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Abstract— We explore the available degrees of freedom (DoF)
for the two user MIMO interference channel, and find a general
inner bound and a genie aided outer bound that give us the exact
# of DoF in many cases. We also study a share-and-transmit
scheme and show how the gains of transmitter cooperation are
entirely offset by the cost of enabling that cooperation so that
the available DoF are not increased.

I. INTRODUCTION

Multiple input multiple output (MIMO) systems have as-

sumed great importance in recent times because of their

remarkably higher capacity compared to single input single

output systems. It is well known [1]–[3] that capacity of a point

to point (PTP) MIMO system with M inputs and N outputs

increases linearly as min(M, N) at high SNR. For power and
bandwidth limited wireless systems, this opens up another

dimension - “space” that can be exploited in a similar way

as time and frequency. Similar to time division and frequency

division multiplexing, MIMO systems present the possibility

of multiplexing signals in space. For example, using singular

value decomposition (SVD) of a MIMO channel, one can

generate parallel channels in space similar to those created

by dividing time or frequency into orthogonal slots.

The availability of spatial DoF depends upon two factors:
cooperation within inputs/outputs, and channel knowledge.

Previous work has shown that in the absence of channel knowl-

edge, spatial DoF are lost [4], [5]. Multiuser systems, with con-

strained cooperation between inputs/outputs distributed among

multiple users, are especially challenging since, unlike PTP

case, joint processing is not possible at inputs/outputs. The

available spatial DoF are affected by the inability to jointly

process the signals at the distributed inputs and outputs. [6]

investigated DoF as a function of distributed and partial side

information for multiple access (MAC) and broadcast (BC)

channels.

In this paper, we quantify the loss in available DoF under

the distributed processing constraints imposed by the two user

interference channel. It was recently shown in [7] that coop-

eration between single antenna transmitters does not provide

additional multiplexing gain in an interference channel. In

this paper, we explore the benefits of transmitter cooperation

when the nodes have multiple antennas. We establish a general
innerbound and a genie based outerbound on the # of DoF

for MIMO interference channel. For many cases of practical

interest, these bounds are shown to be tight and we have the

exact # of DoF. We also consider a simple cooperative scheme

to understand why transmitter cooperation does not increase

DoF. Through this simple scheme, we are able to show how

the benefits of cooperation are completely offset by the cost

of enabling it.

II. DEGREES OF FREEDOM MEASURE

In order to isolate the impact of distributed processing from

channel uncertainty, we assume that channel state is fixed and

perfectly known at all transmitters and receivers. Also, we

assume that the channel matrices are sampled from a rich

scattering environment. Therefore we can ignore the measure

zero event that some channel matrices are rank deficient. It

is well known that the capacity of a scalar additive white
Gaussian noise (AWGN) channel scales as log(SNR) at high
SNR. On the other hand, for a single user MIMO channel

with M inputs and N outputs, the capacity growth rate can

be shown to be min(M, N) log(SNR) at high SNR. This
motivates the natural definition of spatial DoF as:

η � lim
ρ→∞

CΣ(ρ)

log(ρ)
, (1)

where CΣ(ρ) is the sum capacity (just capacity in case of PTP
channels) at SNR ρ. In other words, DoF η represent the max-

imum multiplexing gain [3] of the generalized MIMO system.
For PTP case, (M, N) DoF are easily seen to correspond to
the parallel channels that can be isolated using SVD, involving

joint processing at the M inputs and N outputs, i.e.

η(PTP) = min(M, N) (2)

A. The Multiple Access Channel

The MAC channel is an example of a MIMO system where

cooperation is allowed only between the channel outputs. Let

the MAC consist of N outputs controlled by the same receiver

and 2 users, each controlling M1 and M2 inputs for a total of

M = M1 + M2 inputs. For the MAC, the available DoF are

the same as with perfect cooperation between all users.

η(MAC) = η(PTP) = min(M1 + M2, N). (3)

While the capacity region of the MIMO MAC is well known

and the spatial multiplexing gain has also been explored in

previous work, we include the following constructive proof to

introduce zero forcing (ZF) notation which will be useful in

the derivation of our main result for the interference channel.

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

14521­4244­0504­1/06/$20.00 ©2006 IEEE



ZF, which is normally a suboptimal strategy, is sufficient in

this case (as well as in MIMO BC channel) to utilize all DoF.

