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Abstract. Considered is the distribution of the crosscorrelation be-
tween m-sequences of length 2m−1, where m = 2k, and m-sequences
of shorter length 2k − 1. New pairs of m-sequences with three-valued
crosscorrelation are found and the complete correlation distribution
is determined. Finally, we conjecture that there are no more cases
with a three-valued crosscorrelation apart from the ones proven here.
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1 Introduction

Let {at} and {bt} be two binary sequences of length n. The crosscorrelation
function between these two sequences at shift τ , where 0 ≤ τ < n, is defined by

C(τ) =

n−1
∑

t=0

(−1)at+bt+τ .

If the sequences {at} and {bt} are the same we call it the autocorrelation.
Sequences with good correlation properties are important for many applica-

tions in communication systems. A relevant problem is to find the distribution of
the crosscorrelation function (i.e., the set of values obtained for all shifts) between
two binary m-sequences {st} and {sdt} of the same length 2m−1 that differ by a
decimation d such that gcd(d, 2m−1) = 1. A survey of some of the basic research
on the crosscorrelation between m-sequences of the same length can be found in
Helleseth [1] and more recent results in Helleseth and Kumar [2] and Dobbertin
et. al. [3]. A basis for many applications is the family of Gold sequences with
their three-valued crosscorrelation function.

In a recent paper [4], Ness and Helleseth studied the crosscorrelation between
anm-sequence {st} of length n = 2m−1 and anm-sequence {udt} of length 2k−1,
where m = 2k and gcd(d, 2k − 1) = 1. Here {ut} denotes the m-sequence used
in constructing the small family of Kasami sequences [5]. Recall that this family
consists of 2k sequences {st} + {ut+τ} for τ = 0, . . . , 2k − 2 plus the sequence
{st}, where st and ut are defined in (1) and (2). For the Kasami sequences, the
crosscorrelation between {st} and {ut} takes on only two different values. It is
an open problem whether this is possible in other cases. Numerical results show
several pairs of m-sequences with three-valued crosscorrelation function between
{st} and {udt}, where gcd(d, 2k − 1) = 1 and k is odd. In addition to general

results, Ness and Helleseth proved in [4] that the decimation d = 2k+1
3

gives a
three-valued crosscorrelation distribution and in [6] they proved the same distri-
bution for d = 2(k+1)/2 − 1 (in both cases k odd is needed). In this paper, we
cover all the cases found by computer experiments that lead to a three-valued
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crosscorrelation distribution and completely determine this distribution. Speak-
ing concretely, the decimation d such that d(2l + 1) ≡ 2i (mod 2k − 1) for some
integer l and i ≥ 0 with gcd(l, k) = 1 and odd k gives a three-valued crosscorre-
lation distribution. We conjecture that there are no other three-valued cases but
these. This result includes the decimations proved in [4, 6] as a particular case
that is obtained assuming l = 1 and l = k+1

2
.

In Section 2, we present preliminaries needed for proving our main result. In
Section 3, we analyze zeros of a particular affine polynomial Aa(v). In Section 4,
we find the distribution of the number of zeros of a special linearized polynomial
La(z). These two polynomials play a crucial role in finding the distribution of a
new three-valued crosscorrelation function. In Section 5, we determine completely
the crosscorrelation distribution of the new three-valued decimation.

2 Preliminaries

Let GF(q) denote a finite field with q elements and let GF(q)∗ = GF(q) \ {0}.
The trace mapping from GF(qm) to GF(q) is defined by

Trm(x) =
m−1
∑

i=0

xqi .

Let GF(2m) be a finite field with 2m elements and m = 2k with k odd. Let
α be an element of order n = 2m − 1. Then the m-sequence {st} of length n can
be written in terms of the trace mapping as

st = Trm(α
t) . (1)

Let β = α2k+1, then β is an element of order 2k − 1. The sequence {ut} of length
2k − 1 (which is used in the construction of the well-known Kasami family) is
defined by

ut = Trk(β
t) . (2)

In this paper, we consider the crosscorrelation between the m-sequences {st}
and {vt} = {udt} at shift τ defined by

Cd(τ) =
n−1
∑

t=0

(−1)st+vt+τ , (3)

where gcd(d, 2k − 1) = 1 and τ = 0, . . . , 2k − 2. One should observe that in this
setting, by selecting all decimations d with this condition, we cover the cross-
correlation function between all pairs of m-sequences having these two different
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lengths. Using the trace representation, this function can be written as an expo-
nential sum

Cd(τ) =
n−1
∑

t=0

(−1)st+ud(t+τ)

=
∑

x∈GF(2m)∗

(−1)Trm(α−τx)+Trk(x
d(2k+1)) .

Since the two subgroups of GF(2m)∗ of order 2k − 1 and 2k + 1, respectively,
only contain the element 1 in common, it is straightforward to see that for any
element, say α−τ ∈ GF(2m)∗, there is a unique element u, where u2k+1 = 1 such
that α−τu = a ∈ GF(2k)∗. Further, distinct values of τ = 0, 1, . . . , 2k − 2 lead to
distinct values of a ∈ GF(2k)∗. Further, note that for any u with u2k+1 = 1 we
have

∑

x∈GF(2m)∗

(−1)Trm(α−τux)+Trk(x
d(2k+1)) =

∑

x∈GF(2m)∗

(−1)Trm(α−τx)+Trk(x
d(2k+1)) .

Therefore, the set of values of Cd(τ) + 1 for all τ = 0, 1, . . . , 2k − 2 is equal to the
set of values of

S(a) =
∑

x∈GF(2m)

(−1)Trm(ax)+Trk(x
d(2k+1)) (4)

when a ∈ GF(2k)∗.
The main result of this paper is formulated in the following corollary that

gives a three-valued crosscorrelation function between new pairs of sequences of
different lengths. This corollary immediately follows from Theorem 2.

Corollary 1 Let m = 2k and d(2l + 1) ≡ 2i (mod 2k − 1) for some odd k and
integer l with 0 < l < k, gcd(l, k) = 1 and i ≥ 0. Then the crosscorrelation
function Cd(τ) has the following distribution

−1 − 2k+1 occurs 2k−1
−1

3
times ,

−1 occurs 2k−1 − 1 times ,

−1 + 2k occurs 2k+1
3

times .

