in GF(2^k)$, $r \in GF(2^m)$ and m = 2k. Some additional conditions on the parameters will be imposed later. For the details on linearized polynomials in general, the reader is referred to Lidl and Niederreiter [11]. In the following lemmas, we always take $L_a(z)$ defined in (14).

Lemma 6 Let l and k be integers with gcd(l,k) = 1, $a \in GF(2^k)$ and $r \in GF(2^m)$. If $L_a(z) = 0$ for some $z \in GF(2^m)$ then

$$a \operatorname{Tr}_{k}^{m}(rz^{2^{l+1}}) \in \{0,1\}$$

where $\operatorname{Tr}_k^m(x) = x + x^{2^k}$ is a trace mapping from $\operatorname{GF}(2^m)$ to $\operatorname{GF}(2^k)$.

Proof. For any $z \in GF(2^m)$ with $L_a(z) = 0$ we have

$$z^{2^{l}}L_{a}(z) = raz^{2^{l}+1} + (raz^{2^{l}+1})^{2^{l}} + z^{2^{l}(2^{k}+1)} = 0$$

and $z^{2^{l}(2^{k}+1)} \in \operatorname{GF}(2^{k})$. Thus, $\operatorname{Tr}_{k}^{m}(raz^{2^{l}+1}) + (\operatorname{Tr}_{k}^{m}(raz^{2^{l}+1}))^{2^{l}} = 0$ meaning that $a\operatorname{Tr}_{k}^{m}(rz^{2^{l}+1}) \in \operatorname{GF}(2^{l}) \cap \operatorname{GF}(2^{k}) = \{0,1\}.$

Lemma 7 Let l and k be odd with gcd(l, k) = 1, $a \in GF(2^k)$ and r be a noncube in $GF(2^m)$ such that $r^{2^k+1} = 1$. Then the following holds.

- (i) The number of zeros of $L_a(z)$ in $GF(2^m)$ is 1 or 4.
- (ii) If, additionally, $a \neq 0$ and $\operatorname{Tr}_k(v_0) = 0$ (where $v_0 = R(a^{-1})$ and R(v) is defined in (6)) then $L_a(z)$ has z = 0 as its only zero in $\operatorname{GF}(2^m)$.

Proof. First of all, let $\overline{z} = z^{2^k}$ for any $z \in \operatorname{GF}(2^m)$ and also let $U = rz^{2^{l+1}}$. If $z \neq 0$ and $L_a(z) = 0$ then, since l is odd and r is a noncube in $\operatorname{GF}(2^m)$ with $r^{2^{k+1}} = 1$ we have that $U \neq \overline{U}$ and thus, by Lemma 6, and denoting V = aU

$$a \operatorname{Tr}_{k}^{m}(U) = V + V^{2^{k}} = 1$$
 . (15)

(i) If a = 0 then $L_a(z)$ has a unique zero root so we further assume that $a \neq 0$. The polynomial $L_a(z)$ is a linearized polynomial and its zeros form a vector subspace over GF(2) (and even over GF(2²) since k + l is even). We will

study the number of solutions of $L_a(z) = 0$ in $GF(2^m)$. Note that $L_a(z) = 0$ is equivalent to

$$\overline{z}^{2^{l}} = r^{2^{l}}a^{2^{l}}z^{2^{2l}} + raz$$
.

Further, we obtain

$$\begin{split} \overline{U}^{2^{l}} &= r^{-2^{l}} \overline{z}^{2^{l}(2^{l}+1)} \\ &= r^{-2^{l}} (r^{2^{l}} a^{2^{l}} z^{2^{2l}} + raz)^{2^{l}+1} \\ &= r^{-2^{l}} (r^{2^{l}(2^{l}+1)} a^{2^{l}(2^{l}+1)} z^{2^{2l}(2^{l}+1)} + r^{2^{2l}+1} a^{2^{2l}+1} z^{2^{3l}+1}) \\ &\quad + r^{-2^{l}} (r^{2^{l+1}} a^{2^{l+1}} z^{2^{2l}+2^{l}} + r^{2^{l}+1} a^{2^{l}+1} z^{2^{l}+1}) \\ &= r^{2^{2l}} a^{2^{l}(2^{l}+1)} z^{2^{2l}(2^{l}+1)} + r^{2^{2l}-2^{l}+1} a^{2^{2l}+1} z^{2^{3l}+1} + r^{2^{l}} a^{2^{l+1}} z^{2^{2l}+2^{l}} + ra^{2^{l}+1} z^{2^{l}+1} \\ &= a^{2^{l}(2^{l}+1)} U^{2^{2l}} + a^{2^{2l}+1} U^{2^{2l}-2^{l}+1} + a^{2^{l+1}} U^{2^{l}} + a^{2^{l}+1} U \end{split}$$

