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On Tests for Global Maximum of the
Log-Likelihood Function

Doron Blatt, Student Member, IEEEBNd Alfred O. Hero, lll,Fellow, IEEE

. . . . point. In particular, if the log-likelihood function is not strictly
Abstract—Given the location of a relative maximum of the convex and there is no available method that is guaranteed
log-likelihood function, how to assess whether it is the global to provide an initial guess within the attraction region of the

maximum? This paper investigates a statistical tool, which lobal - then th . isk that a | | h will
answers this question by posing it as a hypothesis testing problem.go al maximum, then there Is a ris al a local search wi

A general framework for constructing tests for global maximum ~ Stagnate at a local maximum. This phenomenon leads to large-
is given. The characteristics of the tests are investigated for scale estimation errors.

two cases: correctly specified model and model mismatch. A° The maximum likelihood framework would benefit from
finite sample approximation to the power is given, which gives a 5, angwer to the following question: Given a location of
tool for performance prediction and a measure for comparison lati . f the loa-likelihood functi how t
between tests. The sensitivity of the tests to model mismatch i@ relative maXImum _0 € log-likel _00 unction, how to
analyzed in terms of the Renyi divergence and the Kullback- assess whether this is the global maximum? One approach to
Leibler distance between the true underlying distribution and this question is the Kronecker-Picard integral framework [6].
the assumed parametric class and tests that are insensitive to However, the computation of this multi-dimensional integral
small deviations from the model are derived. The tests are ;s gitficylt, indeed equivalent to the complexity involved in

illustrated for three applications: passive localization or direction finding the alobal . dering thi hi
finding using an array of sensors, estimating the parameters Inding the global maximum, rendering this approach imprac-

of a Gaussian mixture model, and estimation of superimposed tical. Instead, in this paper we take a statistical approach to
exponentials in noise - problems that are known to suffer from answering this question.

local maxima. The first statistical solutions for discriminating between
Index Terms—Parameter estimation, maximum likelihood, local and global maxima were based on sampling the domain
global optimization, local maxima, array processing, Gaussian of the log-likelihood function. Given a sequence of random

mixtures, superimposed exponentials in noise. starting points and the corresponding set of relative maxima
found by a local search method, Finch et. al. [14] proposed
I. INTRODUCTION a statistical method to assess the probability that the global

HE maximum likelihood (ML) estimation method is onemaximum has not yet been found based on an asymptotic (in

of the standard tools for parameter estimation. Amorf§€e number of starting points) result on the total probability of
its appealing properties are consistency and asymptotic effobserved outcomes due to Bickel and Yahav [15]. Veall [16]
ciency [1]-[3]. However, a major drawback of this method&ised an order statistic result due to de Haan [17] that character-
when applied to non-linear estimation problems is the fact tnages the distribution of the ordered values of a smooth function,
the associated likelihood equations required for the derivati§@mpled at random points. Given a relative maximum, the log-
of the estimator rarely have a closed form analytic sollikelihood function is evaluated at a large number of randomly
tion. This shortcoming poses a global optimization problerf€lected points. If a point with a value larger than the value
Solving this problem by applying numerical methods is us@f the candidate maximum is found, then clearly it is not the
ally computationally prohibitive. To date, there have bee@lobal maximum. If no such point is found, de Haan's result
few global optimization methods applied to ML estimatiofs used to assess the probability that the relative maximum is
(e.g. [4]-[8]) because of the computational complexity inthe global one. Since these methods are based on sampling
volved. More commonly, initiate and converge methods afée domain of the log-likelihood function, they suffers from
applied. These methods are based on an initial guess (ofte@ curse of dimensionality and do not generalize well to
found by a simpler method) which is followed by a localhigh dimensional problems. Yet high dimensional problems
often iterative, optimization procedure (e.g. the expectatigi€ exactly those in which global optimization methods are
maximization algorithm [9] and its variations [10], Fishe€omputationally demanding.
scoring [10], the Gauss-Newton method [11], and majorizing Dorsey and Mayer [18] reported poor performance of
or minorizing algorithms [12], [13]). As a consequence, th¥eall's method and, as an alternative, proposed to use the

performance of these methods highly depends on the startfgilable methods for testing parametric models to answer
the question at hand. They observed that a local maximum

The material in this paper will be presented in part at the 2005 IEE§f the log-likelihood function is in fact a global maximum
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model mismatch. If the result of the test leads to the conclusiohmodel mismatch is treated in Sec. IV. The effect of model

that a model mismatch is likely, the hypothesis that the relatimeismatch is characterized in terms of the Renyi divergence and

maximum is the global one is rejected. Otherwise, the relatittee Kullback-Leibler distance and two methods for making the

maximum is declared the final estimate. Independently, Gaests robust to small deviations from the underlying model are

and Jiang [19] made the same observation and propoggeen. Finally, to show the applicability of this framework,

White's information matrix test [20] as a test for globaln Sec. V a Monte-Carlo evaluation of the performance of

maximum. More recently, Biernacki [21], [22] proposed a newhe tests is presented in terms of level and power under both

test, which is closely related to Cox’s tests for separate familiesrrect and mismatched model.

of hypotheses [23], [24], and showed through simulations that

his new test outperforms White’s information matrix test. I
A drawback of the methods of [18], [19], and [22] is that

they are sensitive to model mismatch. In particular, when theLet y;,t = 1,...,n be a collection ofn independent

model is not specified correctly, the tests lose their powebservations drawn from an unknown distributiéh with

to distinguish between local and global maxima. In sonfensity g(y), y € RF. The information we want to extract

engineering applications the statistical model is derived froffpm the data is encoded in & x 1 parameter vectop,

the underlying physical phenomenon and deviations from tiRyough which we define a parametric family of densities

model are unlikely. In these cases, the methods can be diredtf(y, ¢) : 0 € ©} that are twice continuously differentiable in

applied. However, when there are uncertainties about tféor all y. For scalar functions denote BY,(-) andVj(:) the

model, the methods [18], [19], and [22] need to be modified s@lumn vector of partial derivatives and the Hessian matrix

as to not classify a global maximum of a misspecified modwiith respect tod, respectively. For vector valued functions

as a local maximum. let VZ(-) be the matrix whosék,[) element is the partial
In this paper, the tests are derived under possible modielrivative of thek’th element of the function with respect

mismatch. The sensitivity of the tests to model mismatch ig the I'th element of. Assume that the elements of the

analyzed in terms of the Renyi divergence and the KullbackatricesVy log f(y,0)V§ log f(y,0) and V3 log f(y,6) are

Leibler distance between the true underlying distribution aritbminated by functions integrable with respectdo for all

the assumed parametric class. The analysis leads to a ding©, a compact subspace .

ple threshold correction method that accounts for possibleDenote by

deviations from the model as long as these deviations are n

bounded in terms of the mentiqned distances. When deyiatiqns Ln(Y:0) = 1 Z log f (s 0)

from the model are defined in terms of an embedding in ni=

a larger parametric class, insensitivity to a Pitman drift iE lized loa-likelihood functi £ h t
established by constructing tests based on a vector valjdg normalized log-likelihood function of the measurements,

validation function that is orthogonal to the elements of thiNeréYn = [y1y2 - ya]. The MLE! is defined as
gradient of the log-likelihood function of the larger class. This

construction leads to tests that are locally robust to deviations

from the assumed model. i Denote byE {-} the expectation with respect to the true
An exhaustive catalogue of all the available methods f?JrnderIying distributionG, and by 6* the minimizer of the
model specification testing that might be considered as Cq{Fllback-Leibler information. i.e
0 7 feleny

didates for tests for global maximum is beyond the scope W
this paper. Rather, this paper focuses on the class of M-tests, x _ . 9y _
which includes the tests of [19] and [22] as special cases, and 07 = arg ]émc{)lE {log fly;0) } T e Ioneaém(e)
investigates their performance as tests for global maximum. . - . )

The problem of testing a relative maximum is related tg/herea(e) is the ambiguity function, defined as
the problem of eliminating spurious maxima in scenarios in a(0) = E {log f(y:0)} @)
which the ML estimator (MLE) is not necessarily consistent or
may not even exist (see [25] and references therein). Althoughd assume that* is a well defined unique interior point of
some of the results apply to that problem as well, we do nét Define the matrices
pursue this connection here.

