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The Maximum Entropy Principle in the Absence of a
Time-Arrow: Fractional-Pole Models

Tryphon T. Georgiou, Fellow, IEEE

Abstract—The maximum entropy (ME) principle, as it is often
invoked in the context of time-series analysis, suggests the selection
of a power spectrum which is consistent with autocorrelation data
and corresponds to a random process least predictable from past
observations. We introduce and compare a class of spectra with the
property that the underlying random process is least predictable
at any given point from the complete set of past and future ob-
servations. In this context, randomness is quantified by the size of
the corresponding smoothing error and deterministic processes are
characterized by integrability of the inverse of their power spec-
tral densities—as opposed to the log-integrability in the classical
setting. The power spectrum which is consistent with a partial au-
tocorrelation sequence and corresponds to the most random (MR)
process in this new sense, is no longer rational but generated by
finitely many fractional-poles.

Index Terms—Entropy rate, predictability, randomness,
smoothing, time-arrow.

I. INTRODUCTION

THERE is a special place reserved in the spectral analysis
literature for the maximum entropy (ME) principle, and

rightly so, due to the multitude of analytic, computational, and
practical qualities of maximum entropy spectra. The relevant
theory is firmly rooted in analytic interpolation and the Hilbert
space geometry of random processes. The ME principle in its
basic form, calls for selecting the unique power spectrum which
is consistent with a known finite set of autocorrelation moments
and is the maximizer of a concave logarithmic functional which
represents the entropy rate of the underlying random process. A
closely related alternative justification relies on the fact that this
ME process is the least predictable from past observations and
hence, it represents a worst case situation.

The entropy rate of a random process is an inherently time-de-
pendent concept. Yet, in many applications, there is no natural
direction of time. This is the case when statistics are obtained
from a (linear) array of sensors and the indices of the autocorre-
lation moments represent only spacial separation. The same is
true when estimating the power spectrum of a time series from
an observation record, without any plans to use it for prediction
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in one way or another. Then, also, estimation of missing values
from a sparse record of past and future data presents yet another
possibility. In all such cases, the rationale of the ME principle
may be called into question. Hence, the purpose of this work is
to study a time-arrow independent counterpart. In this, a power
spectrum is selected so that the underlying random process eval-
uated at any point in time is the least predictable from the com-
plete set of all other past and future values. In other words, it is
the variance of the optimal smoothing filter which is sought to be
maximal, as opposed to the variance of the optimal (time-arrow
dependent) predictor.

Power spectra which are consistent with a finite set of (con-
tiguous) autocorrelation statistics and correspond to a worst case
smoothing error for the relevant random process, turn out to
have an all-pole representation, very much like the ones that
result in from the ME principle but with one important differ-
ence. These spectra are inverses of the square root of positive
trigonometric polynomials, and hence, their poles are fractional.
They also share a similar property with ME spectra in that they
are extrema of a corresponding functional—which, however,
is no longer logarithmic. Computation of their respective pa-
rameters is slightly more involved than having to solve linear
(Yule–Walker–Levinson) equations. They can be computed as
fixed points of suitable differential equations originating from
a homotopy-based method in determining functional extrema.
For convenience, and lacking a better terminology, we refer to
this new class of spectra and the respective processes as most
random (MR).

The ME principle has a 50 year history or more. We will
not attempt to overview significant milestones but refer to
[13] for textbook exposition of relevant material, to [9], [11]
for an overview of relevant research in signal processing, to
Burg [2] who is credited with introducing the ME principle
in time-series analysis, and to Jaynes [10] and Csiszár [3]
for systematic analyses of the principle and its relevance in
scientific modeling.

