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Blind Minimax Estimation

Zvika Ben-Haim Yonina C. Eldar

Abstract— We consider the linear regression problem of esti- appealing properties, they have no relation to the primaaj g
mating an unknown, deterministic parameter vector based on at hand, namely, achieving low estimation error. Indeeekeh

measurements corrupted by colored Gaussian noise. We prese 5.6 many examples in which the requirement of unbiasedness
and analyze blind minimax estimators (BMEs), which consisbf a . .
results in absurd estimators [4].

bounded parameter set minimax estimator, whose parameteres ) o
is itself estimated from measurements. Thus, one does notqeire Because the parameter vectoris deterministic, the MSE
any prior assumption or knowledge, and the proposed estimair E{H:c — ﬁ;HQ} is generally a function ofc. In other words,

can be applied to any linear regression problem. We demonsate  one method may be better than another for some valuas of
analytically that the BMEs strictly dominate the least-squares and worse for other values. For instance, the trivial estima

estimator, i.e., they achieve lower mean-squared error fomany . . .
value of the parameter vector. Both Stein’s estimator and & * = 0 achieves optimal MSE when = 0, but its performance

positive-part correction can be derived within the blind minimax IS otherwise poor. Nonetheless, it is possible to impose a
framework. Furthermore, our approach can be readily extended  partial order among estimation techniques [5], as follofus.

to a wider class of estimation problems than Stein's estimat, estimatora; is said tostrictly dominatea different estimator
which is defined only for white noise and non-transformed &, if the MSE of &, is lower than that ofi,, for all values
measurements. We show through simulations that the BMEs . .
generally outperform previous extensions of Stein’s techigue. Pf w'.lf the MSE of #, is never higher than that aés, and
is strictly lower for at least one parameter value, thgnis
. ) ) . ) said todominatez,. An estimator is said to badmissibleif
_ Keywords: Linear regression model, biased estimation; mig i not dominated by any other estimator. Surprisinglyewh
imax estimation, James-Stein estimation the parameter vector contains three or more elements, the LS
method turns out to be inadmissible, i.e., some techniques
I. INTRODUCTION always achieve lower MSE [6]. Thus, it is of interest to

The problem of estimating a parameter vector from noi@haracterize the class of admissible estimators, and to find

measurements has countless applications in science and@fniques which dominate LS. _ _ _
gineering. Such estimation problems are typically modeled The study of admissibility is sometimes restricted to linea
either in a Bayesian setting, in which a prior distributiof€thodsz = Gy. A linear admissible estimator is one which
on the parameter is assumed, or in a deterministic settiﬁrg,nOt dominated by any other linear strategy. A simple rule
in which no prior is assumed [1]. This paper examines tifdaracterizes the class of linear admissible techniqugs [7

deterministic estimation problem. We further assume that t2nd, given any linear inadmissible estimator, it is possibl
measurementy — Hz + w are linear combinations of theto construct a linear admissible alternative which dongsat

parameter vector, to which Gaussian noises is added. It [8]. However, the problem of admissibility is considelab

Here the transformation matrild and the noise covariancemMore intricate when the linearity restriction is removedng

are assumed to be known. We seek an estimatahich €rally, admissible estimators are either trivial (€.~ 0)

approximatese in the sense of minimal mean-squared errd’ €xceedingly complex [9], [10]. As a result, much research

(MSE). has focused on finding simple nonlinear techniques which
This ubiquitous problem was first addressed by Gauss [@yminate LS. o _ . _

and Legendre [3], who proposed the classiest-squares Early worll< on _LS-dc.)ml_naulng strategies considered the in-

(LS) estimator. Several lines of reasoning can be used to s@§Pendent, identical-distribution (i.i.d.) case, for efiH = I

port the LS approach. One argument is that the LS estimaffj}d the noise is white. Among these, the James-Stein estimat

minimizes the squared error between the measurengeatsl  [2]: [11]is the best-known example; others approachesigel

the transformed estimatg = Ha. The LS estimator is also the works qf Stein [6] and Thompson [12]. Various “extended”

the maximum likelihood solution for Gaussian noise. Howgvelames-Stein methods were later constructed for the general

neither of these criteria are directly related to the MSEtoor (non-i-i.d.) case [13]-[16]. Of these, Bock's techniqua][l

any other measure of the distance betweeand . Another 1S quoted most often [16], [17]. However, none of these

property of the LS solution is that it is the unbiased estanat@PProaches has become a standard alternative to the LS

achieving minimal MSE. Yet by removing the requiremerftStimator, and they are rarely used in practice in engingeri

of unbiasedness, estimators yielding lower MSE can be cdiPplications [16]. Perhaps one reason for this is that some o

structed. While linearity and unbiasedness may be inelitiv the estimators are poorly justified and seem counterim@yiti
and as such they are sometimes regarded with skepticism (see
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MSE; however, in the non-i.i.d. case, some measurements acemally with meanu and covariance. ||z||? is the Eu-
noisier than others, and thus a single shrinkage factor fdidean norme*z, and| |3 is the T-norm z* Tz, whereT

all measurements can be considered suboptimal. Furthermas a positive definite matrix. Finallydiag(a1,...,a,) refers

in some applications, a gain factor has no effect on fintd the n x n diagonal matrix whose diagonal elements are
system performance: for example, in an image reconstmicti@, , .. ., a,,.

problem, multiplying the entire image by a constant does not

improve quality. [I. BLIND MINIMAX ESTIMATION

In this paper, we provide a framework for generating a wide Consider the problem of estimating an unknown determin-

class of Iow-complex_ny, LS-_dom!natmg estimators, Wh.am istic parameter vectog € C™ from measurementg € C"”
constructed from a simple, intuitive principle, called thiand Sgiven by
s

minimax approach [19], [20]. This method is used as a ba
for selecting and generating techniques tailored for given
problems. Many blind minimax estimators (BMEs) reduce towhereH € C"*™ is a known matrix andw is a Gaussian
Stein-type methods in the i.i.d. case, and they continue rt@ndom vector with zero mean and covarianCg,. For
dominate the LS solution in the general, non-i.i.d. case agnplicity, we assume thaH is full-rank and thatC,, is
well. Thus, we show analytically that the proposed techaiquypositive definite.
achieves lower MSE than LS, when an appropriate conditionThe standard solution to this regression problem is the LS
on the problem setting is satisfied. Unlike Bock’s approachpproach
BMEs may be constructed so that they are non-shrinkage, #1s = (H*C,'H)"'H*Cly. )
WhICh improves their performanqe. Furthermore, exten&xﬁe MSE ofizLs does not depend on the value of and is
simulations show that BMEs considerably outperform Bock’s.
method. given by