. PRELIMINARIES

0, — L, (Y,:0). 1
0, argmax n(Yn; 0) 1)

In Sec. I, we review the properties of the MLE under a pos- A(0) =E{Vilog f(y;0)} 3)
sible model mismatch and pose the problem of discriminating B(0) =E{Vglog f(y;0)Vj log f(y;0)}
between local and global maxima as a statistical hypothesis C(0) = A1 (0)B(9) A1 (6)

testing problem. The general framework for constructing M-

tests [26]-[28] is presented, and it is shown that two of trend assume tha#(6*) and B(6*) are non-singular. Under
available tests in the literature are special cases of M-tedtsese assumptions, Theore$, 2.2, and3.2 of White [20]
In Sec. lll, the consistency of the tests is established amdsert that

an approximation of the finite sample power of the tests 0, “% 9* (4)
is derived, which is useful for predicting performance and

provides a measure for comparing between tests. The problefsometimes called quasi-MLE when the model is incorrect.
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asn — oo, and 5,, is asymptotically Gaussian in the sensdominated by functions integrable with respectGofor all

that 0 € ©. Define the vectors
n (6, —6°) 2 N(0,C(6%). 5 n

Vi ) =N wo.ce) © ha(0) = %Ze(w) (10)
When g(y) = f(y,0°) almost everywhere for some unique =1
9° € ©, we say that the model is correctly specified and h(0) = E{e(y,0)}
this result becomes the standard consistency, and asymptghg the) x & matrices
Normality result for the MLE. More specifically, if the ele- N
ments of the matrixV} [Vyf(y,0) - f(y,0)] are dominated H,(0) = 1 ZVTe(yt 0) (11)
by functions integrable with respect tq for all 6 € ©, where " n 0 ’
v is the dominating measure such théy) = dG(y)/dv, and H(0) =E{Ve(y.0)}.

the support off(y, ) does not depend ofl, then C'(6°) =
—A~1(0°) = B=1(6°) is the inverse of the Fisher informationDefine the@ x @ matrix V() by
matrix (FIM) [3, p. 80]. . _

Denote by#, one of the relative maxima of the log- E{[e(y,0) = 1(0) = H(0)A™'(6)Vs log f(y:6)] x (12)
likelihood function. Then the problem addressed in this paper [e(y,0) — h(0) — H(6)A™(0)Vglog f(y; 9)]T}
can be formulated as a hypothesis testing problem. Giyen

decide between and its empirical estimate by
~ ~ 1 n
5 -~ n
H,: 6, 75 0,,. t=1

[e(ys,0) — hn(0) — Hn(0) A1 (0) Vg log f(ys;0)] x
[e(ye, 0) — hn(0) — Ho(0)A(0)Vglog f(y:;0)]"

where

A statistical test which gives a solution to this problem is
called atest for global maximum

> Vilog f(yt:0) (14)
t=1

1
A. M-Tests for Global Maximum An(0) = -

M-tests were proposed in an econometric context b . o . -
Newey [26], Tauchen [27], and White [28] as a general w Whd assume that(y, 0) is such thatl/(6*) in (12) is nonsin

@ular. Under the assumptions made above
of testing the validity of parametric models (see [29, Ch. Sq ' P '

as well). The tests are based on a vector valued test function vn |:hn(§n) — h(@*)} 2N (0,V(6%)) (15)
e(y,0) : R” x © — R? @) Vo (6,) “3 V(6%) (16)
which is chosen to satisfy element by eIementVn(én) is nonsingular for sufficiently

largen, and as a result,
[etwnrwoim=o. wee. ®) - .
@) = hE)] VT B [haB) —heM)] @)

Hence, given the MLE,,, large values of /n 3, €(y:,6n) s asymptotically Chi-Squared distributed wigh degrees of

indicate that a model mismatch is likely. Small values ofoeqom [26]-[28]. An elementary proof of this result is

1/n 7 e(yi, ) indicate that the model is correctly speci,qjuded in the Appendix for completeness.

ified or alternatively that the type of model mismatch is such gacad on this result. tests for global maximum can be

thatg(y) ¢ {f(y.0): 6 € ©} but constructed as follows. Choose a functigly, §) having mean
/ ( ol zero at the point*, that is
e(y,0")g(y)dy = 0. 9)
h(6*) = E{e(y,0")} = 0. (18)

_The same framework can be_used to construct tests for (Bhe function e(y,0) will be called the global maximum
First suppose that the model is correctly specified and thaflidation function UnderH, and when (18) is satisfied, the
e(y,0) is chosen to satisfy (8). Then, given a location oftatistic
a relative maximum of the log-likelihood functiofy,, large Sp = nhT (0,)V, (0, hn (62) (19)
values of1/n 3" | e(y;, 0,) indicate that it is not likely that e _ _ _
9, is the MLE. This directly extends to the case of modé¥ith V, = (6,) computed by (13) is asymptotically Chi-
mismatch, if it is known that (9) holds. Squared distributed witld) degrees of freedom, denoted by

The tests are constructed as follows. Assume that the- Denote byF’ xz?(') the X7, cumulative distribution func-
elements ofe(y,0) are twice differentiable with respect tolion. Therefore, a false alarmj?veltest of the hypotheses (6)
0 for everyy, and that the elements of the vecGge(y,0) 'S made by comparing,, to FX% (1 —«), which is the critical

and the matrices(y,0)Vj log f(y,0) ande(y, 0)e™ (y,0) are value of thex, distribution for the desired false alarm level. If
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S,, exceeds the critical valuél is rejected and one concludesThis test is closely related to Cox’s tests of separate families
that the iterative local search should be re-initiated in the hope hypotheses [23], [24]. The choice (25) efy,0) leads
of convergence to a different maximum. Otherwise, the nuth a test that compares the log-likelihood evaluated,ato
hypothesis cannot be rejected afg is declared the final its expected value, which is calculated asdjf is the true

estimate. parameter. The test requires the evaluation of an integral (26)
When the model is correctly specifiett, = 0° and Eq. (18) of dimensionP - the dimension of;. This might be prohibitive
becomes in real time applications, although in Sec. V-A below, a closed

form expression for the case of Gaussian distribuggds
0y _ 0 _ 0 0 _
h(0%) = E{e(y,0)} = /e(y’9 )f (Y, 07)dy = 0. (20) given. In [21], [22] the variance estimator required for the
. : : pt
A global maximum validation functior(y, §) satisfying (20) Cconstruction ofS,, (19) is consistent foE {e(y, 0°)e” (y,0°) }

can be constructed from any random function, e.g. call "Rther than fol”(6%) (12). From (28) below, it can be seen that
2(y,0), by replacing it with the centered statistic: under the null hypothesig, and when the model is correctly

