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Blind Minimax Estimation
Zvika Ben-Haim Yonina C. Eldar

Abstract— We consider the linear regression problem of esti-
mating an unknown, deterministic parameter vector based on
measurements corrupted by colored Gaussian noise. We present
and analyze blind minimax estimators (BMEs), which consistof a
bounded parameter set minimax estimator, whose parameter set
is itself estimated from measurements. Thus, one does not require
any prior assumption or knowledge, and the proposed estimator
can be applied to any linear regression problem. We demonstrate
analytically that the BMEs strictly dominate the least-squares
estimator, i.e., they achieve lower mean-squared error forany
value of the parameter vector. Both Stein’s estimator and its
positive-part correction can be derived within the blind minimax
framework. Furthermore, our approach can be readily extended
to a wider class of estimation problems than Stein’s estimator,
which is defined only for white noise and non-transformed
measurements. We show through simulations that the BMEs
generally outperform previous extensions of Stein’s technique.

Keywords: Linear regression model, biased estimation, min-
imax estimation, James-Stein estimation

I. I NTRODUCTION

The problem of estimating a parameter vector from noisy
measurements has countless applications in science and en-
gineering. Such estimation problems are typically modeled
either in a Bayesian setting, in which a prior distribution
on the parameter is assumed, or in a deterministic setting,
in which no prior is assumed [1]. This paper examines the
deterministic estimation problem. We further assume that the
measurementsy = Hx + w are linear combinations of the
parameter vectorx, to which Gaussian noisew is added.
Here the transformation matrixH and the noise covariance
are assumed to be known. We seek an estimatex̂ which
approximatesx in the sense of minimal mean-squared error
(MSE).

This ubiquitous problem was first addressed by Gauss [2]
and Legendre [3], who proposed the classicalleast-squares
(LS) estimator. Several lines of reasoning can be used to sup-
port the LS approach. One argument is that the LS estimator
minimizes the squared error between the measurementsy and
the transformed estimatêy = Hx̂. The LS estimator is also
the maximum likelihood solution for Gaussian noise. However,
neither of these criteria are directly related to the MSE, orto
any other measure of the distance betweenx and x̂. Another
property of the LS solution is that it is the unbiased estimator
achieving minimal MSE. Yet by removing the requirement
of unbiasedness, estimators yielding lower MSE can be con-
structed. While linearity and unbiasedness may be intuitively
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appealing properties, they have no relation to the primary goal
at hand, namely, achieving low estimation error. Indeed, there
are many examples in which the requirement of unbiasedness
results in absurd estimators [4].

Because the parameter vectorx is deterministic, the MSE
E
{
‖x− x̂‖2

}
is generally a function ofx. In other words,

one method may be better than another for some values ofx,
and worse for other values. For instance, the trivial estimator
x̂ = 0 achieves optimal MSE whenx = 0, but its performance
is otherwise poor. Nonetheless, it is possible to impose a
partial order among estimation techniques [5], as follows.An
estimatorx̂1 is said tostrictly dominatea different estimator
x̂2 if the MSE of x̂1 is lower than that of̂x2, for all values
of x. If the MSE of x̂1 is never higher than that of̂x2, and
is strictly lower for at least one parameter value, thenx̂1 is
said todominatex̂2. An estimator is said to beadmissibleif
it is not dominated by any other estimator. Surprisingly, when
the parameter vector contains three or more elements, the LS
method turns out to be inadmissible, i.e., some techniques
always achieve lower MSE [6]. Thus, it is of interest to
characterize the class of admissible estimators, and to find
techniques which dominate LS.

The study of admissibility is sometimes restricted to linear
methodŝx = Gy. A linear admissible estimator is one which
is not dominated by any other linear strategy. A simple rule
characterizes the class of linear admissible techniques [7],
and, given any linear inadmissible estimator, it is possible
to construct a linear admissible alternative which dominates
it [8]. However, the problem of admissibility is considerably
more intricate when the linearity restriction is removed; gen-
erally, admissible estimators are either trivial (e.g.,x̂ = 0)
or exceedingly complex [9], [10]. As a result, much research
has focused on finding simple nonlinear techniques which
dominate LS.

Early work on LS-dominating strategies considered the in-
dependent, identical-distribution (i.i.d.) case, for whichH = I

and the noise is white. Among these, the James-Stein estimator
[5], [11] is the best-known example; others approaches include
the works of Stein [6] and Thompson [12]. Various “extended”
James-Stein methods were later constructed for the general
(non-i.i.d.) case [13]–[16]. Of these, Bock’s technique [13]
is quoted most often [16], [17]. However, none of these
approaches has become a standard alternative to the LS
estimator, and they are rarely used in practice in engineering
applications [16]. Perhaps one reason for this is that some of
the estimators are poorly justified and seem counterintuitive,
and as such they are sometimes regarded with skepticism (see
discussion following [18]). Another reason is that many of
these approaches (including Bock’s method) result in shrink-
age estimators, consisting of a gain factor multiplying theLS
estimate. Shrinkage techniques can certainly be used to reduce
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MSE; however, in the non-i.i.d. case, some measurements are
noisier than others, and thus a single shrinkage factor for
all measurements can be considered suboptimal. Furthermore,
in some applications, a gain factor has no effect on final
system performance: for example, in an image reconstruction
problem, multiplying the entire image by a constant does not
improve quality.

In this paper, we provide a framework for generating a wide
class of low-complexity, LS-dominating estimators, whichare
constructed from a simple, intuitive principle, called theblind
minimax approach [19], [20]. This method is used as a basis
for selecting and generating techniques tailored for given
problems. Many blind minimax estimators (BMEs) reduce to
Stein-type methods in the i.i.d. case, and they continue to
dominate the LS solution in the general, non-i.i.d. case as
well. Thus, we show analytically that the proposed technique
achieves lower MSE than LS, when an appropriate condition
on the problem setting is satisfied. Unlike Bock’s approach,
BMEs may be constructed so that they are non-shrinkage,
which improves their performance. Furthermore, extensive
simulations show that BMEs considerably outperform Bock’s
method.

BMEs are based on linear minimax estimators over a
bounded parameter set [21], [22]. These are linear methods
designed for a slightly different problem, in which the pa-
rameter is known to belong to a given set. The minimax
approach has been thoroughly studied in this setting, and
closed-form solutions are known for many types of sets. In
our case, however, no prior information about the parameter
set is assumed. Instead, the blind minimax approach makes
use of a two-stage process (Section II): First, a set is estimated
from the measurements; next, a minimax method for this set
is used to estimate the parameter itself. The result may be
viewed as a simple decision rule, independent of this two-stage
construction process. Indeed, our LS-dominance proofs do not
rely on the method by which the techniques are generated.
In particular, the dominance results do not depend on the
parameter actually lying within the estimated set. Thus, the
blind minimax technique provides a framework whereby many
different estimators can be generated, and provides insight into
the mechanism by which these techniques outperform the LS
approach.

