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Abstract— Given the location of a relative maximum of the
log-likelihood function, how to assess whether it is the global
maximum? This paper investigates a statistical tool, which
answers this question by posing it as a hypothesis testing problem.
A general framework for constructing tests for global maximum
is given. The characteristics of the tests are investigated for
two cases: correctly specified model and model mismatch. A
finite sample approximation to the power is given, which gives a
tool for performance prediction and a measure for comparison
between tests. The sensitivity of the tests to model mismatch is
analyzed in terms of the Renyi divergence and the Kullback-
Leibler distance between the true underlying distribution and
the assumed parametric class and tests that are insensitive to
small deviations from the model are derived. The tests are
illustrated for three applications: passive localization or direction
finding using an array of sensors, estimating the parameters
of a Gaussian mixture model, and estimation of superimposed
exponentials in noise - problems that are known to suffer from
local maxima.

Index Terms— Parameter estimation, maximum likelihood,
global optimization, local maxima, array processing, Gaussian
mixtures, superimposed exponentials in noise.

I. I NTRODUCTION

T HE maximum likelihood (ML) estimation method is one
of the standard tools for parameter estimation. Among

its appealing properties are consistency and asymptotic effi-
ciency [1]–[3]. However, a major drawback of this method
when applied to non-linear estimation problems is the fact that
the associated likelihood equations required for the derivation
of the estimator rarely have a closed form analytic solu-
tion. This shortcoming poses a global optimization problem.
Solving this problem by applying numerical methods is usu-
ally computationally prohibitive. To date, there have been
few global optimization methods applied to ML estimation
(e.g. [4]–[8]) because of the computational complexity in-
volved. More commonly, initiate and converge methods are
applied. These methods are based on an initial guess (often
found by a simpler method) which is followed by a local,
often iterative, optimization procedure (e.g. the expectation
maximization algorithm [9] and its variations [10], Fisher
scoring [10], the Gauss-Newton method [11], and majorizing
or minorizing algorithms [12], [13]). As a consequence, the
performance of these methods highly depends on the starting
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point. In particular, if the log-likelihood function is not strictly
convex and there is no available method that is guaranteed
to provide an initial guess within the attraction region of the
global maximum, then there is a risk that a local search will
stagnate at a local maximum. This phenomenon leads to large-
scale estimation errors.

The maximum likelihood framework would benefit from
an answer to the following question: Given a location of
a relative maximum of the log-likelihood function, how to
assess whether this is the global maximum? One approach to
this question is the Kronecker-Picard integral framework [6].
However, the computation of this multi-dimensional integral
is difficult, indeed equivalent to the complexity involved in
finding the global maximum, rendering this approach imprac-
tical. Instead, in this paper we take a statistical approach to
answering this question.

The first statistical solutions for discriminating between
local and global maxima were based on sampling the domain
of the log-likelihood function. Given a sequence of random
starting points and the corresponding set of relative maxima
found by a local search method, Finch et. al. [14] proposed
a statistical method to assess the probability that the global
maximum has not yet been found based on an asymptotic (in
the number of starting points) result on the total probability of
unobserved outcomes due to Bickel and Yahav [15]. Veall [16]
used an order statistic result due to de Haan [17] that character-
izes the distribution of the ordered values of a smooth function,
sampled at random points. Given a relative maximum, the log-
likelihood function is evaluated at a large number of randomly
selected points. If a point with a value larger than the value
of the candidate maximum is found, then clearly it is not the
global maximum. If no such point is found, de Haan’s result
is used to assess the probability that the relative maximum is
the global one. Since these methods are based on sampling
the domain of the log-likelihood function, they suffers from
the curse of dimensionality and do not generalize well to
high dimensional problems. Yet high dimensional problems
are exactly those in which global optimization methods are
computationally demanding.

Dorsey and Mayer [18] reported poor performance of
Veall’s method and, as an alternative, proposed to use the
available methods for testing parametric models to answer
the question at hand. They observed that a local maximum
of the log-likelihood function is in fact a global maximum
of a particular misspecified model - a model in which the
parameters are restricted to a region that does not contain the
true parameter. For scenarios in which the model is known to
be correctly specified, these authors tested whether a relative
maximum is the global one by applying a test that detects
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model mismatch. If the result of the test leads to the conclusion
that a model mismatch is likely, the hypothesis that the relative
maximum is the global one is rejected. Otherwise, the relative
maximum is declared the final estimate. Independently, Gan
and Jiang [19] made the same observation and proposed
White’s information matrix test [20] as a test for global
maximum. More recently, Biernacki [21], [22] proposed a new
test, which is closely related to Cox’s tests for separate families
of hypotheses [23], [24], and showed through simulations that
his new test outperforms White’s information matrix test.

A drawback of the methods of [18], [19], and [22] is that
they are sensitive to model mismatch. In particular, when the
model is not specified correctly, the tests lose their power
to distinguish between local and global maxima. In some
engineering applications the statistical model is derived from
the underlying physical phenomenon and deviations from this
model are unlikely. In these cases, the methods can be directly
applied. However, when there are uncertainties about the
model, the methods [18], [19], and [22] need to be modified so
as to not classify a global maximum of a misspecified model
as a local maximum.

In this paper, the tests are derived under possible model
mismatch. The sensitivity of the tests to model mismatch is
analyzed in terms of the Renyi divergence and the Kullback-
Leibler distance between the true underlying distribution and
the assumed parametric class. The analysis leads to a sim-
ple threshold correction method that accounts for possible
deviations from the model as long as these deviations are
bounded in terms of the mentioned distances. When deviations
from the model are defined in terms of an embedding in
a larger parametric class, insensitivity to a Pitman drift is
established by constructing tests based on a vector valued
validation function that is orthogonal to the elements of the
gradient of the log-likelihood function of the larger class. This
construction leads to tests that are locally robust to deviations
from the assumed model.

An exhaustive catalogue of all the available methods for
model specification testing that might be considered as can-
didates for tests for global maximum is beyond the scope of
this paper. Rather, this paper focuses on the class of M-tests,
which includes the tests of [19] and [22] as special cases, and
investigates their performance as tests for global maximum.

The problem of testing a relative maximum is related to
the problem of eliminating spurious maxima in scenarios in
which the ML estimator (MLE) is not necessarily consistent or
may not even exist (see [25] and references therein). Although
some of the results apply to that problem as well, we do not
pursue this connection here.

In Sec. II, we review the properties of the MLE under a pos-
sible model mismatch and pose the problem of discriminating
between local and global maxima as a statistical hypothesis
testing problem. The general framework for constructing M-
tests [26]–[28] is presented, and it is shown that two of the
available tests in the literature are special cases of M-tests.
In Sec. III, the consistency of the tests is established and
an approximation of the finite sample power of the tests
is derived, which is useful for predicting performance and
provides a measure for comparing between tests. The problem

of model mismatch is treated in Sec. IV. The effect of model
mismatch is characterized in terms of the Renyi divergence and
the Kullback-Leibler distance and two methods for making the
tests robust to small deviations from the underlying model are
given. Finally, to show the applicability of this framework,
in Sec. V a Monte-Carlo evaluation of the performance of
the tests is presented in terms of level and power under both
correct and mismatched model.

II. PRELIMINARIES

Let yt, t = 1, . . . , n be a collection ofn independent
observations drawn from an unknown distributionG with
density g(y), y ∈ RP . The information we want to extract
from the data is encoded in aK × 1 parameter vectorθ,
through which we define a parametric family of densities
{f(y, θ) : θ ∈ Θ} that are twice continuously differentiable in
θ for all y. For scalar functions denote by∇θ(·) and∇2

θ(·) the
column vector of partial derivatives and the Hessian matrix
with respect toθ, respectively. For vector valued functions
let ∇T

θ (·) be the matrix whose(k, l) element is the partial
derivative of thek’th element of the function with respect
to the l’th element of θ. Assume that the elements of the
matrices∇θ log f(y, θ)∇T

θ log f(y, θ) and∇2
θ log f(y, θ) are

dominated by functions integrable with respect toG, for all
θ ∈ Θ, a compact subspace ofRK .