II. DEVELOPMENT AND MAIN RESULTS

As explained in the Introduction, we consider the problem
of spectral analysis based on partial autocorrelation statistics.
Thus, we begin with a finite set of autocorrelation samples

, for , of a zero-mean,
stationary scalar random process , where “ ” de-
notes complex conjugation (together with transposition when
applied to vectorial quantities). The discrete “time index”
may represent a spatial coordinate when the ’s are read-
ings at, say, a number of uniformly and linearly spaced sensor
locations.
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Without loss of generality we assume that

...
. . .

...

i.e., that it is positive definite, for otherwise there is a unique
power spectrum for which

for (1)

see, e.g., [13], [8]. The following theorem summarizes known
facts about the ME power spectrum which is consistent with .

Theorem 1: Provided , there exists a unique power
spectrum (i.e., a nonnegative measure on ) which
satisfies (1) and is a maximizer of the following concave func-
tional:

(2)

Further, is absolutely continuous (with respect to the
Lebesgue measure) and of the form

where the spectral density is the inverse of a positive
trigonometric polynomial of degree at most , i.e.,

with , and . The polynomial
can be selected to have all of its roots in the complement

of the unit disc of
the complex plane, in which case

for
otherwise

(3)

is the unique minimizer of the variance

of the (one-step-ahead) prediction error when the predictor

(4)

is sought to depend linearly on past observations. In general,
the minimal variance of the prediction error depends on the
choice of (which is subject to (1)). This variance is maximal
when is selected, i.e., the ME power spectrum solves the
min-max problem

In the theorem and throughout, denotes the power
spectral density function which is independent of any possible
singular part of the spectral measure . The theorem is well
known and has its roots in the classical theory of moments and
the theory of orthogonal polynomials. For a proof see [7], [8],
cf. [13]. More specifically, the extremal properties of are
established in, e.g., [8, p. 38], see also [7, Ch. VIII]. The fact that

is consistent with the autocorrelation moment constraints
inherited by follows from [7, eqs. (1.15), (1.18)]. On the
other hand, the entropy functional is clearly concave and a
variational argument easily shows that the maximizer is of the
form indicated. The last statement follows from the fact that (see
[8, p. 38, Sec. 2.2])

is achieved for the choice , while

is independent of as long as (1) holds. An alternative deriva-
tion of all the claims in the theorem can be constructed in a way
analogous to the steps used in the proof of Theorem 2 below,
which we provide in Section VI.

The functional in Theorem 1 can be interpreted to repre-
sent entropy rate (see [9]) and has been introduced into time-se-
ries modeling by Burg [2]. It is also interesting to note that the
ME solution together with ’s in (3) represent a saddle
point of seen as a function of two
variables, and the infinite coefficient vector .

An alternative choice for a solution to (1) corresponding to the
least predictable process (MR process) from combined past and
future values can be also obtained via convex optimization of a
suitable functional. The following proposition presents this MR
solution and highlights its justification as the worst case sce-
nario with regard to a corresponding smoothing problem. The
development mirrors the case of the ME solution.

Theorem 2: Provided there exists a unique power
spectrum (nonnegative measure on ) which satis-
fies (1) and is a minimizer of the following convex functional:

(5)

Further, is absolutely continuous (with respect to the
Lebesgue measure) and of the form

where the spectral density is the square root of the in-
verse of a positive trigonometric polynomial of degree at most

, i.e.,
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with and

for (and ). The constant can be
selected so that the trigonometric polynomial satisfies

in which case

when
when

(6)

with the coefficients of the Fourier series of

(i.e., the ’s are inverse autocorrelations) is the unique mini-
mizer of the variance

of the smoothing error when the smoothing filter

(7)

is sought to depend linearly on past and future observations.
In general, the minimal variance of the error depends on the
choice of (which is subject to (1)). This variance is maximal
when is selected, i.e., the MR power spectrum solves the
min-max problem

(1) holds

The last statement of the theorem echoes the analogous
property of the ME solution. In fact, it can be seen that in
the present case , together with the coefficients ’s
in (6) for the smoothing filter, represent a saddle point of

.
The ME-power spectrum is rational and its coefficients

can be obtained by solving a system of linear equations (the
Yule–Walker–Levinson equations) which give rise to the fol-
lowing expression for

...
... (8)

while , e.g., see [13] and also
[7, p. 156]. The corresponding random process can then be sim-
ulated via a Markovian realization—in fact, via an autoregres-
sive model with transfer function driven by a unit-
variance, white-noise input, cf. [13].