specified, E {e(y, 0°)e” (y,6°)} is an upper bound on the

e(y,0) =e(y,0) — /E(yﬁ)f(y;&)dy. (21) asymptotic variance of/nh,(6,) (26). The bound is tight

when eitherB(6°) is large, e.g., at high signal to noise ratio,
This construction ensures that the mean of the validatigp whenH (6°) is small, i.e., the expectation of the gradient of
function at the true parameter is zero. Under this constructiQﬂyﬁ) is small, but in general the variance estimator of [21],
hn(0) (10) becomes [22] leads to a test with a false alarm level smaller than the
~ 1 & - - ~ specified value.
b (0n) = n ZE@M 9n> - /E(y, en)f(yQ O )dy (22)
= . B. Moments Matching Tests

and the property2(0°) = E{e(y,6°)} = 0 holds. This _ _
manipulation requires an analytical solution of the integral MOMents matching tests were previously proposed as tests

in (22) or its approximation via numerical integration. for model m|.smz_itc.h (;ee e.g. [27]) bu.t were not applied to the
Two tests for global maximum that are available in thRroblem of discrimination of local maxima. The tests are based

on the property that the moments of the distribution induced

by the estimated parameter should be in good agreement

2 ) ] ) with the empirical moments of the data. Therefore, these

le(y,0)], = 9 alzg J;(Hy’g) + 810%£Fy,0) 81025@,0) (23) tests are especially suited for cases in which the underlying
g <Y Jq iq Ja physical model specifies a simple parametrization of one of

where[-], denotes the vectorgth element, and the indiceg the moments of the data. For example, assume that the mean

andj,, ¢ =1,...,Q, are chosen so th&f(6*) is nonsingular, of y is modelled byu(f), i.e. u(0) = [yf(y;0)dy, where

we obtain White’s information matrix test [20] which was used(-) is a pre-specified non-linear function, then to construct a

by Gan and Jiang as their test for global maximum [19]. Thiest, which is based on the first momeny, ) is taken to be

test is motivated by the fact that when the model is correctly

specified,A,, (6,,) defined in (14), and3,(d,,), defined by e(y,0) =y — n(0).

This choice ofe(y, §) leads to the empirical estimate

literature fall into this framework. Taking(y, ) to be the
vector valued function defined as

1 n
Bu(0) =~ Volog f(yi: 0)V log f(y:0)  (24) -
=t . hin(6r) = — Zi‘/t — ().
converge a.s. as — oo to the -FIM and FIM, respectively; ni=

an idea that was originally used by White in his test for . o .
model mismatch [20]. Hence, when the model is correct,t is clear that under a correctly specified model, equation (18)

specified, (18) is satisfied since the expected value of the shgmsa.t'.Sf'e.d' If the model S not correctly sp_e.cmed but the
at ¢° vanishes. Gan and Jiang noted that White's test Suﬁesr%emflcatmn of the mean is correct, the condition

from slow convergence rates to unit power, i.e_., it re_quire_s a h(O*) =E{y} —u(0*) =0 27)
large number of samples to detect local maxima with high . .

probability. A test with better convergence rates was recentif!l still hold if the parametric clas$f (y; 0) : ¢ € ©} belongs
proposed by Biernacki [22]. The cost of this improvement & the linear exponential family [29]. _
increased complexity due to the need to evaluate an integral off the mean of the data does not dependdoor is weakly

the type (22). The validation function(y, 8) associated with dependent, one can improve the test by ?ncluding higher order
Biernacki’s test is the scalar function moments. For example, one can specifyy,f) as one or

more elements of the difference between sample and ensemble
e(y,0) = log f(y;0) — /log f(y;0)f(y; 0)dy (25)  covariance matrices:

which is a special case of (21). Hence, le(y, 0)], = )i, W]y, — [RO)];, 5, a=1,....Q

) 1 ¢ q q 7] where for matrices[-], , denotes the(q,k) element, and
hp(0,) ==Y 1 0,) — [ 1 0, f(y; 0,)dy. 0.k 4 '
(6) n ; o8 /{413 6n) / 08 F (53 8n) (5B )y (R(O)];, ;, = [1wli, [wl;, f(y; 0)dy is pre-specified from the

(26) underlying model.
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C. Covariance Matrix Estimation a(f) has its global maximum af*; denote byf™, m =

It is possible to exploit properties of the null hypothesis: - - - - M, the otherM local maxima ofa(6).
H, (6) in order simplify and improve the estimator (13) of the 'heorem 1:For sufficiently largen, L, (Y,;0) hasM + 1
covariance matrix of/nh., (6,,) (see e.g. [19], [20], [26], [27], local ma>§|mafor almost every sequ_er{q,e}tzl. Furthermor_e,
[29]). Under H, \/ﬁhn<§n) equalsy/nh»(6,), and since by the' location of these relative maxima are strongly consistent
construction(8*) = 0, it is possible to drop the tertn, (4,), €stimates fod* andd™, m =1,..., M. _
which appears in (13) after substitutifig. Furthermore, when Proof: The outline of the proof goes as follows. First

the model is correctly specified, undél,, the asymptotic W& Prove that, for sufficiently large, the norm of the first

covariance matrix of/7ih,, (gn) simplifies to der!vatlve vector (_)an(Yn;a) is strictly posmve_outS|de of
arbitrary small neighborhoods of the local maxima and local

E{e(y,0%)e” (y,6°)} —H(©°)B~*(6°)H"(0°)  (28) minima of a(@). Then, we prove that when restricted to

_ _ these neighborhoodd,,,(Y,,;6) is either strictly convex or

vyhere 5() f"‘”d H{(0) are given in (3) .‘?md, (11.)’ respec-¢ rictly concave and hence has a single minimum or a single

tively, and since a correct model specification is assum aximum, respectively

Sxpecta;ions are takehn \?"hh rgspect to' the den;(ty, 0°). Under t’he assumptié)ns made, [33, Thm. 2] gives the fol-

sing this property, the following covariance estimators c : : .
be considered. The first is based on the data and the form (26}8[%\{\"”9 uniform strong law of large numbers:

76 = LS e b ; L (Yn:0) — E {log f (y:0)} (31)
ValBa) = 3 2 elwnsBn)e” (a1 On) (29) VoLn(Yn:0) — E{Vylog f(y;0)}
t=1 ’ o ' '
— H,(6,)B;, " (6,)HE (6,) ViLn(Yn;0) — E{Vilog f(y:0)}

_ _ asn — oo uniformly in © for almost every sequendgy, };>1.
whereB,,(6) and H,,(¢) are defined in (24) and (11), respec- Denote the relative minimum points for the ambiguity

tively. In the correct model case, undey the estimator (29) function by¢’ € ©, j =1,...,J, J > 0. By the assumption,
converges a.s. to the covariance matrix (28) [30, Lemma 3.ﬁ9a(9) = 0 at the points#*, ™, m = 1,...,M and
and hence it is positive definite a.s. for sufficiently large i ; = 1,... 7 and only at these points. In addition, the
The second estimator is given by matrix V2a(6) is negative definite at the poinés, 6™, m =
o~ ~ = ~ 1,...,M and positive definite at the points,j =1,...,J.
Vin(0n) = /e(y,en)e (4,0) f(y:0n)dy = (30) Denote the eigenvalues of the matWa(6) by A (0), k =
1~ —T ~ 1,..., K. Therefore,

H(O,)B™ (0)H (6,) )
ml?x{/\k(ﬁ )} <0

m}ixx{/\k(ﬁm)} <0, VYm=1,...,.M

where
B(o) = / Vo log £(y;0)V7 log f(y: 6)  (y: 0)dy |
an
and mkin{/\k(¢j)} >0, Vi=1,...,J