BMEs differ in the method by which the parameter set
is estimated. In Section III, we study the case in which the
estimated set is a sphere; Section IV derives estimators based
on an ellipsoidal parameter set. Section V demonstrates that
several existing Stein-type methods can also be derived in
the blind minimax framework. Section VI compares the blind
minimax approach with LS regularization techniques, while
in Section VII, the BMEs are compared with other Stein-
type decision rules. The paper concludes with a discussion
in Section VIII.

Throughout this paper, vectors are denoted by lowercase
boldface letters, and matrices by uppercase boldface letters.
The ith component of a vectorv is written as vi. T1/2

indicates the (unique) positive semidefinite square root ofa
positive semidefinite matrixT. The notationũ ∼ Np(u,Q)
signifies thatũ is a random vector of lengthp, distributed

normally with meanu and covarianceQ. ‖x‖2 is the Eu-
clidean normx∗

x, and‖x‖2T is theT-normx
∗Tx, whereT

is a positive definite matrix. Finally,diag(a1, . . . , an) refers
to the n × n diagonal matrix whose diagonal elements are
a1, . . . , an.

II. B LIND M INIMAX ESTIMATION

Consider the problem of estimating an unknown determin-
istic parameter vectorx ∈ C

m from measurementsy ∈ C
n

given by
y = Hx+w (1)

whereH ∈ Cn×m is a known matrix andw is a Gaussian
random vector with zero mean and covarianceCw. For
simplicity, we assume thatH is full-rank and thatCw is
positive definite.

The standard solution to this regression problem is the LS
approach

x̂LS = (H∗C−1
w

H)−1H∗C−1
w

y. (2)

The MSE ofx̂LS does not depend on the value ofx, and is
given by

ǫ0 = E
{
‖x̂LS − x‖2

}
= Tr(Q−1) (3)

where
Q = H∗C−1

w
H. (4)

Despite the popularity of the LS method, other estimators
are known to achieve lower MSE. We propose a novel strategy
leading to such LS-dominating techniques, namely, the blind
minimax approach. To illustrate this concept, suppose for a
moment thatx is known to lie within a compact parameter
setS. In this case, a linear minimax estimator over the setS
may be constructed [8], [21], [22]. This is the linear estimator
x̂M = Gy minimizing the worst-case MSE among all possible
values ofx in S,

x̂M = arg min
x̂=Gy

max
x∈S

E
{
‖x̂− x‖2

}
. (5)

A closed form solution of (5) has been previously derived for
many cases of interest. Furthermore, it has been shown that
any linear minimax estimator achieves lower MSE than that
of the LS method, for all values ofx in S [8], [19]. Thus,
as long assomebounded set is known to containx, minimax
techniques outperform the LS estimator.

BMEs utilize minimax estimators when no parameter set is
known. This is done in a two-stage process:

1) A parameter setS is estimated from the measurements;
2) A minimax estimator designed forS is used to estimate

the parameter vectorx.

Various methods for estimating the parameter setS can be
used, resulting in a variety of BMEs. In this paper, we consider
sets of the form{x : x

∗Tx ≤ L2}. In the next section,
we examine the caseT = I, in which the parameter set is
spherical, resulting in a shrinkage estimator. Subsequently, in
Section IV, we discuss the more general case in whichT =
(H∗C−1

w
H)b for some real numberb. In both cases, closed

forms are provided, and dominance over the LS method is
demonstrated.
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III. T HE SPHERICAL BLIND M INIMAX ESTIMATOR

In this section, we apply the blind minimax technique using
a spherical parameter setS whose radiusL will be estimated
from measurements. We assume for now that the sphere is
centered on the origin,S = {x : ‖x‖2 ≤ L2}. For a given
value ofL, the linear minimax estimator is [22]

x̂M =
L2

L2 + ǫ0
x̂LS, (6)

wherex̂LS is the LS estimator (2) andǫ0 is the MSE (3) of
x̂LS. The resultingspherical BME(SBME) will have the form
(6), whereL2 is estimated from the measurements.

As an estimate ofL2, we seek a value as close as possible
to ‖x‖2: a smaller value would exclude the true vectorx

from the parameter set, while a larger value would yield an
overly conservative estimator. Sincex is unknown, a natural
alternative is to usêxLS instead. Thus, we propose to estimate
L2 as‖x̂LS‖2. Substituting into (6), the SBME is then given
by

x̂SBM =
‖x̂LS‖2

‖x̂LS‖2 + ǫ0
x̂LS. (7)

In the i.i.d. case, the SBME reduces to the well-known
Thompson estimator [12]. Under suitable conditions, Thomp-
son’s technique is known to strictly dominate the LS estimator,
meaning that it achieves lower MSE for all values ofx [23].
However, the SBME is equally well-defined for the non-i.i.d.
case. As we shall see, the SBME strictly dominates LS in the
non-i.i.d. case, and can thus be viewed as a generalization of
Thompson’s results. In Section V we will demonstrate that the
blind minimax approach can be used to derive generalizations
of additional well-known methods, including Stein’s estimator.

Up to this point, we have arbitrarily chosen the parameter set
to be centered on the origin. The result was a weighted average
between the LS estimate and0. Averaging with a constant
value0 may be viewed as a restraint, which lessens the effect
of measurement noise. As we shall see, the proposed BMEs
outperform the LS estimator. This result demonstrates the fact
that the LS approach results in an overestimate: reducing the
norm ofx̂LS improves its performance. However, the choice of
a parameter set centered on the origin is completely arbitrary;
BMEs may be constructed around any constant center pointx0

[17]. This will result in a weighted average betweenx̂LS and
x0, which may be useful if the parameter vector is expected
to lie near a particular point. Thus, the “off-center” SBME is
given by

x̂ =

(
‖x̂LS‖2

‖x̂LS‖2 + ǫ0

)

x̂LS +

(
ǫ0

‖x̂LS‖2 + ǫ0

)

x0. (8)

All dominance results continue to hold for the off-center
techniques as well. In the sequel, we assumex0 = 0 merely
for the sake of notational simplicity.

The following theorem demonstrates that the SBME is
guaranteed to outperform LS in terms of MSE.

Theorem 1:Supposeǫ0/ǫmax > 4, whereǫ0 is given by (3),
ǫmax is the largest eigenvalue ofQ−1, andQ = H∗C−1

w
H.

Then, the SBME (7) strictly dominates the LS estimator.

The valueǫ0/ǫmax is known as the effective dimension [16],
and may be roughly described as the number of independently-
measured parameters in the system. In the i.i.d. case, for
example, the effective dimension simply equals the length
of the vectorx. Thus, the condition of Theorem 1 can be
roughly stated as a requirement for a sufficient number of
independent parameters. This requirement is a result of thefact
that the LS estimator is admissible when up to two parameters
are estimated [6]. However, since many estimation problems
contain dozens or hundreds of parameters and measurements,
the requirement on the effective dimension holds for a variety
of applications.

Note that the SBME is a special case of the estimator

x̂c =

(

1−
ǫ0

c+ ‖x̂LS‖2

)

x̂LS, (9)

in which c = ǫ0. Thus, rather than proving Theorem 1, we
prove the following, more general proposition, which will also
be used in Section V.