From now on assume $z \neq 0$. Since $a^{-2^l} = U^{2^l} + \overline{U}^{2^l}$ we have

$$1 = a^{2^{l}}U^{2^{l}} + a^{2^{l}}\overline{U}^{2^{l}}$$

= $a^{2^{l}}U^{2^{l}} + a^{2^{2^{l}}+2^{l+1}}U^{2^{2^{l}}} + a^{2^{2^{l}}+2^{l}+1}U^{2^{2^{l}}-2^{l}+1} + a^{2^{l+1}+2^{l}}U^{2^{l}} + a^{2^{l+1}+1}U^{2^{l}}$

which leads to

$$a^{2^{2l}+2^{l+1}}U^{2^{2l}} + a^{2^{2l}+2^{l+1}}U^{2^{2l}-2^{l+1}} + (a^{2^{l}}+a^{2^{l+1}+2^{l}})U^{2^{l}} + a^{2^{l+1}+1}U + 1 = 0$$

Substituting V = aU and multiplying by $b = a^{-2^{l+1}}$, simplifies the equation to

$$V^{2^{2l}} + V^{2^{2l}-2^{l}+1} + (1+b)V^{2^{l}} + V + b = 0$$

which after multiplying by V^{2^l} gives

$$(V^{2^{l}} + V)^{2^{l}+1} + bV^{2^{l}}(V^{2^{l}} + 1) = 0 .$$
(16)

Since

$$\frac{(V^{2^l}+V)^{2^l+1}}{V^{2^l}(V^{2^l}+1)} = (V+1)^{2^{2l}-2^l+1} + V^{2^{2l}-2^l+1} + 1$$

we obtain

$$(V+1)^{2^{2l}-2^l+1} + V^{2^{2l}-2^l+1} + 1 = b .$$

As proved in [7, Corollary 2], the monomial function $f(x) = x^{2^{2l}-2^{l}+1}$ is almost perfect nonlinear (APN) when gcd(l,m) = 1, which is the case here since l is odd and gcd(l,k) = 1. This means that the number of solutions $V \in GF(2^m)$ of the latter equation is at most 2 for any b in $GF(2^m)$. Since $V = raz^{2^l+1}$ and $gcd(2^l + 1, 2^m - 1) = 3$ it follows that the number of zeros in $GF(2^m)^*$ of the linearized polynomial $L_a(z)$ is at most 6, which implies that the number of zeros in $GF(2^m)$ is 1 or 4 since the zeros of $L_a(z)$ form a vector subspace over $GF(2^2)$. (ii) Let $x = V^{2^l} + V$ and assume $z \neq 0$. After rewriting $z^{2^l} L_a(z) = z^{2^l(2^k+1)} + x = 0$ observe that this implies that $x \in GF(2^k)$.

Using (16) we have

$$b^{-1}x^{2^l+1} = \sum_{i=1}^{\tilde{l}} x^{2^{il}}$$

where $\tilde{l}l = 1 \pmod{m}$. Such an \tilde{l} exists since l is odd, gcd(l, k) = 1 and therefore, gcd(l, m) = 1. Raising the latter identity to the power 2^l and adding to itself implies

$$c^{2^{l}}x^{2^{2^{l}}+2^{l}} + cx^{2^{l}+1} = x^{2^{(\tilde{l}+1)l}} + x^{2^{l}}$$
,