BMEs are based on linear minimax estimators over a €0 = E{||#Ls —z||’} = Tr(Q™") (3)
bounded parameter set [21], [22]. These are linear methods
designed for a slightly different problem, in which the pahere o
rameter is known to belong to a given set. The minimax Q=HC, H. (4)

approach has been thoroughly studied in this setting, andhespite the popularity of the LS method, other estimators
closed-form solutions are known for many types of sets. Kre known to achieve lower MSE. We propose a novel strategy
our case, however, no prior information about the paramefghding to such LS-dominating techniques, namely, thedblin
set is assumed. Instead, the blind minimax approach makg#imax approach. To illustrate this concept, suppose for a
use of a two-stage process (Secfidn Il): First, a set is @ttith moment thatz is known to lie within a compact parameter
from the measurements; next, a minimax method for this sgits. In this case, a linear minimax estimator over the Set

is used to estimate the parameter itself. The result may ﬁ’%y be constructed [8], [21], [22]. This is the linear estiona

viewed as a simple decision rule, independent of this tegest 3, — Gy minimizing the worst-case MSE among all possible
construction process. Indeed, our LS-dominance proofsotlo jajyes ofz in S,

rely on the method by which the techniques are generated. A . R )
In particular, the dominance results do not depend on the M = afg;ilglyglggE{Hw—wH } (5)
parameter actually lying within the estimated set. Thus, th . ) ,
blind minimax technique provides a framework whereby marfy closed form solution of[(5) has been previously derived for
different estimators can be generated, and provides inisigh many cases _of mterest_. Furtherm_ore, it has been shown that
the mechanism by which these techniques outperform the £8Y linear minimax estimator achieves lower MSE than that
approach. of the LS method, for all va_lues ot in S [8], _[19]._ Thus,
BMEs differ in the method by which the parameter setS [0ng asomebounded set is known to contain minimax
is estimated. In Sectiofi]ll, we study the case in which tHEChniques outperform the LS estimator. ,
estimated set is a sphere; Secfion IV derives estimatoesibas BMEs ut_|I|z_e m|n|m_ax estimators when no parameter set is
on an ellipsoidal parameter set. Sectioh V demonstrates tf3OWN- This is done in a two-stage process:
several existing Stein-type methods can also be derived inl) A parameter sef is estimated from the measurements;
the blind minimax framework. Sectidn VI compares the blind 2) A minimax estimator designed fét is used to estimate
minimax approach with LS regularization techniques, while  the parameter vectat.
in Section[VIl, the BMEs are compared with other Stein- Various methods for estimating the parameterSean be
type decision rules. The paper concludes with a discussiosed, resulting in a variety of BMEs. In this paper, we coasid
in Sectior[ V1. sets of the form{z : z*Tz < L?}. In the next section,
Throughout this paper, vectors are denoted by lowercagse examine the cas& = I, in which the parameter set is
boldface letters, and matrices by uppercase boldfacedettespherical, resulting in a shrinkage estimator. Subsedyeént
The ith component of a vectow is written asv;. T'/2  SectionIV, we discuss the more general case in wHich
indicates the (unique) positive semidefinite square rooa of(H*C,'H)® for some real numbeb. In both cases, closed
positive semidefinite matri'. The notationz ~ N,(u,Q) forms are provided, and dominance over the LS method is
signifies thata is a random vector of lengthp, distributed demonstrated.

y=Hx+w (1)



IIl. THE SPHERICAL BLIND MINIMAX ESTIMATOR The valuety/emax is known as the effective dimension [16],

. . . - : . and may be roughly described as the number of independently-
In this section, we apply the blind minimax technique using . .
easured parameters in the system. In the i.i.d. case, for

a spherical parameter s§twhose radiug. will be estimated example, the effective dimension simply equals the length

from measurement_s._ We assume f‘;r ”OVZ that the S.phereofsthe vectorz. Thus, the condition of Theorefd 1 can be
centered on the origin§ = {« : ||z||* < L*}. For a given

: - : ; roughly stated as a requirement for a sufficient number of
value of L, the linear minimax estimator is [22] : : . .
independent parameters. This requirement is a result déthe
2 that the LS estimator is admissible when up to two parameters
~ Iz pa LS, (6) are estimated [6]. However, since many estimation problems
contain dozens or hundreds of parameters and measurements,

wherezys is the LS estimatori{2) and, is the MSE [(8) of e requirement on the effective dimension holds for a warie
@Ls. The resultingspherical BME(SBME) will have the form ot applications.

IMm

2 i H i 1
(6), whereL” is estimated from the measurements. ~ Note that the SBME is a special case of the estimator
As an estimate of.2, we seek a value as close as possible
to ||z||?: a smaller value would exclude the true vector - ( — 670) #rs (9)
. . A 2 )
from the parameter set, while a larger value would yield an ¢+ [zl

overly conservative estimator. Sinaeis unknown, a natural in which ¢ = ¢,. Thus, rather than proving Theordrh 1, we
alternative is to usés instead. Thus, we propose to estimatgrove the following, more general proposition, which wika
L? as||zLs|?. Substituting into[(B), the SBME is then givenbe used in Sectiof]V.

by Proposition 1: Under the conditions of Theoref 1, the
& = M;ﬁ @ estimatorz,. given by [9) strictly dominates the LS estimator,
SPM T s P e for any ¢ > 0.

N The proof of Propositiori]l makes use of the following
In the i.i.d. case, the SBME reduces to the well-knowpmnma. which is due to Stein [5, Theorem 1.5.15].