The result will be proved in a series of lemmas. The outline of the proof is
as follows. We have shown that we can write Cd(τ) + 1 for τ = 0, 1, . . . , 2k − 2
as an exponential sum S(a) for a ∈ GF(2k)∗. In the case when l is even, we
can calculate the distribution of this sum directly as an exponential sum S0(a)
and obtain the result. In the case when l is odd, a different approach works. In
this case, we need some r being a noncube in GF(2m) such that r2

k+1 = 1 (for
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instance, we can take r = α2k−1 with α a primitive element of GF(2m)) and we
show that

S(a) = (S0(a) + S1(a) + S2(a))/3

for three exponential sums S0(a), S1(a) and S2(a) defined by

Si(a) =
∑

y∈GF(2m)

(−1)Trm(riay2
l+1)+Trk(y

2k+1) for i = 0, 1

S2(a) =
∑

y∈GF(2m)

(−1)Trm(r−1ay2
l+1)+Trk(y

2k+1) .

We determine S0(a) exactly in Corollary 2 and find S1(a)
2 (that is equal to

S2(a)
2) in Lemma 9. Since S(a) is an integer, we can resolve the sign ambiguity

of S1(a) and S2(a). In order to determine S0(a) we need to consider zeros in
GF(2k) of the affine polynomial

Aa(v) = a2
l

v2
2l

+ v2
l

+ av + 1

and this is done in Section 3. To determine the square sums S1(a)
2 and S2(a)

2

we need to find the number of zeros in GF(2m) of the linearized polynomial

La(z) = z2
k+l

+ r2
l

a2
l

z2
2l

+ raz

and this task is completed in Section 4.
When finding the complete crosscorrelation distribution we make use of the

following result from [4] that gives the sum of the crosscorrelation values as well
as the sum of their squares.

Lemma 1 ([4]) For any decimation d with gcd(d, 2k − 1) = 1 the sum (of the
squares) of the crosscorrelation values defined in (3) is equal to

2k−2
∑

τ=0

Cd(τ) = 1 ;

2k−2
∑

τ=0

Cd(τ)
2 = (2m − 1)(2k − 1)− 2 .

3 The Affine Polynomial Aa(v)

In this section, we take any k and consider zeros in GF(2k) of the affine polynomial

Aa(v) = a2
l

v2
2l

+ v2
l

+ av + 1 , (5)
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where l < k is an arbitrary but fixed positive integer with gcd(l, k) = 1 and
a ∈ GF(2k)∗. Let also l′ = l−1 (mod k). The distribution of the zeros in GF(2k)
of (5) will determine to a large extent the distribution of our crosscorrelation
function.

We need the following sequences of polynomials that were introduced by Dob-
bertin in [7] (see also [8]):

F1(v) = v ,

F2(v) = v2
l+1 ,

Fi+2(v) = v2
(i+1)l

Fi+1(v) + v2
(i+1)l

−2ilFi(v) for i ≥ 1 ,

G1(v) = 0 ,

G2(v) = v2
l
−1 ,

Gi+2(v) = v2
(i+1)l

Gi+1(v) + v2
(i+1)l

−2ilGi(v) for i ≥ 1 .

These are used to define the polynomial

R(v) =
l′
∑

i=1

Fi(v) +Gl′(v) . (6)

As noted in [7], the exponents occurring in Fj(v) (resp. in Gj(v)) are precisely
those of the form

e =

j−1
∑

i=0

(−1)ǫi2il ,

where ǫi ∈ {0, 1} satisfy ǫj−1 = 0, ǫ0 = 0 (resp. ǫ0 = 1) and (ǫi, ǫi−1) 6= (1, 1).
Further, we will essentially need the following result proven in [7, Theorem 5]

that the following polynomial

D(v) =

∑l′

i=1 v
2il + l′ + 1

v2l+1
(7)

is a permutation polynomial on GF(2k)∗. (To be formally more precise, we get
a polynomial D(v) if v−(2l+1) is substituted by v(2

k
−1)−(2l+1).) Moreover, D(v)

and R(v−1) are inverses of each other [7, Theorem 6], i.e., for any nonzero x, y ∈
GF(2k) with D(x) = y−1 it always holds that R(y) = x. In (7) and in the rest
of the paper, whenever a positive integer e is added to an element of GF(2k), it
means that added is the identity element of GF(2k) times e(mod 2).

Also note the fact that since l′l ≡ 1 (mod k) then

(2l − 1)(1 + 2l + 22l + · · ·+ 2(l
′
−1)l) = 2ll

′

− 1 ≡ 1 (mod 2k − 1) .

Therefore, x2l
′l

= x2 for any x ∈ GF(2k) and this identity will be used repeatedly
further in the proofs.
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In the following lemmas, we always assume that l < k is a positive inte-
ger with gcd(l, k) = 1. We also take Aa(v) defined in (5) and R(v) defined in
(6). Lemmas 2 and 3 here provide generalization for Lemmas 3, 4 and 6 in [6].
Theorem 1 is a generalization of Lemma 7 in [6].

Lemma 2 For any a ∈ GF(2k)∗ the element v0 = R(a−1) is a zero of Aa(v) in
GF(2k)∗.

Proof. Since D(v) in (7) is a permutation polynomial on GF(2k)∗, then for
any fixed a ∈ GF(2k)∗ the equation

av2
l+1 =

l′
∑

i=1

v2
il

+ l′ + 1 (8)

has exactly one solution v0 = R(a−1) in GF(2k)∗. Raising (8) to the power of 2l

results in

a2
l

v2
2l+2l =

l′+1
∑

i=2

v2
il

+ l′ + 1 =
l′
∑

i=2

v2
il

+ v2
l+1

+ l′ + 1 .