Proposition 1: Under the conditions of Theorem 1, the
estimatorx̂c given by (9) strictly dominates the LS estimator,
for any c ≥ 0.

The proof of Proposition 1 makes use of the following
lemma, which is due to Stein [5, Theorem 1.5.15].

Lemma 1 (Stein):Let v̂ ∼ Np(v, I), and let g(v̂) be a

differentiable function such thatE
{∣
∣
∣
∂g(v̂)
∂v̂i

∣
∣
∣

}

< ∞ for all i.
Then,

E

{
∂g(v̂)

∂v̂i

}

= −E{g(v̂)(vi − v̂i)} . (10)

Proof: [Proof of Proposition 1] To prove the proposition,
first note that the MSER(x̂c) = E

{
‖x− x̂c‖

2
}

of x̂c is
given by

R(x̂c) = ǫ0 + E

{
ǫ20‖x̂LS‖2

(c+ ‖x̂LS‖2)2

}

+ 2E

{
ǫ0

c+ ‖x̂LS‖2
x̂
∗

LS(x− x̂LS)

}

. (11)

Let VΣV∗ be the eigenvalue decomposition ofQ, such
that V is unitary andΣ = diag(σ1, . . . , σm). Define v̂ =
V∗Q1/2

x̂LS and v = V∗Q1/2
x. With these definitions, we

have

v̂
∗
Σ−1

v = x̂
∗

LSx,

v̂
∗
Σ

−1
v̂ = ‖x̂LS‖

2, (12)

v̂
∗
Σ

−2
v̂ = ‖x̂LS‖

2
Q−1 .

Using these properties, the third term in (11) becomes

E

{
ǫ0

c+ ‖x̂LS‖2
x̂
∗

LS(x− x̂LS)

}

= E

{
ǫ0

c+ v̂
∗
Σ−1

v̂
v̂
∗
Σ−1(v − v̂)

}

= ǫ0

p
∑

i=1

σ−1
i E

{
v̂i(vi − v̂i)

c+ v̂
∗
Σ

−1
v̂

}

. (13)

To evaluate (13), let

gi(v̂) ,
v̂i

c+ v̂
∗
Σ−1

v̂
, (14)
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and note thatv̂ is distributed normally with meanv and
covarianceI. We can thus apply Lemma 1 to obtain

E

{
ǫ0

c+ ‖x̂LS‖2
x̂
∗

LS(x− x̂LS)

}

= −ǫ0
∑

i

σ−1
i E

{
1

c+ v̂
∗
Σ−1

v̂
− 2

σ−1
i v̂2i

(c+ v̂
∗
Σ−1

v̂)2

}

= −ǫ0E

{
Tr(Σ−1)

c+ v̂
∗
Σ

−1
v̂

}

+ 2ǫ0E

{
v̂
∗
Σ

−2
v̂

(c+ v̂
∗
Σ

−1
v̂)2

}

= −ǫ0E

{
Tr(Q−1)

c+ ‖x̂LS‖2

}

+ 2ǫ0E

{

‖x̂LS‖
2
Q−1

(c+ ‖x̂LS‖2)2

}

.

(15)

Substituting this result back into (11), we have

R(x̂c) = ǫ0 + E

{

ǫ0
c+ ‖x̂LS‖2

·

(

ǫ0
‖x̂LS‖2

c+ ‖x̂LS‖2
− 2ǫ0 + 4

‖x̂LS‖2Q−1

c+ ‖x̂LS‖2

)}

. (16)

Sincec ≥ 0,

R(x̂c) ≤ ǫ0 + E

{
ǫ0

c+ ‖x̂LS‖2
(−ǫ0 + 4ǫmax)

}

. (17)

If ǫ0 > 4ǫmax, then the expectation is taken over a strictly
negative range, and henceR(x̂c) is always lower thanǫ0, so
that x̂c strictly dominateŝxLS.

As we have shown, in terms of MSE, the SBME outper-
forms LS, providing us with a first example of the power of
blind minimax estimation. The SBME is a shrinkage estimator,
i.e., it consists of the LS estimator multiplied by a gain factor
smaller than one. The SBME thus illustrates the fact that the
LS technique tends to be an overestimate, and shrinkage can
improve its performance.

IV. T HE ELLIPSOIDAL BLIND M INIMAX ESTIMATOR

A. Motivation

Not all elements of the least-squares estimatex̂LS are
equally trustworthy. Rather,̂xLS is a Gaussian random vector
with meanx and covarianceQ−1 =

(
H∗C−1

w
H
)−1

. Thus,
some components of̂xLS have lower variance than others. In
this sense, the scalar shrinkage factor of the SBME (7) and
other extended Stein estimators [13] seems inadequate.

Indeed, several researchers have proposed shrinking each
measurement according to its variance. Efron and Morris
[14] propose an empirical Bayes technique, in which high-
variance components are shrunk more than low-variance ones.
However, no closed form is available for this estimator, and
obtaining an estimate requires iteratively solving a set of
nonlinear equations. Furthermore, it is not known whether this
method dominates LS. By contrast, Berger [15] provides an
estimator in which more shrinkage is applied to low-variance
measurements, despite the fact that low-noise components are
those for which the LS approach is most accurate. Berger’s
technique is constructed such that the shrinkage of all compo-
nents is negligible whenever there is a substantial difference

λmax(T)

λmin(T)

‖x‖2

T
≤ L

2

x̂M

x̂LS

Fig. 1. Illustration of the adaptive shrinkage of the minimax estimatorx̂M for
the parameter setx∗Tx ≤ L2. Low shrinkage is applied to components of
x̂LS corresponding to small eigenvalues ofT, while components in directions
of large eigenvalues obtain higher shrinkage.

between the variances of different components. As a result,
dominance over the LS method is guaranteed, but the MSE
gain is insubstantial unless all noise components have similar
variances.

Minimax estimators can easily be adapted for non-scalar
shrinkage. Specifically, consider an ellipsoidal parameter set
of the formS = {x : ‖x‖2T ≤ L2}, for some positive definite
matrix T (see Fig. 1). Let̂xM represent the linear minimax
estimator for this set. It can be shown thatx̂M is a linear
function of x̂LS, and one can therefore examine its effect on
each component of̂xLS. Consider first components of̂xLS

in the direction of narrow axes of the ellipsoidS. These
components correspond to large eigenvalues ofT, and are
denotedλmax(T) in Fig. 1. The parameter set imposes a tight
constraint in these directions, and there will thus be consider-
able shrinkage of these elements. By contrast, components in
the direction of wide axes ofS (small eigenvalues ofT) are
not constrained as tightly. Less shrinkage will be applied in
this case, since the LS method is the linear minimax estimator
for an unbounded set. In Fig. 1, the shrinkage of wide-axis
and narrow-axis components is illustrated schematically for a
particular value of̂xLS.