Converse: The converse is straightforward because, for the
same # of inputs and outputs, η(MAC) ≤ η(PTP) =
min(M1 +M2, N). In other words, the lack of cooperation at
the inputs can not increase DoF.

Achievability: The N × 1 received signal Y at the MAC

receiver

Y =

2∑
k=1

H
(k)

X
(k) + N = VH

†
VX + Z, (4)

where N is the N × 1 AWGN vector, H(k) is the N × Mk

channel matrix for user k, and X
(k) is the Mk ×1 transmitted

vector for user k. VH = V (H(·)†) is the (M1 + M2) × N

matrix obtained by vertically stacking the matrices H(1)† and

H
(2)† . Similarly, VX = V (X(·)) is the (M1 +M2)×1 matrix
obtained by vertically stacking X

(1) and X
(2). Transforming

the output vector

Y
new =

(
VHVH

†
)−1

VHY

(using generalized Moore-Penrose inverse) and ignoring the

zero gain channels result in the min(M, N) parallel channels

Y
new(i) = VX(i)+N

new(i), 1 ≤ i ≤ min(M, N), (5)

whereNnew(i) ∼ N (0, λi) are Gaussian noise terms and λi is

the ith diagonal term of
(
VHVH

†
)−1

. The noise terms may

be correlated across different channels but the correlations are

inconsequential since each channel is encoded and decoded

separately. Dividing power equally among the min(M, N)
channels, we can achieve

η(MAC) ≥ lim
ρ→∞

1

log(ρ)

min(M,N)∑
i=1

log

(
1 +

ρ

min(M, N)

1

λ2
i

)

= lim
ρ→∞

1

log(ρ)
[min(M, N) log(ρ)+

min(M,N)∑
i=1

log

(
1

λ2
i min(M, N)

)
] = min(M, N)

Note that the channel gains or the exact power allocation does

not affect the DoF as long as the SNR on each channel is

proportional to ρ.

Combining the converse and the achievability, we have

established that η(MAC) = min(M1 + M2, N).

B. The Broadcast Channel

The BC channel is an example of a MIMO system where

cooperation is allowed only between the channel inputs. Let

the BC consist ofM inputs controlled by the same transmitter

and 2 users, each controlling N1 and N2 outputs for a total of

N = N1 + N2 outputs. In a similar fashion as the MAC, it is

possible to show that by ZF at the BC transmitter, min(M, N)
parallel channels can be created, so that the total DoF are the

same as with perfect cooperation between all the users.

η(BC) = η(MAC) = η(PTP) = min(M, N). (7)
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Fig. 1. (M1,N1) , (M2,N2) Interference channel

III. INTERFERENCE CHANNEL

Consider an (M1, N1), (M2, N2) interference channel with
two transmitters T1 and T2, and two receivers R1 and R2,

where T1 has a message for R1 only and T2 has a message

forR2 only. T1 and T2 haveM1 andM2 antennas respectively.

R1 and R2 have N1 and N2 antennas respectively. We denote

the channels for link 1 with N1xM1 channel gain matrix H(1),

for link 2 by N2xM2 matrix H(2), for the channel between T1

and R2 by N2xM1 channel matrix Z(2), and between T2 and

R1 by N1xM2 matrix Z(1). Figure 1 shows an illustration of

this interference channel. We assume that we arrange the links

so that link 1 always has the most # of antennas either at its

transmitter or receiver, i.e. max(M1, N1) ≥ max(M2, N2).

A. Innerbound on the Available Degrees of Freedom

For the (M1, N1), (M2, N2) interference channel we prove
the following innerbound on the available DoF.

η(INT) ≥ min(M1, N1)

+ min(M2 − N1, N2)
+ 1(M1 > N1)

+ min(M2, N2 − M1)
+ 1(M1 < N1), (8)

where 1(.) is the indicator function and (x)+ = max(0, x).
While we conjecture that this bound is tight for any

M1, N1, M2, N2, we can prove a converse only with some

additional assumptions on the # of antennas. A general achiev-

ability proof is outlined next.

1) Sketch of Achievability Proof: According to our model,
either M1 ≥ N1, M2, N2 or N1 ≥ M1, M2, N2. First, we

consider the case when M1 ≥ N1, M2, N2.

Step 1: From SVD, Z(2) = UΛV H , where U and V are

N2xN2 andM1xM1 unitary matrices respectively and Λ is the
diagonal matrix of singular values of Z (2). By applying SVD

to Z(2), we decompose the channel intomin(M1, N2) parallel
channels. Therefore, there are M1 −N2 effective inputs at T1

that are not connected to R2, and do not cause any interference

to R2.