The case of the MR-power spectrum differs substantially in
this respect. The power spectral density function is not rational.
However, its coefficients can be readily obtained from the data

using the formalism in [4], [5]. This is explained in the fol-
lowing statement.

Theorem 3: Let , define the column vectors

of size , where denotes transposition (without complex
conjugation), and let represent the solution of the differen-
tial equation

(9)

on , where

(10)

and

Then the following hold:
(i) for all and for all ;

(ii) tends to a limit as ;
(iii) for all and

satisfies (1) (11)

(iv) is the unique value in for which (iii) holds.

III. NOTATION AND PRELIMINARIES

We consider the scalar zero-mean stationary random process
and, as before, we let represent its

sequence of autocorrelation samples and its power spec-
trum. We study quadratic optimization problems with respect to
the usual inner product

(12)

where . It is standard [12] that the closure of
, which we denote by , can be identified

with the space of functions which are square integrable
with respect to on the unit circle with inner product

where and . Then it is also
standard that the correspondence

is a Hilbert space isomorphism.
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Least-variance approximation problems can equiva-
lently be expressed in . In particular, the variance

of the one-step-ahead prediction error

with as in (4), can equivalently be ex-
pressed in the form

(13)

and similarly, the variance of the smoothing error
is simply

(14)

in view of given in (7).
The power spectrum is a bounded nonnegative measure

on and admits a decomposition with
a singular measure and the absolutely continuous part

of (with respect to the Lebesgue measure). Then, the vari-
ance of the optimal one-step-ahead prediction error is given in
terms of the power spectral density function by the celebrated
Szegö–Kolmogorov formula given below.

Theorem 4: [14] With as above

when , and zero otherwise.

For a proof see [8, p. 183], and also [15, Ch. 6]. In the next
section, we derive an analogous formula for the variance of the
optimal smoothing error when using both past and future values
of .

IV. LEAST-VARIANCE SMOOTHING

Given the power spectrum of a random process, we seek
the optimal linear smoothing filter using both past and future
observations. It turns out that the variance of the smoothing
error is the harmonic mean of the spectral density of the random
process, i.e., it relates to the zeroth Fourier coefficient of the in-
verse of the spectral density of the process. This result will be
used in the next section for the purpose of identifying the MR
spectra which are consistent with a finite set of autocorrelation
samples.

Theorem 5: Let be a bounded nonnegative measure on
, let be the decomposition of into

its singular and absolutely continuous parts. Then, the infimum
of

(15)

subject to the constraints

(16)

(17)

is equal to

(18)

when , and zero otherwise.

The above result has been known to Peter Whittle (personal
communication) and noted in [16, p. 68]. We provide a proof
based on the following technical lemma.

Lemma 6: [8] Let be a bounded singular measure on
(i.e., the absolutely continuous part of

is identically zero) and let be an arbitrary positive number.
Then, it is always possible to decompose the interval into a
finite number of intervals such that for a certain class of these
intervals (i.e., their union) and for the complementary class

, the following inequalities hold:

For a proof of Lemma 6 see [8, p. 7]. We now proceed with
the proof of Theorem 5.

Proof of Theorem 5: Assume first that is absolutely con-
tinuous with no singular part. Given any positive number de-
fine

We note that (also in and, in fact, it is even bounded
and positive)

and we observe that

because . If then
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whereas if , the limit equals the expression given in
(18). To prove our claims for the case where is absolutely
continuous, it remains to show that when the infimal
value for (15) is never strictly less than (18).