H(9) = T : .
(6) /v9 ¢y, 6)f (y: 0)y The eigenvalues are continuous functions of the matrix el-

It should be noted that undéf, or under model mismatch, €Mment and the operationsiax and min are also continu-
these estimates are not necessarily consistent and the estffi§- in their arguments. Therefore, there are disjoint open
tor (29) is not necessarily positive definite. neighborhoods\™, A™, and M’ around¢~, 6™ and ¢/,

A number of authors investigated ways of estimating tHgSPectively,m = 1,....M, j = 1,....J, that satisfy the
covariance matrix in scenarios in which unexpected depend&flowing conditions:

cies between the measurements may occur (;ee e.g. [29],.[31] sup max{\z(0)} <3 <0 (32)
and references therein). Methods for eliminating the require- geN+ kK

ment for covariance matrix estimation altogether were recently sup max{\,(0)} <6<0, VYm=1,....M
proposed in [32] for the problem of model testing in non-linear geN™ K

regression. pind, min{Ay(0)} 28>0, Vi=1,....J

Denote
IIl. POWERANALYSIS

M J
In order to derive the power function, the asymptotic dis- 0-0\ [N ™ MY
tribution of 6,, underH; needs to be determined. Therefore, \ U gl U ]!1 ’

assumptions on the structure of the ambiguity function (2) at

different local maxima are required. Assume that the systeBince © is also compact, angda(6)/d6;| is bounded and
of equationsVa(f) = 0, has a finite number of solutions incontinuous for allt, we have

© and each one of these solutions is an interior poir®ofn K K

addition, at each of these points, the maffiXa(6) is either inf Z 10a(0) /00| = minz |8a(6) /06y, = 6.
negative definite or positive definite. The ambiguity function 0€0 1 0€6 1



6 SUBMITTED TO: IEEE TRANSACTIONS ON INFORMATION THEORY

Since by the assumption all the stationary pointsi@) are are asymptotically Gaussian distributed. More specifically, let

outside of®, § is strictly positive. O™ be a closed neighborhood @f", in which 6™ is the
Next, we prove that there exis{; such thatvn > Ny, highest relative maximum af(#). Define them'th local-MLE
by
K ~
S 0L (Yn:0)/00k] > 6/2, V9€O, wp. 1 O’ = arg max L (Yn;0), m=1,....M.  (34)
k=1

_ o _ If the optimization method used to solve (1) is certain to find
i.e., for sufficiently largen, the function L, (Y,,;6) has no a relative maximum of,,(Y;; ), then Theorem 1 asserts that
stationary points ir® for almost every sequendgy; };>1. To for sufficiently largen, 6, will be equal to one of the local-

this end, chooseV; such that for alln > Ny, MLEs 6™, w.p. 1. The local-MLE#™ is the MLE associated
5 with the model{f(y,0) : ¢ € ©™} and therefore falls into
10a(6)/ 00k — OLn(Yn; 6)/00k| < 9K’ the mismatch model framework of White [20]. Hence we have
Vk=1,...,K,¥90€©, wp.l the following.
Corollary 1: For all m:
which can always be found by (31). Therefore, 1) @T “% g™ asn — oo, and
K 5 2) vn (0™ —om) 2 N(0,C(0m)).
> " 10a(0)/060x — 0L, (Yn;0)/06)| < 5 In addition, by (15)-(17) we obtain the following:
k=1 Corollary 2: For all m:

Voc®, wp 1 i [hn(é\gl) . h(@"”)} BN,V (™))

and henceyn > Ny, N
X V,,(0) “% V(6™) element by element. In addition, assuming

Z 0L, (Yy:0)/00| > g V0O, wp. 1l that V(6™) is nonsingular,
k=1 am m T —1/pm am m
and the claim is proved. " [h"w”) o ﬂ Vo (6:) {h"w") ho™)| (39
Next, we prove that theE*exijVQ such thatvn > N, is asymptotically distributed ag?,.
L,(Y,;0) is concave over\ , J\/’m,m = 1,...,M and From Corollary 2 it is clear that for the test to have power
convex overM’,j = 1,...,J, where N/ denotes the closure agains®.”, h(6™) must not equal. Otherwise the statistic has
of the setN. Denote the eigenvalues &72L, (Y, ;6) by thesame asymptotb@é distribution under both hypothesHg
A2 (0),k =1,...,L. We consider one specific neighborhoo@nd H; (6). On the other hand, &(6™) # 0 the consistency

N, and prove that of the test can be established.
3 Corollary 3: Assumed,, = 07", If h(0™) # 0 then
01161%% m]?x{)\Z(G)} < 3 <0, Vn>DNy, wpl (33) Pr{S, > Fx—g(l —a)} —1
whered was defined in (32), i.eL,(Y,;0) is concave over for every choice of levek € (0,1).
N Proof: Under the assumptioti, (6,,) > h(6™) by [?,
By the construction, the maximal eigenvalue is uniformizemma 3.1]. Therefore, sincg, (67) 3 V(6™) element by
continuous ove". Therefore, element and we assumed tHa{6™) is nonsingular,
m]?x{/\Z(H)} — m]?x{)\k(G)}, Vo e N, wp. 1 Pr{S, >¢e} —1
and (33) follows. The same argument holds for the proof N all e >0, by [29, Thm. 8.13]. u

concavity of L, (Yy,;6) over the rest of the neighborhoodsthi'f)a‘;fgof'; ;‘ljlrggéiyf Is Eetﬁgrf:SlStenCy of the test: If

N, m =1,2,...,M and the convexity ofL,,(Y,;§) over A

M,j=1,...,J. Pr{S, > F ;' (1 - a)[H} — 1 (36)
For each sefV", by (31) asn increasesL,,(Y,;0) will N

eventually be greater &" than at any point on the boundaryfor_every choice of levek € (0,1), i.e., the test is cor)sistent.
of N, w.p. 1. Therefore,L,,(Y;.; 6) will attain a single local This result extends the results of [19] and [22], which estab-

maximum at an interior point o™, w.p. 1 (not necessarily |'|Shed| undgr a CO”?C“Y Sp;acn‘le_d mor(]jel .Eeﬁch fcl)r th?r own
at ™). A similar argument holds faA"* and for a minimum global maximum validation function) that if the only solution

point in M7 and the first part of the theorem is proved. to the set of equations

Finally, since the setsV*, N ' m = 1,...,M can be / 0

- AN o 1 =

taken arbitrarily small, the maximum points 6f,(Y,,;0) are Volog f(y,0)f(y,67)dy = 0

strongly consistent estimates &f, 0™, m =1,..., M. [ | 0 _
Theorem 1 ensures that asincreases the relative maxima /e(y’ 0)1(y,67)dy =0

of the log-likelihood function occur close to the relative maxe go

. e . X s 0°, then

ima of the ambiguity function and only at these locations. This _ R
implies that the relative maxima of the log-likelihood function Vnh,, (6,) L N(0,V(6°) iff 6, =0,.
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Furthermore, Corollary 2 implies that undéy, and partic- we obtain
ularly whené,, = 67", the distribution of the test statistf;, is . . .
approximately non-centrat?, with non-centrality parameter h(07) = E{e(y,0")} = E{d(y,0")}

ném _ nhT(g'rn)v—l(e'rn)h(em) = / [d(% 9*) - h(e*)] [g(y) - f(y7 9*)} dy

denoted byx,(nd™) [34]. We denote the, (nd™) cumula- By the Cauchy-Schwartz inequality
tive distribution function byFXé(m;m)(-). The finite sample ) )
power of the test against a local maximum @& can be h=(6") < / [d(y, 0) — h(67)]" g(y)dy x

approximated by [34, p. 468] / lg(y) — f(y,07)] J
y

Therefore, the power of a given test against a local maximum = V(") (/ Mdy — 1>
at 0™ is characterized by 9(y)