where $c = b^{-1} = a^{2^{l+1}}$. Dividing by x^{2^l} ($x \neq 0$ since otherwise the only zero of $L_a(z)$ is z = 0) implies

$$c^{2^{l}}x^{2^{2l}} + x^{2^{l}} + cx + 1 = 0$$

By Theorem 1, the latter equation has exactly two roots in $\operatorname{GF}(2^k)$ if and only if $\operatorname{Tr}_k(R(c^{-1})) = \operatorname{Tr}_k(R(a^{-2^{l+1}})) = \operatorname{Tr}_k(v_0) = 0$ and $R(a^{-2^{l+1}}) = v_0^{2^{l+1}}$ is one of its roots. From Lemma 3 it also follows that all the roots of this equation have the same trace as v_0 . Therefore, in the case when $\operatorname{Tr}_k(v_0) = 0$ both roots have trace zero. However, since $x = V^{2^l} + V \in \operatorname{GF}(2^k)$ and $V \notin \operatorname{GF}(2^k)$ (recall that V = aUand $U \neq \overline{U}$) we have

$$\operatorname{Tr}_{k}(x) = \sum_{i=0}^{k-1} x^{2^{i}} = \sum_{i=0}^{k-1} x^{2^{li}} = \sum_{i=0}^{k-1} (V^{2^{l(i+1)}} + V^{2^{li}})$$
$$= V^{2^{kl}} + V \stackrel{(*)}{=} 1 \neq \operatorname{Tr}_{k}(v_{0}) ,$$

where (*) holds since $V^{2^{lk}} = V^{2^k}$ for odd l and $V^{2^k} + V \neq 0$ if $V \notin GF(2^k)$. Therefore, if $\operatorname{Tr}_k(v_0) = 0$ then there is no solutions $x \in GF(2^k)$ having the form $x = V^{2^l} + V$. We have therefore shown that in the case $\operatorname{Tr}_k(v_0) = 0$ there are no nonzero solutions of $L_a(z) = 0$ in $GF(2^m)$.

5 Three-Valued Crosscorrelation

In this section, we prove our main result formulated in Corollary 1. We start by considering the following exponential sum denoted $S_0(a)$ that to some extent is determined by the following lemma that repeats Lemma 10 in [6]. It is assumed everywhere that m = 2k.

Lemma 8 ([6]) For an odd k, integer l < k and $a \in GF(2^k)$ let $S_0(a)$ be defined by

$$S_0(a) = \sum_{y \in \mathrm{GF}(2^m)} (-1)^{\mathrm{Tr}_m(ay^{2^l+1}) + \mathrm{Tr}_k(y^{2^k+1})} .$$

Then

$$S_0(a) = 2^k \sum_{v \in \mathrm{GF}(2^k), A_a(v) = 0} (-1)^{\mathrm{Tr}_k(a(l+1)v^{2^l+1} + v)}$$

,

where $A_a(v)$ is defined in (5).

We can now determine $S_0(a)$ completely in the following corollary.

Corollary 2 Under the conditions of Lemma 8 and, additionally, assuming $a \neq 0$ and gcd(l,k) = 1 let M_i be defined as in (11). Then the distribution of $S_0(a)$ for l even is as follows:

$$\begin{array}{rrrr} -2^{k+1} & if & a \in M_4 \ , \\ 0 & if & a \in M_2 \ , \\ 2^k & if & a \in M_1 \end{array}$$
$$\begin{array}{rrrr} -2^{k+2} & if & a \in M_4 \ , \\ 2^{k+1} & if & a \in M_2 \ , \\ -2^k & if & a \in M_1 \end{array}$$

and for l odd

Proof. Let $l' = l^{-1} \pmod{k}$. The distribution follows directly from Lemmas 3 and 8 since these imply that for l even

$$S_0(a) = 2^k (-1)^{(l'+1)\operatorname{Tr}_k(v_0)+l'} (N_a - 2)$$

and for l odd

$$S_0(a) = 2^k (-1)^{\operatorname{Tr}_k(v_0)} N_a$$

where N_a is the number of zeros of $A_a(v)$ in $GF(2^k)$ and $v_0 = R(a^{-1})$. Finally, using Theorem 1, we get the claimed result.