Denote by

Ln(Yn; θ) =
1
n

n∑
t=1

log f(yt; θ)

the normalized log-likelihood function of the measurements,
whereYn = [y1 y2 . . . yn]. The MLE1 is defined as

θ̂n = arg max
θ∈Θ

Ln(Yn; θ). (1)

Denote byE {·} the expectation with respect to the true
underlying distributionG, and by θ∗ the minimizer of the
Kullback-Leibler information, i.e.,

θ∗ = arg min
θ∈Θ

E
{

log
g(y)

f(y; θ)

}
= arg max

θ∈Θ
a(θ)

wherea(θ) is the ambiguity function, defined as

a(θ) = E {log f(y; θ)} (2)

and assume thatθ∗ is a well defined unique interior point of
Θ. Define the matrices

A(θ) = E
{∇2

θ log f(y; θ)
}

(3)

B(θ) = E
{∇θ log f(y; θ)∇T

θ log f(y; θ)
}

C(θ) = A−1(θ)B(θ)A−1(θ)

and assume thatA(θ∗) and B(θ∗) are non-singular. Under
these assumptions, Theorems2.1, 2.2, and3.2 of White [20]
assert that

θ̂n
a.s.→ θ∗ (4)

1Sometimes called quasi-MLE when the model is incorrect.
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as n → ∞, and θ̂n is asymptotically Gaussian in the sense
that √

n
(
θ̂n − θ∗

)
D→ N (0, C(θ∗)) . (5)

When g(y) = f(y, θ0) almost everywhere for some unique
θ0 ∈ Θ, we say that the model is correctly specified and
this result becomes the standard consistency, and asymptotic
Normality result for the MLE. More specifically, if the ele-
ments of the matrix∇T

θ [∇θf(y, θ) · f(y, θ)] are dominated
by functions integrable with respect toν, for all θ ∈ Θ, where
ν is the dominating measure such thatg(y) = dG(y)/dν, and
the support off(y, θ) does not depend onθ, then C(θ0) =
−A−1(θ0) = B−1(θ0) is the inverse of the Fisher information
matrix (FIM) [3, p. 80].

Denote by θ̃n one of the relative maxima of the log-
likelihood function. Then the problem addressed in this paper
can be formulated as a hypothesis testing problem. Givenθ̃n,
decide between

H0 : θ̃n = θ̂n (6)

H1 : θ̃n 6= θ̂n.

A statistical test which gives a solution to this problem is
called atest for global maximum.

A. M-Tests for Global Maximum

M-tests were proposed in an econometric context by
Newey [26], Tauchen [27], and White [28] as a general way
of testing the validity of parametric models (see [29, Ch. 9]
as well). The tests are based on a vector valued test function

e(y, θ) : RP ×Θ → RQ (7)

which is chosen to satisfy
∫

e(y, θ)f(y, θ)dy = 0, ∀θ ∈ Θ. (8)

Hence, given the MLÊθn, large values of1/n
∑n

t=1 e(yt, θ̂n)
indicate that a model mismatch is likely. Small values of
1/n

∑n
t=1 e(yt, θ̂n) indicate that the model is correctly spec-

ified or alternatively that the type of model mismatch is such
that g(y) /∈ {f(y, θ) : θ ∈ Θ} but

∫
e(y, θ∗)g(y)dy = 0. (9)

The same framework can be used to construct tests for (6).
First suppose that the model is correctly specified and that
e(y, θ) is chosen to satisfy (8). Then, given a location of
a relative maximum of the log-likelihood functioñθn, large
values of1/n

∑n
t=1 e(yt, θ̃n) indicate that it is not likely that

θ̃n is the MLE. This directly extends to the case of model
mismatch, if it is known that (9) holds.

The tests are constructed as follows. Assume that the
elements ofe(y, θ) are twice differentiable with respect to
θ for every y, and that the elements of the vector∇θe(y, θ)
and the matricese(y, θ)∇T

θ log f(y, θ) ande(y, θ)eT (y, θ) are

dominated by functions integrable with respect toG for all
θ ∈ Θ. Define the vectors

hn(θ) =
1
n

n∑
t=1

e(yt, θ) (10)

h(θ) = E {e(y, θ)}
and theQ×K matrices

Hn(θ) =
1
n

n∑
t=1

∇T
θ e(yt, θ) (11)

H(θ) = E
{∇T

θ e(y, θ)
}

.

Define theQ×Q matrix V (θ) by

E
{[

e(y, θ)− h(θ)−H(θ)A−1(θ)∇θ log f(y; θ)
]× (12)

[
e(y, θ)− h(θ)−H(θ)A−1(θ)∇θ log f(y; θ)

]T
}

and its empirical estimate by

Vn(θ) =
1
n

n∑
t=1

(13)

[
e(yt, θ)− hn(θ)−Hn(θ)A−1

n (θ)∇θ log f(yt; θ)
]×

[
e(yt, θ)− hn(θ)−Hn(θ)A−1

n (θ)∇θ log f(yt; θ)
]T

where

An(θ) =
1
n

n∑
t=1

∇2
θ log f(yt; θ) (14)

and assume thate(y, θ) is such thatV (θ∗) in (12) is nonsin-
gular. Under the assumptions made above,

√
n

[
hn(θ̂n)− h(θ∗)

]
D→ N (0, V (θ∗)) (15)

Vn(θ̂n) a.s.→ V (θ∗) (16)

element by element,Vn(θ̂n) is nonsingular for sufficiently
largen, and as a result,

n
[
hn(θ̂n)− h(θ∗)

]T

V −1
n (θ̂n)

[
hn(θ̂n)− h(θ∗)

]
(17)

is asymptotically Chi-Squared distributed withQ degrees of
freedom [26]–[28]. An elementary proof of this result is
included in the Appendix for completeness.

Based on this result, tests for global maximum can be
constructed as follows. Choose a functione(y, θ) having mean
zero at the pointθ∗, that is

h(θ∗) = E {e(y, θ∗)} = 0. (18)

The function e(y, θ) will be called the global maximum
validation function. UnderH0 and when (18) is satisfied, the
statistic

Sn = nhT
n (θ̃n)V −1

n (θ̃n)hn(θ̃n) (19)

with V −1
n (θ̃n) computed by (13) is asymptotically Chi-

Squared distributed withQ degrees of freedom, denoted by
χ2

Q. Denote byFχ2
Q
(·) the χ2

Q cumulative distribution func-
tion. Therefore, a false alarm levelα test of the hypotheses (6)
is made by comparingSn to F−1

χ2
Q

(1−α), which is the critical

value of theχ2
Q distribution for the desired false alarm level. If
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Sn exceeds the critical value,H0 is rejected and one concludes
that the iterative local search should be re-initiated in the hope
of convergence to a different maximum. Otherwise, the null
hypothesis cannot be rejected andθ̃n is declared the final
estimate.

When the model is correctly specified,θ∗ = θ0 and Eq. (18)
becomes

h(θ0) = E
{
e(y, θ0)

}
=

∫
e(y, θ0)f(y, θ0)dy = 0. (20)

A global maximum validation functione(y, θ) satisfying (20)
can be constructed from any random function, e.g. call it
e(y, θ), by replacing it with the centered statistic:

e(y, θ) = e(y, θ)−
∫

e(y, θ)f(y; θ)dy. (21)

This construction ensures that the mean of the validation
function at the true parameter is zero. Under this construction,
hn(θ̃n) (10) becomes

hn(θ̃n) =
1
n

n∑
t=1

e(yt, θ̃n)−
∫

e(y, θ̃n)f(y; θ̃n)dy (22)

and the propertyh(θ0) = E
{
e(y, θ0)

}
= 0 holds. This

manipulation requires an analytical solution of the integral
in (22) or its approximation via numerical integration.

Two tests for global maximum that are available in the
literature fall into this framework. Takinge(y, θ) to be the
vector valued function defined as

[e(y, θ)]q =
∂2 log f(y; θ)

∂θiq∂θjq

+
∂ log f(y; θ)

∂θiq

∂ log f(y; θ)
∂θjq

(23)

where[·]q denotes the vector’sq’th element, and the indicesiq
andjq, q = 1, . . . , Q, are chosen so thatV (θ∗) is nonsingular,
we obtain White’s information matrix test [20] which was used
by Gan and Jiang as their test for global maximum [19]. This
test is motivated by the fact that when the model is correctly
specified,An(θ̂n) defined in (14), andBn(θ̂n), defined by

Bn(θ) =
1
n

n∑
t=1

∇θ log f(yt; θ)∇T
θ log f(yt; θ) (24)

converge a.s. asn → ∞ to the -FIM and FIM, respectively;
an idea that was originally used by White in his test for
model mismatch [20]. Hence, when the model is correctly
specified, (18) is satisfied since the expected value of the sum
at θ0 vanishes. Gan and Jiang noted that White’s test suffers
from slow convergence rates to unit power, i.e., it requires a
large number of samples to detect local maxima with high
probability. A test with better convergence rates was recently
proposed by Biernacki [22]. The cost of this improvement is
increased complexity due to the need to evaluate an integral of
the type (22). The validation functione(y, θ) associated with
Biernacki’s test is the scalar function

e(y, θ) = log f(y; θ)−
∫

log f(y; θ)f(y; θ)dy (25)

which is a special case of (21). Hence,

hn(θ̃n) =
1
n

n∑
t=1

log f(yt; θ̃n)−
∫

log f(y; θ̃n)f(y; θ̃n)dy.