The latter identity, after being added to (8) and setting v = v0, gives

av2
l+1

0 = a2
l

v2
2l+2l

0 + v2
l

0 + v2
l+1

0

and consecutively, since v0 6= 0, Aa(v0) = a2
l

v2
2l

0 + v2
l

0 + av0 + 1 = 0. �

Lemma 3 For any a ∈ GF(2k)∗ let z be a zero of Aa(v) in GF(2k). Then

Trk(z) = Trk(v0)

and
Trk(az

2l+1) = l′Trk(v0) + Trk(l
′ + 1) if z = v0 ,

= l′Trk(v0) + Trk(l
′) if z 6= v0 ,

where v0 = R(a−1).

Proof. The first identity follows by observing that any zero of Aa(v) is
obtained as a sum of the zero v0 of Aa(v) (see Lemma 2) and a zero of its
homogeneous part a2

l

v2
2l
+ v2

l

+ av. To prove the identity it therefore suffices to
show that Trk(v1) = 0 for any v1 with a2

l

v2
2l

1 + v2
l

1 + av1 = 0. This follows from

Trk(v1) = Trk(v
2l+1

1 )

= Trk(v
2l+2l

1 )

= Trk(a
2lv2

2l+2l

1 + av2
l+1

1 )

= 0 .
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To prove the second identity for the case when z = v0 we use the fact presented
in the proof of Lemma 2 that av2

l+1
0 =

∑l′

i=1 v
2il

0 + l′ + 1. Then Trk(av
2l+1
0 ) =

l′Trk(v0) + Trk(l
′ + 1).

Now note that since Aa(v) is obtained by adding the 2l-th power of (8) to
itself we have for z 6= 0

Aa(z) = 0 if and only if az2
l+1 +

l′
∑

i=1

z2
il

+ l′ + 1 ∈ {0, 1} .

Since v0 is the only solution of (8), then for z 6= v0 with Aa(z) = 0 we have

az2
l+1 +

∑l′

i=1 z
2il + l′ + 1 = 1 and

Trk(az
2l+1) = l′Trk(z) + Trk(l

′) = l′Trk(v0) + Trk(l
′)

using already proved identity that Trk(z) = Trk(v0). �

Now we introduce a particular sequence of polynomials over GF(2k) and prove
some important properties of these that will be used further for getting the main
result of this section about zeros of Aa(v). Denote

e(i) = 1 + 2l + 22l + · · ·+ 2(i−1)l for i = 1, . . . , l′

so, in particular, e(l′) = (2l − 1)−1 (mod 2k − 1). Now take every additive term
ve with e 6= 0 in the polynomial 1 + (1 + v)e(i) and replace the exponent e with
the cyclotomic equivalent number obtained by shifting the binary expansion of e
maximally (till you get an odd number) in the direction of the least significant
bits. We call this reduction procedure. Recall that two exponents e1 and e2 are
cyclotomic equivalent if 2ie1 ≡ e2 (mod 2k − 1) for some i < k. For instance,

v2
il

is reduced to v and v2
il+2jl is reduced to v1+2(j−i)l

if i < j and so on. The
obtained reduced polynomials are denoted as Hi(v) and we use square brackets
to denote application of the described reduction procedure to a polynomial, so
Hi(v) = [1+(1+v)e(i)] for i = 1, . . . , l′. The first few polynomials in the sequence
(after eliminating all pairs of equal terms) are

H1(v) = v

H2(v) = [v + v2
l

+ v1+2l] = v + v + v1+2l = v1+2l

H3(v) = [v + v2
l

+ v2
2l

+ v1+2l + v1+22l + v2
l+22l + v1+2l+22l ]

= v + v + v + v1+2l + v1+22l + v1+2l + v1+2l+22l = v + v1+22l + v1+2l+22l .

Lemma 4 If polynomials Hi(v) are defined as above then

Trk(Hi(v)) = Trk
(

1 + (1 + v)e(i)
)

7



for any v ∈ GF(2k) and i = 1, . . . , l′. Also let Q(v) = (x2l+1
0 + x0)v

2l + x2
0v + x0

for any x0 ∈ GF(2k)∗. Then

Q(Hl′(x
−1
0 )) = (1 + x0)(1 + x−1

0 )e(l
′) .

Proof. The trace identity for Hl′(v) we get obviously from the definition.
Further, for any i ∈ {2, . . . , l′}

Hi(v) = [1 + (1 + v)e(i)]

= [1 + (1 + v)e(i−1)(1 + v)2
(i−1)l

]

= [Hi−1(v) + v2
(i−1)l

(1 + v)e(i−1)]
(∗)
= v(1 + v)e(i)−1 +Hi−1(v) ,

where (*) follows from the following argumentation. First, note that the expo-
nents of additive terms in v(1 + v)e(i)−1 are exactly all 2i−1 distinct integers of
the form 1 + t12

l + · · · + ti−12
(i−1)l with tj ∈ {0, 1} for j = 1, . . . , i − 1 and the

reduction does not apply to any of these so

[v(1 + v)e(i)−1] = v(1 + v)e(i)−1 .

On the other hand, the number of terms in [v2
(i−1)l

(1 + v)e(i−1)] is also equal to
2i−1 since the exponents in these terms are exactly all the integers of the form
t0+ t12

l+ · · ·+ ti−22
(i−2)l +2(i−1)l with tj ∈ {0, 1} for j = 0, . . . , i−2 and none of

these become equal after the reduction. Moreover, every such an exponent, after
reduction, can be found in v(1 + v)e(i)−1 so

[v2
(i−1)l

(1 + v)e(i−1)] = v(1 + v)e(i)−1 .

Also note that all terms of Hi−1(v) are also present in v(1 + v)e(i)−1. Thus, the
number of terms in Hi(v) that remain after eliminating all pairs of equal terms
and denoted as #Hi is equal to 2i−1 −#Hi−1. Unfolding the obtained recursive
expression for Hi(v) starting from H1(v) = v we get that

Hi(v) = v(1 + (1 + v)2
l

+ (1 + v)2
l+22l + · · ·+ (1 + v)e(i)−1) .