Typically, one would want to obtain higher shrinkage for
high-variance components. Since the covariance ofx̂LS is
Q−1, we propose a BME based on a parameter set of the
form

S = {x : ‖x‖2Qb ≤ L2} (18)

for some constantb < 0. The boundL2 is estimated as
L2 = ‖x̂LS‖2Qb . We refer to the resulting technique as the
ellipsoidal BME(EBME). Note that highly negative values of
b yield an eccentric ellipsoid, and hence result in a larger
disparity between the shrinkage of different measurements.
Contrariwise, a choice ofb = 0 yields scalar shrinkage,
and the resulting estimator is identical to the SBME. As
we will demonstrate, the EBME dominates the LS method
under a condition similar to that of the SBME. However,
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the dominance condition of the EBME becomes stricter asb
becomes more negative. Thus, there exists a tradeoff between
selective shrinkage and a broad dominance condition. In the
numerical examples below we will choose a value ofb = −1
as a compromise.

As an additional motivation for the use of the EBME,
consider the following application example (Fig. 2). Here,a
100-sample signal is to be estimated from measurements of its
discrete cosine transform (DCT). Each component of the DCT
is corrupted by Gaussian noise: high-variance noise is added
to the 10 highest-frequency components, while the remaining
components contain much lower noise levels. Thus,Cw is
diagonal, andH is the DCT matrix. The condition number of
H∗C−1

w
H is 1000.

Since Cw is diagonal, the LS estimator is equivalent to
an inverse DCT transform, and thus ignores the differences
in noise level between measurements. This causes substantial
estimation error, as observed in Fig. 2(a). The error is reduced
by the SBME (Fig. 2(b)), which multiplies the LS estimate
by an appropriately chosen scalar; in the example above, the
squared error was reduced by 20% compared with that of
the LS estimate. Hence, merely multiplying the result of the
LS technique by an appropriately chosen scalar can signifi-
cantly reduce estimation error. However, the most significant
advantage is obtained by the EBME (Fig. 2(c)), which shrinks
the high-noise coefficients. Specifically, in this example,the
choice b = −1 resulted in shrinkage of 0.44 for the high-
noise coefficients, and shrinkage of only 0.98 for low-noise
coefficients. The resulting squared error was 83% lower than
that of the LS estimate.

Thus, our preliminary example demonstrates that it is pos-
sible to achieve substantial improvements over the LS tech-
nique by using non-scalar shrinkage. As we will demonstrate
presently, this empirical finding is only an example of the wide
range of cases in which the EBME is guaranteed to improve
on the LS approach.

B. Dominance

We begin our analysis by obtaining an expression for
the EBMEs. A closed form solution for minimax estimators
of an ellipsoidal parameter set was developed in [22]. By
substituting the value ofL2 into this closed form, we obtain
the following result.

Proposition 2 (Closed-Form EBME):Let VΣV∗ be the
eigenvalue decomposition ofQ = H∗C−1

w
H, whereV is

orthonormal andΣ = diag(σ1, . . . , σm). Let b ∈ R be any
constant, and suppose the eigenvaluesΣ are ordered such that
σb
1 ≥ σb

2 ≥ · · · ≥ σb
m > 0. Then, the EBME for the parameter

setS = {x : ‖x‖2
Qb ≤ L2} with L2 = ‖x̂LS‖2Qb is given by

x̂EBM = V diag
(

(1− ασ
b/2
1 )+, . . . , (1− ασb/2

m )+

)

V∗
x̂LS

(19)
when x̂LS 6= 0, and by x̂EBM = 0 when x̂LS = 0. Here
(·)+ = max(·, 0),

α =
r1

‖x̂LS‖2Qb + r2

r1 =

m∑

i=k+1

σ
b/2−1
i

r2 =

m∑

i=k+1

σb−1
i

(20)

and k is chosen as the smallest index0 ≤ k ≤ m − 1 such
that

ασ
b/2
k+1 < 1. (21)

Proof: In the casêxLS = 0, we need to find the linear
minimax estimator for the setS = {0}. Clearly, the solution
in this case iŝx = 0. For all other values of̂xLS, we seek the
linear minimax estimator for the setS = {x : x∗Qb

x ≤ L2},
whereL2 = x̂

∗

LSQ
b
x̂LS > 0. Substituting this value ofL2

into Proposition 1 of [22] yields

x̂EBM = V diag(0, . . . , 0
︸ ︷︷ ︸

k

, 1, . . . , 1
︸ ︷︷ ︸

m−k

)V∗(I− αQb/2)x̂LS

= V diag(0, . . . , 0
︸ ︷︷ ︸

k

, 1− ασ
b/2
k+1, . . . , 1− ασb/2

m )V∗
x̂LS.

(22)

From (21), it follows that1 − ασ
b/2
i < 0 for all i ≤ k, and

therefore (22) can be written as (19).
We note that, as long as‖x̂LS‖2Qb > 0, it is always possible

to find a valuek which satisfies (21). In particular, fork =
m− 1, we have

α =
σ
b/2−1
m

‖x̂LS‖2Qb + σb−1
m

<
σ
b/2−1
m

σb−1
m

, (23)

which satisfies the requirement (21).
While the closed form of the EBME appears somewhat

more intimidating than that of the SBME, the computational
complexities of the two estimators are comparable. The major
difference is the calculation of the valuek, for whichm divi-
sions are required. Like the SBME, the EBME also dominates
the LS estimator under suitable conditions, as shown in the
following theorem.

Theorem 2:Let x̂EBM be the EBME (19) and suppose that

Tr(Qb/2−1) > 4λmax(Q
b/2−1) (24)

where λmax(Q
b/2−1) is the largest eigenvalue ofQb/2−1

andQ = H∗C−1
w

H. Then, x̂EBM strictly dominates the LS
estimator.

Note that by substitutingb = 0, this result can be used to
demonstrate the dominance of the SBME over LS estimation
(Theorem 1). However, the method of proof here is different,
and the proof of Theorem 1 will also be used in Section V.

Also note that the dominance condition (24) is satisfied by
many reasonable estimation problems. Assuming a sufficient
number of parameters, the only case in which this condition
doesnot hold is the situation in which a small number of
parameters (less than four) have much higher variance than
all other parameters; in this case, the LS method is admissible
or nearly so.

In order to prove Theorem 2, we observe that the form
(19) of the EBME is similar to Baranchik’s positive-part
modification [5], [24] of the James-Stein estimator. Baranchik
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Fig. 2. Estimation of a signal from measurements of its DCT. In this example, high-frequency components have a much higher noise variance than low-
frequency components. Dashed line indicates original signal; solid line indicates estimate. (a) LS estimate; (b) Spherical BME, resulting in a shrinkage factor
of 0.79; (c) Ellipsoidal BME, with shrinkage in the range 0.44–0.98.

proposed using a shrinkage factor of 0 whenever the James-
Stein technique contains negative shrinkage, and showed that
the resulting method dominates the James-Stein estimator.
Although the EBME is not a shrinkage technique, it resembles
Baranchik’s modification, since each negative diagonal com-
ponent in (19) is replaced with zero. The following proposition
shows that the MSE can be reduced by eliminating this
negative shrinkage.