§m = hT(om)Vfl(em)h(em) (38) Implylng that

h2(6*
which will be called the power characteristic of the test as €= V(H*) <exp[Da (f(y,0%)||g(y))] — 1
a function of #™. The power characteristic is a basis of (07)
comparison between tests. where
1 « —
IV. MISSPECIFIEDMODELS Da(£1w)llf2(y)) = —— 110g/f1 (W) f2“(y)dy

In general, it is difficult to discriminate between the cases the Renyi divergence betwedin(y) and f(y) with param-
of: (a) 6,, a local maximum in a correctly specified model;

and (b)§n a global maximum in a misspecified model. Unde(rat?l—rhoérefore, when a bound B (f(y, 0%)
model mismatch, the probability of mistakenly rejectihgas able, sayB
the global maximum, increases with the number of sample§;cordin
If the test statistic is designed under the assumption that .yl
the model is correctly specified but the actual underlying
distribution is outside the assumed parametric family, then (18) Sp > F):?Ql(n[exp(Be)—l])(]' —a). (39)

a.s.

may be violated. In this case, even whgn= 6,,, h,(0,) = i , .
h(6*) # 0 and, similar to the discussion in the previouérh's choice of threshold leads to a test, the level of which

section,S,, is approximately distributed ax%(ne) with non- decreases to zero, instead of increasing to one. Since
centrality parametene :.nhT(a*)Vfl(a*_)h(e*), instead of fats C(—a)> Fl(1-a)
the assumed central chi-squared. In this case &snds to xg (nlexp(Be) 1) Xe
infinity, the probability of mistakenly rejecting, as the global for all « [34], this adjustment decreases the power of the test.
maximum increases to one regardless of the test threshold, &luivever, as long as the the power characteristic of the test at
is approximately given by a local maximumy™ (38) is larger tharexp(B.) — 1, the test
will detect such a local maximum with probability approaching
one asn tends to infinity.

Often it is difficult to compute a bound on
A. A Bound on the Non-Centrality Parameter Dy (f(y,0%)||g(y)), especially due to the computation

It is possible to bound the non-centrality parameter required for6*. When _the true underlying distributiqn and
induced by the model mismatch, in terms of the Ren)ui‘e assumed parametric model are both embedded in a larger
divergence betweeyi(y; 6*) and true underlying density(y). Parametric class and are sufficiently close to one another,
Consider the case in which(y, 6) is a scalar function and it iS possible to approximate the Renyi divergence by the

llg(y)) is avail-

., it is possible to set the threshold of the test
g to axg(n[exp(B.) —1]) distribution, i.e., reject
hypothesis if

1= F (no [F;la - a)} .

XQ XaQ

satisfies Kullback-Leibler distance defined below. This leads to a
simple approximation of3..
/e(y,@)f(y,e)dy =0, VOeo. Suppose that the parametric clags(y;0) : 0 € O} is
) ) S embedded in a larger clagg(y;0,v) : 0 € ©, vy e T c RK'}
In this case the non-centrality parameter simplifies to such thatf(y; 6) = f(y; 6,~°) for all § € ©, and that the true
ne = nh2(6%)/V(0"). underlying density ig(y) = f(y; 6°, '), with 6! close tog".
] o i This setting was recently treated in [35], where the parameter
Sinced* minimizes D (g(y)|| f(y,#)) with respect tad, vector~ was referred to as the background parameter.
In this case, the local equivalence and symmetry of f-
/Velog Ty, 0)|g—p- 9(y)dy = 0. divergence measures [36, p. 85] can be used to approximate

Therefore, denoting the Renyi divergence

d(y,0) = e(y,0) — HO)A(0)V log £(y, ) Dy (f(y,0)l9(y)) = D2 (f(y; 0", 7)1 £ (y; 90,71))
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by f(y,0°) as well. 3° = [§°7,4°T]” and the matrixB -)(5)
2D, (f(y;goﬁl)uf(y;g*ﬁo)) is the upper rightk” x K’ block of the FIM associated with

the densityf(y; 8), that is,
up to terms of ordeo (||6* — 6°|> + ||7° — 4!||*), where

Dy (1) f2(w)) = lim Do (1(0)]£2(v) B(B) = /Vﬁ log f(y; B)V5 log f(y; ) f(y; B)dy,  (42)
fily N
= /10g (flgy;) f1(y)dy and it is assumed thdB(3) is non-singular for allg € © x
. ) ) I'. Hence,S,,, defined in (19), is asymptotically non-central
is the Kullback-Leibler distance betweefn(y) and f2(y). chi-squared distributed witlj) degrees of freedom and non-

Furthermore,#* minimizes D (f(y; 6°, 91| f(y;6,7°))  centrality parameter
overf € ©. Hence,

Dy (Fly: 6" M I1f i 071)) <
T 00 AN .. g0 0 In [26] this result is used to assess and optimize the power
Dy (f(y, Oy ONf (53 67,y )) ' of M-tests against local alternatives. Here, our goal is reversed;
Therefore, D, (f(y,6%)|lg(y)) can be bounded by we would like the tests to be insensitive to small deviations

9D, f(y;9°,71)||f(y;90,70) up to terms of order from the assumed model. Specifically, note that

5 =~'D'V1(6°)Dr.

O (||6* = 6°[1> + [|7° — ~+||?). The advantage of the bound 0 o
is that it does not require the difficult evaluation &f. H(0") = /V‘? e(y,0)lg—go f(y: 67)dy
_ T o 0 .o
B. Tests Insensitive to a Pitman Drift = /e(y,&) Vg log f(y; 0,7 )‘9:90 F(y; 07)dy.

errﬁesgdn;?j ?r?gllna:hzi t;k;sg;f?ré?et)@;lz%y;e)e:g § gi}('i Therefore, considering the space of zero-méanfunctions
ger « Y9, 7) 7 of y with inner product

such thatf(y;0) = f(y;0,~°) for all & € ©. Denote by
B =[67,4T]T the concatenated parameter vector and assume

that there exist integrable functionsy) and b(y) such that (fr(y), f2(y)) = /fl(y)fz(y)f(y; 0)dy
a(y)b(y) is integrable as well with respect tq and for almost

all y, f(y;8) < a(y) and |log f(y; 8)|, |Vslog f(y; 3)|?, our objective is to construct a global maximum valida-
V2 log Fy: B), le(y,0)]2, and|Vae(y, )| are each less thantion function e(y, #), with elements orthogonal to the space
b(y) for all 3 € © x I, where for matrices - | denotes Spanned by thé + K” set of functions

the maximum valued element. Furthermore, assume that the _

support of f(y; 3) in independent of3. Assume that the true Vlog f(y;ﬂ)’ e (43)
underlying distribution depends on hence denoted by, (y), =
and is given by By this construction, both terms of the matrix are zeroed
— F(4 00 A0 out, i.e., the test is insensitive to the Pitman drift regardless of
() = S (3679 +9/vn) (40) the vectory. Denoting the classes of log-likelihood functions

for some fixedy € I', and denote the limiting distribution {log f(y;0) : 6 € ©} and{log f(y;0,v) : 0 € ©, v € T'} by

by g(y). In the context of model specification tests, thig~ andg, respectively, Fig. 1 gives a geometrical interpretation
type of local alternative is called a Pitman drift. Newey [26pf the construction ot~ (y, 6).