8



Now we can evaluate

Q(Hl′(x
−1
0 )) =

= (x2l+1
0 + x0)Hl′(x

−1
0 )2

l

+ x2
0Hl′(x

−1
0 ) + x0

= (x0 + x−2l+1
0 )

(

1 + (1 + x−1
0 )2

2l

+ (1 + x−1
0 )2

2l+23l + · · ·+ (1 + x−1
0 )2

2l+···+2l
′l
)

+ x0

(

1 + (1 + x−1
0 )2

l

+ (1 + x−1
0 )2

l+22l + · · ·+ (1 + x−1
0 )e(l

′)−1
)

+ x0

=
(

(x0 + x−2l+1
0 ) + x0(1 + x−1

0 )2
l
)(

1 + (1 + x−1
0 )2

2l

+ · · ·+ (1 + x−1
0 )2

2l+···+2(l
′
−1)l
)

+ (x0 + x−2l+1
0 )(1 + x−1

0 )2
2l+···+2l

′l

+ x0 + x0

= x0(1 + x−1
0 )2

l+22l+···+2l
′l

= x0(1 + x−1
0 )2+2l+22l+···+2(l

′
−1)l

= (1 + x0)(1 + x−1
0 )e(l

′)

as claimed. �

Lemma 5 For any a ∈ GF(2k)∗ let x0 ∈ GF(2k) satisfy x2l+1
0 + x0 = a. Then

Trk
(

1 + (1 + x−1
0 )e(l

′)
)

= Trk(R(a−1)) .

Proof. Denote Γ = x2l−1
0 + x−1

0 (obviously Γ 6= 0 since x0 6= 1), ∆ = Γ−e(l′)

and further, using Lemma 4, evaluate

Q(Hl′(x
−1
0 ))x

e(l′)
0 = (1 + x0)(1 + x0)

e(l′) = (1 + x2l

0 )
e(l′)

and thus, Q(Hl′(x
−1
0 ))2

l
−1 = Γ or, equivalently,

Q(Hl′(x
−1
0 )) = ∆−1 . (9)

In what follows, we use the technique suggested by Dobbertin for proving [7,
Theorem 1]. Note that

Aa(v) = a2
l

v2
2l

+ x2l+1

0 v2
l

+ x2l

0 + (x2l−1
0 + x−1

0 )
(

(x2l+1
0 + x0)v

2l + x2
0v + x0

)

= Q(v)2
l

+ ΓQ(v) = Q(v)(Q(v)2
l
−1 +∆−(2l−1))

for x2l+1
0 +x0 = a and therefore, by (9), Aa(Hl′(x

−1
0 )) = 0. Consider the equation

Q(v) + ∆−1 = 0 (10)

whose roots are also the zeros of Aa(v). We will show that (10) has exactly two
roots with Hl′(x

−1
0 ) and R(a−1) being among them (however, we do not claim

9



that R(a−1) 6= Hl′(x
−1
0 )). Multiplying (10) by µ = (x2

0∆)−1 and using that

(x2l+1
0 + x0)∆

2l−1 = x2
0 gives

µ((x2l+1
0 + x0)v

2l + x2
0v + x0 +∆−1) = (v/∆)2

l

+ v/∆+ x0µ+ x2
0µ

2 = 0 ,

which has exactly two solutions z0 = Hl′(x
−1
0 ) (see (9)) and z1 = Hl′(x

−1
0 ) + ∆

since its linearized homogeneous part (v/∆)2
l

+ v/∆ has exactly two roots v = 0

and v = ∆. Thus, z0+ z1 = ∆ =
(

x0

1+x2l
0

)e(l′)

. Using (x2l

0 +1)∆2l−1 = x0 it is easy

to see that ∆2l = x0∆+ (x0∆)2
l

and we have Trk(∆) = 0.
Now we show that none of the possible roots of Q(v) = 0 is a solution of (8).

In fact, suppose that Q(z) = 0. Then, since x0 6= 0, we have z2
l

= (x0z)
2l+x0z+1

and az2
l

= x2
0z+x0 (since a = x2l+1

0 +x0). We put such a z into (8) and compute

az2
l+1 +

l′
∑

i=1

z2
il

+ l′ + 1

= (x2
0z + x0)z +

l′−1
∑

i=0

(x0z)
2il +

l′
∑

i=1

(x0z)
2il + l′ + l′ + 1

= 1 .

Therefore, recalling the proved identity Aa(v) = Q(v)(Q(v)2
l
−1 + ∆−(2l−1))

and keeping in mind that gcd(2l−1, 2k−1) = 1 we see that v0 = R(a−1) which is
the unique solution of (8) and, by Lemma 2, also the root of Aa(v) = 0, satisfies
Q(v0) = ∆−1. Recall that (10) has exactly two solutions z0 = Hl′(x

−1
0 ) and

z1 = Hl′(x
−1
0 )+∆. Thus, R(a−1)+Hl′(x

−1
0 ) = ∆ or R(a−1) = Hl′(x

−1
0 ) (although

we do not need in our proof that R(a−1) 6= Hl′(x
−1
0 ), we believe that this holds)

and, by Lemma 4,

Trk(R(a−1)) = Trk(Hl′(x
−1
0 )) = Trk(1 + (1 + x−1

0 )e(l
′))

as claimed. �

Theorem 1 For any a ∈ GF(2k)∗ and a positive integer l < k with gcd(l, k) = 1,
let Aa(v) be defined as in (5). Also let

Mi = {a | Aa(v) has exactly i zeros in GF(2k)} . (11)

Then Aa(v) has either one, two or four zeros in GF(2k). For i ∈ {1, 2, 4}, we
have a ∈ Mi if and only if pa(x) = x2l+1+x+a has exactly i−1 zeros in GF(2k).
The following distribution holds for k odd (resp. k even)

|M1| =
2k+1
3

(resp. 2k−1
3

) ,
|M2| = 2k−1 − 1 (resp. 2k−1) ,

|M4| =
2k−1

−1
3

(resp. 2k−1
−2

3
) .

10



Furthermore, a ∈ M2 if and only if Trk(R(a−1) + 1) = 1, where R(v) is defined
in (6).