Continuing on, we assume that . We normalize
to have the identity as its zeroth Fourier coefficient

and consider the perturbation

for an arbitrary with vanishing zeroth Fourier coefficient
(i.e., a satisfying so that satisfies (17).
It readily follows that

(19)

where for the last step we note that

The first term in (19) is precisely the claimed infimal value in
(18) and the second term is clearly nonnegative. This proves our
claim in the case where is absolutely continuous.

We now consider the case where

with a singular measure (always with respect to the
Lebesgue measure). For an arbitrary , we consider a
decomposition of

where

(20)

(21)

That such a decomposition exists follows from Lemma 6 taking
in the statement of the lemma. Now let denote

the characteristic function of which takes the value when
and zero otherwise, and set

(22)

which is in and has the identity as its zeroth Fourier coeffi-
cient. Then

The first term on the right-hand side is bounded above by

which decays to with , whereas the second term is bounded
above by

which in the limit recovers the claimed bound (18). The earlier
argument for the case of absolutely continuous applies and
shows that this bound is in fact the correct value for the infimum
and that no lower value is possible.

Remark 7: It is clear from the proof that if and
is absolutely continuous, then

is the unique optimal solution which achieves the minimal value

for

subject to with zeroth Fourier coefficient the identity.
Thus, if

and , the corresponding Fourier coefficients,
then

is the optimal in the least variance sense estimate for , and
is a random process with as its power spectrum. In

this case, the infimum is achieved, and hence it represents the
minimum variance of the error. When the power spectrum
has either singular part or , then as in (22)
provides suboptimal solutions. This is completely analogous
to the Szegö–Kolmogorov setting where optimal one-step
ahead predictors (which use only past observations) exist when

; otherwise, the least variance is not attained but can
be gotten arbitrarily closely [7, Ch. II].
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Remark 8: It is interesting to observe that while the minimal
variance of a smoothing error for a random process having as
spectral density is the harmonic mean

of the values of on the , the minimal variance of the
optimal one-step-ahead predictor using only past observations
is the geometric mean (see [8, p. 183], [15, Ch. 6])

The former is the inverse of whereas the latter is
exponential of . Naturally, (see also
[1, p. 23]). This ordering is clear from the interpretation of
the two quantities as variances of best predictors which use
“past future” and “only past” observations, respectively.

V. ON DETERMINISTIC PROCESSES: AN EXAMPLE

It may be rather surprising, at first glance, that the value of a
random process with power spectral density

(23)

can be predicted at any given point with arbitrarily small vari-
ance, when both past and future observations are available. Yet
this is the case, and this is due to the fact that (equiv-
alently ). This example highlights the difference
between “deterministic processes” in the sense of
and those in the sense of Szegö–Kolmogorov which are charac-
terized by or, equivalently, by instead.

For our particular example, the fact that follows
from the divergence of

as . On the other hand, the fact that can be
seen as follows. Since is analytic and does not
vanish in is harmonic and

for any value of . Therefore, the integral of the log-
arithm of also vanishes, and the same applies
to .

In the rest of this section, we explain how a random process
corresponding to can be predicted with vanishingly small
variance from the combined past and future record. We do so,
for didactic purposes, by sketching a specialized and more direct
construction than that of Section IV.

Consider a realization of a random process cor-
responding to as follows:

where is a sequence of independent and identically
distributed, random variables with zero mean and unit variance

(i.e., a white-noise process). We assume that “past”
as well as “future” observations are available,

and that we wish to estimate the “present” based
on this two-sided observation record. Then

...

. . .

. . .
...

...
. . .

. . .
...

and

...

. . .

. . .
...

...
. . .

. . .
...

In both cases, the mapping is Toeplitz, and identical except for
a sign change. Let now

and for define

Each of the above can be taken as an estimator for the corre-
sponding un-hatted variable. The variance of estimation in all
cases can be made arbitrarily small with appropriately small
choice for . This justifies our claim.