(26)

This test is closely related to Cox’s tests of separate families
of hypotheses [23], [24]. The choice (25) ofe(y, θ) leads
to a test that compares the log-likelihood evaluated atθ̃n to
its expected value, which is calculated as ifθ̃n is the true
parameter. The test requires the evaluation of an integral (26)
of dimensionP - the dimension ofy. This might be prohibitive
in real time applications, although in Sec. V-A below, a closed
form expression for the case of Gaussian distributedyt is
given. In [21], [22] the variance estimator required for the
construction ofSn (19) is consistent forE

{
e(y, θ0)eT (y, θ0)

}
rather than forV (θ0) (12). From (28) below, it can be seen that
under the null hypothesisH0 and when the model is correctly
specified,E

{
e(y, θ0)eT (y, θ0)

}
is an upper bound on the

asymptotic variance of
√

nhn(θ̃n) (26). The bound is tight
when eitherB(θ0) is large, e.g., at high signal to noise ratio,
or whenH(θ0) is small, i.e., the expectation of the gradient of
e(y, θ) is small, but in general the variance estimator of [21],
[22] leads to a test with a false alarm level smaller than the
specified value.

B. Moments Matching Tests

Moments matching tests were previously proposed as tests
for model mismatch (see e.g. [27]) but were not applied to the
problem of discrimination of local maxima. The tests are based
on the property that the moments of the distribution induced
by the estimated parameter should be in good agreement
with the empirical moments of the data. Therefore, these
tests are especially suited for cases in which the underlying
physical model specifies a simple parametrization of one of
the moments of the data. For example, assume that the mean
of y is modelled byµ(θ), i.e. µ(θ) =

∫
yf(y; θ)dy, where

µ(·) is a pre-specified non-linear function, then to construct a
test, which is based on the first moment,e(y, θ) is taken to be

e(y, θ) = y − µ(θ).

This choice ofe(y, θ) leads to the empirical estimate

hn(θ̃n) =
1
n

n∑
t=1

yt − µ(θ̃n).

It is clear that under a correctly specified model, equation (18)
is satisfied. If the model is not correctly specified but the
specification of the mean is correct, the condition

h(θ∗) = E {y} − µ(θ∗) = 0 (27)

will still hold if the parametric class{f(y; θ) : θ ∈ Θ} belongs
to the linear exponential family [29].

If the mean of the data does not depend onθ or is weakly
dependent, one can improve the test by including higher order
moments. For example, one can specifye(y, θ) as one or
more elements of the difference between sample and ensemble
covariance matrices:

[e(y, θ)]q = [y]iq [y]jq − [R(θ)]iq,jq
, q = 1, . . . , Q

where for matrices[·]q,k denotes the(q, k) element, and
[R(θ)]iq,jq

=
∫

[y]iq [y]jqf(y; θ)dy is pre-specified from the
underlying model.
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C. Covariance Matrix Estimation

It is possible to exploit properties of the null hypothesis
H0 (6) in order simplify and improve the estimator (13) of the
covariance matrix of

√
nhn(θ̃n) (see e.g. [19], [20], [26], [27],

[29]). Under H0
√

nhn(θ̃n) equals
√

nhn(θ̂n), and since by
constructionh(θ∗) = 0, it is possible to drop the termhn(θ̃n),
which appears in (13) after substitutingθ̃n. Furthermore, when
the model is correctly specified, underH0, the asymptotic
covariance matrix of

√
nhn(θ̃n) simplifies to

E
{
e(y, θ0)eT (y, θ0)

}−H(θ0)B−1(θ0)HT (θ0) (28)

where B(θ) and H(θ) are given in (3) and (11), respec-
tively, and since a correct model specification is assumed,
expectations are taken with respect to the densityf(y, θ0).
Using this property, the following covariance estimators can
be considered. The first is based on the data and the form (28):

V̂n(θ̃n) =
1
n

n∑
t=1

e(yt, θ̃n)eT (yt, θ̃n) (29)

−Hn(θ̃n)B−1
n (θ̃n)HT

n (θ̃n)

whereBn(θ) andHn(θ) are defined in (24) and (11), respec-
tively. In the correct model case, underH0 the estimator (29)
converges a.s. to the covariance matrix (28) [30, Lemma 3.1],
and hence it is positive definite a.s. for sufficiently largen.
The second estimator is given by

V n(θ̃n) =
∫

e(y, θ̃n)eT (y, θ̃n)f(y, θ̃n)dy − (30)

H(θ̃n)B
−1

(θ̃n)H
T
(θ̃n)

where

B(θ) =
∫
∇θ log f(y; θ)∇T

θ log f(y; θ)f(y; θ)dy

and

H(θ) =
∫
∇T

θ e(y, θ)f(y; θ)dy.

It should be noted that underH1 or under model mismatch,
these estimates are not necessarily consistent and the estima-
tor (29) is not necessarily positive definite.

A number of authors investigated ways of estimating the
covariance matrix in scenarios in which unexpected dependen-
cies between the measurements may occur (see e.g. [29], [31]
and references therein). Methods for eliminating the require-
ment for covariance matrix estimation altogether were recently
proposed in [32] for the problem of model testing in non-linear
regression.

III. POWER ANALYSIS

In order to derive the power function, the asymptotic dis-
tribution of θ̃n underH1 needs to be determined. Therefore,
assumptions on the structure of the ambiguity function (2) at
different local maxima are required. Assume that the system
of equations∇a(θ) = 0, has a finite number of solutions in
Θ and each one of these solutions is an interior point ofΘ. In
addition, at each of these points, the matrix∇2a(θ) is either
negative definite or positive definite. The ambiguity function

a(θ) has its global maximum atθ∗; denote byθm, m =
1, . . . ,M , the otherM local maxima ofa(θ).

Theorem 1:For sufficiently largen, Ln(Yn; θ) hasM + 1
local maxima for almost every sequence{yt}t≥1. Furthermore,
the location of these relative maxima are strongly consistent
estimates forθ∗ andθm, m = 1, . . . ,M .

Proof: The outline of the proof goes as follows. First
we prove that, for sufficiently largen, the norm of the first
derivative vector ofLn(Yn; θ) is strictly positive outside of
arbitrary small neighborhoods of the local maxima and local
minima of a(θ). Then, we prove that when restricted to
these neighborhoods,Ln(Yn; θ) is either strictly convex or
strictly concave and hence has a single minimum or a single
maximum, respectively.

Under the assumptions made, [33, Thm. 2] gives the fol-
lowing uniform strong law of large numbers:

Ln(Yn; θ) → E {log f(y; θ)} (31)

∇θLn(Yn; θ) → E {∇θ log f(y; θ)}
∇2

θLn(Yn; θ) → E
{∇2

θ log f(y; θ)
}

asn →∞ uniformly in Θ for almost every sequence{yt}t≥1.
Denote the relative minimum points for the ambiguity

function byφj ∈ Θ, j = 1, . . . , J , J ≥ 0. By the assumption,
∇θa(θ) = 0 at the pointsθ∗, θm,m = 1, . . . , M and
φj , j = 1, . . . , J and only at these points. In addition, the
matrix ∇2a(θ) is negative definite at the pointsθ∗, θm, m =
1, . . . ,M and positive definite at the pointsφj , j = 1, . . . , J .
Denote the eigenvalues of the matrix∇2a(θ) by λk(θ), k =
1, . . . ,K. Therefore,

max
k
{λk(θ∗)} < 0

max
k
{λk(θm)} < 0, ∀m = 1, . . . , M

and
min

k
{λk(φj)} > 0, ∀j = 1, . . . , J.

The eigenvalues are continuous functions of the matrix el-
ement and the operationsmax and min are also continu-
ous in their arguments. Therefore, there are disjoint open
neighborhoodsN ∗, Nm, and Mj around θ∗, θm and φj ,
respectively,m = 1, . . . , M , j = 1, . . . J , that satisfy the
following conditions:

sup
θ∈N∗

max
k
{λk(θ)} ≤ δ < 0 (32)

sup
θ∈Nm

max
k
{λk(θ)} ≤ δ < 0, ∀m = 1, . . . ,M

inf
θ∈Mj

min
k
{λk(θ)} ≥ δ > 0, ∀j = 1, . . . , J.

Denote

Θ̃ = Θ \

N ∗⋃ (

M⋃
m=1

Nm

) ⋃



J⋃

j=1

Mj





 .

Since Θ̃ is also compact, and|∂a(θ)/∂θk| is bounded and
continuous for allk, we have

inf
θ∈Θ̃

K∑

k=1

|∂a(θ)/∂θk| = min
θ∈Θ̃

K∑

k=1

|∂a(θ)/∂θk| = δ.
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Since by the assumption all the stationary points ofa(θ) are
outside ofΘ̃, δ is strictly positive.