Proof. In Lemma 2 it was shown that v0 = R(a−1) is a zero of Aa(v) in
GF(2k)∗. Let Na be the number of zeros of Aa(v) in GF(2k). Since Aa(v) has
a zero in GF(2k), Na is equal to the number of zeros of its homogeneous part
a2

l

v2
2l
+ v2

l

+ av in GF(2k). Dividing the latter polynomial by a−1v, then raising
it to power 2k−1 and replacing (av2

l
−1)2

k−1
by x leads to

pa(x) = x2l+1 + x+ a ,

which, since gcd(2l − 1, 2k − 1) = 1, has Na − 1 zeros in GF(2k). It is therefore
sufficient to study the number of zeros of this polynomial in GF(2k).

From now on assume that Na ≥ 2. Then pa(x) has a zero x0 ∈ GF(2k). Now
we replace x in pa(x) with x+ x0 to get

(x+ x0)
2l+1 + (x+ x0) + a = 0

or
x2l+1 + x0x

2l + x2l

0 x+ x2l+1
0 + x+ x0 + a = 0

which implies
x2l+1 + x0x

2l + (x2l

0 + 1)x = 0 .

Since x = 0 corresponds to x0 being the zero of pa(x), we can divide the latter
equation by x and after substituting y = x−1 we note that if pa(x) has a zero
then the reciprocal equation, given by

(x2l

0 + 1)y2
l

+ x0y + 1 = 0 (12)

has Na − 2 zeros. This affine equation has either zero roots in GF(2k) or the
same number of roots as its homogeneous part (x2l

0 +1)y2
l

+x0y which is seen to
have exactly two solutions, the zero solution and a unique nonzero solution, since
gcd(2l − 1, 2k − 1) = 1. Therefore, it can be concluded that pa(x) = 0 can have
either zero, one or three solutions or, equivalently, Aa(v) has either one, two or
four zeros in GF(2k).

Now we need to find the conditions when there exists a solution of (12). Let
y = tw, where t2

l
−1 = c and c = x0

x2l
0 +1

. Since gcd(2l − 1, 2k − 1) = 1, there is a

one-to-one correspondence between t and c. Then (12) is equivalent to

w2l + w +
1

ct(x2l
0 + 1)

= 0 .

11



Hence, (12) has no solutions if and only if

Trk

(

1

ct(x2l
0 + 1)

)

= 1 .

This easily follows from the fact that the linear operator L(ω) = ω2l + ω on
GF(2k) has the kernel of dimension one and, thus, the number of elements in the
image of L is 2k−1. Since all the elements ω2l + ω have the trace zero and the
total number of such elements in GF(2k) is 2k−1, we conclude that the image of
L contains all the elements in GF(2k) having trace zero.

Since c = t2
l
−1 then t = ce(l

′). Thus, from the definition of c and t we get

Trk

(

1

ct(x2l
0 + 1)

)

= Trk

(

(

x2l

0 + 1

x0

)1+e(l′)(
1

x2l
0 + 1

)

)

= Trk

(

(x2l

0 + 1)e(l
′)

x
1+e(l′)
0

)

= Trk

(

(x0 + 1)2
le(l′)

x
2le(l′)
0

)

= Trk
(

(1 + x−1
0 )e(l

′)
)

.

We conclude that pa(x) has exactly one zero (which is x0) if and only if

Trk
(

(1 + x−1
0 )e(l

′)
)

= 1 . (13)

It means that Aa(v) has exactly two zeros in GF(2k) (i.e., Na = 2) only for such a

that a = x2l+1
0 +x0 with (13) holding. Combining this with the result of Lemma 5,

we conclude that Aa(v) has exactly two zeros in GF(2k) if and only if

Trk(R(a−1) + 1) = 1 .

In the case of one or four zeros, Trk(R(a−1) + 1) = 0.
Now note that since e(l′) = 1+2l+22l+· · ·+2(l

′
−1)l is invertible modulo 2k−1

with the multiplicative inverse equal to 2l−1 then gcd(e(l′), 2k−1) = 1 and thus,
(1 + v−1)e(l

′) is a one-to-one mapping of GF(2k)∗ onto GF(2k) \ {1}. Therefore,
if k is odd (resp. k is even) then the number of x0 ∈ GF(2k)∗ satisfying (13) is
equal to 2k−1−1 (resp. 2k−1) and obviously x0 6= 1. On the other hand, if Na = 2
then x2l+1 + x = a has a unique solution x0 and so the number of nonzero values
a ∈ GF(2k)∗ with Na = 2 for k odd (resp. k even) is |M2| = 2k−1 − 1 (resp.
2k−1). Now note that if a = 0 then pa(x) = x2l+1 + x + a has exactly two zeros
x = {0, 1}. Thus, considering the mapping x 7→ x2l+1 + x for x running through
GF(2k)\{0, 1} it is easy to see that |M2|+3|M4| = 2k−2 and, knowing |M2|, we
can find |M4|. Finally, the last remaining unknown |M1| can be evaluated from
the obvious equation |M1|+ |M2|+ |M4| = |GF(2k)∗| = 2k − 1. �

Note the paper [9] by Bluher where xpl+1+ax+b and the related polynomials
similar to the linearized part of Aa(v) over an arbitrary field of characteristic p are
studied. In particular, the possible number of zeros and corresponding values of
|Mi|, in the notations of our Theorem 1, were found (see [9, Theorems 5.6, 6.4]).
This was also done earlier for odd k in [10, Lemma 9].
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4 The Linearized Polynomial La(z)

The distribution of the three-valued crosscorrelation function to be determined in
Section 5 depends on the detailed distribution of the number of zeros in GF(2m)
of the linearized polynomial

La(z) = z2
k+l

+ r2
l

a2
l

z2
2l

+ raz , (14)

where a ∈ GF(2k), r ∈ GF(2m) and m = 2k. Some additional conditions on
the parameters will be imposed later. For the details on linearized polynomials
in general, the reader is referred to Lidl and Niederreiter [11]. In the following
lemmas, we always take La(z) defined in (14).

Lemma 6 Let l and k be integers with gcd(l, k) = 1, a ∈ GF(2k) and r ∈
GF(2m). If La(z) = 0 for some z ∈ GF(2m) then

aTrmk (rz
2l+1) ∈ {0, 1} ,

where Trmk (x) = x+ x2k is a trace mapping from GF(2m) to GF(2k).