investigated the power of M-tests to such local alternatives.Given any global maximum validation functiatiy, 6) that
Applying Newey's result to our setting we obtain that(f, #) satisfies| e(y, ) f(y; 0)dy = 0, V8 € ©, its orthogonal com-

satisfies ponent with respect to the vector (43), denotedebyy, 9),
/e(yﬁ)f(y;e)dy =0, VAe® is
then undertl, eH0,6) = c(0.6) - [EG)B (9T slos Fys )] (44)
Vit (8) 2 N (D7, V(6°)) (41)

where E(3) is the K x (K + K') matrix of inner products
where in the definition ofV/(0) (12), the expectation is between the elements ef(y,#) and the functions in (43),
taken with respect to the densifi(y, 6°) and the termh(6°) given by

vanishes. The ternb in (41) is

D=/€(y79°) Vflogf(yﬁow)‘ Cf0%)dy

Y=y

— H(6°)ATH(6°) By (6°) This can be verified by computing the matrix

E(f) = / ey, O)VY log Fly: B)f(4:0)dy.  (45)

where the expectations in the definition4f¢) and H (9), (3)

1 T o .
and (11), respectively, are taken with respect to the density /e (y,0) Vi3 log f(y; B) o fy; 0)dy.
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At any local maximumgg, Y1 Ve logf(yigan) = 0 and
therefore, computing: (6,,) = 3", et (v, 0,,) reduces to

n

hﬂl_(gn) = Ze(yt’ 5”) -

t=1

E (8) Ba(8) YV log Fue: B)

t=1

0=0,, ,7=~"

where B () is the (K + K') x K’ matrix composed of the
right K’ columns of B~1(3) defined in (42). Furthermore,
under the null hypothesisly, a consistent estimator for the
covariance matrix of/nh;-(6,) is

1 — ~ ~\T
ﬁ Z el_ (yta 0”) eL (Z/u 0n>
t=1

since the termH (0) (11), which appears in (28), is zero by
construction ofe*(y,6). When closed form expressions for
E(B) and B(3) are available, the covariance matrix can als
be consistently estimated unddy by

~ ~ o~ ~
Va(n) = /e(y, On)e” (Y, 0n) f(y, On)dy — Fig. 1. Geometrical interpretation of the construction of tests insensitive to
~ LA oneT S o Pitman drift.
E(0n,7")B™ (0,7 )E" (60,7").  (46)

In summary, tests for global maximum which are based on
et (y,0) are locally insensitive to model mismatch of the typ%
defined in (40) for anyy € T.

Another motivation for usinge® (y,6) can be obtained
from the Taylor expansion df(#*) aroundy°. Assuming the
derivatives can be taken inside the integrals, we obtain that
zeroth order (constant) term is identically zero and the fir
order (linear) term is zeroed by the constructioreoéf(y, 6). ye = D(0)s; + wy

In practice, we expect these tests to be less sensitive to small
deviations from the model. An example in which this is thwherey, € C* is the noisy data vector at the array elements,
case is given in Sec. V-A.1. D(O) = [d(61) d(6)]

Here we adopt the standard narrow band model of [40]. We
onsider the estimation of the directions of two uncorrelated
narrow band Gaussian sources using a uniform linear array of
P = 4 sensors with\/2 spacing between elements {s the
t\ﬁ/gvglength of Wavefronts propagating across the array). The
rsc?cewed signal model is given by

V. APPLICATIONS where [d(0)], = exp{jpmcos(d)},p = 0,1,2,3 is the

The asymptotic regime adopted throughout the paper, rai$$&€ring vectors; contains the two signal components, and
the question of small sample performance. In this sectidﬁ,atemporally and spatially complex white circular Gaussian
tests for global maximum will be derived and evaluateBoise. This signal model corresponds to the so called stochastic
through simulations for several parameter estimation probler§ignal model in which the received signal at the array is
In the simulations the following aspects were studied. Firgistributed as a temporally white zero-mean complex circular
the accuracy of setting the test threshold &, (1 — o) Gaussian random vector with covariance mat€ixg) =

for a level o test was evaluated. Second, we évaluated ho%e)KSDH(G) +U2‘r,’ Whgre’ Sue t‘; an unc2orrelated sources
fast the power of the test approachesas the number of 25SUMPUONK, = dlag(f?l’%?)’ 051 andog, are the wo
samples increases, and the accuracy of the finite sample pogje rce vanances, ane” is the noise variance. Hence, the
approximation (37). Finally, the sensitivity of the tests to ensity ofy is given by

misspecified model is examined. The threshold adjustment 1
procedure and the construction of tests that are orthogonal Fly,0) = 7P det (C(0))
to deviations from the model are demonstrated.

exp [—yHC’*l(H)y] . 47

The variances?, o2, ando? are assumed known. The only

unknowns are the sources directiois= [0y, 62]7. In the

simulations the true unknown parameters were taken to be
For a review of the problem of direction finding using = [7/2, 7/2 + 0.4]7 and the other known parameters were

antenna arrays see e.g. [37] or [38]. The characterization saft toc?, = 0%, = 1, ando? = 2. In Fig 2, the log-likelihood

the MLE under possible model mismatch has been recenslyrface calculated frora00 samples is shown and it is seen

addressed in [39] and [35]. that it has two relative maxima.

A. Direction Finding in Array Signal Processing
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/ ¢2(y,6) f(y.0)dy = / [P~y (0)y])” F(y,0)dy

‘GLobaI maximum _ P
38 / e and E(e) is the FIM for this problem [1, p. 565], given by
’ | - oc0) ., 9C()
-14 _
Local maximum [B(g):ll’] o |:O ( ) 69 O (0) 89] ' (48)
e Hence

~ T

and the test statistic is given by
~  ANT2 o~
S, =n [P —tr (C*l(an)c)} V(0.  (49)

The threshold is set according to)@ distribution with one
degree of freedom.

We compare Biernacki’s test to a test which is based on the
real part of the first off-diagonal element of the covariance
matrix. To compare the first off-diagonal element of the

-15.5

: & covariance matrix at the candidate relative maximum to its
) - _ S unconstrained estimate from the data, the global maximum
Fig. 2. The log-likelihood function of the direction finding problem. validation function is taken to be

e(y,0) = y" My — tr (MC(0))

where M is the symmetric Toeplitz matrix whose first row is
[0,1,0,0], and hence

Recall that the global maximum validation function of
Biernacki’s test is given by

e(y,0) =1o ;0)— [ lo ;0 ;0)d ~ n ~
(5.6) = los £ (5:6) ~ [ 1o F:0) (:)dy WARES S
—log (") — log (det (C(0))) —y"C ' (0)y =1 B
+ log (7F) + log (det (C(6))) = tr (MO) —tr (MO(&n)> .
+ /yHC‘l(G)yf(y;e)dy For this choice ok(y,0) we have
=P—y"C(0)y. [H(©0)],,=—tr ( 850( )> . i=1,2 (50)
Hence and by [1, p. 564]
1 n
=5 2 clb [ w0500 -
t=1
pol [ 3ty @] . 0)dy
nis = tr (MC(0)MC(0)).
- ( ) Hence
where . V(0,) = tr (MC(9 YMC(8, )) H(6,)BO)H" (6,)
1
“n ;ytyt ' the test statistic is given by