Next, we prove that there existN1 such that∀n > N1,

K∑

k=1

|∂Ln(Yn; θ)/∂θk| > δ/2, ∀θ ∈ Θ̃, w.p. 1

i.e., for sufficiently largen, the functionLn(Yn; θ) has no
stationary points iñΘ for almost every sequence{yt}t≥1. To
this end, chooseN1 such that for alln > N1,

|∂a(θ)/∂θk − ∂Ln(Yn; θ)/∂θk| < δ

2K
,

∀k = 1, . . . , K, ∀θ ∈ Θ̃, w.p. 1

which can always be found by (31). Therefore,

K∑

k=1

|∂a(θ)/∂θk − ∂Ln(Yn; θ)/∂θk| < δ

2
,

∀θ ∈ Θ̃, w.p. 1

and hence,∀n > N1,

K∑

k=1

|∂Ln(Yn; θ)/∂θk| > δ

2
, ∀θ ∈ Θ̃, w.p. 1

and the claim is proved.
Next, we prove that there existN2 such that∀n > N2,

Ln(Yn; θ) is concave overN ∗
, Nm

,m = 1, . . . , M and
convex overMj

, j = 1, . . . , J , whereN denotes the closure
of the setN . Denote the eigenvalues of∇2Ln(Yn; θ) by
λn

k (θ), k = 1, . . . , L. We consider one specific neighborhood
N ∗

, and prove that

max
θ∈N∗ max

k
{λn

k (θ)} <
δ

2
< 0, ∀n > N2, w.p. 1 (33)

whereδ was defined in (32), i.e.,Ln(Yn; θ) is concave over
N ∗

.
By the construction, the maximal eigenvalue is uniformly

continuous overN ∗
. Therefore,

max
k
{λn

k (θ)} → max
k
{λk(θ)}, ∀θ ∈ N ∗

, w.p. 1

and (33) follows. The same argument holds for the proof of
concavity of Ln(Yn; θ) over the rest of the neighborhoods
Nm

, m = 1, 2, . . . , M and the convexity ofLn(Yn; θ) over
Mj

, j = 1, . . . , J .
For each setNm

, by (31) asn increasesLn(Yn; θ) will
eventually be greater atθm than at any point on the boundary
of Nm

, w.p. 1. Therefore,Ln(Yn; θ) will attain a single local
maximum at an interior point ofNm, w.p. 1 (not necessarily
at θm). A similar argument holds forN ∗

and for a minimum
point inMj and the first part of the theorem is proved.

Finally, since the setsN ∗, Nm, m = 1, . . . , M can be
taken arbitrarily small, the maximum points ofLn(Yn; θ) are
strongly consistent estimates ofθ∗, θm,m = 1, . . . , M .

Theorem 1 ensures that asn increases the relative maxima
of the log-likelihood function occur close to the relative max-
ima of the ambiguity function and only at these locations. This
implies that the relative maxima of the log-likelihood function

are asymptotically Gaussian distributed. More specifically, let
Θm be a closed neighborhood ofθm, in which θm is the
highest relative maximum ofa(θ). Define them’th local-MLE
by

θ̂m
n = arg max

θ∈Θm
Ln(Yn; θ), m = 1, . . . ,M. (34)

If the optimization method used to solve (1) is certain to find
a relative maximum ofLn(Yn; θ), then Theorem 1 asserts that
for sufficiently largen, θ̃n will be equal to one of the local-
MLEs θ̂m

n , w.p. 1. The local-MLE θ̂m
n is the MLE associated

with the model{f(y, θ) : θ ∈ Θm} and therefore falls into
the mismatch model framework of White [20]. Hence we have
the following.

Corollary 1: For all m:
1) θ̂m

n
a.s.→ θm asn →∞, and

2)
√

n
(
θ̂m

n − θm
)

D→ N (0, C(θm)).
In addition, by (15)-(17) we obtain the following:

Corollary 2: For all m:
√

n
[
hn(θ̂m

n )− h(θm)
]

D→ N (0, V (θm))

Vn(θ̂m
n ) a.s.→ V (θm) element by element. In addition, assuming

that V (θm) is nonsingular,

n
[
hn(θ̂m

n )− h(θm)
]T

V −1
n (θ̂m

n )
[
hn(θ̂m

n )− h(θm)
]

(35)

is asymptotically distributed asχ2
Q.

From Corollary 2 it is clear that for the test to have power
against̂θm

n , h(θm) must not equal0. Otherwise the statistic has
the same asymptoticχ2

Q distribution under both hypothesesH0

andH1 (6). On the other hand, ifh(θm) 6= 0 the consistency
of the test can be established.

Corollary 3: Assumeθ̃n = θ̂m
n . If h(θm) 6= 0 then

Pr{Sn > F−1
χ2

Q
(1− α)} → 1

for every choice of levelα ∈ (0, 1).
Proof: Under the assumption,hn(θ̃n) a.s.→ h(θm) by [?,

Lemma 3.1]. Therefore, sinceVn(θ̂m
n ) a.s.→ V (θm) element by

element and we assumed thatV (θm) is nonsingular,

Pr{Sn > ε} → 1

for all ε > 0, by [29, Thm. 8.13].
Implied from corollary 3 is the consistency of the test: If
h(θm) 6= 0 for all m = 1, . . . ,M , then

Pr{Sn > F−1
χ2

Q
(1− α)|H1} → 1 (36)

for every choice of levelα ∈ (0, 1), i.e., the test is consistent.
This result extends the results of [19] and [22], which estab-
lished under a correctly specified model (each for their own
global maximum validation function) that if the only solution
to the set of equations∫

∇θ log f(y, θ)f(y, θ0)dy = 0
∫

e(y, θ)f(y, θ0)dy = 0

is θ0, then
√

nhn(θ̃n) D→ N(0, V (θ0)) iff θ̃n = θ̂n.
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Furthermore, Corollary 2 implies that underH1, and partic-
ularly whenθ̃n = θ̂m

n , the distribution of the test statisticSn is
approximately non-centralχ2

Q with non-centrality parameter

nδm = nhT (θm)V −1(θm)h(θm)

denoted byχ2
Q(nδm) [34]. We denote theχ2

Q(nδm) cumula-
tive distribution function byFχ2

Q(nδm)(·). The finite sample
power of the test against a local maximum atθm can be
approximated by [34, p. 468]

1− Fχ2
Q(nδm)

[
F−1

χ2
Q

(1− α)
]
. (37)

Therefore, the power of a given test against a local maximum
at θm is characterized by

δm = hT (θm)V −1(θm)h(θm) (38)

which will be called the power characteristic of the test as
a function of θm. The power characteristic is a basis of
comparison between tests.

IV. M ISSPECIFIEDMODELS

In general, it is difficult to discriminate between the cases
of: (a) θ̃n a local maximum in a correctly specified model;
and (b)θ̃n a global maximum in a misspecified model. Under
model mismatch, the probability of mistakenly rejectingθ̃n as
the global maximum, increases with the number of samples.

If the test statistic is designed under the assumption that
the model is correctly specified but the actual underlying
distribution is outside the assumed parametric family, then (18)
may be violated. In this case, even whenθ̃n = θ̂n, hn(θ̃n) a.s.→
h(θ∗) 6= 0 and, similar to the discussion in the previous
section,Sn is approximately distributed asχ2

Q(nε) with non-
centrality parameternε = nhT (θ∗)V −1(θ∗)h(θ∗), instead of
the assumed central chi-squared. In this case, asn tends to
infinity, the probability of mistakenly rejecting̃θn as the global
maximum increases to one regardless of the test threshold, and
is approximately given by

1− Fχ2
Q(nε)

[
F−1

χ2
Q

(1− α)
]
.

A. A Bound on the Non-Centrality Parameter

It is possible to bound the non-centrality parameterε,
induced by the model mismatch, in terms of the Renyi
divergence betweenf(y; θ∗) and true underlying densityg(y).
Consider the case in whiche(y, θ) is a scalar function and
satisfies ∫

e(y, θ)f(y, θ)dy = 0, ∀θ ∈ Θ.

In this case the non-centrality parameter simplifies to

nε = nh2(θ∗)/V (θ∗).

Sinceθ∗ minimizesD (g(y)||f(y, θ)) with respect toθ,
∫
∇θ log f(y, θ)|θ=θ∗ g(y)dy = 0.

Therefore, denoting

d(y, θ) = e(y, θ)−H(θ)A−1(θ)∇T
θ log f(y, θ)

we obtain

h(θ∗) = E {e(y, θ∗)} = E {d(y, θ∗)}
=

∫
[d(y, θ∗)− h(θ∗)] [g(y)− f(y, θ∗)] dy.

By the Cauchy-Schwartz inequality

h2(θ∗) ≤
∫

[d(y, θ∗)− h(θ∗)]2 g(y)dy ×
∫

[g(y)− f(y, θ∗)]2

g(y)
dy

= V (θ∗)
(∫

f2(y, θ∗)
g(y)

dy − 1
)

implying that

ε =
h2(θ∗)
V (θ∗)

≤ exp [D2 (f(y, θ∗)||g(y))]− 1

where

Dα(f1(y)||f2(y)) =
1

α− 1
log

∫
fα
1 (y)f1−α

2 (y)dy

is the Renyi divergence betweenf1(y) andf2(y) with param-
eterα.