Lemma 9 Let k be odd and r be a noncube in $GF(2^m)$ such that $r^{2^k+1} = 1$. Let also $a \in GF(2^k)$ and

$$S_{1}(a) = \sum_{y \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(ray^{2^{l}+1}) + \mathrm{Tr}_{k}(y^{2^{k}+1})},$$

$$S_{2}(a) = \sum_{y \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(r^{-1}ay^{2^{l}+1}) + \mathrm{Tr}_{k}(y^{2^{k}+1})}$$

Then

- (i) $S_1(a) = S_2(a)$.
- (ii) Furthermore, if, additionally, l is odd with gcd(l,k) = 1 then for i = 1, 2 holds

$$S_i(a)^2 = 2^m T_a \quad ,$$

where T_a is the number of zeros in $GF(2^m)$ of $L_a(z)$ defined in (14).

Proof. (i) Using definitions, straightforward calculations lead to

$$S_{1}(a) = \sum_{y \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(ray^{2^{l}+1}) + \mathrm{Tr}_{k}(y^{2^{k}+1})}$$

$$= \sum_{y \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(r^{2^{k}}a^{2^{k}}y^{(2^{l}+1)2^{k}}) + \mathrm{Tr}_{k}(y^{(2^{k}+1)2^{k}})}$$

$$= \sum_{z \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(r^{-1}az^{2^{l}+1}) + \mathrm{Tr}_{k}(z^{2^{k}+1})}$$

$$= S_{2}(a) .$$

(ii) First, it can be noticed that here we are with the hypothesis of Lemma 7 Item (i). Using substitution z = x + y we obtain

$$S_{1}(a)^{2} = \sum_{x,y \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(ra(x^{2^{l}+1}+y^{2^{l}+1}))+\mathrm{Tr}_{k}(x^{2^{k}+1}+y^{2^{k}+1})}$$

$$= \sum_{y,z \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(ra((z+y)^{2^{l}+1}+y^{2^{l}+1}))+\mathrm{Tr}_{k}((z+y)^{2^{k}+1}+y^{2^{k}+1})}$$

$$= \sum_{y,z \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(ra(z^{2^{l}}y+zy^{2^{l}}+z^{2^{l}+1})+yz^{2^{k}})+\mathrm{Tr}_{k}(z^{2^{k}+1})}$$

$$= \sum_{z \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(raz^{2^{l}+1})+\mathrm{Tr}_{k}(z^{2^{k}+1})} \sum_{y \in \mathrm{GF}(2^{m})} (-1)^{\mathrm{Tr}_{m}(y^{2^{l}}(z^{2^{k+l}}+r^{2^{l}}a^{2^{l}}z^{2^{l}}+raz))}$$

$$= 2^{m} \sum_{z \in \mathrm{GF}(2^{m}), \ L_{a}(z)=0} (-1)^{\mathrm{Tr}_{m}(raz^{2^{l}+1})+\mathrm{Tr}_{k}(z^{2^{k}+1})} ,$$

where $L_a(z) = z^{2^{k+l}} + r^{2^l} a^{2^l} z^{2^{2l}} + raz.$

It remains to show that $f(z) = \operatorname{Tr}_m(raz^{2^l+1}) + \operatorname{Tr}_k(z^{2^k+1}) = 0$ for any root z of L_a . If z = 0 then this fact is obvious. If $z \neq 0$ then, by (15) from Lemma 7, $\operatorname{Tr}_k^m(V) = V + V^{2^k} = 1$, where $V = raz^{2^l+1}$ implying that $\operatorname{Tr}_m(V) = 1$. Moreover, multiplying $L_a(z) = 0$ by z^{2^l} we obtain $V + V^{2^l} + z^{2^l(2^k+1)} = 0$. Thus,

$$f(z) = 1 + \operatorname{Tr}_k(z^{2^k+1}) = 1 + \operatorname{Tr}_k(V + V^{2^l})$$
.

$$Tr_k(V + V^{2^l}) =$$

$$= (V + \dots + V^{2^l} + \dots + V^{2^{k-1}}) + (V^{2^l} + \dots + V^{2^{k-1}} + \dots + V^{2^{l+k-1}})$$

$$= (V + V^{2^k}) + (V + V^{2^k})^2 + \dots + (V + V^{2^k})^{2^{l-1}} = l \pmod{2} = 1$$

and thus, f(z) = 0.