Thompson estimator [12]. Under suitable conditions, Thomp | amma 1 (Stein)Let & ~ N, (v,I), and letg(v) be a
son’s technique is known to strictly dominate the LS estonat
meaning that it achieves lower MSE for all valuesanf23].
However, the SBME is equally well-defined for the non-i.i.dThen’ Bg(®)
case. As we shall see, the SBME strictly dominates LS in the E{ g@} } = —F{g(0)(v; — 0;)}. (10)
non-i.i.d. case, and can thu_s be wewepi as a generalization 0 prgof- [Proof of Propositiofill] To prove the proposition,
Thompson's results. In Sectigr] V we will demonstrate that tirst note that the MSER(i.) = E{ | — .|} of &, is
blind minimax approach can be used to derive generalizatio&ven by
of additional well-known methods, including Stein’s esdior.

Up to this point, we have arbitrarily chosen the parameterse . . B 63|IiiLs||2
to be centered on the origin. The result was a weighted agerag (&) =co+ (c+ || ZLs]?)?
between the LS estimate artd Averaging with a constant €0 » A
value0 may be viewed as a restraint, which lessens the effect + 2E{m%s(w - fBLs)} . (1)
of measurement noise. As we shall see, the proposed BMEs
outperform the LS estimator. This result demonstratesahe flet VIVT

differentiable function such thaE{‘ag—ff)’} < oo for all 3.

be the eigenvalue decomposition €J, such

that the LS approach results in an overestimate: reduciag ft Y/Q'? unitary andZ* :1giag(01_’ 23 0m)- D_ef.”?ef’ -
norm of zrs improves its performance. However, the choice oY Qs andv = V*Q/“z. With these definitions, we
ave

a parameter set centered on the origin is completely arpjtra
BMEs may be constructed around any constant center pgint VS = @z,
[17]. This will result in a weighted average betwegens and

T PNTIN 2
xo, which may be useful if the parameter vector is expected ?*2_;’ o ”TLSHQ’ (12)
to lie near a particular point. Thus, the “off-center” SBME i VX0 = [[Tusg-r-
given by Using these properties, the third term [nJ(11) becomes
. |l ZLs]|? ) . ( €0 ) €0
=5 —|Tust|7—m—— ) To- (8 B ————@jg(x — &
(ra sl + e g s~ #18)
All dominance results continue to hold for the off-center _E{ €0 - @*gl(v_@)}
techniques as well. In the sequel, we assurge= 0 merely c+0"X D

for the sake of notational simplicity. P 1 0 (v; — 0;)
The following theorem demonstrates that the SBME is = 602% E{m} (13)
guaranteed to outperform LS in terms of MSE. =1
Theorem 1:Supposeo/emax > 4, Wheree, is given by [3), 1o evaluate[(I3), let
emax IS the largest eigenvalue @1, andQ = H*C_'H. A 0;
Then, the SBMEL(7) strictly dominates the LS estimator. gi(0) = cr oS 1 (14)



and note thato is distributed normally with mean» and
covariancel. We can thus apply Lemnad 1 to obtain

€0 A % ~
E J—
{rTaptise o)
1 o, U
—1 [
= — . E - 2 t
60;0’1 {C—F'IA)*EI'IA) (C—F’lA}*El'IA))Q}
Tr(S ! " S0
= —EOE{E*i_)lA} +260E{UA*—_11;A}
c+ XD (c+0"X " v)2

Tr(Q™1) } HiLSHé—l
= —¢€ E T < 115 +26 E T T~ o< .
0 {c+|st|2 " e+ [&s]?)?

(15)

Substituting this result back inte_(111), we have

€0 Fig. 1. lllustration of the adaptive shrinkage of the mininestimatorz); for
7_‘_ ” - ”2 the parameter set*Ta < L2. Low shrinkage is applied to components of
¢ LLS 1,5 corresponding to small eigenvaluesBf while components in directions
. 2 - 2 of large eigenvalues obtain higher shrinkage.
[ZLs|| 1ZLslg-
Neg—E2 — _2eg 44— (16)

R(.’f}c) = €g + E{

Yot s Tk
Sincee > 0 between the variances of different components. As a result,
- dominance over the LS method is guaranteed, but the MSE
R(&.) < e + E{702 (—eo + 46max)} . (17) 9ainis insubstantial unless all noise components havdagimi
¢+ [|zus]| variances.

If e > 4emax, then the expectation is taken over a strictly Minimax estimators can easily be adapted for non-scalar
negative range, and hené¥z.) is always lower than, so shrinkage. Specifically, consider an ellipsoidal parameés
that .. strictly dominatesss. m of the formS = {z : ||z|% < L?}, for some positive definite
As we have shown, in terms of MSE, the SBME outpefatrix T (see Fig[ll). Letty represent the linear minimax
forms LS, providing us with a first example of the power oestimator for this set. It can be shown thay is a linear
blind minimax estimation. The SBME is a shrinkage estimatdtinction of .5, and one can therefore examine its effect on
i.e., it consists of the LS estimator multiplied by a gaintéac €ach component ofs. Consider first components afys
smaller than one. The SBME thus illustrates the fact that tHe the direction of narrow axes of the ellipsoifl. These

LS technique tends to be an overestimate, and shrinkage €8fponents correspond to large eigenvalueslofand are
improve its performance. denoted\,,.x(T) in Fig.[. The parameter set imposes a tight