Therefore, when a bound onD2 (f(y, θ∗)||g(y)) is avail-
able, sayBε, it is possible to set the threshold of the test
according to aχ2

Q(n [exp(Bε)− 1]) distribution, i.e., reject
the null hypothesis if

Sn > F−1
χ2

Q(n[exp(Bε)−1])
(1− α). (39)

This choice of threshold leads to a test, the level of which
decreases to zero, instead of increasing to one. Since

F−1
χ2

Q(n[exp(Bε)−1])
(1− α) > F−1

χ2
Q

(1− α)

for all α [34], this adjustment decreases the power of the test.
However, as long as the the power characteristic of the test at
a local maximumδm (38) is larger thanexp(Bε)− 1, the test
will detect such a local maximum with probability approaching
one asn tends to infinity.

Often it is difficult to compute a bound on
D2 (f(y, θ∗)||g(y)), especially due to the computation
required for θ∗. When the true underlying distribution and
the assumed parametric model are both embedded in a larger
parametric class and are sufficiently close to one another,
it is possible to approximate the Renyi divergence by the
Kullback-Leibler distance defined below. This leads to a
simple approximation ofBε.

Suppose that the parametric class{f(y; θ) : θ ∈ Θ} is
embedded in a larger class{f̃(y; θ, γ) : θ ∈ Θ, γ ∈ Γ ⊂ RK′}
such thatf(y; θ) = f̃(y; θ, γ0) for all θ ∈ Θ, and that the true
underlying density isg(y) = f̃(y; θ0, γ1), with θ1 close toθ0.
This setting was recently treated in [35], where the parameter
vectorγ was referred to as the background parameter.

In this case, the local equivalence and symmetry of f-
divergence measures [36, p. 85] can be used to approximate
the Renyi divergence

D2 (f(y, θ∗)||g(y)) = D2

(
f̃(y; θ∗, γ0)||f̃(y; θ0, γ1)

)
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by
2D1

(
f̃(y; θ0, γ1)||f̃(y; θ∗, γ0)

)

up to terms of orderO
(||θ∗ − θ0||3 + ||γ0 − γ1||3), where

D1 (f1(y)||f2(y)) = lim
α→1

Dα (f1(y)||f2(y))

=
∫

log
(

f1(y)
f2(y)

)
f1(y)dy

is the Kullback-Leibler distance betweenf1(y) andf2(y).
Furthermore,θ∗ minimizes D1

(
f̃(y; θ0, γ1)||f̃(y; θ, γ0)

)

over θ ∈ Θ. Hence,

D1

(
f̃(y; θ0, γ1)||f̃(y; θ∗, γ0)

)
≤

D1

(
f̃(y; θ0, γ1)||f̃(y; θ0, γ0)

)
.

Therefore, D2 (f(y, θ∗)||g(y)) can be bounded by

2D1

(
f̃(y; θ0, γ1)||f̃(y; θ0, γ0)

)
up to terms of order

O
(||θ∗ − θ0||3 + ||γ0 − γ1||3). The advantage of the bound

is that it does not require the difficult evaluation ofθ∗.

B. Tests Insensitive to a Pitman Drift

Assume again that the parametric class{f(y; θ) : θ ∈ Θ} is
embedded in a larger class{f̃(y; θ, γ) : θ ∈ Θ, γ ∈ Γ ⊂ RK′}
such thatf(y; θ) = f̃(y; θ, γ0) for all θ ∈ Θ. Denote by
β = [θT , γT ]T the concatenated parameter vector and assume
that there exist integrable functionsa(y) and b(y) such that
a(y)b(y) is integrable as well with respect toν, and for almost
all y, f̃(y; β) ≤ a(y) and | log f̃(y; β)|, |∇β log f̃(y; β)|2,
|∇2

β log f̃(y; β)|, |e(y, θ)|2, and|∇θe(y, θ)| are each less than
b(y) for all β ∈ Θ × Γ, where for matrices| · | denotes
the maximum valued element. Furthermore, assume that the
support off̃(y; β) in independent ofβ. Assume that the true
underlying distribution depends onn, hence denoted bygn(y),
and is given by

gn(y) = f̃(y; θ0, γ0 + γ/
√

n) (40)

for some fixedγ ∈ Γ, and denote the limiting distribution
by g(y). In the context of model specification tests, this
type of local alternative is called a Pitman drift. Newey [26]
investigated the power of M-tests to such local alternatives.
Applying Newey’s result to our setting we obtain that ife(y, θ)
satisfies ∫

e(y, θ)f(y; θ)dy = 0, ∀θ ∈ Θ

then underH0,
√

nhn(θ̃n) D→ N
(
Dγ, V (θ0)

)
(41)

where in the definition ofV (θ) (12), the expectation is
taken with respect to the densityf(y, θ0) and the termh(θ0)
vanishes. The termD in (41) is

D =
∫

e(y, θ0) ∇T
γ log f̃(y; θ0, γ)

∣∣∣
γ=γ0

f(y; θ0)dy

−H(θ0)A−1(θ0)B̃(θ,γ)(β0)

where the expectations in the definition ofA(θ) andH(θ), (3)
and (11), respectively, are taken with respect to the density

f(y, θ0) as well.β0 = [θ0T , γ0T ]T and the matrixB̃(θ,γ)(β)
is the upper rightK ×K ′ block of the FIM associated with
the densityf̃(y;β), that is,

B̃(β) =
∫
∇β log f̃(y;β)∇T

β log f̃(y; β)f̃(y; β)dy, (42)

and it is assumed that̃B(β) is non-singular for allβ ∈ Θ ×
Γ. Hence,Sn, defined in (19), is asymptotically non-central
chi-squared distributed withQ degrees of freedom and non-
centrality parameter

δ = γ′D′V −1(θ0)Dγ.

In [26] this result is used to assess and optimize the power
of M-tests against local alternatives. Here, our goal is reversed;
we would like the tests to be insensitive to small deviations
from the assumed model. Specifically, note that

H(θ0) =
∫
∇θ e(y, θ)|θ=θ0 f(y; θ0)dy

= −
∫

e(y, θ) ∇T
θ log f̃(y; θ, γ0)

∣∣∣
θ=θ0

f(y; θ0)dy.

Therefore, considering the space of zero-meanL2 functions
of y with inner product

〈f1(y), f2(y)〉 =
∫

f1(y)f2(y)f(y; θ)dy

our objective is to construct a global maximum valida-
tion function e(y, θ), with elements orthogonal to the space
spanned by theK + K ′ set of functions

∇β log f̃(y; β)
∣∣∣
γ=γ0

. (43)

By this construction, both terms of the matrixD are zeroed
out, i.e., the test is insensitive to the Pitman drift regardless of
the vectorγ. Denoting the classes of log-likelihood functions
{log f(y; θ) : θ ∈ Θ} and{log f̃(y; θ, γ) : θ ∈ Θ, γ ∈ Γ} by
F andG, respectively, Fig. 1 gives a geometrical interpretation
of the construction ofe⊥(y, θ).

Given any global maximum validation functione(y, θ) that
satisfies

∫
e(y, θ)f(y; θ)dy = 0, ∀θ ∈ Θ, its orthogonal com-

ponent with respect to the vector (43), denoted bye⊥(y, θ),
is

e⊥(y, θ) = e(y, θ)−
[
E(β)B̃−1(β)∇β log f̃(y; β)

]
γ=γ0

(44)

where E(β) is the K × (K + K ′) matrix of inner products
between the elements ofe(y, θ) and the functions in (43),
given by

E(β) =
∫

e(y, θ)∇T
β log f̃(y;β)f(y; θ)dy. (45)

This can be verified by computing the matrix
∫

e⊥(y, θ) ∇T
β log f̃(y;β)

∣∣∣
γ=γ0

f(y; θ)dy.
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At any local maximumθ̃n,
∑n

t=1∇θ log f(yt; θ̃n) = 0 and
therefore, computingh⊥n (θ̃n) =

∑n
t=1 e⊥(yt, θ̃n) reduces to

h⊥n (θ̃n) =
n∑

t=1

e(yt, θ̃n)−

E (β) B̃2(β)
n∑

t=1

∇γ log f̃(yt; β)

∣∣∣∣∣
θ=θ̃n,γ=γ0

whereB̃2(β) is the (K + K ′) ×K ′ matrix composed of the
right K ′ columns of B̃−1(β) defined in (42). Furthermore,
under the null hypothesisH0, a consistent estimator for the
covariance matrix of

√
nh⊥n (θ̃n) is

1
n

n∑
t=1

e⊥
(
yt, θ̃n

)
e⊥

(
yt, θ̃n

)T

since the termH(θ) (11), which appears in (28), is zero by
construction ofe⊥(y, θ). When closed form expressions for
E(β) andB(β) are available, the covariance matrix can also
be consistently estimated underH0 by

Ṽn(θ̃n) =
∫

e(y, θ̃n)eT (y, θ̃n)f(y, θ̃n)dy −

E(θ̃n, γ0)B−1(θ̃n, γ0)ET (θ̃n, γ0). (46)

In summary, tests for global maximum which are based on
e⊥(y, θ) are locally insensitive to model mismatch of the type
defined in (40) for anyγ ∈ Γ.