Under the null hypothesis and assuming the model is correctly S, = n {tr (MC) —tr (MC( ))} JV(6,) (51)

specified, a closed form expression for the variance can be
computed through (30), where and, again, the threshold is set according tg?adistribution

with one degree of freedom.
[H(9)] L= /8e(y, 0)/86; f(y,0)dy The power performance of B_iernack?’s test and a Covariance
’ based test were evaluated for increasinfpr levels that were
set t00.01 and0.001. 1000 Monte Carlo iterations were used.
At each iteration the global maximum and the local maximum
60(9)) i—19 were found and the tests were applied to both maxima to

evaluate the performance. When the number of samples is very
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0.18

T
-6~ Covariance based
—%— Biernacki
0161 — Covariance based CT
— Biernacki CT
-8~ Covariance based Orthogonal
0~ Biernacki Orthogonal
0141 — nominal value

Power (Probability of Detection)
o o
= ol
T T

o
w
T

Level (Probability of fulse alarm)

o
""w

-6~ Covariance based a=0.001
—% Biernacki o = 0.001 H
—t+ Covariance based 0=0.01

— Biernacki o = 0.01 |

| | T T T X

20 40 60 80 100 120 140 160 180 200 50 100 150 200 250 300
number of samples Number of samples

0.1

Fig. 3. Direction finding: power when the model is correctly specified. Fig. 4. Direction finding: level under model mismatch.

small (e.g.n = 20), the likelihood function my be distorted where f(y;6) is given in (47) andf(y;0,~) is the same
and the two relative maxima may collapse into one. Such caskesisity but with covariance matrig’(9,~) (52). Then, the
were eliminated from the analysis. The results are summarizaed! hypothesis was rejected if

in Fig. 3. While not presented here, we observed that the
empirical levels of both tests were in good agreement with

the specified values. The simulation results show that, as anticipated, the level

1) Model Mismatch:In this section the performance of theyecreases rather than increases with the number of samples
tests (49) and (51) under model mismatch is evaluated. TR®o Fig 4, where CT is a shorthand notation for 'corrected
assumed model used for the estimation is the same as in shold).

previous section (47). The samples were generated according, construct the orthogonal counterparts of the two tests,

to the model (47) but with covariance matrix et (y,0) is found through (44). For Biernacki's test the ele-

" ) ments of E(5) (45), which is al x 3 vector is this case, are
C(0,v) = D(O)K ;D" (0) + 0" R(7), (52)  given by

where R(~) is a symmetric Toeplitz matrix whose first row 1, 0C7H(B) )
is [1,7,72,7%], which corresponds to a first order AR spatial ~ [E(0)li = —tr (C (6)8@‘) g
noise covariance [41], and in the simulatign= 0.1.
For both Biernacki's test and the covariance based td¥pere, as defined earlieff = [6”,+]". For the covariance
the effect of model mismatch on the level was evaluated fBased test the elements b{3) are given by
three cases: (a) The increase in level due to model mismatch aCc—1(B) .
when the tests are performed without any adjustment, (b) [E(B)]: = tr (M85->’ i1=1,2,3.
The threshold correction described in Sec. IV-A, and (c) The !
performance of the orthogonal counterparts given in Sec. IV-Bhe FIM E(ﬂ) is also available in closed form as given in (48).
To perform the threshold correction described in Sec. I\¥sing the closed forms fof(3) and B(;3), the variance for
A, the Kullback-Leibler distance needs to be estimated. the two tests was computed through (46). In Fig. 4 it is seen
the simulation, it was assumed that it is known that th@at while the original tests suffer from increased level as the
parametery, which controls the deviation from the modelnumber of samples increase, the orthogonal counterparts are
ranges between zero (correct model) and At every Monte unaffected by this type of model mismatch.
Carlo iteration, given a relative maximué,,

-1
Sn > szQ (n[exp(Zc)fl])(l - O[).

c= max Dy (f(y gnﬁ)Hf(y;gn)) B. Estimation of Gaussian Mixture Parameters

velo.1l The problem of estimation of Gaussian mixture parameters
was computed, using the known formula for the Kullbackarises in both non-parametric density estimation (see e.g. [43]

Leibler distance between two Gaussian densities (e.g. [42nd references therein) and a variety of clustering problems
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A closed form expression to the integral in (54) is not
available. Hence, in the simulations, numerical integration is
used. The varianc&,,(¢,,) required for the construction of
the test statisticS,, (19) was calculated through (13). Note
that H,,(¢), required for calculating/,(¢,,), simplifies under

the null hypothesis, i.&,, = 6,, to

Global maximum

N

Local maximum

H,, (67)

0=0,

1 n
- > Ve, 0)
t=1

1 n
=D _Vilog f(y;0)
t=1

- / V§ log f(y: 0) f (y; 0)dy

- / log £ (y; O)VE f(y: 6)dy

0=6.,

_ / log f(y; )V f(y; 0)dy

0=0,,
which was calculated in the simulation by numerical integra-
tion.

The global maximum validation function of the mean based
test is given by

(see e.g. [44] and references therein). The MLE for this e, 0) =y —lpm + (1 = p)n.]
problem is usually found by using the EM algorithm [10]which leads to
In [44], the authors describe a method that finds the global

Fig. 5. The likelihood function of the Gaussian mixture distribution.

maximum with good performance. However, even this state hn(6,) = 1 Zyt — (pm + (1 = p)i2). (55)
of the art method is not certain to find the global maximum, [
and therefore, tests for global maximum are useful. Similar to the previous test, the variance required for the test

Here we consider the univariate case, in which the indepefiagistic was calculated through (13), where, for this test, the
dent scalar measurements are generated by the following t\‘i\é‘?:toan(~

-aAst : i ) 0,,) is given by
component univariate Gaussian mixture density B
Hn(on) - - [pa (1 - p)] .

2 2
fly0) =3 \/%EXP {(ygggl)} (53)  The level of the tests was set @01 and the empirical

=1 ! : power was estimated frort, 000 Monte Carlo iterations and
where the parameter vector consists of the two mears compared to the analytic approximation (37). The results are
[m m2]". The number of components, the variances, and tB@mmarized in Fig. 6 and it can be seen that the analytical
mixing probabilities are assumed known. In the simulation, thgwer approximation predicts the empirical power well. It can
true parameter i¥ = [0, 3]”, the variances are? = 1 and pe seen that the power of the mean based test is better than that
oi = 0.5, the mixing probabilities arg; = 1—p, = 0.35 and  of Biernacki's test. For other choices of parameters different
itis known that® = [-1, 4] x [-1, 4]. The likelihood surface results may be obtained. While not reported here, the empirical

over © of a realization of200 samples generated accordingevel of both tests was in good agreement with its specified
to this model is presented in Fig. 5 and two relative maximg|ye.

appear.