Proposition 3: Let VΣV∗ be the eigenvalue decomposi-
tion of Q = H∗C−1

w
H, and letb ∈ R be a constant. Suppose

x̂ is an estimator of the form̂x = VDV∗
x̂LS, whereD is

a diagonal matrix, whose diagonal elementsdi are functions
of the random variable‖x̂LS‖2Qb . Suppose at least one of the
elementsdi is negative with nonzero probability. Then,x̂ is
dominated by the (generalized) positive-part estimator

x̂+ = VD+V
∗
x̂LS, (25)

whereD+ is a diagonal matrix with diagonal elementsdi+ =
max(0, di).

Proof: Our proof follows that of Baranchik [24]. We will
show thatMSE(x̂)−MSE(x̂+) is nonnegative for allx, and
positive for any value ofx whose elements are all nonzero.

MSE(x̂)−MSE(x̂+) = E
{
‖x̂− x‖2

}
− E

{
‖x̂+ − x‖2

}

= E
{
‖x̂‖2 − ‖x̂+‖

2
}
− 2E

{
x̂
∗
x− x̂

∗

+x
}

= E
{
x̂
∗

LSV(D2 −D2
+)V

∗
x̂LS

}

− 2E{x̂∗

LSV(D−D+)V
∗
x} . (26)

Since d2i − d2i+ ≥ 0 for all i, the first term in (26) is
nonnegative. Hence, to prove the proposition, it suffices to
show thatE{x̂∗

LSV(D−D+)V
∗
x} is nonpositive for allx,

and negative for valuesx with nonzero elements.

To this end, definez = V∗
x and ẑ = V∗

x̂LS. We note
that ẑ ∼ Nm(z,Σ−1), so that the elements of̂z are statisti-
cally independent. To calculateE{x̂∗

LSV(D −D+)V
∗
x}, we

condition on‖x̂LS‖2Qb , obtaining

E{x̂∗

LSV(D−D+)V
∗
x}

= E
{

E
{

ẑ
∗(D−D+)z|ẑ

∗
Σ

b
ẑ

}}

= E

{
m∑

i=1

(di − di+)E
{

ẑizi|ẑ
∗
Σb

ẑ

}
}

(27)

where we used the fact that‖x̂LS‖2Qb = ẑ
∗
Σ

b
ẑ, and thatdi

anddi+ are deterministic when conditioned on‖x̂LS‖2Qb . For
eachi, we further condition on|ẑi|, to obtain

E{x̂∗

LSV(D−D+)V
∗
x}

= E

{
m∑

i=1

(di − di+)E
{

ẑizi
∣
∣ẑ

∗
Σ

b
ẑ, |ẑi|

}
}

= E

{
m∑

i=1

(di − di+)|ẑizi|E
{

sgn(ẑizi)
∣
∣ẑ

∗
Σb

ẑ, |ẑi|
}
}

.

(28)

Given |ẑi|, we have that either̂zi = |ẑi| sgn(zi) or that ẑi =
−|ẑi| sgn(zi). It is evident from the pdf of̂zi that the latter
option has lower probability, i.e.,

Pr
{

sgn(ẑi) = sgn(zi)
∣
∣ẑ

∗
Σ

b
ẑ, |ẑi|

}

> Pr
{

sgn(ẑi) 6= sgn(zi)
∣
∣ẑ

∗
Σb

ẑ, |ẑi|
}

. (29)

It follows that E
{

sgn(ẑizi)|ẑ
∗
Σb

ẑ, |ẑi|
}

≥ 0, with strict
inequality for zi 6= 0. Therefore, all terms in (28) are
nonnegative, except for(di − di+), which is nonpositive. As
a result, (28) (and hence (26)) is nonpositive for allx, so that
the MSE ofx̂+ is never higher than that of̂x.

We must also show that, for somex, (28) is strictly
negative. To this end, we choosex for which all elements are
nonzero; as a result, all terms in (28) are strictly positivewith
probability 1, except for(di−di+). The latter term is negative
when di < 0 and zero otherwise. Sincedi is negative with
nonzero probability for at least one value ofi, we conclude that
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for the chosen value ofx, (28) is strictly negative, completing
the proof of Proposition 3.

This generalization of the concept of a positive part estima-
tor is now used to prove Theorem 2.

Proof: [Proof of Theorem 2] Clearly, the EBME (19) is
the positive part of the estimator

x̂0 = V diag
(

1− ασ
b/2
1 , . . . , 1− ασb/2

m

)

V∗
x̂LS

= (I− αQb/2)x̂LS. (30)

Therefore, it suffices to show that̂x0 dominates the LS
estimator, and the theorem follows using Proposition 3.

The MSE ofx̂0 is given by

E

{∥
∥
∥x− x̂LS + αQb/2

x̂LS

∥
∥
∥

2
}

= E







∥
∥
∥
∥
∥
x− x̂LS +

r1Q
b/2

x̂LS

‖x̂LS‖2Qb + r2

∥
∥
∥
∥
∥

2






= ǫ0 + E

{
r21‖x̂LS‖2Qb

(‖x̂LS‖2Qb + r2)2

}

+ 2E

{

r1(x− x̂LS)
∗Qb/2

x̂LS

‖x̂LS‖2Qb + r2

}

. (31)

To analyze this expression, we define

v , V∗Q1/2
x,

v̂ , V∗Q1/2
x̂LS.

(32)

Using this notation, the third term in (31) becomes

A3 , E

{

r1(x− x̂LS)
∗Qb/2

x̂LS

‖x̂LS‖2Qb + r2

}

= E

{
r1(x− x̂LS)

∗Q1/2VV∗Qb/2−1VV∗Q1/2
x̂LS

x̂
∗

LSQ
1/2VV∗Qb−1VV∗Q1/2x̂LS + r2

}

= E

{

r1(v − v̂)∗Σb/2−1
v̂

v̂
∗
Σ

b−1
v̂ + r2

}

=

m∑

i=1

σ
b/2−1
i E

{
r1(vi − v̂i)v̂i

v̂
∗
Σb−1

v̂ + r2

}

. (33)

Next, define

gi(v̂) ,
r1v̂i

v̂
∗
Σb−1

v̂ + r2
. (34)

Note thatr1 and r2 are implicitly dependent onk, which in
turn depends on̂v. Thus, gi(v̂) is discontinuous for some
values of v̂, namely, those values for whichα = σ

b/2
i .

However, these values of̂v occur with probability zero; for
all other values,k (and hencer1 and r2) are constant for
sufficiently small changes in̂v. Thus,

∂gi
∂v̂i

=
r1

v̂
∗
Σb−1

v̂ + r2
−

2r1σ
b−1
i v̂2i

(v̂∗
Σb−1

v̂ + r2)2
w.p. 1 (35)

andE{|∂gi/∂v̂j|} < ∞ for all i, j. Furthermore, observe that
v̂ ∼ Nm(v, I). We can therefore apply Lemma 1 togi. This

yields

E

{
r1v̂i(vi − v̂i)

v̂
∗
Σb−1

v̂ + r2

}

= E

{

−
r1

v̂
∗
Σ

b−1
v̂ + r2

+ 2
r1σ

b−1
i v̂2i

(v̂∗
Σ

b−1
v̂ + r2)2

}

. (36)

Substituting into (33), we obtain

A3 =

m∑

i=1

σ
b/2−1
i E

{

2r1σ
b−1
i v̂2i

(v̂∗
Σ

b−1
v̂ + r2)2

−
r1

v̂
∗
Σ

b−1
v̂ + r2

}

= E

{

2r1
∑m

i=1 σ
3b/2−2
i v̂2i

(v̂∗
Σb−1

v̂ + r2)2
−

r1
∑m

i=1 σ
b/2−1
i

v̂
∗
Σb−1

v̂ + r2

}

= E

{

2r1v̂
∗
Σ

3b/2−2
v̂

(v̂∗
Σb−1

v̂ + r2)2
−

r1 Tr(Σ
b/2−1)

v̂
∗
Σb−1

v̂ + r2

}

. (37)

Using the definition (32) of̂v, A3 may be written as

E

{

r1
‖x̂LS‖2Qb + r2

[
2‖x̂LS‖2Q3b/2−1

‖x̂LS‖2Qb + r2
− Tr(Qb/2−1)

]}

.