Proof. For any z ∈ GF(2m) with La(z) = 0 we have

z2
l

La(z) = raz2
l+1 + (raz2

l+1)2
l

+ z2
l(2k+1) = 0

and z2
l(2k+1) ∈ GF(2k). Thus, Trmk (raz

2l+1) + (Trmk (raz
2l+1))2

l

= 0 meaning that
aTrmk (rz

2l+1) ∈ GF(2l) ∩GF(2k) = {0, 1}. �

Lemma 7 Let l and k be odd with gcd(l, k) = 1, a ∈ GF(2k) and r be a noncube
in GF(2m) such that r2

k+1 = 1. Then the following holds.

(i) The number of zeros of La(z) in GF(2m) is 1 or 4.

(ii) If, additionally, a 6= 0 and Trk(v0) = 0 (where v0 = R(a−1) and R(v) is
defined in (6)) then La(z) has z = 0 as its only zero in GF(2m).

Proof. First of all, let z = z2
k

for any z ∈ GF(2m) and also let U = rz2
l+1.

If z 6= 0 and La(z) = 0 then, since l is odd and r is a noncube in GF(2m) with
r2

k+1 = 1 we have that U 6= U and thus, by Lemma 6, and denoting V = aU

aTrmk (U) = V + V 2k = 1 . (15)

(i) If a = 0 then La(z) has a unique zero root so we further assume that
a 6= 0. The polynomial La(z) is a linearized polynomial and its zeros form a
vector subspace over GF(2) (and even over GF(22) since k + l is even). We will
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study the number of solutions of La(z) = 0 in GF(2m). Note that La(z) = 0 is
equivalent to

z2
l

= r2
l

a2
l

z2
2l

+ raz .

Further, we obtain

U
2l

= r−2lz2
l(2l+1)

= r−2l(r2
l

a2
l

z2
2l

+ raz)2
l+1

= r−2l(r2
l(2l+1)a2

l(2l+1)z2
2l(2l+1) + r2

2l+1a2
2l+1z2

3l+1)

+r−2l(r2
l+1

a2
l+1

z2
2l+2l + r2

l+1a2
l+1z2

l+1)

= r2
2l

a2
l(2l+1)z2

2l(2l+1) + r2
2l
−2l+1a2

2l+1z2
3l+1 + r2

l

a2
l+1

z2
2l+2l + ra2

l+1z2
l+1

= a2
l(2l+1)U22l + a2

2l+1U22l−2l+1 + a2
l+1

U2l + a2
l+1U .

From now on assume z 6= 0. Since a−2l = U2l + U
2l

we have

1 = a2
l

U2l + a2
l

U
2l

= a2
l

U2l + a2
2l+2l+1

U22l + a2
2l+2l+1U22l−2l+1 + a2

l+1+2lU2l + a2
l+1+1U

which leads to

a2
2l+2l+1

U22l + a2
2l+2l+1U22l−2l+1 + (a2

l

+ a2
l+1+2l)U2l + a2

l+1+1U + 1 = 0 .

Substituting V = aU and multiplying by b = a−2l+1
, simplifies the equation to

V 22l + V 22l−2l+1 + (1 + b)V 2l + V + b = 0

which after multiplying by V 2l gives

(V 2l + V )2
l+1 + bV 2l(V 2l + 1) = 0 . (16)

Since
(V 2l + V )2

l+1

V 2l(V 2l + 1)
= (V + 1)2

2l
−2l+1 + V 22l−2l+1 + 1

we obtain
(V + 1)2

2l
−2l+1 + V 22l−2l+1 + 1 = b .

As proved in [7, Corollary 2], the monomial function f(x) = x22l−2l+1 is almost
perfect nonlinear (APN) when gcd(l, m) = 1, which is the case here since l is
odd and gcd(l, k) = 1. This means that the number of solutions V ∈ GF(2m)
of the latter equation is at most 2 for any b in GF(2m). Since V = raz2

l+1 and
gcd(2l + 1, 2m − 1) = 3 it follows that the number of zeros in GF(2m)∗ of the
linearized polynomial La(z) is at most 6, which implies that the number of zeros
in GF(2m) is 1 or 4 since the zeros of La(z) form a vector subspace over GF(22).
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(ii) Let x = V 2l + V and assume z 6= 0. After rewriting z2
l

La(z) = z2
l(2k+1) +

x = 0 observe that this implies that x ∈ GF(2k).
Using (16) we have

b−1x2l+1 =
l̃
∑

i=1

x2il ,

where l̃l = 1(mod m). Such an l̃ exists since l is odd, gcd(l, k) = 1 and therefore,
gcd(l, m) = 1. Raising the latter identity to the power 2l and adding to itself
implies

c2
l

x22l+2l + cx2l+1 = x2(l̃+1)l

+ x2l ,

where c = b−1 = a2
l+1

. Dividing by x2l (x 6= 0 since otherwise the only zero of
La(z) is z = 0) implies

c2
l

x22l + x2l + cx+ 1 = 0 .

By Theorem 1, the latter equation has exactly two roots in GF(2k) if and only
if Trk(R(c−1)) = Trk(R(a−2l+1

)) = Trk(v0) = 0 and R(a−2l+1
) = v2

l+1

0 is one of its
roots. From Lemma 3 it also follows that all the roots of this equation have the
same trace as v0. Therefore, in the case when Trk(v0) = 0 both roots have trace
zero. However, since x = V 2l +V ∈ GF(2k) and V 6∈ GF(2k) (recall that V = aU
and U 6= U) we have

Trk(x) =
k−1
∑

i=0

x2i =
k−1
∑

i=0

x2li =
k−1
∑

i=0

(V 2l(i+1)

+ V 2li)

= V 2kl + V
(∗)
= 1 6= Trk(v0) ,

where (*) holds since V 2lk = V 2k for odd l and V 2k + V 6= 0 if V 6∈ GF(2k).
Therefore, if Trk(v0) = 0 then there is no solutions x ∈ GF(2k) having the form
x = V 2l + V . We have therefore shown that in the case Trk(v0) = 0 there are no
nonzero solutions of La(z) = 0 in GF(2m). �

5 Three-Valued Crosscorrelation

In this section, we prove our main result formulated in Corollary 1. We start by
considering the following exponential sum denoted S0(a) that to some extent is
determined by the following lemma that repeats Lemma 10 in [6]. It is assumed
everywhere that m = 2k.
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Lemma 8 ([6]) For an odd k, integer l < k and a ∈ GF(2k) let S0(a) be defined
by

S0(a) =
∑

y∈GF(2m)

(−1)Trm(ay2
l+1)+Trk(y

2k+1) .