The performance of the global maximum tests was evaluat&d Estimati £ . JE tials in Noi
as the number of samples increases.1000 Monte Carlo stimation ot superimposed Exponentials in Noise
iterations were generated. At each iteration, Biernacki's testFor a review of the problem of estimating the parameters of
and a mean based test were performed on both the gloBdPerimposed exponentials in noise see, e.g., [40]. Consider
and the local maxima. As in the previous section, Biernackit§e following model

global maximum validation function is given by K
Yt = Oék@XP{ijt}‘i‘U)t, t:17"'an
e(y,0) = log f(y;0) —/logf(y;ﬁ)f(y;ﬂ)dy (54) kzzl
and therefore, where w; is a white circular Gaussian noise with unknown

variances?. The unknown parameters are the frequencies of

~ 1 & ~ ~ ~ . ) .
B, (0,) = — 1o 0,) — /10 -0, -0,,)dy. the exponentialg€, ..., Qk], their complex valued ampli-
(6) n ; 2 fwt; 6n) 8 £ 43 6n)f i By tudes[ay,...,ax] and the noise variance. The numhgr
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Fig. 6. Gaussian mixture: empirical power vs. its analytic prediction, whefig. 7.  Exponentials in noise: performance when the model is correctly
the level is set t@.01. specified.

from the real part of the statistic
of components is assumed known and was se3,tbence " x
there arel0 unknown parameters. The unknown parameters 5 1 ~ 5
hy, (0, - ap exp(jQt) | X
were set to[01,Q,,Q3] = [0.4, 0.5, 0.6], [0, 0, 03] = (0r) n—1 D |y = D @ exp(it)

=2 k=

[exp(52), 0.8 exp(43), 1.2exp(j5)], ando? = 1. ' X ' *

Under this generating model, the data are independent but lyt_1 - Z e exp( QU (t — 1))] .
not identically distributed. They are distributed as non-zero k=1

time-varying mean circular Gaussian process. Hence, the tragis shown in the Appendix that under the null hypothesis, the
ment in Sec. II-A does not cover this problem. Furthermorgga| part of this statistic is asymptotically distributed as a zero-
since the MLE for this problem is super efficient [45], thenean Gaussian random variable with variandg2. Hence,

more general framework of White [29] for constructing testsince under the null hypothesi is a consistent estimator
in dynamical models does not cover this problem eithepr 42, the statistic
However, a detailed statistical asymptotic analysis for this N 5
problem is available in the literature and can be used to (%{hn(en)}>
construct a test for global maximum. In particular, in [45] it n#ﬂ
was shown that the MLE is asymptotically normal distributed 7
under an appropriate normalization. Based on this analysis, iseasymptoticallyy? distributed with one degree of freedom,
propose a test which is based on the autocorrelation functiamd can be used to discriminate between local and global
In particular, our test is based on the fact that at the trumeaxima. In Fig. 7 the performance of this test is presented
parameter, when the level is set t0.01. The empirical level and power
of the test were estimated frof®00 Monte Carlo iterations.
It is seen that the asymptotic approximation to the level
K is accurate fom greater therB00 and the power of the test
E { Y — Zak exp(ijt)] X approached whenn is greater theri00.
k=1
K
i1 — > agexp(jQ
k=1
E{ee;_ 1} =0,

" VI. CONCLUDING REMARKS
(t—1))

This paper has investigated a method for detecting a case in
which a local search for the maximum likelihood has stagnated
at a local maximum. This is a useful tool for exploring
solutions of the global optimization problem associated with
_ the ML method. Because existing tests are sensitive to model
and hence, given the local maximufp, we construct a test mismatch, the general treatment given here is necessary for
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practical implementation of this tool. The framework giveut from (1.57) the first term converges to zero in probability,
for the construction of tests and the power analysis enablearsd hence,
to pose fundamental questions of optimality: Given a statistical

model, what is the best choice efy, 8) in terms of achieving H,(0n)v/n (9" - 9*) +
maximum power for a given level with minimum sensitivity . 1 »
to model mismatch? This remains an open question. H(6")A™ (9*)% > Vlog f(yr,0%) = 0.

It is possible to generalize the above concept to non-i.i.d.

measurements. A unified treatment of the MLE under a posgi-, ... . 5 5 e ¥
ble model mismatch and the construction of model mismatc Ubstitutingfy, () y/n (9" 0 ) Vihn ( n) = v/nhn(07)

tests for dynamic models is given in [29] and an example &M (156), adding and subtractingnh(¢*), and rearranging
which the measurements are i.n.i.d. was treated in Sec. {ms. we obtain

C. The concept of using a statistical test for discriminating N

between global and local maxima can be generalized to other vn {hnwn) - } Z e(y, 0 h(6%)—
M-estimators [2], or any other optimization problem in which a

statistical characterization of the global maximum is available. H(#*)A~'(*)V log f(Jt,H*)]

From the Lindeberg-évy central limit theorem the second
term converges in probability to a zero mean multivariate
normal density, with covariance matriX(6*) and therefore,
The proof follows White’s methodology [29]. Given thefrom 2c.4(xd) of Rao [46], so does the first term, and the
assumptions, the mean value theorem for random functiofisst part of the theorem is proved. The consistency/,qf@n)
given as Lemma in [33], guarantees the existence of meafor V(6*) follows from Lemma 3.1 of White [?] given the
surable®-valued functions),, such that assumptions, and the consistency guarantees What(6,,)
~ y _ ~ . exists for sufficiently large:, since the determinant of a matrix
Vnhn(0n) = Vnha(07) + Hp (0n)vn (‘gn -0 ) (156) " is a continuous function of its elements. The last part of the
theorem follows from Lemma 3.3 of White [47] and the proof
is completed.

APPENDIX |
ASYMPTOTICDISTRIBUTION OF M-TESTS

where eachd,, lies on the segmentjoininé,b and 6*. Each
row of H, depends on a differe,,, but since it makes
no difference asymptotically, the above shorthand notation

. d E 5 0 _ o distributi APPENDIXII
IS used. roT ( W( no ) converges in distribution. ASYMPTOTIC DISTRIBUTION OF THETEST STATISTIC FOR
Furthermoref,, 3 6* and thereford,, 3 9* as well. From EXPONENTIALS IN NOISE

Theorem?2 in [33], applied on the elements df,,(9), we

have H,(6) “3 H(6) uniformly in @, and therefore using
Lemma3.1 of White [?], H,,(0,,) — H(6*) “% 0. Using these A R
intermediate results we obtain froe.4(za) of Rao [46] that B (0n) = hn(0°) + VT 1, (0)(0,, — 6°)  a.s..

_ The _derivation is given under the null hypothesis, hence
0, = 0,. Using the mean value theorem we obtain

[H,(8,) — H(6")] vn (gn _ 9*) o (1.57) Using the martingale central limit theorem with the filtration
{F; = o(e1,...,e;)} [48], we obtain thath, (6°) converges

Equation (A.2) of [20] asserts that in distribution to a zero-mean Gaussian random variable with
n varianceo? /2. Next, we show that the second termois(1).
Afl(g*)% ZVlng(ytﬁ*) +n (@) — 9*) Po. First split the second term into two components
n — -~ — ~
=t VT 1 (0) (6, — 0°)=n"3/2V L h,, (O)n*/*(Q,, — Q°) +
Therefore, by the finiteness & (0*), we have n-12yTh @nug(a —a).
H(07) % It is possible to show that bothn=3/2V{h,(d) and
1 — ~ n='2VTh,(f) converge to zero in probability. Therefore
—1/p* * * !
AT >WZV10g Fye, 0 )+\/ﬁ(9" -0 )] since it was shown in [45] that both®/2(Q, — Q°) and
P =t n'/?(a, —a®) converge in distribution, we have that this term
— 0. converges to zero in probability. This establish the asymptotic

normality of hn@n). In [45] it was also shown that?>
converges to the true value @f a.s.. Therefore, by Lemma 3.3
of White [47], we obtain that the test statistic is asymptotically

[H(6") — H,(0,)] (9 _ 9*) x? distributed.
H, (0, )\F(e —e*)+

Adding and subtractingd,,(6,,)\/n (§n — 9*) and rearrang-
ing terms, we obtain
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