constraint in these directions, and there will thus be a®ersi
able shrinkage of these elements. By contrast, components i
o the direction of wide axes of (small eigenvalues dT') are
A. Motivation not constrained as tightly. Less shrinkage will be applied i
Not all elements of the least-squares estimaig; are this case, since the LS method is the linear minimax estimato
equally trustworthy. Rathet,s is a Gaussian random vectorfor an unbounded set. In Fifl 1, the shrinkage of wide-axis
with meanz and covariance) ! = (H*C;}H)*l_ Thus, and narrow-axis components is illustrated schematicaityaf
some components af;s have lower variance than others. Inparticular value ofeys.
this sense, the scalar shrinkage factor of the SBME (7) andTypically, one would want to obtain higher shrinkage for
other extended Stein estimators [13] seems inadequate. high-variance components. Since the covariancexgf is
Indeed, several researchers have proposed shrinking e@cit, we propose a BME based on a parameter set of the
measurement according to its variance. Efron and Moriierm
[14] propose an empirical Bayes technique, in which high- S={x: IIwIIéb < L?} (18)
variance components are shrunk more than low-variance ones
However, no closed form is available for this estimator, arfdr some constant < 0. The boundL? is estimated as
obtaining an estimate requires iteratively solving a set df = ||z1s||%,. We refer to the resulting technique as the
nonlinear equations. Furthermore, it is not known whethir t ellipsoidal BME(EBME). Note that highly negative values of
method dominates LS. By contrast, Berger [15] provides a@nyield an eccentric ellipsoid, and hence result in a larger
estimator in which more shrinkage is applied to low-varendisparity between the shrinkage of different measurements
measurements, despite the fact that low-noise components@ontrariwise, a choice ob = 0 yields scalar shrinkage,
those for which the LS approach is most accurate. Bergeand the resulting estimator is identical to the SBME. As
technique is constructed such that the shrinkage of all ctempve will demonstrate, the EBME dominates the LS method
nents is negligible whenever there is a substantial diffeee under a condition similar to that of the SBME. However,

IV. THE ELLIPSOIDAL BLIND MINIMAX ESTIMATOR



m

the dominance condition of the EBME becomes stricteb as r = Z Uf/%l

becomes more negative. Thus, there exists a tradeoff betwee ikl

selective shrinkage and a broad dominance condition. In the m (20)
numerical examples below we will choose a valuéef —1 ro = Z crf_1

as a compromise. i=k+1

As an additional motivation for the use of the EBMEandk is chosen as the smallest md@xg E<m-—1 such
consider the following application example (Fid. 2). Heae, that
100-sample signal is to be estimated from measurements of it b/2 - q (21)

ao
discrete cosine transform (DCT). Each component of the DCT  prgof: In the casei;L:+:1 0, we need to find the linear

is corrupted by Gaussian noise: high-variance noise is@dgginimax estimator for the sef — {0}. Clearly, the solution
to the 10 highest-frequency components, while the remginif, this case isi = 0. For all other values ofys, we seek the
components contain much lower noise levels. Thd§, is  |inear minimax estimator for the s& = {z : *Q’z < L?},
diagonal, andd is the DCT matrix. The condition number of\ynere 1,2 — &:sQbars > 0. Substituting this value of.?

H*C,,'H is 1000. _ _ _ into Proposition 1 of [22] yields
Since C,, is diagonal, the LS estimator is equivalent to | ) b/2 4
an inverse DCT transform, and thus ignores the difference§esm = V diag(0,...,0,1,...,)V*(I — aQ"")2Ls
in noise level between measurements. This causes substanti E m—k
estimation error, as observed in Hig. 2(a). The error iscedu — Vdiag(0,...,0,1 — ato}, 1= o) Vi,

by the SBME (Fig[ 2(B)), which multiplies the LS estimate
by an appropriately chosen scalar; in the example above, the 22)
squared error was reduced by 20% compared with that of

the LS estimate. Hence, merely multiplying the result of the;om [27), it follows thatl — ac?/? < 0 for all # < k, and
LS technique by an appropriately chosen scalar can signifizrefore[[2R) can be written 19)_ B -
cantly reduce estimation error. However, the most sigmfica \ye note that, as long dse1s||2,, > 0, it is always possible

advantage is obtained by the EBME (Ffig. 2(c)), which shrinkg fing a valuek which satisfies[(21). In particular, fdr =
the high-noise coefficients. Specifically, in this example ,, _ 1 we have

choiceb = —1 resulted in shrinkage of 0.44 for the high-

k

. . . . . b/2—1 b/2—1
noise coefficients, and shrinkage of only 0.98 for low-noise o — onl < ool 23)
coefficients. The resulting squared error was 83% lower than lZLs|2, + ot oht

that of the LS estimate. . L .
Thus, our preliminary example demonstrates that it is po\é’-h'Ch, satisfies the requiremedt21).
sible to achieve substantial improvements over the LS tech—WhIIe the closed form of the EBME appears somewhat

nique by using non-scalar shrinkage. As we wil demonstrafdore intimidating than that of the SBME, the computational

presently, this empirical finding is only an example of thelevi complexities of the two estimators are comparable. The majo

range of cases in which the EBME is guaranteed to improg_gmmnCe is th_e calc_ulation of the vale for which m diVi_'
on the LS approach. sions are required. Like the SBME, the EBME also dominates

the LS estimator under suitable conditions, as shown in the
following theorem.
B. Dominance Theorem 2:Let #gpy be the EBME[(IB) and suppose that

We begin our analysis by obtaining an expression for Tr(QY?71) > dAmax (QY/271) (24)
the EBMEs. A closed form solution for minimax estimators
of an ellipsoidal parameter set was developed in [22]. Byhere Amax (Q/?71) is the largest eigenvalue oR/>~
substituting the value of.? into this closed form, we obtain and Q = H*C,"H. Then,&gpy strictly dominates the LS
the following result. estimator.

Proposition 2 (Closed-Form EBME).et VEV* be the Note that by substituting = 0, this result can be used to
eigenvalue decomposition d@ = H*C_'H, where V is demonstrate the dominance of the SBME over LS estimation

orthonormal andS = diag(oy, . ..,om). Letb € R be any (Theorentl). However, the method of proof here is different,

constant, and suppose the eigenvalesre ordered such that@nd the proof of Theoreill 1 will also be used in Seckion V.
ot > o8 > ... >gb > 0. Then, the EBME for the parameter AlS0 note that the dominance conditidn}(24) is satisfied by
setsS — {_:1: : H:B_H?QTS L%} with L? = ||&s||, is given by ~many reasonable estimation problems. Assuming a sufficient

number of parameters, the only case in which this condition
Fppy = V diag ((1 _ aaf/2)+, (1= a0%2)+) V*arg doesnot hold is the situation in which a _smaII number of
parameters (less than four) have much higher variance than