Another motivation for usinge⊥ (y, θ) can be obtained
from the Taylor expansion ofh(θ∗) aroundγ0. Assuming the
derivatives can be taken inside the integrals, we obtain that the
zeroth order (constant) term is identically zero and the first
order (linear) term is zeroed by the construction ofe⊥ (y, θ).

In practice, we expect these tests to be less sensitive to small
deviations from the model. An example in which this is the
case is given in Sec. V-A.1.

V. A PPLICATIONS

The asymptotic regime adopted throughout the paper, raises
the question of small sample performance. In this section,
tests for global maximum will be derived and evaluated
through simulations for several parameter estimation problems.
In the simulations the following aspects were studied. First,
the accuracy of setting the test threshold toF−1

χ2
Q

(1 − α)
for a level α test was evaluated. Second, we evaluated how
fast the power of the test approaches1, as the number of
samples increases, and the accuracy of the finite sample power
approximation (37). Finally, the sensitivity of the tests to a
misspecified model is examined. The threshold adjustment
procedure and the construction of tests that are orthogonal
to deviations from the model are demonstrated.

A. Direction Finding in Array Signal Processing

For a review of the problem of direction finding using
antenna arrays see e.g. [37] or [38]. The characterization of
the MLE under possible model mismatch has been recently
addressed in [39] and [35].

Fig. 1. Geometrical interpretation of the construction of tests insensitive to
Pitman drift.

Here we adopt the standard narrow band model of [40]. We
consider the estimation of the directions of two uncorrelated
narrow band Gaussian sources using a uniform linear array of
P = 4 sensors withλ/2 spacing between elements (λ is the
wavelength of wavefronts propagating across the array). The
received signal model is given by

yt = D(θ)st + wt

whereyt ∈ CP is the noisy data vector at the array elements,

D(θ) = [d(θ1) d(θ2)]

where [d(θ)]p = exp{jpπ cos(θ)}, p = 0, 1, 2, 3 is the
steering vector,st contains the two signal components, andwt

is a temporally and spatially complex white circular Gaussian
noise. This signal model corresponds to the so called stochastic
signal model in which the received signal at the array is
distributed as a temporally white zero-mean complex circular
Gaussian random vector with covariance matrixC(θ) =
D(θ)KsD

H(θ) + σ2I, where, due to an uncorrelated sources
assumption,Ks = diag(σ2

s1, σ
2
s2), σ2

s1 and σ2
s2 are the two

source variances, andσ2 is the noise variance. Hence, the
density ofy is given by

f(y, θ) =
1

πP det (C(θ))
exp

[−yHC−1(θ)y
]
. (47)

The variancesσ2, σ2
1 , andσ2

2 are assumed known. The only
unknowns are the sources directions,θ = [θ1, θ2]T . In the
simulations the true unknown parameters were taken to be
θ = [π/2, π/2 + 0.4]T and the other known parameters were
set toσ2

s1 = σ2
s2 = 1, andσ2 = 2. In Fig 2, the log-likelihood

surface calculated from200 samples is shown and it is seen
that it has two relative maxima.
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Fig. 2. The log-likelihood function of the direction finding problem.

Recall that the global maximum validation function of
Biernacki’s test is given by

e(y, θ) = log f(y; θ)−
∫

log f(y; θ)f(y; θ)dy

= − log
(
πP

)− log (det (C(θ)))− yHC−1(θ)y

+ log
(
πP

)
+ log (det (C(θ)))

+
∫

yHC−1(θ)yf(y; θ)dy

= P − yHC−1(θ)y.

Hence

hn(θ̃n) =
1
n

n∑
t=1

e(yt, θ̃n)

= P − 1
n

n∑
t=1

yH
t C−1(θ̃n)yt

= P − tr
(
C−1(θ̃n)Ĉ

)

where

Ĉ =
1
n

n∑
t=1

yty
H
t .

Under the null hypothesis and assuming the model is correctly
specified, a closed form expression for the variance can be
computed through (30), where

[
H(θ)

]
1,i

=
∫

∂e(y, θ)/∂θif(y, θ)dy

=
∫

yHC−1(θ)
∂C(θ)
∂θi

C−1(θ)yf(y, θ)dy

= tr
(

C−1(θ)
∂C(θ)
∂θi

)
, i = 1, 2

∫
e2(y, θ)f(y, θ)dy =

∫ [
P − yHC−1(θ)y

]2
f(y, θ)dy

= P

and B̃(θ) is the FIM for this problem [1, p. 565], given by

[
B(θ)

]
i,j

= tr
[
C−1(θ)

∂C(θ)
∂θi

C−1(θ)
∂C(θ)
∂θj

]
. (48)

Hence
V (θ̃n) = P −H(θ̃n)B(θ̃n)H

T
(θ̃n)

and the test statistic is given by

Sn = n
[
P − tr

(
C−1(θ̃n)Ĉ

)]2

/V (θ̃n). (49)

The threshold is set according to aχ2 distribution with one
degree of freedom.

We compare Biernacki’s test to a test which is based on the
real part of the first off-diagonal element of the covariance
matrix. To compare the first off-diagonal element of the
covariance matrix at the candidate relative maximum to its
unconstrained estimate from the data, the global maximum
validation function is taken to be

e(y, θ) = yHMy − tr (MC(θ))

whereM is the symmetric Toeplitz matrix whose first row is
[0, 1, 0, 0], and hence

hn(θ̃n) =
1
n

n∑
t=1

e(yt, θ̃n)

= tr
(
MĈ

)
− tr

(
MC(θ̃n)

)
.

For this choice ofe(y, θ) we have

[
H(θ)

]
1,i

= −tr
(

M
∂C(θ)
∂θi

)
, i = 1, 2 (50)

and by [1, p. 564]
∫

e2(y, θ)f(y, θ)dy =
∫ [

yHMy − tr (MC(θ))
]2

f(y, θ)dy

= tr (MC(θ)MC(θ)) .

Hence

V (θ̃n) = tr
(
MC(θ̃n)MC(θ̃n)

)
−H(θ̃n)B(θ̃n)H

T
(θ̃n)

the test statistic is given by

Sn = n
[
tr

(
MĈ

)
− tr

(
MC(θ̃n)

)]2

/V (θ̃n) (51)

and, again, the threshold is set according to aχ2 distribution
with one degree of freedom.

The power performance of Biernacki’s test and a Covariance
based test were evaluated for increasingn for levels that were
set to0.01 and0.001. 1000 Monte Carlo iterations were used.
At each iteration the global maximum and the local maximum
were found and the tests were applied to both maxima to
evaluate the performance. When the number of samples is very
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Fig. 3. Direction finding: power when the model is correctly specified.

small (e.g.n = 20), the likelihood function my be distorted
and the two relative maxima may collapse into one. Such cases
were eliminated from the analysis. The results are summarized
in Fig. 3. While not presented here, we observed that the
empirical levels of both tests were in good agreement with
the specified values.

1) Model Mismatch:In this section the performance of the
tests (49) and (51) under model mismatch is evaluated. The
assumed model used for the estimation is the same as in the
previous section (47). The samples were generated according
to the model (47) but with covariance matrix

C(θ, γ) = D(θ)KsD
H(θ) + σ2R(γ), (52)

whereR(γ) is a symmetric Toeplitz matrix whose first row
is [1, γ, γ2, γ3], which corresponds to a first order AR spatial
noise covariance [41], and in the simulationγ = 0.1.

For both Biernacki’s test and the covariance based test
the effect of model mismatch on the level was evaluated for
three cases: (a) The increase in level due to model mismatch
when the tests are performed without any adjustment, (b)
The threshold correction described in Sec. IV-A, and (c) The
performance of the orthogonal counterparts given in Sec. IV-B.

To perform the threshold correction described in Sec. IV-
A, the Kullback-Leibler distance needs to be estimated. In
the simulation, it was assumed that it is known that the
parameterγ, which controls the deviation from the model,
ranges between zero (correct model) and0.1. At every Monte
Carlo iteration, given a relative maximum̃θn,

c = max
γ∈[0,1]

D1

(
f̃(y; θ̃n, γ)||f(y; θ̃n)

)

was computed, using the known formula for the Kullback-
Leibler distance between two Gaussian densities (e.g. [42]),
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Fig. 4. Direction finding: level under model mismatch.

where f(y; θ) is given in (47) andf̃(y; θ, γ) is the same
density but with covariance matrixC(θ, γ) (52). Then, the
null hypothesis was rejected if

Sn > F−1
χ2

Q(n[exp(2c)−1])
(1− α).

The simulation results show that, as anticipated, the level
decreases rather than increases with the number of samples
(see Fig. 4, where CT is a shorthand notation for ’corrected
threshold’).

To construct the orthogonal counterparts of the two tests,
e⊥(y, θ) is found through (44). For Biernacki’s test the ele-
ments ofE(β) (45), which is a1× 3 vector is this case, are
given by

[E(β)]i = −tr
(

C−1(β)
∂C−1(β)

∂βi

)
, i = 1, 2, 3

where, as defined earlier,β = [θT , γ]T . For the covariance
based test the elements ofE(β) are given by

[E(β)]i = tr
(

M
∂C−1(β)

∂βi

)
, i = 1, 2, 3.