VI. PROOFS OF THEOREMS 2 AND 3

Due to the strict convexity of the inversion map on
is also a strictly convex functional on (nonnegative)

density functions. We first show that a spectral density of
the form claimed in Theorem 2 is indeed a minimizer of
subject to the moment constraints

for (24)

Existence of suitable values for the corresponding parameters
requires proving Theorem 3 next, which claims that these values
correspond to an attractive equilibrium of a certain differential
equation. The form of ensures stationarity and hence, due
to the strict convexity of , it ensures that this is indeed
the unique extremal point. Finally, we revisit the optimization
problem and consider measures with a possibly nontrivial sin-
gular part. The singular part does not affect the value of ,
but the fact that a singular part is allowed, relaxes the constraint
(24) to (1). Yet, as we will see, is still the minimizer and,
hence, the extremal spectral measure cannot have a singular
part. In the end, we return to the remaining claims in Theorem
2 regarding properties of the minimizer.
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A. Functional Form of Minimizer

Consider first the problem of minimizing with con-
strained to satisfy (24). If

denotes a vector of Lagrange multipliers, with and
, the corresponding Lagrangian is

where are defined in the statement of Theorem 3. The
Lagrangian is of course real-valued since both as
well as assume real values. If we set the
variation

identically equal to zero for all perturbations (assuming that
and hence unconstrained), then we conclude that

(25)

which is the form claimed in Theorem 2 for . Our next step
is to prove that, provided , there always exists such a
density function which satisfies (24) and that the trigonometric
polynomial is in fact strictly positive.

B. Proof of Theorem 3

We follow the formalism in [5] for solving moment problems.
We denote by the positive cone

where

and by the dual cone

for

Both are subsets of since their “ th” entries
while their remaining entries

. However, and , and,
therefore, each is a subset of a proper subspace of of
real dimension . Further, both and are convex. The
interior of is denoted by and the interior of the dual
cone, which consists of all vectors such that the trigonometric
polynomial is strictly positive on the unit circle, is denoted
by .

The Jacobian of the mapping

between Lagrange vectors and moments is given in (10) and is
denoted by . To verify this expression for the Jacobian,
note that since is real

and hence the expression in (10) for follows.
As long as , the Jacobian is an invertible matrix. Our
goal is to find a value for so that condition (iii) of Theorem 3
holds. We do this as follows.

We begin with as in Theorem 3 for which we readily ob-
serve that . It follows that

Since , we also know that . Since is
convex and , the interval , i.e.,

(26)

belongs to for all . The key idea is now to trace
by following corresponding values for in the dual cone.

This is not always possible. It depends on the functional form
for the sought spectral density function . The critical issue that
may prevent such path-following in the dual space is whether
any in the boundary of maps onto a point in the interior of

. When this happens, there are interior points in which do
not admit the assumed representation. We will see later that this
does not happen for the functional form and, hence,
that the plan we have outlined applies. We discuss these key
steps/facts next.

The moments , satisfy the differential equation

(27)

as this follows readily from (26). Then the dual parameters
satisfy

(28)

as long as remains in the interior of —in which case
is invertible being the (inverse of the) autocorrelation

matrix of a positive spectral density function. We claim that
this is always the case. To prove it, assume that the contrary is
true and that is a maximal subinterval of for which

for . Thus, the family of positive trigono-
metric polynomials

has either a limit point on the boundary of or it grows un-
bounded. In either case, we will draw a contradiction.