In particular, since $S_1(a) = \sum_{y \in GF(2^m)} (-1)^{f(y)} \neq 0$ the Boolean function f(z) can not be balanced. Quadratic functions including those similar to f(z) are studied in [12].

We are now in position to completely determine the distribution of S(a) defined in (4) for $a \in \operatorname{GF}(2^k)^*$. Since this is equivalent to the distribution of $C_d(\tau) + 1$ for $\tau = 0, 1, \ldots, 2^k - 2$, our main result in Corollary 1 is a consequence of the theorem below. Note that for any d with the prescribed property we have $\operatorname{gcd}(d, 2^k - 1) = 1$.

Theorem 2 Let m = 2k and $d(2^{l} + 1) \equiv 2^{i} \pmod{2^{k} - 1}$ for some odd k and integer l with 0 < l < k, gcd(l, k) = 1 and $i \ge 0$. Then the exponential sum S(a)defined in (4) for $a \in GF(2^{k})^{*}$ (and $C_{d}(\tau) + 1$ for $\tau = 0, 1, \ldots, 2^{k} - 2$) have the following distribution

$$\begin{array}{cccc} -2^{k+1} & occurs & \frac{2^{k-1}-1}{3} & times \ , \\ 0 & occurs & 2^{k-1}-1 & times \ , \\ 2^k & occurs & \frac{2^k+1}{3} & times \ . \end{array}$$

Proof: To determine the distribution of the crosscorrelation function $C_d(\tau)+1$ we need to compute the distribution of S(a) as in (4) for $a \in GF(2^k)^*$. We divide the proof into two cases depending on the parity of l.

Case 1: (l even)

In this case, $gcd(2^{l}+1, 2^{m}-1) = 1$. Therefore, substituting $x = y^{2^{l}+1}$ in the expression for S(a) and since $d(2^{l}+1)(2^{k}+1) \equiv 2^{i}(2^{k}+1) \pmod{2^{m}-1}$, we are lead to

$$S(a) = \sum_{y \in \mathrm{GF}(2^m)} (-1)^{\mathrm{Tr}_m(ay^{2^l+1}) + \mathrm{Tr}_k(y^{2^k+1})} = S_0(a) \ ,$$

where $S_0(a)$ is defined in Lemma 8. The distribution of S(a) for even values of l follows, therefore, from the distribution of $S_0(a)$ given in Corollary 2.

Case 2: (l odd)

To calculate S(a), we first observe that $gcd(2^{l}+1, 2^{m}-1) = 3$. Therefore, if we let $x = y^{2^{l}+1}$, then x runs through all cubes in $GF(2^{m})$ three times when y runs through $GF(2^{m})$. Thereafter, let $x = ry^{2^{l}+1}$, where r is a noncube in $GF(2^{m})$ and finally $x = r^{-1}y^{2^{l}+1}$. When y runs through $GF(2^{m})$ then x will run through

18

But

 $GF(2^m)$ three times. We select r as a noncube in $GF(2^m)$ such that $r^{2^k+1} = 1$. Further, since $d(2^l+1)(2^k+1) \equiv 2^i(2^k+1) \pmod{2^m-1}$, we obtain

$$3S(a) = \sum_{y \in \mathrm{GF}(2^m)} (-1)^{\mathrm{Tr}_m(ay^{2^l+1}) + \mathrm{Tr}_k(y^{2^{k+1}})} + \sum_{y \in \mathrm{GF}(2^m)} (-1)^{\mathrm{Tr}_m(ray^{2^l+1}) + \mathrm{Tr}_k(y^{2^{k+1}})} + \sum_{y \in \mathrm{GF}(2^m)} (-1)^{\mathrm{Tr}_m(r^{-1}ay^{2^l+1}) + \mathrm{Tr}_k(y^{2^{k+1}})} = \sum_{i=0}^2 S_i(a) ,$$

where $S_i(a)$ are defined as in Lemmas 8 and 9.