. N N (19) all other parameters; in this case, the LS method is adnigssib

when s # 0, and byZggy = 0 when s = 0. Here or nearly so
() = max(-,0), In order to prove Theorerhl 2, we observe that the form
1 (I9) of the EBME is similar to Baranchik’s positive-part

‘= [ZLslge + 72 modification [5], [24] of the James-Stein estimator. Batdkc
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Estimation of a signal from measurements of its DGilthis example, high-frequency components have a much higbise variance than low-

frequency components. Dashed line indicates originalagigolid line indicates estimate. (a) LS estimate; (b) $icheBME, resulting in a shrinkage factor

of 0.79; (c) Ellipsoidal BME, with shrinkage in the range 4-0.98.

proposed using a shrinkage factor of 0 whenever the Jamesndition on||&s||

sz, obtaining

Stein technique contains negative shrinkage, and shovatd th

the resulting method dominates the James-Stein estimator.
Although the EBME is not a shrinkage technique, it resembles
Baranchik’s modification, since each negative diagonal-com

ponent in[(ID) is replaced with zero. The following propiosit

shows that the MSE can be reduced by eliminating this

negative shrinkage.

F{#;sV(D - D, )V z}
- E{E{%*(D - D+)z|2*2b2}}

_E{

m

S (d; - di+)E{2izi|,%*2bfz}

i=1

} (27)

Proposition 3: Let VXV* be the eigenvalue decomposiwhere we used the fact thﬁﬁ;LSH?Qb = 2*¥°2, and thatd,
tion of Q = H*C_'H, and letb € R be a constant. Supposeandd;, are deterministic when conditioned Gtrs .- For

 is an estimator of the forrt = VDV*2g, whereD is
a diagonal matrix, whose diagonal elemedtsare functions

eachi, we further condition on2;|, to obtain

of the random variablgzs|%,. Suppose at least one of the E{21sV(D — D, )V*z}

elementsd; is negative with nonzero probability. Thedt, is
dominated by the (generalized) positive-part estimator

&, = VD, Vi, (25)

whereD, is a diagonal matrix with diagonal elements. =
max(0, d;).
Proof: Our proof follows that of Baranchik [24]. We will

show thatMSE(&) — MSE(&) is honnegative for alk, and
positive for any value oft whose elements are all nonzero.

MSE(#) - MSE(&+) = B{|1& - =I*} - B{|l&+ - =}
= B{l|zl* - llz+]*} - 2B{&"z — &} =}
= B{dsV(D? — D})V*ars}

—2B{#isV(D - D, )V*z}. (26)

Since d? — d?, > 0 for all 4, the first term in [(26) is
nonnegative. Hence, to prove the proposition, it suffices
show thatE{z; V(D — D, )V*z} is nonpositive for allz,
and negative for values with nonzero elements.

To this end, definez = V*z and 2 = V*z15. We note
that 2 ~ N,,(z, £71), so that the elements ¢f are statisti-
cally independent. To calculafé{z; V(D — D, )V*x}, we

m

Z(di - dH)E{éizi‘fz*Eb%, |2i|}

i=1

_ E{
g

Given |Z;|, we have that eithet; = |2;| sgn(z;) or thatZ;
—|2:| sen(z;). It is evident from the pdf of; that the latter
option has lower probability, i.e.,

m }

> (i - di+)|éizi|E{sgn(2izi)’2*2172, |2i|}} .
= 28)

Pr{sgn(éi) = sgn(z)|2" %%, |21-|}

> Pr{sgn(éi) # sgn(z;)| 222, |21-|} . (29)

It follows that F¥ sgn(éizi)|2*2b2,|2i|} > 0, with strict
inequality for z; # 0. Therefore, all terms in[{28) are
nonnegative, except fafd; — d;+ ), which is nonpositive. As
a result, [2B) (and hence({26)) is nonpositive formliso that
the MSE ofz is never higher than that a§.

OWe must also show that, for some, (28) is strictly
negative. To this end, we choosefor which all elements are
nonzero; as a result, all terms [0 {28) are strictly posititth
probability 1, except fofd; —d; ). The latter term is negative
whend; < 0 and zero otherwise. Sinc& is negative with
nonzero probability for at least one valueipive conclude that



for the chosen value ct, (28) is strictly negative, completing yields
the proof of Propositiofil3.

This generalization of the concept of a positive part estima E{ r19;(vi — ) }
tor is now used to prove Theordm 2. 20 41y

Proof: [Proof of Theoreni 2] Clearly, the EBMHE (119) is - riob= 152
the positive part of the estimator =F B P P S P (36)
& = Vdiag (1-ao}?,....1—acl/?) Ve N -
0 8 Lo LS Substituting into[(313), we obtain
= (I-aQ"?)iys. (30) b-142
A _ Z 0'17/2 1 27’10’ _ T1
Therefore, it suffices to show that, dominates the LS — (2" 1o + ,,2)2 X
estimator, and the theorem follows using Proposifibn 3. m 3b/2-2 m b2—1
L R 27‘12-, o, ’lA}2 le-, (o
The MSE ofz, is given by - B i=19% P i=1%;
, (0B o 4 1rp)2 OB 4y
E{ Hcc —&rs + aQb/2;&LSH } . oy 5 5322 1 Tr(SP/271) @
) 2 @ o+ )2 S et [
— B . 11 Q"2 d
= T —TLs + 7H§3LSH?QZ> Ty Using the definition[(32) ob, A3 may be written as
21 4 2 ~ 2
7’1HwLSHQb r1 2||93LSHst/2—1 b/9—1
=€ + E _ _ E . ~ - Tr(Q / ) .
° { (lersZy + r2)2 TELsl, + 72 | sl + r2
(38)
5 *()b/2 4
+2F ri(® - mLz) Q%1 . (31) Note that
HIBLSHQb + 72 . 9 . o
HmLSHQSb/2—1 ||-73LSHQ31>/271
To analyze this expression, we define lLsZ + 2 ENE
v 2 V'Q!/iz, (32) (Qb/zfﬂLS)*Qb/Q_l(Qb/z-’iLS)
2 V*QY23s. (Q¥2&15)* (QY2&1s)
Amax(Q"271). (39)

Using this notation, the third term il (81) becomes
) ) Thus
AL E ri(z — &1s) Q% 2&Ls
[ZLsllgs + 72