In the first case, there must exist an accumulation point for
which vanishes on the unit circle. But then ,
which is a nonnegative trigonometric polynomial, must have a
double root at some point . Therefore

(29)

which has at least a single pole at , is not integrable. The
assertion that the inverse of the square root of a nonnegative
trigonometric polynomial which vanishes on the circle is not
integrable is elementary. It suffices to consider a typical case,
such as , where
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is clearly not integrable—the general case is similar. The non-
integrability of (29) implies that the family of vectors

is unbounded, in contradiction to the assumption that the image
of under is the subset

of the bounded interval .
We now draw a contradiction for the second case. We assume

that grows unbounded as . It follows that there is
a sequence such that and

while the unit-length vectors

converge as , with being the Euclidean norm. At
the same time, the sequence ,
converges to . But any interior point is
characterized by the property that the functional

is strictly positive (e.g., see [5, Proposition 3]). (This is
due to the fact that any such assumes a representation

for some strictly positive density func-
tion .) On the other hand, returning to the sequence

, we observe that

tends to as grows unbounded. Therefore, the func-
tionals , are not uniformly bounded away from
zero. Yet, their limit is, due to the fact that .
This is a contradiction. Therefore, (28) can be integrated over
the complete interval and remains bounded and in
the interior of the dual cone (i.e., the trajectory lies in ). We
identify .

We now rescale the independent variable in (27)–(28) by re-
placing with . We simplify notation and
denote by and by . Using and

, we rewrite (27) as

for

and (28) as

(30)

where, as usual

We have now established claims (i), (ii), and (iii) of Theorem 3,
i.e., we have shown that as in (30), the trajectory
stays in , converges, and that the limit point is such that
(1) holds. Claim (iv) of the theorem follows from the convexity
of . More specifically, the functional form of guaran-
tees that it is a minimizer of . There can only be one such
minimizer since is strictly convex.

C. Proof of Theorem 2

Let us denote by

the column vector with the lower entries of . As-
sumingthat with asingularmeasureand
the absolutely continuous part of , the minimization of
subject to (1) is equivalent to minimization of subject to

(31)

The corresponding Lagrangian is now

(32)

(33)

The Lagrange multiplier is a matrix which has a Hermitian
and a Toeplitz structure. (To see this, note that any possible com-
ponent of which is orthogonal to the subspace of Hermitian
Toeplitz matrices has no effect since it vanishes when taking the
inner product for any Hermitian Toeplitz matrix as
done in (32).) The minimizer would correspond to a measure

with a nontrivial singular part only if the equality constraint
in (31) is not active. For this to be the case, the multiplier

of in (33) must vanish at least for some values of . How-
ever, the correspondence

...
...

. . .
...

shows that in fact , i.e., it is identically the
same Lagrangian as in Section VI-A. The value for the La-
grange multipliers in the latter, as identified in Section VI-B, are
such that is a positive trigonometric polynomial.
This polynomial is precisely the multiplier of in (33) and
is strictly positive for all . Hence, the equality con-
straint in (31) is active for the extremal of the relaxed problem
corresponding to (32). Then, the analysis in Section VI-A ap-
plies. Therefore, the minimizer corresponds to an absolutely
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Fig. 1. Power spectra consistent with R ;R ;R ;R .

continuous power spectral distribution
which is of the form claimed in the theorem.

We now address the remaining claims in the theorem
regarding the variance of the smoothing error for the corre-
sponding random process. Given the expression for which
is the square root of the inverse of a positive trigonometric
polynomial, the form of the optimal smoothing filter for the
corresponding random process is provided by Theorem 5. It
is a consequence of the same theorem that the variance of the
optimal smoothing error is
precisely the inverse of the -functional evaluated at , i.e.,

The last part of the theorem is also immediate since

(1) holds

is for any spectral measure consistent with (1).
But is the unique maximizer of this inverse.