Then
S0(a) = 2k

∑

v∈GF(2k),Aa(v)=0

(−1)Trk(a(l+1)v2
l+1+v) ,

where Aa(v) is defined in (5).

We can now determine S0(a) completely in the following corollary.

Corollary 2 Under the conditions of Lemma 8 and, additionally, assuming a 6=
0 and gcd(l, k) = 1 let Mi be defined as in (11). Then the distribution of S0(a)
for l even is as follows:

−2k+1 if a ∈ M4 ,
0 if a ∈ M2 ,
2k if a ∈ M1

and for l odd
−2k+2 if a ∈ M4 ,
2k+1 if a ∈ M2 ,

−2k if a ∈ M1 .

Proof. Let l′ = l−1 (mod k). The distribution follows directly from Lem-
mas 3 and 8 since these imply that for l even

S0(a) = 2k(−1)(l
′+1)Trk(v0)+l′(Na − 2)

and for l odd
S0(a) = 2k(−1)Trk(v0)Na ,

where Na is the number of zeros of Aa(v) in GF(2k) and v0 = R(a−1). Finally,
using Theorem 1, we get the claimed result. �

Lemma 9 Let k be odd and r be a noncube in GF(2m) such that r2
k+1 = 1. Let

also a ∈ GF(2k) and

S1(a) =
∑

y∈GF(2m)

(−1)Trm(ray2
l+1)+Trk(y

2k+1) ,

S2(a) =
∑

y∈GF(2m)

(−1)Trm(r−1ay2
l+1)+Trk(y

2k+1) .

Then
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(i) S1(a) = S2(a).

(ii) Furthermore, if, additionally, l is odd with gcd(l, k) = 1 then for i = 1, 2
holds

Si(a)
2 = 2mTa ,

where Ta is the number of zeros in GF(2m) of La(z) defined in (14).

Proof. (i) Using definitions, straightforward calculations lead to

S1(a) =
∑

y∈GF(2m)

(−1)Trm(ray2
l+1)+Trk(y

2k+1)

=
∑

y∈GF(2m)

(−1)Trm(r2
k
a2

k
y(2

l+1)2k )+Trk(y
(2k+1)2k )

=
∑

z∈GF(2m)

(−1)Trm(r−1az2
l+1)+Trk(z

2k+1)

= S2(a) .

(ii) First, it can be noticed that here we are with the hypothesis of Lemma 7
Item (i). Using substitution z = x+ y we obtain

S1(a)
2 =

∑

x,y∈GF(2m)

(−1)Trm(ra(x2l+1+y2
l+1))+Trk(x

2k+1+y2
k+1)

=
∑

y,z∈GF(2m)

(−1)Trm(ra((z+y)2
l+1+y2

l+1))+Trk((z+y)2
k+1+y2

k+1)

=
∑

y,z∈GF(2m)

(−1)Trm(ra(z2
l
y+zy2

l
+z2

l+1)+yz2
k
)+Trk(z

2k+1)

=
∑

z∈GF(2m)

(−1)Trm(raz2
l+1)+Trk(z

2k+1)
∑

y∈GF(2m)

(−1)Trm(y2
l
(z2

k+l
+r2

l
a2

l
z2

2l
+raz))

= 2m
∑

z∈GF(2m), La(z)=0

(−1)Trm(raz2
l+1)+Trk(z

2k+1) ,

where La(z) = z2
k+l

+ r2
l

a2
l

z2
2l
+ raz.

It remains to show that f(z) = Trm(raz
2l+1) + Trk(z

2k+1) = 0 for any root z
of La. If z = 0 then this fact is obvious. If z 6= 0 then, by (15) from Lemma 7,
Trmk (V ) = V +V 2k = 1, where V = raz2

l+1 implying that Trm(V ) = 1. Moreover,
multiplying La(z) = 0 by z2

l

we obtain V + V 2l + z2
l(2k+1) = 0. Thus,

f(z) = 1 + Trk(z
2k+1) = 1 + Trk(V + V 2l) .
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But

Trk(V + V 2l) =

= (V + · · ·+ V 2l + · · ·+ V 2k−1

) + (V 2l + · · ·+ V 2k−1

+ · · ·+ V 2l+k−1

)

= (V + V 2k) + (V + V 2k)2 + · · ·+ (V + V 2k)2
l−1

= l (mod 2) = 1

and thus, f(z) = 0.
In particular, since S1(a) =

∑

y∈GF(2m)(−1)f(y) 6= 0 the Boolean function f(z)

can not be balanced. Quadratic functions including those similar to f(z) are
studied in [12]. �

We are now in position to completely determine the distribution of S(a) de-
fined in (4) for a ∈ GF(2k)∗. Since this is equivalent to the distribution of
Cd(τ) + 1 for τ = 0, 1, . . . , 2k − 2, our main result in Corollary 1 is a consequence
of the theorem below. Note that for any d with the prescribed property we have
gcd(d, 2k − 1) = 1.

Theorem 2 Let m = 2k and d(2l + 1) ≡ 2i (mod 2k − 1) for some odd k and
integer l with 0 < l < k, gcd(l, k) = 1 and i ≥ 0. Then the exponential sum S(a)
defined in (4) for a ∈ GF(2k)∗ (and Cd(τ) + 1 for τ = 0, 1, . . . , 2k − 2) have the
following distribution

−2k+1 occurs 2k−1
−1

3
times ,

0 occurs 2k−1 − 1 times ,

2k occurs 2k+1
3

times .

Proof: To determine the distribution of the crosscorrelation function Cd(τ)+1
we need to compute the distribution of S(a) as in (4) for a ∈ GF(2k)∗. We divide
the proof into two cases depending on the parity of l.