Step 2: Similarly, applying SVD to Z(1) createsmin(M2, N1)
parallel connections. There are (M2 − N1)

+ effective inputs

at T2 that are not connected to R1, and therefore do not cause

any interference with R1.
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Fig. 2. Achievability proof for (M1,N1) , (M2,N2) Interference channel
when M1 ≥ M2, N1, N2

Step 3: For link 1, all N1 effective outputs are used by R1.

Step 4: T1 transmits to R1 using N1 effective inputs such that

at most (N1 + N2 −M1)
+ effective inputs that are active are

also connected to R2.

Step 5: Link 2 uses only those effective inputs/outputs that are
not connected to an active effective input/output of link 1.

Step 6: Link 1 is left with N1 effective inputs and N1 effective

outputs, i.e. the # of DoF for link 1 = N1.

Step 7: For link 2, T2 is left with (M2−N1)
+ effective inputs

while R2 is left with min(M1 − N1, N2) effective outputs,
i.e. the # of DoF for link 2 = min(M2 − N1, min(M1 −

N1, N2))
+ = min(M2 − N1, N2)

+ since M1 ≥ M2 by

assumption. Hence proved.

For the case when N1 ≥ M1, M2, N2, the same logic

is followed. Then, the total # of DoF is min(M1, N1) +
min(M2, N2 − M1)

+. By adding the results from the two

cases, we obtain a general achievable proof of (8). An illus-

tration of this proof is shown in figure 2.

B. Outerbounds on the Available Degrees of Freedom

To start with, notice that a trivial outerbound is obtained

from the PTP case, i.e. η(INT) ≤ min(M1 + M2, N1 + N2).
Indeed this outerbound coincides with the innerbound when

either min(M1, M2) ≥ N1 + N2 or min(N1, N2) ≥ M1 +
M2. In general, while the capacity region of the interference

channel is not known even with single antennas at all nodes,

various outerbounds have been obtained [8]–[10] that have

been useful in finding the capacity region in some special cases

[11], [12]. Most of the existing outerbounds are for single

antenna systems.

For our purpose, we develop a genie based outerbound for

MIMO interference channel where the # of antennas at either

receiver is ≥ the # of transmit antennas at the interfering

transmitter, i.e. either N1 ≥ M2 or N2 ≥ M1. We find that,

in many cases, this outerbound is sufficiently tight to establish

the # of DoF. Note that for this section, since we do not use

the assumption that max(M1, N1) ≥ max(M2, N2), the proof
for the cases N1 ≥ M2 or N2 ≥ M1 is identical.

Theorem 1: For the (M1, N1), (M2, N2) interference

channel with N1 ≥ M2, the sum capacity is bounded

above by that of the corresponding (M1, M2, N1) MAC
channel with additive noise N

(1) ∼ N (0, IN) modified to
N

(1)′ ∼ N (0,K
′

) where

K
′

= IN − Z
(1)

(
Z

(1)†
Z

(1)
)−1

Z
(1)† + αZ

(1)
Z

(1)† ,

α = min

(
1

σ2
max(Z

(1))
,

1

σ2
max(H(2))

)
.

Proof:
Let us define

N
(1)
a

∼ N

(
0, IN − Z

(1)
(
Z

(1)†
Z

(1)
)−1

Z
(1)†

)

N
(1)
b

∼ N

(
0,Z(1)

(
Z

(1)†
Z

(1)
)−1

Z
(1)† − αZ

(1)
Z

(1)†
)

N
(1)
c ∼ N

(
0, αZ

(1)
Z

(1)†
)

,

as three N × 1 jointly Gaussian and mutually independent
random vectors. The positive semidefinite property of the

respective covariance matrices is easily established from the

definition of α.
Without loss of generality we assume

N
(1) = N

(1)
a

+ N
(1)
b

+ N
(1)
c

N
(1)′ = N

(1)
a

+ N
(1)
c

Furthermore, because N
(1) and N

(2) have the same marginal

distributions and the capacity of the interference channel does

not depend on the correlation between N
(1) and N

(2), the

capacity region is not affected if we assume

N
(1) = N

(2).