A3 < E{ —~ 3
_ m _ mLS *Ql/vi*Qb/Q 1vv*Q1/2$LS ||:1}LS||Qb
wLSQ1/2VV*Qb 1VV*Q1/2:BLS+T2

B ri(v—0) Zb/2 1o
N A*Zb 1’U—|—T2

71

2max (Q/271) = TH(QY2 )]
(40)

+7’2[

Substituting back intd (31), we have

. MSE < ¢g+ B —L——

Z b1 { ri (v — 01)0; } (33) 1ZLslign + 72

, 2 o4y )

- : Jr o D (@27 — 2TH(Q2 )| } (41)

Next, define
(o) & r10; (34) @nd using the fact that, < Tr(ZY271) = Tr(QY21), we
' T 4y conclude that the MSE is bounded by

Note thatr; andr, are implicitly dependent ott, which in r
turn depends orb. Thus, g;(9) is discontinuous for some € + E TorsBn T 7s Amax (QY/71) — T‘r(Qb/?_l)}
values of v, namely, those values for whichh = f/Q Lsliqr T 72

42)
(QY271) > 4Xpax(QY271), then MSE < ¢,
proving that the EBME dominates the LS estimator. ®
Thus far, we have presented two examples of BMEs which
dg; r 2r00 102 dominate the LS method under suitable conditions. Both
90, = 22 + 1y - (" S0 + 1g)2 w.p. 1 (35) approaches are extensions of Thompson’s technique to the
non-i.i.d. case. In the next section, we demonstrate thwegrot
and E{|0g;/09,|} < oo for all 4, j. Furthermore, observe thatBMEs extend different LS-dominating techniques, namely
o ~ N (v,I). We can therefore apply Lemnia 1 go. This Stein’s estimator and Baranchik’s positive-part improeein

However, these values af occur with probablhty zero; for

Thus, if Tr
all other values,k (and hencer; andr;) are constant for
sufficiently small changes i@. Thus,




V. RELATION TO STEIN-TYPE ESTIMATION

In Section[ll, the SBME [{[7) was constructed by usin
L? = ||Z1s|/? as an estimate dfz||?. However, the fact that
shrinkage techniques such as the SBME dominate LS indica o8}

that z1 g is in fact an overestimate af. It is arguably more g’
accurate to use a smaller value thgir s ||* to estimate||z|®. g
In particular, it is readily shown that g 06y
. ©
E{|l@us|?} = llz]* + eo. 43) g
w04t
Hence, one may opt to use 2
L? = HiLSH2 — €0 (44) Positive Part BME
02f

as an estimate ofz||?. It is important to note that such a
value of L? cannot be used with the linear minimax methoc

si.nceL2 is negative with nonzero probability; a parameter s. % " o s 1 15 20
with negative radius is undefined. However, substitutind) (4 SNR (dB)

into a minimax technique, as per the blind minimax approach,

can still lead to well-defined estimators. In particulapsti+ Fig- 3. Comparison between the positive part approach ae@dSBME.
The positive part method results in stronger shrinkage,clwvhimproves

tuting (44) into the spherical minimax methdd (6) yields thgerformance for low SNR at the expense of high SNR.
“balanced” BME

~ €0 ~
TBBM = <1 - ||i'LS|2> LLS- (45) [24] demonstrated thatpgy dominatestppn. An interest-
o ] ) ing question for further research is whether the dominance
A striking property of the balanced BME is that it reduces tBroperty holds in the non-ii.d. case as well.
Ste_in’s estimatf)r [6] inthei.i.d.case._ Both techniqumll_-_ The “balanced” method presented in this section for es-
defined unlesg s = 0, an event which has zero probabﬂﬂytimaﬂng the parameter set radius results in a valie (44) of
Furthermore, the balanced BME extends Stein’s method, i \ynich is smaller than that of the SBME. As a result. the
that it continues to dominate LS for the non-i.i.d. case,amdyzjanced approach causes more shrinkage towards the.origin
suitable conditions. This is shown by the folloyvmg theoreMypis tends to improve performance for low signal-to-noise
Theorem 3:Supposecy/emax > 4, lehereeo is given by 440 (SNR) at the expense of performance degradation for
(3), emax s the largest eigenvalue @', andQ is given by pigh SNR. In particularippy has a positive probability of
@) Then, the balanced BME_(#5) strictly dominates the Le|ging an estimate 06. This may indeed reduce the MSE

estimator.. _ ~when the parameter is exceedingly small with respect to the
Proof: The theorem follows by substituting = 0 in  pise variance, but will sacrifice high-SNR performance.
Propositior{1L. u In Fig. [3, the positive part estimatakpgy; is compared

A well-known drawback of Stein's approach is that itith the SBME of Sectiofilll. The problem setting of this
sometimes causes negative shrinkage, i.e., the shrinkat® f gy u1ation is identical to that of Fid- 5{a), which will be
in (45) is negative with nonzero probability. This is knovan t yescribed in detail in SectidiVIl. In general, the positpart
increase the MSE [24]. From the blind minimax perspectivg\ e tends to perform as well or worse than the SBME at SNR
this negative shrinkage is a result of the fact thizt can  yalues above 0 dB, and better for lower SNR values. Thus, in
become negative. Thus, it is natural to repldce (44) with 4ot applications, use of the SBME is probably preferable.