Case 1: (l even)
In this case, gcd(2l + 1, 2m − 1) = 1. Therefore, substituting x = y2

l+1 in the
expression for S(a) and since d(2l +1)(2k +1) ≡ 2i(2k +1) (mod 2m− 1), we are
lead to

S(a) =
∑

y∈GF(2m)

(−1)Trm(ay2
l+1)+Trk(y

2k+1) = S0(a) ,

where S0(a) is defined in Lemma 8. The distribution of S(a) for even values of l
follows, therefore, from the distribution of S0(a) given in Corollary 2.

Case 2: (l odd)
To calculate S(a), we first observe that gcd(2l + 1, 2m − 1) = 3. Therefore, if

we let x = y2
l+1, then x runs through all cubes in GF(2m) three times when y

runs through GF(2m). Thereafter, let x = ry2
l+1, where r is a noncube in GF(2m)

and finally x = r−1y2
l+1. When y runs through GF(2m) then x will run through
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GF(2m) three times. We select r as a noncube in GF(2m) such that r2
k+1 = 1.

Further, since d(2l + 1)(2k + 1) ≡ 2i(2k + 1) (mod 2m − 1), we obtain

3S(a) =
∑

y∈GF(2m)

(−1)Trm(ay2
l+1)+Trk(y

2k+1)

+
∑

y∈GF(2m)

(−1)Trm(ray2
l+1)+Trk(y

2k+1)

+
∑

y∈GF(2m)

(−1)Trm(r−1ay2
l+1)+Trk(y

2k+1)

=

2
∑

i=0

Si(a) ,

where Si(a) are defined as in Lemmas 8 and 9.
By Lemma 9 we also have that S1(a) = S2(a) and

S1(a)
2 = 2mTa ,

where Ta is the number of zeros in GF(2m) of La(z) = z2
k+l

+ r2
l

a2
l

z2
2l
+ raz.

From Lemma 7 Item (i) it follows that Ta = 1 or Ta = 4 and, therefore, by
Lemma 9, we have S1(a) = S2(a) = ±2k or S1(a) = S2(a) = ±2k+1.

Case a: In the case when Trk(v0) = 0, where v0 = R(a−1) and R(v) is
defined in (6), which by Theorem 1, occurs for 2k−1−1 distinct values of a ∈ M2,
it follows from Lemma 7 Item (ii) that Ta = 1. Therefore, by Lemma 9 we
have S2

1(a) = 2m, i.e., S1(a) = S2(a) = ±2k. Since a ∈ M2 and by Corollary 2,
S0(a) = 2k+1. Furthermore, since S(a) = (S0(a) + S1(a) + S2(a))/3 is an integer,
it follows that only S1(a) = S2(a) = −2k is possible and, therefore, S(a) = 0.

Case b: In the case when Trk(v0) = 1 and Aa(v) = a2
l

v2
2l
+ v2

l

+ av + 1 has
four zeros in GF(2k), which by Theorem 1, occurs for (2k−1−1)/3 distinct values
of a ∈ M4, by Corollary 2 we have S0(a) = −2k+2. Since S1(a) = S2(a) = ±2k

or S1(a) = S2(a) = ±2k+1 and S(a) is an integer, only two of the four sign
combinations are possible, leading in this case to S(a) = 0 or S(a) = −2k+1.

Case c: In the case when Trk(v0) = 1 and Aa(v) has one zero in GF(2k),
which by Theorem 1, occurs for (2k +1)/3 distinct values of a ∈ M1, Corollary 2
gives S0(a) = −2k. Since S1(a) = S2(a) = ±2k or S1(a) = S2(a) = ±2k+1 and
S(a) is an integer, only two of the four sign combinations are possible, leading to
S(a) = −2k or S(a) = 2k.

The three cases above give in total the possible values 0,±2k,−2k+1 for S(a).
We next use the expressions for the sum and the square sum of Cd(τ) + 1 to
obtain a set of equations to determine the complete correlation distribution.

Suppose the crosscorrelation function Cd(τ) + 1 takes on the value zero r
times, the value 2k is taken on s times, the value −2k occurs t times and the
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Table 1: Exponents d giving three-valued crosscorrelation

m Proved in [4] Proved in [6] Newly found

6 3 3

10 11 7

14 43 15 27

18 171 31 103

22 683 63 231, 365, 411

26 2731 127 911, 1243, 1639

value −2k+1 occurs v times. From Lemma 1 it follows that

r + s + t + v = 2k − 1
2ks − 2kt − 2k+1v = 2k

22ks + 22kt + 22k+2v = 2m(2k − 1) .

This implies
r + s + t + v = 2k − 1

s − t − 2v = 1
s + t + 4v = 2k − 1 .

Since S(a) = ±2k is only possible in Case 3, when Trk(v0) = 1 and Aa(v) has
one zero in GF(2k), which occurs (2k + 1)/3 times, we get s + t = (2k + 1)/3.
From the last equation this leads to v = (2k−1− 1)/3 and therefore from the first
equation r = 2k−1 − 1. Finally, using the second equation, we get t = 0 and
s = (2k + 1)/3. �

In the following, we conjecture that all the cases with the three-valued cross-
correlation fall under the conditions of our main theorem. The conjecture has
been verified numerically for allm ≤ 26 and these results are presented in Table 1.

Conjecture 1 Only those cases described in Corollary 1 lead to the three-valued
crosscorrelation between two m-sequences of different lengths 2m − 1 and 2k − 1,
where m = 2k.

6 Conclusion

We have identified new pairs of m-sequences having different lengths 2m − 1 and
2k − 1, where m = 2k, with three-valued crosscorrelation and we have com-
pletely determined the crosscorrelation distribution. These pairs differ from the
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sequences in the Kasami family by the property that instead of the decimation
d = 1 we take such a d that d(2l + 1) ≡ 2i (mod 2k − 1) for some integer l and
i ≥ 0, where k is odd and gcd(l, k) = 1. We conjecture that our result covers all
the three-valued cases for the crosscorrelation of m-sequences with the described
parameters.
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