VII. ON SPECTRAL ANALYSIS: AN EXAMPLE

For illustration purposes, we compare the power spectra
and given in Theorems 1 and 2 for a basic example. We
begin by evaluating the first four autocorrelation moments for a
power spectrum

having absolutely continuous part with

and singular part

consisting of two discrete spectral lines. Here, the notation
for denotes Dirac distributions. Ac-

cordingly, the corresponding random process consists of a
moving average component , generated by

with a white-noise process having variance (nor-
malized so that ), and of a deterministic sinu-
soidal component at frequency [rad/unit of time] (and
phase , say, uniformly distributed on ). Thus

The first four samples of the autocorrelation function of can be
readily computed and are as follows:

The corresponding Toeplitz matrix is positive definite, and
as a result, there is a nontrivial family of power spectra which
are consistent with the autocorrelation data; the “true” power
spectrum is only of them.

Fig. 1 compares the three particular power spectra that
concern us here. The figure shows the corresponding density
functions on (since the random processes are real-valued)
and marks the location and amplitude of the Dirac measure
at with an arrow. Thus, the “moving-average
sinusoid” power spectrum described earlier is shown with a
dashed line - - - , the ME-power spectrum which is consistent
with and obtained following the ME principle is shown with
a dash-dotted line - - , and finally, the MR-power spectrum
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Fig. 2. Poles/zeros of f , and singularities of f , and f .

corresponding to the least smooth process is shown with a
continuous line — .

All three power spectra shown are consistent with the covari-
ance data. Hence, there is no suggestion that one is preferable.
They all describe the same data. A selection can only be based
on either prior information or a prejudice—this is where a “prin-
ciple” becomes relevant. Had we known that the “true” spec-
trum originated from a moving average component plus a min-
imal number of sinusoids, we could have recovered the exact
power spectrum from the covariance data following, e.g., [6].
Of course, such knowledge is rarely available and one is called
to use other insights. Thence, if the power spectrum and a model
for the process is to be used for prediction purposes, the ME op-
tion is quite natural since it represents the relevant “worst case
scenario.” However, if the model is to be used for filling in gaps
in records, then the MR option is the appropriate “worst case
scenario.” Then, if our goal is to simply identify features in the
power spectrum, either may be appropriate.

Using (8) we determine that

(34)

with , and

On the other hand, following Theorem 3 we compute

(35)

(36)

with

or, equivalently, and

Here we depart slightly from our earlier notation so as to
compare the coefficients more directly to the ME-spectral
density. The parameters and as in Theorem 2 for and
smoothing filter, respectively, can be readily determined from
the above.

Fig. 2 marks the zero of the moving-average component of
(inside ) along with the location of the two spectral lines

(on the unit circle) with “ .” The poles of the ME spectrum are
marked with a “ ” and the fractional poles of the MR spectrum
with a “ .”

Fig. 3 presents realizations of a time series corresponding to
, and . The one corresponding to is gen-

erated by a Markovian moving-average model plus a sinusoidal
component with a random phase. The time series corresponding
to is generated by a Markovian autoregressive model as
usual. Finally, the time series corresponding to is gener-
ated by a suitable discretization of the standard spectral repre-
sentation (stochastic integral)

where is a zero-mean white noise process for
such that , see, e.g., [8, p. 183]. There is
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Fig. 3. Realizations of time series according to f ; f , and f .

no apparent observational feature distinguishing these three re-
alizations, at least over the window where they have been drawn,
and hence, they are produced here only to satisfy curiosity.

VIII. CONCLUDING REMARKS

The present study sought to consider the relevance of the
time-arrow in the context of the ME principle. When the index
of a random process designates a variable other than time, the
principle can be called into question. A more abstract version
of seeking spectra maximally noncommittal to unavailable data,
such as gaps in a record, suggests other alternatives, including
the one studied herein.

At the moment, the information-theoretic significance of
is still under consideration. However, it is clear

that, in the same way that entropy rates relate to a level of
“surprise” when tracking the forward evolution of a random
process, similarly relates to a situation where we record
new values of a random process at widely separated gaps of
an earlier record. Regarding the significance of MR spectra
in time-series analysis, examples similar to the one that we
presented here suggest similar qualities to the ME ones (though,
admittedly, they are slightly less appealing in terms of their
ease of computation).
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