(38)
Note that

‖x̂LS‖2Q3b/2−1

‖x̂LS‖2Qb + r2
<

‖x̂LS‖2Q3b/2−1

‖x̂LS‖2Qb

=
(Qb/2

x̂LS)
∗Qb/2−1(Qb/2

x̂LS)

(Qb/2x̂LS)∗(Qb/2x̂LS)

≤ λmax(Q
b/2−1). (39)

Thus

A3 < E

{

r1
‖x̂LS‖2Qb + r2

[

2λmax(Q
b/2−1)− Tr(Qb/2−1)

]
}

.

(40)
Substituting back into (31), we have

MSE < ǫ0 + E

{

r1
‖x̂LS‖2Qb + r2

·
[

r1 + 4λmax(Q
b/2−1)− 2Tr(Qb/2−1)

]
}

(41)

and using the fact thatr1 ≤ Tr(Σb/2−1) = Tr(Qb/2−1), we
conclude that the MSE is bounded by

ǫ0 + E

{

r1
‖x̂LS‖2Qb + r2

[

4λmax(Q
b/2−1)− Tr(Qb/2−1)

]
}

.

(42)
Thus, if Tr(Qb/2−1) > 4λmax(Q

b/2−1), then MSE < ǫ0,
proving that the EBME dominates the LS estimator.

Thus far, we have presented two examples of BMEs which
dominate the LS method under suitable conditions. Both
approaches are extensions of Thompson’s technique to the
non-i.i.d. case. In the next section, we demonstrate that other
BMEs extend different LS-dominating techniques, namely
Stein’s estimator and Baranchik’s positive-part improvement.
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V. RELATION TO STEIN-TYPE ESTIMATION

In Section III, the SBME (7) was constructed by using
L2 = ‖x̂LS‖

2 as an estimate of‖x‖2. However, the fact that
shrinkage techniques such as the SBME dominate LS indicates
that x̂LS is in fact an overestimate ofx. It is arguably more
accurate to use a smaller value than‖x̂LS‖2 to estimate‖x‖2.
In particular, it is readily shown that

E
{
‖x̂LS‖

2
}
= ‖x‖2 + ǫ0. (43)

Hence, one may opt to use

L2 = ‖x̂LS‖
2 − ǫ0 (44)

as an estimate of‖x‖2. It is important to note that such a
value ofL2 cannot be used with the linear minimax method,
sinceL2 is negative with nonzero probability; a parameter set
with negative radius is undefined. However, substituting (44)
into a minimax technique, as per the blind minimax approach,
can still lead to well-defined estimators. In particular, substi-
tuting (44) into the spherical minimax method (6) yields the
“balanced” BME

x̂BBM =

(

1−
ǫ0

‖x̂LS‖2

)

x̂LS. (45)

A striking property of the balanced BME is that it reduces to
Stein’s estimator [6] in the i.i.d. case. Both techniques are well-
defined unlesŝxLS = 0, an event which has zero probability.
Furthermore, the balanced BME extends Stein’s method, in
that it continues to dominate LS for the non-i.i.d. case, under
suitable conditions. This is shown by the following theorem.

Theorem 3:Supposeǫ0/ǫmax > 4, where ǫ0 is given by
(3), ǫmax is the largest eigenvalue ofQ−1, andQ is given by
(4). Then, the balanced BME (45) strictly dominates the LS
estimator.

Proof: The theorem follows by substitutingc = 0 in
Proposition 1.

A well-known drawback of Stein’s approach is that it
sometimes causes negative shrinkage, i.e., the shrinkage factor
in (45) is negative with nonzero probability. This is known to
increase the MSE [24]. From the blind minimax perspective,
this negative shrinkage is a result of the fact thatL2 can
become negative. Thus, it is natural to replace (44) with

L2 =
(
‖x̂LS‖

2 − ǫ0
)

+
(46)

where(a)+ = max(a, 0). Substituting this value ofL2 into the
spherical minimax estimator yields the “positive-part BME,”
given by

x̂PBM =

(
(‖x̂LS‖2 − ǫ0)+

(‖x̂LS‖2 − ǫ0)+ + ǫ0

)

x̂LS. (47)

Note that when‖x̂LS‖2 − ǫ0 < 0, the estimator̂xPBM equals
0; in all other cases,̂xPBM = x̂BBM. Thus, (47) may be
written as

x̂PBM =

(

1−
ǫ0

‖x̂LS‖2

)

+

x̂LS. (48)

In other words,x̂PBM is the positive part of the balanced
BME. Specifically, in the i.i.d. case,̂xPBM is the positive-part
correction of Stein’s estimator. In the i.i.d. case, Baranchik
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Fig. 3. Comparison between the positive part approach and the SBME.
The positive part method results in stronger shrinkage, which improves
performance for low SNR at the expense of high SNR.

[24] demonstrated that̂xPBM dominatesx̂BBM. An interest-
ing question for further research is whether the dominance
property holds in the non-i.i.d. case as well.

The “balanced” method presented in this section for es-
timating the parameter set radius results in a value (44) of
L2 which is smaller than that of the SBME. As a result, the
balanced approach causes more shrinkage towards the origin.
This tends to improve performance for low signal-to-noise
ratio (SNR) at the expense of performance degradation for
high SNR. In particular,̂xPBM has a positive probability of
yielding an estimate of0. This may indeed reduce the MSE
when the parameter is exceedingly small with respect to the
noise variance, but will sacrifice high-SNR performance.

In Fig. 3, the positive part estimator̂xPBM is compared
with the SBME of Section III. The problem setting of this
simulation is identical to that of Fig. 5(a), which will be
described in detail in Section VII. In general, the positive-part
BME tends to perform as well or worse than the SBME at SNR
values above 0 dB, and better for lower SNR values. Thus, in
most applications, use of the SBME is probably preferable.
However, the fact that Stein’s estimator can be derived and
extended using blind minimax considerations illustrates the
versatility of this approach.

VI. COMPARISON WITH LS REGULARIZATION

Independently of the development of Stein-type estimators,
many researchers became aware of deficiencies of the LS
approach for solving ill-conditioned problems. A variety of
alternatives were proposed as a result. These substitutes were
generally not required to dominate the LS estimator; rather,
they were intended to improve estimation quality in specific
scenarios. Of these approaches, the most common is Tikhonov
regularization [25], also referred to as ridge regression [26].