By Lemma 9 we also have that $S_1(a) = S_2(a)$ and

$$S_1(a)^2 = 2^m T_a \quad ,$$

where T_a is the number of zeros in $GF(2^m)$ of $L_a(z) = z^{2^{k+l}} + r^{2^l}a^{2^l}z^{2^{2l}} + raz$. From Lemma 7 Item (i) it follows that $T_a = 1$ or $T_a = 4$ and, therefore, by Lemma 9, we have $S_1(a) = S_2(a) = \pm 2^k$ or $S_1(a) = S_2(a) = \pm 2^{k+1}$.

Case a: In the case when $\operatorname{Tr}_k(v_0) = 0$, where $v_0 = R(a^{-1})$ and R(v) is defined in (6), which by Theorem 1, occurs for $2^{k-1} - 1$ distinct values of $a \in M_2$, it follows from Lemma 7 Item (ii) that $T_a = 1$. Therefore, by Lemma 9 we have $S_1^2(a) = 2^m$, i.e., $S_1(a) = S_2(a) = \pm 2^k$. Since $a \in M_2$ and by Corollary 2, $S_0(a) = 2^{k+1}$. Furthermore, since $S(a) = (S_0(a) + S_1(a) + S_2(a))/3$ is an integer, it follows that only $S_1(a) = S_2(a) = -2^k$ is possible and, therefore, S(a) = 0.

Case b: In the case when $\operatorname{Tr}_k(v_0) = 1$ and $A_a(v) = a^{2^l}v^{2^{2l}} + v^{2^l} + av + 1$ has four zeros in $\operatorname{GF}(2^k)$, which by Theorem 1, occurs for $(2^{k-1}-1)/3$ distinct values of $a \in M_4$, by Corollary 2 we have $S_0(a) = -2^{k+2}$. Since $S_1(a) = S_2(a) = \pm 2^k$ or $S_1(a) = S_2(a) = \pm 2^{k+1}$ and S(a) is an integer, only two of the four sign combinations are possible, leading in this case to S(a) = 0 or $S(a) = -2^{k+1}$.

Case c: In the case when $\text{Tr}_k(v_0) = 1$ and $A_a(v)$ has one zero in $\text{GF}(2^k)$, which by Theorem 1, occurs for $(2^k + 1)/3$ distinct values of $a \in M_1$, Corollary 2 gives $S_0(a) = -2^k$. Since $S_1(a) = S_2(a) = \pm 2^k$ or $S_1(a) = S_2(a) = \pm 2^{k+1}$ and S(a) is an integer, only two of the four sign combinations are possible, leading to $S(a) = -2^k$ or $S(a) = 2^k$.

The three cases above give in total the possible values $0, \pm 2^k, -2^{k+1}$ for S(a). We next use the expressions for the sum and the square sum of $C_d(\tau) + 1$ to obtain a set of equations to determine the complete correlation distribution.

Suppose the crosscorrelation function $C_d(\tau) + 1$ takes on the value zero r times, the value 2^k is taken on s times, the value -2^k occurs t times and the

m	Proved in [4]	Proved in [6]	Newly found
6	3	3	
10	11	7	
14	43	15	27
18	171	31	103
22	683	63	231, 365, 411
26	2731	127	911,1243,1639

Table 1: Exponents d giving three-valued crosscorrelation

value -2^{k+1} occurs v times. From Lemma 1 it follows that

$$r + s + t + v = 2^{k} - 1
 2^{k}s - 2^{k}t - 2^{k+1}v = 2^{k}
 2^{2k}s + 2^{2k}t + 2^{2k+2}v = 2^{m}(2^{k} - 1)$$

This implies

Since $S(a) = \pm 2^k$ is only possible in Case 3, when $\operatorname{Tr}_k(v_0) = 1$ and $A_a(v)$ has one zero in $\operatorname{GF}(2^k)$, which occurs $(2^k + 1)/3$ times, we get $s + t = (2^k + 1)/3$. From the last equation this leads to $v = (2^{k-1} - 1)/3$ and therefore from the first equation $r = 2^{k-1} - 1$. Finally, using the second equation, we get t = 0 and $s = (2^k + 1)/3$.