2 — (|\ff3LSH2 _ 60)+ (46) However, the_ fact _that Ste_in’s estimgtor can bg derived and
extended using blind minimax considerations illustrates t
where(a) = max(a, 0). Substituting this value of? into the versatility of this approach.
spherical minimax estimator yields the “positive-part BME
given by VI. COMPARISON WITHLS REGULARIZATION

. (|ZLs]]? — €0)+ R Independently of the development of Stein-type estimators
TPBM = ((”i.LS||2 —e0)y +€0> ZLS- (47) many researchers became aware of deficiencies of the LS
. _ . approach for solving ill-conditioned problems. A varietf o
Note that when|d1s|* — o < 0, the estimatotipen €qUalS  5iematives were proposed as a result. These substitiees w
0; in all other casesgrpm = @ppm- Thus, [4Y) may be generally not required to dominate the LS estimator; rather
written as . they were intended to improve estimation quality in specific
TppM = (1 - 702) Zrs. (48) scenarios. Of these approaches, the most common is Tikhonov
lZLsl® /4 regularization [25], also referred to as ridge regress8i.[
In other words,zppy IS the positive part of the balanced Tikhonov regularization is intended for ill-posed probkem
BME. Specifically, in the i.i.d. case;pgy is the positive-part i.e., problems in whichH*C_'H is nearly singular. The
correction of Stein’s estimator. In the i.i.d. case, Batdkc matrix Q = H*C_'H is guaranteed to be positive-definite
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(and hence invertible), since we assume H#as full-rank and
C., is positive-definite. Howevef) may contain eigenvalues
which are very close to zero. In these cases, the LS estime
(which depends on the ter@~!) causes severe amplification
of measurement noise. In effect, an ill-posed setting isione
which the SNR of at least one parameter is extremely lo\s
as we have seen, the LS approach results in overestimatio-
such conditions. Regularization techniques attempt t@ati
this problem by improving the conditioning of the matiix
Tikhonov regularization may be justified in a Bayesia
setting, as follows. Suppose that the parameter veetds
known to be distributed normally, independently of the rois
w, with zero mean and a covariance maitlx. The minimum
MSE estimator ofe giveny is then the Wiener filter [1], [27]

&= (H"C,'H+C,') H"Cyly. (49)

In practice,x is a deterministic parameter, and thus does n..
. . 1o
have a (_:ovarlance matrix. HO\_NeV_er’ by re_pladhg Wlt_h an Fig. 4. Tikhonov regularization does not dominate the LSnesbr. The
appropriately chosen regularization matrix, the (gemege) Tikhonov estimatorser are seen to perform worse than the LS estimator at
Tikhonov estimator is obtained. high SNR, whereas the BMEs dominate the LS method.
There are several methods for empirically selecting a regu-

larization matrixC_ *. If nothing is known about the parameter . o ) )
a, one possibility is to choos€,, = 021, wheres? is to be  The results are displayed in Figl 4. It is evident from

estimated fromy. Optimally, one would like to use the averagdhis figure that the Tikhonov regularization is inadequate a
value ofz2 as an approximation of the varianeg. However, high SNR, as it performs worse than the LS estimator. Both

sincex is unknown, this is not possible. Insteae? can be Tikhonov approaches converge to the LS approach at infinite
estimated asy” 42 ,/m, which is an approximation of the SNR, but consistently obtain higher MSE than the LS method

desired quantitys" 22/m. This results in the estimator for SNR values above 5 dB. This makes them unattractive
’ candidates for replacing the LS technique.

10

MSE (as a fracti
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m
|ZLs]|? VIl. NUMERICAL RESULTS
This derivation is based on an empirical Bayes approachgstimator performance depends on a variety of operat-
[28], in which the elements of are assumed to be i.i.d.ing conditions, including the effective dimension, the SNR
An alternative is to assume instead that the variancer ofthe eigenvalues ol = H*C_'H, and the value of the
is proportional to the variance of the noiag which implies unknown parameter vectae. Several computer simulations
C. = aQ™'. In analogy to the previous derivation, one mayere implemented to test the effect of these conditions on
then estimatex asm/||Z1s]|g. Substituting into[(49) results performance of the SBME and EBME. In these tests, a value

-1
:&(Tl)_(H*CleJr 1> H*C,'y. (50)

in the shrinkage estimator of b = —1 was used for the parameter s€f](18) of the
@ HfﬁLSH?Q EBME. The simulations were also used to compare the BMEs
&y = ZLs. (51) with Bock’s estimator [13], which is the most commonly-

—— =3 LL
met ”wLS”Q used extended Stein estimator [16], [17]. Like Stein’s ltssu

Unfortunately, the Tikhonov estimators|’ and 4! do Bock's approach consists of a shrinkage estimator, given by
not dominate LS; like the original Tikhonov regularizatjon
they perform poorly at high SNR values. To illustrate this, LBock = <1 €0/ €max 2)
we performed a simulation in which the MSE of the LS
method was compared to that @y and @. In this  The theorems of Sectiofislill afidllV ensure that the BMEs
example, 15 parameters were estimated using 15 independgifieve lower MSE than the LS estimator, but do not guar-
measurements, withl = 1. The noise variance of five of theantee that this improvement is substantial. To measure this
measurements was 100 times larger than the noise variapgfformance gain, we first chose a typical scenario, in which
of the remaining measurements. The parameter vector WAg number of parameters and the number of measurements
chosen in the direction of a high-variance measurement, andvere both 15. The system matrBf was chosen a¥, and
its magnitude was varied to obtain different SNR values.eHeghe noise covarianc€,, was
and in the remainder of the paper, we define the SNR as

Cw = o2 diag(1,1,1,1,.5,.2,.2,.2,.2,.1, .1,.1,.1,.05, .05)

Edls [Edls
SNR= = . (52) (54)
E{flw|?}  Tr(Cw) resulting in an effective dimension of 5.8. Hee¢ was
For comparison, the MSE of the LS and blind minimaselected to achieve the desired SNRI(52). To illustrate the
techniques were also calculated. dependence on the value of the parameter veaiotwo

— 3 ZLs. (53)
|ZLs ||Q
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Fig. 5. MSE vs. SNR for a typical operating condition: effeetdimension 5.8y)n = n = 15. (a) Parameter vectae in direction of maximum noise;
(b) Parameter vectag in direction of minimum noise.

different settings were tested. In Fig. B(a),is chosen in result of the fact that the EBME selectively shrinks the pois
the direction of the maximum eigenvector €', while measurements, whereas the SBME uses an identical shrinkage
in Fig. [5(B), = is chosen in the direction of the minimumfactor for all elements. If one measurement contains véttg li
eigenvector. This corresponds to parameters in the diwectnoise, the SBME is forced to reduce the shrinkage of all
of maximal and minimal noise, respectively. Estimates @f thother measurements. The EBME, by contrast, can effectively
MSE were calculated for a range of SNR values by generatingduce the effect of noisy measurements without shrinking
10,000 random realizations of noise per SNR value. the clean elements. As a result, the EBME is superior by far