Since a part of the proof is similar to the corresponding

proof for the single antenna case, we will summarize the

common steps, and emphasize only the part that is unique to

MIMO interference channel. Consider any achievable scheme

for any rate point within the capacity region of the interference

channel, so that R1 and R2 can correctly decode their intended

messages from their received signals with sufficiently high

probability.
Step 1:We replace the original additive noise N(1) at R1 with

N
(1)′ as defined in Theorem 1. We argue that this does not

make the capacity region smaller because the original noise

statistics can easily be obtained by locally generating and

adding noise N
(1)
b
at R1. Therefore, since R1 was originally

capable of decoding its intended message with noise N
(1), it

is still capable of decoding its intended message with N
(1)′ .

Step 2: Suppose that a genie providesR2 with side information

containing the entire codeword X
(1). Since X

(2) is indepen-

dent of X
(1), R2 simply subtracts out the interference from

its received signal. Thus, the channel Z(2) can be eliminated

without making the capacity region smaller.
Step 3: By our assumption, R1 can decode its own message

and therefore it can subtract X(1) from its own received signal

as well. In this manner, after the interfering signals have been

subtracted out we have

Y
(1) = Z

(1)
X

(2) + N
(1)′ ,

Y
(2) = H

(2)
X

(2) + N
(2).
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To complete the proof we need to show that if R2 can decode

X
(2) then so can R1. This would imply that R1 can decode

both messages, hence giving us the MAC outer bound.

Step 4:Without loss of generality, let us perform SVD H
(2) =

U
(2)

Λ
(2)

V
(2) on the channel between T2 and R2. This is a

lossless operation that leads to:

Y
(2)new = X

(2)new +
(
Λ

(2)
)−1

N
(2), (9)

where X
(2)new = V

(2)
X

(2).

To save space we allow some notation abuse as we use

generalized inverse and ignore the terms that correspond to

zero diagonal channel gains in Λ
(2). Note that these channels

are useless for R2. Also, we use the same symbol for rotated

versions of noise that are statistically equivalent.

Step 5: Next, we show that R1 can obtain a stronger channel

to X
(2)new so that if R2 can decode it, so can R1. To this

end, let R1 use ZF to obtain:

Y
(1)new = X

(2)new + V
(2)

(
Z

(1)†
Z

(1)
)−1

Z
(1)†

N
(1)′ ,

= X
(2)new + αN

(2)

Now both R1 and R2 have a diagonal channel with input

X
(2)new and uncorrelated additive white noise components

on each diagonal channel. Moreover, the strongest channel for

R2 has noise
1

σ2
max(H(2))

. However the noise on any channel

for R1 is only α which is smaller. Thus, we argue once again

that R1 can locally generate noise and add it to its received

signal to create a statistically equivalent noise signal as seen

by R2. In other words, R1 has a less noisy channel to T2

and therefore can decode any signal that R2 can. Since R1

can decode T1’s message by assumption, we have the MAC

outerbound.

The MAC outerbound leads directly to the following outer-

bound on the # of DoF.

Corollary 1: For the (M1, N1), (M2, N2) interference
channel with N1 ≥ M2, the # of DoF η(INT) ≤ min(M1 +
M2, N1). Similarly, if N2 ≥ M1, then η(INT) ≤ min(M1 +
M2, N2).
The outerbound and innerbound are tight in many cases where

we have the exact # of DoF. Some examples are provided in

the following table.

(M1, N1) (M2, N2) η(INT )
(1, 1) (1, 1) 1
(1, 2) (1, 2) 2
(2, 1) (2, 1) 2
(1, 2) (2, 1) 1
(3, 2) (2, 3) 2
(2, 3) (2, 3) 3
(2, 3) (1, 3) 3
(2, 2) (3, 2) 2

IV. EFFECT OF TRANSMIT COOPERATION ON THE NUMBER

OF DEGREES OF FREEDOM

Comparing the interference channel and the BC channel

obtained by full cooperation between the transmitters, it is

clear that the available DoF are severely limited by the lack

of transmitter cooperation in the interference channel. As an

example, consider the interference channel with (M1, N1) =
(n, 1) and (M2, N2) = (1, n). From the preceding section we
know there is only one available degree of freedom in this

channel. However, if full cooperation between the transmitters

is possible the resulting BC channel has (M, N1, N2) =
(n+1, 1, n). The # of DoF is now n+1. Therefore, transmitter
cooperation would seem highly desirable. Rather surprisingly,

it has been shown recently [7] that for the (1, 1), (1, 1)
interference channel, allowing the transmitters to cooperate

through a wireless link between them (even with full duplex

operation), does not increase DoF. For MIMO interference

channels, as suggested by the example above, the potential

benefits of cooperation are even stronger and it is not known

if transmitter cooperation can increase DoF. The capacity

results of [7] do not seem to allow direct extensions to MIMO

interference channels.