The FIM B̃(β) is also available in closed form as given in (48).
Using the closed forms forE(β) and B̃(β), the variance for
the two tests was computed through (46). In Fig. 4 it is seen
that while the original tests suffer from increased level as the
number of samples increase, the orthogonal counterparts are
unaffected by this type of model mismatch.

B. Estimation of Gaussian Mixture Parameters

The problem of estimation of Gaussian mixture parameters
arises in both non-parametric density estimation (see e.g. [43]
and references therein) and a variety of clustering problems
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(see e.g. [44] and references therein). The MLE for this
problem is usually found by using the EM algorithm [10].
In [44], the authors describe a method that finds the global
maximum with good performance. However, even this state
of the art method is not certain to find the global maximum,
and therefore, tests for global maximum are useful.

Here we consider the univariate case, in which the indepen-
dent scalar measurements are generated by the following two
component univariate Gaussian mixture density

f(y; θ) =
2∑

l=1

pl√
2πσ2

l

exp
{
− (y − ηl)2

2σ2
l

}
(53)

where the parameter vector consists of the two meansθ =
[η1 η2]T . The number of components, the variances, and the
mixing probabilities are assumed known. In the simulation, the
true parameter isθ = [0, 3]T , the variances areσ2

1 = 1 and
σ2

1 = 0.5, the mixing probabilities arep1 = 1−p2 = 0.35 and
it is known thatΘ = [−1, 4]× [−1, 4]. The likelihood surface
over Θ of a realization of200 samples generated according
to this model is presented in Fig. 5 and two relative maxima
appear.

The performance of the global maximum tests was evaluated
as the number of samplesn increases.1000 Monte Carlo
iterations were generated. At each iteration, Biernacki’s test
and a mean based test were performed on both the global
and the local maxima. As in the previous section, Biernacki’s
global maximum validation function is given by

e(y, θ) = log f(y; θ)−
∫

log f(y; θ)f(y; θ)dy (54)

and therefore,

hn(θ̃n) =
1
n

n∑
t=1

log f(yt; θ̃n)−
∫

log f(y; θ̃n)f(y; θ̃n)dy.

A closed form expression to the integral in (54) is not
available. Hence, in the simulations, numerical integration is
used. The varianceVn(θ̃n) required for the construction of
the test statisticSn (19) was calculated through (13). Note
that Hn(θ), required for calculatingVn(θ̃n), simplifies under
the null hypothesis, i.e.̃θn = θ̂n, to

Hn(θ̃n) =
1
n

n∑
t=1

∇T
θ e(yt, θ)

∣∣∣∣∣
θ=θ̃n

=
1
n

n∑
t=1

∇T
θ log f(y; θ)

−
∫
∇T

θ log f(y; θ)f(y; θ)dy

−
∫

log f(y; θ)∇T
θ f(y; θ)dy

∣∣∣∣
θ=θ̃n

= −
∫

log f(y; θ)∇T
θ f(y; θ)dy

∣∣∣∣
θ=θ̃n

which was calculated in the simulation by numerical integra-
tion.

The global maximum validation function of the mean based
test is given by

e(y, θ) = y − [pη1 + (1− p)η2]

which leads to

hn(θ̃n) =
1
n

n∑
t=1

yt − (pη̃1 + (1− p)η̃2). (55)

Similar to the previous test, the variance required for the test
statistic was calculated through (13), where, for this test, the
vectorHn(θ̃n) is given by

Hn(θ̃n) = − [p, (1− p)] .

The level of the tests was set to0.01 and the empirical
power was estimated from10, 000 Monte Carlo iterations and
compared to the analytic approximation (37). The results are
summarized in Fig. 6 and it can be seen that the analytical
power approximation predicts the empirical power well. It can
be seen that the power of the mean based test is better than that
of Biernacki’s test. For other choices of parameters different
results may be obtained. While not reported here, the empirical
level of both tests was in good agreement with its specified
value.

C. Estimation of Superimposed Exponentials in Noise

For a review of the problem of estimating the parameters of
superimposed exponentials in noise see, e.g., [40]. Consider
the following model

yt =
K∑

k=1

αk exp{jΩkt}+ wt, t = 1, . . . , n

where wt is a white circular Gaussian noise with unknown
varianceσ2. The unknown parameters are the frequencies of
the exponentials[Ω1, . . . , ΩK ], their complex valued ampli-
tudes [α1, . . . , αK ] and the noise variance. The numberK
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Fig. 6. Gaussian mixture: empirical power vs. its analytic prediction, when
the level is set to0.01.

of components is assumed known and was set to3, hence
there are10 unknown parameters. The unknown parameters
were set to[Ω1, Ω2, Ω3] = [0.4, 0.5, 0.6], [α1, α2, α3] =
[exp(j2), 0.8 exp(j3), 1.2 exp(j5)], andσ2 = 1.

Under this generating model, the data are independent but
not identically distributed. They are distributed as non-zero
time-varying mean circular Gaussian process. Hence, the treat-
ment in Sec. II-A does not cover this problem. Furthermore,
since the MLE for this problem is super efficient [45], the
more general framework of White [29] for constructing tests
in dynamical models does not cover this problem either.
However, a detailed statistical asymptotic analysis for this
problem is available in the literature and can be used to
construct a test for global maximum. In particular, in [45] it
was shown that the MLE is asymptotically normal distributed
under an appropriate normalization. Based on this analysis, we
propose a test which is based on the autocorrelation function.
In particular, our test is based on the fact that at the true
parameter,

E

{[
yt −

K∑

k=1

αk exp(jΩkt)

]
×

[
yt−1 −

K∑

k=1

αk exp(jΩk(t− 1))

]∗}
=

E
{
ete

∗
t−1

}
= 0,

and hence, given the local maximum̃θn, we construct a test
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Fig. 7. Exponentials in noise: performance when the model is correctly
specified.

from the real part of the statistic

hn(θ̃n)=
1

n− 1

n∑
t=2

[
yt −

K∑

k=1

α̃k exp(jΩ̃kt)

]
×

[
yt−1 −

K∑

k=1

α̃k exp(jΩ̃k(t− 1))

]∗
.

It is shown in the Appendix that under the null hypothesis, the
real part of this statistic is asymptotically distributed as a zero-
mean Gaussian random variable with varianceσ2/2. Hence,
since under the null hypothesis̃σ2 is a consistent estimator
for σ2, the statistic

n

(
<{hn(θ̃n)}

)2

σ̃2/2

is asymptoticallyχ2 distributed with one degree of freedom,
and can be used to discriminate between local and global
maxima. In Fig. 7 the performance of this test is presented
when the level is set to0.01. The empirical level and power
of the test were estimated from1000 Monte Carlo iterations.
It is seen that the asymptotic approximation to the levelα
is accurate forn greater then300 and the power of the test
approaches1 whenn is greater then100.

VI. CONCLUDING REMARKS

This paper has investigated a method for detecting a case in
which a local search for the maximum likelihood has stagnated
at a local maximum. This is a useful tool for exploring
solutions of the global optimization problem associated with
the ML method. Because existing tests are sensitive to model
mismatch, the general treatment given here is necessary for
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practical implementation of this tool. The framework given
for the construction of tests and the power analysis enable us
to pose fundamental questions of optimality: Given a statistical
model, what is the best choice ofe(y, θ) in terms of achieving
maximum power for a given level with minimum sensitivity
to model mismatch? This remains an open question.

It is possible to generalize the above concept to non-i.i.d.
measurements. A unified treatment of the MLE under a possi-
ble model mismatch and the construction of model mismatch
tests for dynamic models is given in [29] and an example is
which the measurements are i.n.i.d. was treated in Sec. V-
C. The concept of using a statistical test for discriminating
between global and local maxima can be generalized to other
M-estimators [2], or any other optimization problem in which a
statistical characterization of the global maximum is available.

APPENDIX I
ASYMPTOTIC DISTRIBUTION OF M-TESTS

The proof follows White’s methodology [29]. Given the
assumptions, the mean value theorem for random functions,
given as Lemma3 in [33], guarantees the existence of mea-
surableΘ-valued functionsθn such that

√
nhn(θ̂n) =

√
nhn(θ∗) + Hn(θn)

√
n

(
θ̂n − θ∗

)
(I.56)

where eachθn lies on the segment joininĝθn and θ∗. Each
row of Hn depends on a differentθn, but since it makes
no difference asymptotically, the above shorthand notation
is used. From (5)

√
n

(
θ̂n − θ∗

)
converges in distribution.