It is evident from Fig[b that substantial improvement iff « is orthogonal to the noisiest measurements, whence the
MSE can be achieved by using BMEs in place of the Lselective shrinkage is most effective; its performance gsi
approach: in some cases the MSE of the LS estimator is nedfi§s substantial whea is in the direction of high shrinkage,
three times larger than that of the BMEs. The performang#ice in these cases, shrinkage is applied to the paraneeter a
gain is particularly noticeable at low and moderate SNR. Aell as the noise.

|n|:‘|n|tthe SNR’t;hE LS techmqt:e;a knO\I/vn tofliﬁ oEtémaltll],tz;\r?d Another important advantage of the blind minimax ap-
all other methods converge 1o the vaiue of the estimate; @%ach over Bock's estimator is that the latter converges

a result,_pe_rformance gain is smaIIer_ at high SNR, althou the LS technique when the matri@ is ill-conditioned,
substantial improvement can be obtained even at 10-15 d 2., when some eigenvalues are much larger than others.
To further compare the BMEs with Bock’s estimator, anthjs is because the shrinkage in Bock’s methbd (53) is a
other simulation was performed, in which a large set @fjnction of 1/H§CLS||%_ As a result, whenirg contains a
parameter values: were generated for different SNRs. Fokjgnificant component in the direction of a large eigenvalfie
each estimator, and for each SNR, the lowest and hlgheSt M%Shrinkage becomes neg||g|b|e Yet, in this case, Shriekag
were determined, resulting in a measure of the performangestill desirable for the remaining eigenvalues. This effie
range for each estimator. This performance range is displayjemonstrated in Fid:] 7, which plots the performance of the
in Fig.[8 for two different choices of.,, which are indicated various approaches for matric€s having condition numbers
in the figure caption. One may observe that both BMEsetween 1 and 1000. Here, 10 parameters and 10 measure-
outperform Bock's estimator under nearly all circumstancements are usedd = I, and the noise covariance is chosen
Itis also interesting to note that while the MSE of the EBMEych that the first five eigenvalues equal 1 and the remaining
is highly dependent on the value of the parameter valuthe  five eigenvalues equal a value which is chosen to obtain
performance of the SBME is fairly constant. This is a resulhe desired condition number. For each condition number,
of the Symmetric form of the SBME. On the other hand, th& |arge set of valueax are chosen such that the SNR is
EBME achieves considerably lower MSE for most values @f dB: as in Fig.B, the range of MSE values obtained for
the parameter vector. each estimate is plotted. It is evident that Bock’s estimato
It is insightful to compare the performance of the SBMEB&pproaches the LS method for ill-conditioned matricespites
and EBME in Figsl b and 6. While the worst-case performandee fact that shrinkage can still improve performance, as
of the two blind minimax techniques is similar, the EBMEndicated by the performance of the SBME. The performance
performs considerably better for some valuescofThis is a of the EBME improves relative to the LS estimator for ill-
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Fig. 6. Range of possible MSE values obtained for differezities ofx, as a function of SNRH = I for both figures. (a)n = n = 15, with eigenvalues

of Cy distributed uniformly between 1 and 0.01, resulting in dieaive dimension of 7.6; (byn = n = 10, with C,, containing five eigenvalues of 1 and
five eigenvalues of 0.1, resulting in an effective dimensidrs.5.

can be improved by using a BME instead. Furthermore, in

| Section V¥, we demonstrated that Stein’s approach, as well as
- = = = === its positive part modification, can be derived and genezdliz
09t using the blind minimax framework.
= A~ It can readily be shown that the dominance condition
%’o 081 /// of the SBME (Theoreni]l) is weaker than the dominance
5 o7t A condition of the EBME (Theorerl 2), i.e., the conditions for
E 06 SBME dominance hold whenever the conditions for EBME
© dominance hold. The dominance condition of Bock’s estimato
= 05y [13] is still weakell. This would seem to indicate that Bock’s
2 o4}, estimator is superior to the proposed estimators. Yet thatse
0al SBME of Sectiorf VIl demonstrate that the opposite is true: the BME
' @ EBME usually outperform Bock’s estimator. This is true in partar
02r ] Bock for ill-conditioned problems, for which the LS estimator is
01 . . . notoriously inaccurate; for such problems, Bock’s apphoac
1 10 - 100 1000 dominates the LS method by a negligible margin, whereas
Condition number the BMEs achieve a significant performance gain. Thus, while

Fig. 7. Range of possible MSE values obtained for differexities ofx, as qom'”anf:e thec_)rems are useful _In providing suff_|c:|en_t condi
a function of the condition number @. SNR 0 dB,m = n = 10. tions for improving on the LS estimator, they are ill-suifed

comparing LS-dominating estimators. This conclusion i&eno

worthy since estimators are sometimes chosen by maximizing
conditioned matrices, since the high-noise components #he range of conditions for which dominance is guaranteed. |
further reduced in this case. seems that other analytical tools are required for comparin
LS-dominating estimators. For example, it may be possible t
prove that BMEs dominate Bock’s estimator, for some problem
settings.

The blind minimax approach is a general technique for usingThe choice between the different BMEs is application-
minimax estimators in situations for which no parameter sgeépendent. As demonstrated in Secfiod VII, the SBME refiabl
is known. We considered an application of this concept fhjeves constant performance for a variety of values:,of
the Gaussian linear regression model. Two novel estimat@iighough the typical performance of the EBME is superioe Th
were proposed: a technique based on a spherical parameter
set, and one based on an ellipsoidal parameter set. In Bectio A simple change to the SBME (adding?2 to the numerator) changes

[ and V] these approaches were shown to dominate tHg dominance condition to that of Bock's estimator, withaignificantly
affecting its performance. However, we have been unable etdvel this

LS_methOd' Under fairly weak cpnditions, in any applicatioﬂ\odification using the blind minimax approach, and thus grdifie simpler
which makes use of the LS estimator, the MSE performanfoén of the SBME used in the paper.

VIII. DISCUSSION
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