To gain insights into the cost and benefits of cooperation in

a MIMO interference channel, we consider a specific scheme

where transmitters first share their information in a full duplex

mode as a MIMO channel (step 1) and subsequently transmit

together as BC channel. We will refer to this scheme as the

share-and-transmit scheme.

A. Degrees of Freedom with Share-and-Transmit

Consider an (M, N), (M, N) interference channel (M ≤

N ). Also assume that each transmitter is sending information

with rate R. Note that while we make the preceding simpli-

fying assumptions for simplicity of exposition, the following

analysis and the main result extend directly to the general case

of unequal # of antennas and unequal rates.
From (8), we know that the # of DoF for this interefernce

channel with no transmitter cooperation is min(M, N) +
min(M, N −M)+ = M + min(M, N −M)+. For the share-
and-transmit scheme, we compute DoF as follows. We first

find the capacity of the sharing link Cs and the capacity of

transmission Ct. Then, we find the total capacity of the system

C by evaluating the total amount of data transmitted divided

by the total time it requires to transmit this data, i.e.

C =
2R

R
Cs

+ 2R
Ct

. (10)

Dividing by log(SNR) where SNR is large, we obtain the total

# of DoF as

lim
SNR→∞

C

log SNR
=

2
1

DOF (sharing) + 2
DOF (transmit)

.

(11)

The # of DoF for the sharing link is that of MIMO PTP chan-

nel with M transmit and receive antennas = min(M, M) =
M . After transmitters share their information, they can fully

cooperate as a (2M, N, N) BC channel. The # of DoF for
this channel ismin(2M, 2N) = 2 min(M, N). Therefore (11),
which gives the total # of DoF for the share-and-transmit

scheme, becomes
2M min(M,N)
M+min(M,N) = M . Note that,

M + min(M, N − M)+ ≥ M. (12)
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Therefore, we conclude that (for this specific scheme) trans-

mitter cooperation in the high SNR regime does not provide

any advantage to the # of DoF in the MIMO interference

channel.

V. SIMULATION RESULTS

In this section, we verify the result discussed in the previous

section, and discuss the effect of transmitter cooperation when

the sharing links between the transmitters are stronger than the

transmission links. For simplicity, we consider a (4, 1), (4, 1)
interfernce channel, and plot the rate versus the logarithm of

the transmit power. Note that we assume the noise to be 0-

mean unit-variance Gaussian additive noise.

The share-and-transmit scheme is implemented as explained

in section IV-A. For the no cooperation scheme, T1 has a

message for R1 only and dedicates its available power to its

link with R1. The same is true for T2 and R2. Note that since

the transmit signal space is much larger than the receive signal

space, T1 can decompose its channel with R1 as well as its

channel with R2 to create one non-interfering link to R1 and

another to R2. T2 is able to achieve this as well, and each

receiver can then decode its message without interference.

In fig. 3, we fix the distance between each transmitter and

receiver to be equal to that between T1 and T2. In this case, the

transmitters allocate the same resources to their sharing link as

to their transmission links. Fig. 3 indicates that the share-and-

transmit scheme always has a lower rate for the same transmit

power than the no cooperation scheme, which agrees with our

result in section IV.

In fig. 4, the distance between each transmitter and receiver

is 5× that between T1 and T2. Note that in this case, the

sharing link is stronger than the transmission links since it

does not suffer any path loss whereas the transmission links

do. Fig. 4 shows that share-and-transmit scheme outperforms

the no cooperation scheme. As expected, when the sharing link

is stronger, cooperation between transmit nodes results in per-

formance improvement over the no cooperation scheme. Note

that while our simulations are for the interference channel,

similar results have been obtained for the MAC in [13].

VI. CONCLUSIONS

We investigate the available DoF for MIMO interference

channel. The distributed nature of the antennas significantly

limits DoF. For an interference channel with a total ofN trans-

mit antennas and a total of N receive antennas, the available #

of DoF can vary from N to 1 based on how the antennas are
distributed among the two transmitters and receivers. Through

an example of a share-and-transmit scheme, we show how the

gains of transmitter cooperation are entirely offset by the cost

of enabling that cooperation so that the available DoF are not

increased.
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