In the following, we conjecture that all the cases with the three-valued crosscorrelation fall under the conditions of our main theorem. The conjecture has been verified numerically for all $m \leq 26$ and these results are presented in Table 1.

Conjecture 1 Only those cases described in Corollary 1 lead to the three-valued crosscorrelation between two m-sequences of different lengths $2^m - 1$ and $2^k - 1$, where m = 2k.

6 Conclusion

We have identified new pairs of *m*-sequences having different lengths $2^m - 1$ and $2^k - 1$, where m = 2k, with three-valued crosscorrelation and we have completely determined the crosscorrelation distribution. These pairs differ from the

sequences in the Kasami family by the property that instead of the decimation d = 1 we take such a d that $d(2^{l} + 1) \equiv 2^{i} \pmod{2^{k} - 1}$ for some integer l and $i \ge 0$, where k is odd and gcd(l, k) = 1. We conjecture that our result covers all the three-valued cases for the crosscorrelation of m-sequences with the described parameters.

Acknowledgment

The authors would like to thank the anonymous reviewers for suggesting a shorter proof of Lemmas 6 and 9 and for thorough reviews containing constructive comments and valuable suggestions that helped to improve the manuscript significantly.

References

- T. Helleseth, "Some results about the cross-correlation function between two maximal linear sequences," *Discrete Mathematics*, vol. 16, no. 3, pp. 209–232, November 1976.
- [2] T. Helleseth and P. V. Kumar, "Sequences with low correlation," in *Handbook of Coding Theory*, V. Pless and W. Huffman, Eds. Amsterdam: Elsevier, 1998, vol. 2, ch. 21, pp. 1765–1853.
- [3] H. Dobbertin, P. Felke, T. Helleseth, and P. Rosendahl, "Niho type crosscorrelation functions via Dickson polynomials and Kloosterman sums," *IEEE Trans. Inf. Theory*, vol. 52, no. 2, pp. 613–627, February 2006.
- [4] G. J. Ness and T. Helleseth, "Cross correlation of *m*-sequences of different lengths," *IEEE Trans. Inf. Theory*, vol. 52, no. 4, pp. 1637–1648, April 2006.
- [5] T. Kasami, "Weight distribution formula for some classes of cyclic codes," Technical report R-285 (AD 637524), Coordinated Science Laboratory, University of Illinois, Urbana, April 1966.
- [6] G. J. Ness and T. Helleseth, "A new three-valued cross correlation between m-sequences of different lengths," *IEEE Trans. Inf. Theory*, vol. 52, no. 10, pp. 4695–4701, October 2006.
- [7] H. Dobbertin, "Kasami power functions, permutation polynomials and cyclic difference sets," in *Difference Sets, Sequences and their Correlation Properties*, ser. NATO Science Series, Series C: Mathematical and Physical Sciences, A. Pott, P. V. Kumar, T. Helleseth, and D. Jungnickel, Eds. Dordrecht: Kluwer Academic Publishers, 1999, vol. 542, pp. 133–158.

- [8] J. F. Dillon and H. Dobbertin, "New cyclic difference sets with Singer parameters," *Finite Fields and Their Applications*, vol. 10, no. 3, pp. 342–389, July 2004.
- [9] A. W. Bluher, "On $x^{q+1} + ax + b$," Finite Fields and Their Applications, vol. 10, no. 3, pp. 285–305, July 2004.
- [10] T. Helleseth and V. Zinoviev, "Codes with the same coset weight distributions as the Z₄-linear Goethals codes," *IEEE Trans. Inf. Theory*, vol. 47, no. 4, pp. 1589–1595, May 2001.
- [11] R. Lidl and H. Niederreiter, *Finite Fields*, ser. Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1997, vol. 20.
- [12] N. Y. Yu and G. Gong, "Constructions of quadratic bent functions in polynomial forms," *IEEE Trans. Inf. Theory*, vol. 52, no. 7, pp. 3291–3299, July 2006.