Tikhonov regularization is intended for ill-posed problems,
i.e., problems in whichH∗C−1

w
H is nearly singular. The

matrix Q = H∗C−1
w

H is guaranteed to be positive-definite
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(and hence invertible), since we assume thatH is full-rank and
Cw is positive-definite. However,Q may contain eigenvalues
which are very close to zero. In these cases, the LS estimator
(which depends on the termQ−1) causes severe amplification
of measurement noise. In effect, an ill-posed setting is onein
which the SNR of at least one parameter is extremely low;
as we have seen, the LS approach results in overestimation in
such conditions. Regularization techniques attempt to mitigate
this problem by improving the conditioning of the matrixQ.

Tikhonov regularization may be justified in a Bayesian
setting, as follows. Suppose that the parameter vectorx is
known to be distributed normally, independently of the noise
w, with zero mean and a covariance matrixCx. The minimum
MSE estimator ofx giveny is then the Wiener filter [1], [27]

x̂ =
(
H∗C−1

w
H+C−1

x

)−1
H∗C−1

w
y. (49)

In practice,x is a deterministic parameter, and thus does not
have a covariance matrix. However, by replacingC−1

x
with an

appropriately chosen regularization matrix, the (generalized)
Tikhonov estimator is obtained.

There are several methods for empirically selecting a regu-
larization matrixC−1

x
. If nothing is known about the parameter

x, one possibility is to chooseCx = σ2
xI, whereσ2

x is to be
estimated fromy. Optimally, one would like to use the average
value ofx2

i as an approximation of the varianceσ2
x. However,

sincex is unknown, this is not possible. Instead,σ2
x can be

estimated as
∑

x̂2
LS,i/m, which is an approximation of the

desired quantity
∑

x2
i /m. This results in the estimator

x̂
(1)
T =

(

H∗C−1
w

H+
m

‖x̂LS‖2
I

)−1

H∗C−1
w

y. (50)

This derivation is based on an empirical Bayes approach
[28], in which the elements ofx are assumed to be i.i.d.
An alternative is to assume instead that the variance ofx

is proportional to the variance of the noisew, which implies
Cx = αQ−1. In analogy to the previous derivation, one may
then estimateα asm/‖x̂LS‖2Q. Substituting into (49) results
in the shrinkage estimator

x̂
(2)
T =

‖x̂LS‖
2
Q

m+ ‖x̂LS‖2Q
x̂LS. (51)

Unfortunately, the Tikhonov estimatorŝx(1)
T and x̂

(2)
T do

not dominate LS; like the original Tikhonov regularization,
they perform poorly at high SNR values. To illustrate this,
we performed a simulation in which the MSE of the LS
method was compared to that of̂x(1)

T and x̂
(2)
T . In this

example, 15 parameters were estimated using 15 independent
measurements, withH = I. The noise variance of five of the
measurements was 100 times larger than the noise variance
of the remaining measurements. The parameter vector was
chosen in the direction of a high-variance measurement, and
its magnitude was varied to obtain different SNR values. Here
and in the remainder of the paper, we define the SNR as

SNR=
‖x‖2

E{‖w‖2}
=

‖x‖2

Tr(Cw)
. (52)

For comparison, the MSE of the LS and blind minimax
techniques were also calculated.
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Fig. 4. Tikhonov regularization does not dominate the LS estimator. The
Tikhonov estimatorŝxT are seen to perform worse than the LS estimator at
high SNR, whereas the BMEs dominate the LS method.

The results are displayed in Fig. 4. It is evident from
this figure that the Tikhonov regularization is inadequate at
high SNR, as it performs worse than the LS estimator. Both
Tikhonov approaches converge to the LS approach at infinite
SNR, but consistently obtain higher MSE than the LS method
for SNR values above 5 dB. This makes them unattractive
candidates for replacing the LS technique.

VII. N UMERICAL RESULTS

Estimator performance depends on a variety of operat-
ing conditions, including the effective dimension, the SNR,
the eigenvalues ofQ = H∗C−1

w
H, and the value of the

unknown parameter vectorx. Several computer simulations
were implemented to test the effect of these conditions on
performance of the SBME and EBME. In these tests, a value
of b = −1 was used for the parameter set (18) of the
EBME. The simulations were also used to compare the BMEs
with Bock’s estimator [13], which is the most commonly-
used extended Stein estimator [16], [17]. Like Stein’s results,
Bock’s approach consists of a shrinkage estimator, given by

x̂Bock =

(

1−
ǫ0/ǫmax − 2

‖x̂LS‖2Q

)

x̂LS. (53)

The theorems of Sections III and IV ensure that the BMEs
achieve lower MSE than the LS estimator, but do not guar-
antee that this improvement is substantial. To measure this
performance gain, we first chose a typical scenario, in which
the number of parametersm and the number of measurements
n were both 15. The system matrixH was chosen asI, and
the noise covarianceCw was

Cw = σ2 diag(1, 1, 1, 1, .5, .2, .2, .2, .2, .1, .1, .1, .1, .05, .05)
(54)

resulting in an effective dimension of 5.8. Hereσ2 was
selected to achieve the desired SNR (52). To illustrate the
dependence on the value of the parameter vectorx, two
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Fig. 5. MSE vs. SNR for a typical operating condition: effective dimension 5.8,m = n = 15. (a) Parameter vectorx in direction of maximum noise;
(b) Parameter vectorx in direction of minimum noise.

different settings were tested. In Fig. 5(a),x is chosen in
the direction of the maximum eigenvector ofQ−1, while
in Fig. 5(b), x is chosen in the direction of the minimum
eigenvector. This corresponds to parameters in the direction
of maximal and minimal noise, respectively. Estimates of the
MSE were calculated for a range of SNR values by generating
10,000 random realizations of noise per SNR value.

It is evident from Fig. 5 that substantial improvement in
MSE can be achieved by using BMEs in place of the LS
approach: in some cases the MSE of the LS estimator is nearly
three times larger than that of the BMEs. The performance
gain is particularly noticeable at low and moderate SNR. At
infinite SNR, the LS technique is known to be optimal [1], and
all other methods converge to the value of the LS estimate; as
a result, performance gain is smaller at high SNR, although
substantial improvement can be obtained even at 10–15 dB.

To further compare the BMEs with Bock’s estimator, an-
other simulation was performed, in which a large set of
parameter valuesx were generated for different SNRs. For
each estimator, and for each SNR, the lowest and highest MSE
were determined, resulting in a measure of the performance
range for each estimator. This performance range is displayed
in Fig. 6 for two different choices ofCw, which are indicated
in the figure caption. One may observe that both BMEs
outperform Bock’s estimator under nearly all circumstances.
It is also interesting to note that while the MSE of the EBME
is highly dependent on the value of the parameter valuex, the
performance of the SBME is fairly constant. This is a result
of the symmetric form of the SBME. On the other hand, the
EBME achieves considerably lower MSE for most values of
the parameter vector.