Furthermore,̂θn
a.s.→ θ∗ and thereforeθn

a.s.→ θ∗ as well. From
Theorem2 in [33], applied on the elements ofHn(θ), we
have Hn(θ) a.s.→ H(θ) uniformly in θ, and therefore using
Lemma3.1 of White [?], Hn(θn)−H(θ∗) a.s.→ 0. Using these
intermediate results we obtain from2c.4(xa) of Rao [46] that

[
Hn(θn)−H(θ∗)

]√
n

(
θ̂n − θ∗

)
P→ 0. (I.57)

Equation (A.2) of [20] asserts that

A−1(θ∗)
1√
n

n∑
t=1

∇ log f(yt, θ
∗) +

√
n

(
θ̂n − θ∗

)
P→ 0.

Therefore, by the finiteness ofH(θ∗), we have

H(θ∗)×[
A−1(θ∗)

1√
n

n∑
t=1

∇ log f(yt, θ
∗) +

√
n

(
θ̂n − θ∗

)]

P→ 0.

Adding and subtractingHn(θn)
√

n
(
θ̂n − θ∗

)
and rearrang-

ing terms, we obtain
[
H(θ∗)−Hn(θn)

]√
n

(
θ̂n − θ∗

)
+

Hn(θn)
√

n
(
θ̂n − θ∗

)
+

H(θ∗)A−1(θ∗)
1√
n

n∑
t=1

∇ log f(yt, θ
∗) P→ 0.

But from (I.57) the first term converges to zero in probability,
and hence,

Hn(θn)
√

n
(
θ̂n − θ∗

)
+

H(θ∗)A−1(θ∗)
1√
n

n∑
t=1

∇ log f(yt, θ
∗) P→ 0.

SubstitutingHn(θn)
√

n
(
θ̂n − θ∗

)
=
√

nhn(θ̂n)−√nhn(θ∗)
from (I.56), adding and subtracting

√
nh(θ∗), and rearranging

terms, we obtain

√
n

[
hn(θ̂n)− h(θ∗)

]
− 1√

n

n∑
t=1

[e(yt, θ
∗)− h(θ∗)−

H(θ∗)A−1(θ∗)∇ log f(yt, θ
∗)

] P→ 0.

From the Lindeberg-Ĺevy central limit theorem the second
term converges in probability to a zero mean multivariate
normal density, with covariance matrixV (θ∗) and therefore,
from 2c.4(xd) of Rao [46], so does the first term, and the
first part of the theorem is proved. The consistency ofVn(θ̂n)
for V (θ∗) follows from Lemma 3.1 of White [?] given the
assumptions, and the consistency guarantees thatV −1

n (θ̂n)
exists for sufficiently largen, since the determinant of a matrix
is a continuous function of its elements. The last part of the
theorem follows from Lemma 3.3 of White [47] and the proof
is completed.

APPENDIX II
ASYMPTOTIC DISTRIBUTION OF THETEST STATISTIC FOR

EXPONENTIALS IN NOISE

The derivation is given under the null hypothesis, hence
θ̃n = θ̂n. Using the mean value theorem we obtain

hn(θ̂n) = hn(θ0) +∇T hn(θ)(θ̂n − θ0) a.s..

Using the martingale central limit theorem with the filtration
{Ft = σ(e1, . . . , et)} [48], we obtain thathn(θ0) converges
in distribution to a zero-mean Gaussian random variable with
varianceσ2/2. Next, we show that the second term isoP (1).
First split the second term into two components

∇T hn(θ)(θ̂n − θ0)=n−3/2∇T
Ωhn(θ)n3/2(Ω̂n −Ω0) +

n−1/2∇T
αhn(θ)n1/2(α̂n −α0).

It is possible to show that bothn−3/2∇T
Ωhn(θ) and

n−1/2∇T
αhn(θ) converge to zero in probability. Therefore,

since it was shown in [45] that bothn3/2(Ω̂n − Ω0) and
n1/2(α̂n−α0) converge in distribution, we have that this term
converges to zero in probability. This establish the asymptotic
normality of hn(θ̂n). In [45] it was also shown that̂σ2

converges to the true value ofσ2 a.s.. Therefore, by Lemma 3.3
of White [47], we obtain that the test statistic is asymptotically
χ2 distributed.
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35ièmes jourńees de statistiques, SFdS’2003, Lyon, France, June 2003.

[22] ——, “Testing for a global maximum of the likelihood,”J. Comput.
Graph. Statist., 2004, in press. [Online]. Available: http://www-
math.univ-fcomte.fr/ppAnnu/CBIERNACKI/testMLfull version.pdf

[23] D. R. Cox, “Tests of separate families of hypotheses,” inProceedings
of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, vol. 1. Berkeley: University of California Press, 1961,
pp. 105–123.

[24] ——, “Further results on tests of separate families of hypotheses,”J.
Roy. Statist. Soc. Ser. B, vol. 24, no. 2, pp. 406–424, 1962.

[25] C. G. Small, J. Wang, and Z. Yang, “Eliminating multiple root problems
in estimation,”Statist. Sci., vol. 15, no. 4, pp. 313 – 341, 2000.

[26] W. K. Newey, “Maximum likelihood specification testing and condi-
tional moment tests,”Econometrica, vol. 55, pp. 1047–1070, 1985.

[27] G. Tauchen, “Diagnostic testing and evaluation of maximum likelihood
models,”Journal of Econometrics, vol. 30, pp. 415–444, 1985.

[28] H. White, “Specification testing in dynamic models,” inAdvances in
Econometrics, T. Bewley, Ed. New York: Cambridge University Press,
1987.

[29] ——, Estimation, Inference and Specification Analysis. Cambridge
University Press, 1994.

[30] ——, “Consequences and detection of misspecified nonlinear regression
models,” J. Amer. Statist. Assoc., vol. 76, no. 374, pp. 419–433, Jun.
1981.

[31] W. K. Newey and K. D. West, “Automatic lag selection in covariance
matrix estimation,”Reviews of Econometric Studies, vol. 61, pp. 631–
653, 1994.

[32] H. Bunzel, N. M. Kiefer, and T. J. Vogelsang, “Simple robust testing of
hypotheses in nonlinear models,”J. Amer. Statist. Assoc., vol. 96, no.
455, pp. 1088–1096, Sept. 2001.

[33] R. I. Jennrich, “Asymptotic properties of non-linear least squares esti-
mators,”Ann. Math. Statist., vol. 40, no. 2, pp. 633–643, Apr. 1969.

[34] N. L. Johnson, S. Kotz, and A. Balkrishnan,Continuous univariate
distributions: Vol. 2. Wiley, New York, 1994.

[35] W. Xu, A. B. Baggeroer, and K. L. Bell, “A bound on mean-square
estimation error with background parameter mismatch,”IEEE Trans.
Inform. Theory, vol. 50, no. 4, pp. 621–632, Apr. 2004.

[36] S. Amari, Differential-Geometrical Methods in Statistics. Berlin:
Springer-Verlag, 1990.

[37] A. Hero et al., “Highlights of statistical signal and array processing,”
IEEE Signal Processing Mag., vol. 15, no. 5, pp. 21–64, Sept. 1998.

[38] H. Krim and M. Viberg, “Two decades of array signal processing
research: the parametric approach,”IEEE Signal Processing Mag.,
vol. 13, no. 4, pp. 67–94, July 1996.

[39] J. Friedmann, E. Fishler, and H. Messer, “General asymptotic analysis
of the generalized likelihood ratio test for a Gaussian point source
under statistical or spatial mismodeling,”IEEE Trans. Signal Processing,
vol. 50, no. 11, pp. 2617–2631, Nov. 2002.

[40] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramér
Rao bound,”IEEE Trans. Acoust., Speech, Signal Processing, vol. 37,
no. 5, pp. 720–741, May 1989.

[41] V. Nagesha and S. Kay, “Maximum likelihood estimation for array
processing in colored noise,”IEEE Trans. Signal Processing, vol. 44,
no. 2, pp. 169–180, Feb. 1996.

[42] B. C. Levy and R. Nikoukhah, “Robust least-squares estimation with a
relative entropy constraint,”IEEE Trans. Inform. Theory, vol. 50, no. 1,
pp. 89–104, Jan. 2004.

[43] R. D. Nowak, “Distributed EM algorithms for density estimation and
clustering in sensor networks,”IEEE Trans. Signal Processing, vol. 51,
no. 8, pp. 2245 – 2253, Aug. 2003.

[44] M. A. T. Figueiredo and A. K. Jain, “Unsupervised learning of finite
mixture models,”IEEE Trans. Pattern Anal. Machine Intell., vol. 24,
no. 3, pp. 381–396, Mar. 2002.

[45] C. R. Rao and L. C. Zhao, “Asymptotic behavior of maximum likelihood
estimates of superimposed exponential signals,”IEEE Trans. Signal
Processing, vol. 41, no. 3, pp. 1461–1464, Mar. 1993.

[46] C. R. Rao,Linear Statistical Inference and Its Applications. John Wiley
& Sons, 1973.

[47] H. White, “Nonlinear regression on cross-section data,”Econometrica,
vol. 48, no. 3, pp. 721–746, Apr. 1980.

[48] P. Billingsley, Probability and Measure. New York: John Wiley and
Sons, 1995.