It is insightful to compare the performance of the SBME
and EBME in Figs. 5 and 6. While the worst-case performance
of the two blind minimax techniques is similar, the EBME
performs considerably better for some values ofx. This is a

result of the fact that the EBME selectively shrinks the noisy
measurements, whereas the SBME uses an identical shrinkage
factor for all elements. If one measurement contains very little
noise, the SBME is forced to reduce the shrinkage of all
other measurements. The EBME, by contrast, can effectively
reduce the effect of noisy measurements without shrinking
the clean elements. As a result, the EBME is superior by far
if x is orthogonal to the noisiest measurements, whence the
selective shrinkage is most effective; its performance gain is
less substantial whenx is in the direction of high shrinkage,
since in these cases, shrinkage is applied to the parameter as
well as the noise.

Another important advantage of the blind minimax ap-
proach over Bock’s estimator is that the latter converges
to the LS technique when the matrixQ is ill-conditioned,
i.e., when some eigenvalues are much larger than others.
This is because the shrinkage in Bock’s method (53) is a
function of 1/‖x̂LS‖

2
Q. As a result, whenx̂LS contains a

significant component in the direction of a large eigenvalueof
Q, shrinkage becomes negligible. Yet, in this case, shrinkage
is still desirable for the remaining eigenvalues. This effect is
demonstrated in Fig. 7, which plots the performance of the
various approaches for matricesQ having condition numbers
between 1 and 1000. Here, 10 parameters and 10 measure-
ments are used,H = I, and the noise covariance is chosen
such that the first five eigenvalues equal 1 and the remaining
five eigenvalues equal a valuev, which is chosen to obtain
the desired condition number. For each condition number,
a large set of valuesx are chosen such that the SNR is
0 dB; as in Fig. 6, the range of MSE values obtained for
each estimate is plotted. It is evident that Bock’s estimator
approaches the LS method for ill-conditioned matrices, despite
the fact that shrinkage can still improve performance, as
indicated by the performance of the SBME. The performance
of the EBME improves relative to the LS estimator for ill-



11

−10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

SBME

EBME

Bock

SNR (dB)

M
S

E
 (

as
 a

 fr
ac

tio
n 

of
 ε

0)

(a)

−10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

SBME

EBME

Bock

SNR (dB)

M
S

E
 (

as
 a

 fr
ac

tio
n 

of
 ε

0)

(b)

Fig. 6. Range of possible MSE values obtained for different values ofx, as a function of SNR.H = I for both figures. (a)m = n = 15, with eigenvalues
of Cw distributed uniformly between 1 and 0.01, resulting in an effective dimension of 7.6; (b)m = n = 10, with Cw containing five eigenvalues of 1 and
five eigenvalues of 0.1, resulting in an effective dimensionof 5.5.
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Fig. 7. Range of possible MSE values obtained for different values ofx, as
a function of the condition number ofQ. SNR 0 dB,m = n = 10.

conditioned matrices, since the high-noise components are
further reduced in this case.

VIII. D ISCUSSION

The blind minimax approach is a general technique for using
minimax estimators in situations for which no parameter set
is known. We considered an application of this concept to
the Gaussian linear regression model. Two novel estimators
were proposed: a technique based on a spherical parameter
set, and one based on an ellipsoidal parameter set. In Sections
III and IV, these approaches were shown to dominate the
LS method. Under fairly weak conditions, in any application
which makes use of the LS estimator, the MSE performance

can be improved by using a BME instead. Furthermore, in
Section V, we demonstrated that Stein’s approach, as well as
its positive part modification, can be derived and generalized
using the blind minimax framework.

It can readily be shown that the dominance condition
of the SBME (Theorem 1) is weaker than the dominance
condition of the EBME (Theorem 2), i.e., the conditions for
SBME dominance hold whenever the conditions for EBME
dominance hold. The dominance condition of Bock’s estimator
[13] is still weaker1. This would seem to indicate that Bock’s
estimator is superior to the proposed estimators. Yet the results
of Section VII demonstrate that the opposite is true: the BMEs
usually outperform Bock’s estimator. This is true in particular
for ill-conditioned problems, for which the LS estimator is
notoriously inaccurate; for such problems, Bock’s approach
dominates the LS method by a negligible margin, whereas
the BMEs achieve a significant performance gain. Thus, while
dominance theorems are useful in providing sufficient condi-
tions for improving on the LS estimator, they are ill-suitedfor
comparing LS-dominating estimators. This conclusion is note-
worthy since estimators are sometimes chosen by maximizing
the range of conditions for which dominance is guaranteed. It
seems that other analytical tools are required for comparing
LS-dominating estimators. For example, it may be possible to
prove that BMEs dominate Bock’s estimator, for some problem
settings.

The choice between the different BMEs is application-
dependent. As demonstrated in Section VII, the SBME reliably
achieves constant performance for a variety of values ofx,
although the typical performance of the EBME is superior. The

1A simple change to the SBME (adding−2 to the numerator) changes
its dominance condition to that of Bock’s estimator, without significantly
affecting its performance. However, we have been unable to derive this
modification using the blind minimax approach, and thus prefer the simpler
form of the SBME used in the paper.
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EBME is particularly well-adapted to ill-posed problems, in
which some measurements are much more noisy than others.
In such cases, the use of a single shrinkage factor for all mea-
surements is clearly suboptimal. As a result, scalar shrinkage
methods such as the SBME and Bock’s technique often result
in little improvement over the LS estimator, while the EBME
is capable of selectively shrinking the noisy measurements,
thus improving performance.

The use of a componentwise shrinkage technique such as
the EBME may be useful in additional contexts as well.
In some applications, MSE minimization is only a nominal
goal which approximates some other error criterion. In these
cases, a shrinkage estimator has no impact on the actual
objective. For example, if the vectorx is an image which
is to be reconstructed, its subjective quality is not affected
by multiplying the entire estimate by a scalar. Likewise, in
a binary receiver, the sign ofx must be determined, but the
sign does not change when the estimate is shrunk. In such
applications, the SBME (and Bock’s estimator) have no effect
on the final result, whereas the EBME can be used to improve
performance.

IX. CONCLUSION

In this paper, we presented the blind minimax strategy,
whereby one uses linear minimax estimators whose parameter
set is itself estimated from measurements. This simple concept
was examined in the setting of a linear system of measure-
ments with colored Gaussian noise, where we have shown
that the BMEs dominate the LS method. Hence, in any such
problem, the proposed estimators can be used in place of the
LS approach, with a guaranteed performance gain. Apart from
being useful in and of themselves, the proposed techniques
support the underlying concept of blind minimax estimation.
This concept can be applied to many other problems, such
as estimation with uncertain system matrices, estimation with
non-Gaussian noise, and sequential estimation. Use of the
blind minimax approach in such problems remains a topic for
further study.

Stein’s discovery of LS-dominating estimators, half a cen-
tury ago, shocked the statistics community, and his results
are still rarely used in practice. It is our hope that the
blind minimax concept will provide additional support for
such estimators, both by supplying an intuitive understanding
of Stein’s phenomenon, and by providing a wide class of
powerful new estimators.
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