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Abstract

In a slow fading channel, how to find a cooperative diversitfiesne that achieves the transmit
diversity bound is still an open problem. In fact, all prawsty proposed amplify-and-forward (AF) and
decode-and-forward (DF) schemes do not improve with thelbmurof relays in terms of the diversity-
multiplexing tradeoff (DMT) for multiplexing gains higher thar0.5. In this work, we study the class of
slotted amplify-and-forward (SAF) schemes. We first egsatdn upper bound on the DMT for any SAF
scheme with an arbitrary number of relajys and number of slotd/. Then, we propose a sequential
SAF scheme that can exploit the potential diversity gainh@ high multiplexing gain regime. More
precisely, in certain conditions, the sequential SAF sahachieves the proposed DMT upper bound
which tends to the transmit diversity bound wh&h goes to infinity. In particular, for the two-relay
case, the three-slot sequential SAF scheme achieves tippgaw upper bound and outperforms the
two-relay non-orthorgonal amplify-and-forward (NAF) sche of Azariaret al. for multiplexing gains
r < 2/3. Numerical results reveal a significant gain of our schemer ¢lve previously proposed AF

schemes, especially in high spectral efficiency and largerar& size regime.

Index Terms

Cooperative diversity, diversity-multiplexing trade¢fiMT), relay, relay scheduling, slotted amplify-
and-forward (SAF).

I. INTRODUCTION AND PROBLEM DESCRIPTION

As a new way to exploit spatial diversity in a wireless netky@ooperative diversity techniques

have recently drawn more and more attention. Since the widBendonari®t al.[1], [2], a flood
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of works has appeared on this subject and many cooperattequis have been proposed (see,
for example, [3]-[8]). A fundamental performance measwreetaluate different cooperative
schemes is the diversity-multiplexing tradeoff (DMT) wihivas introduced by Zheng and Tse [9]
for the MIMO Rayleigh channel. It is well known that the DMT ahy N-relay cooperative
diversity scheme is upper-bounded (referred to astitesmit diversity boundn [4]) by the

DMT of a MISO system withV + 1 antennas,
d(r)y=(N+1)(1—-r)". Q)

This bound is actually proved achievable by the cooperatiudtiple access scheme [6], using
a Gaussian code with an infinite cooperation frame length.

However, how to achievé (1) in a single-user setting. (half-duplex relay channel) in the
general case is still an open problem, even with an infinitgecation frame length. In the single-
relay case, the best known cooperative scheme, in the dasemify-and-forward strategies, is
the Non-orthogonal Amplify-and-Forward (NAF) scheme amel Dynamic Decode-and-Forward
(DDF) scheme in the class of decode-and-forward stratedies NAF scheme was proposed
by Nabaret al. [5] and has been proved to be the optimal amplify-and-fodwstheme for a
half-duplex single-relay channel by Azariahal. [6]. It is therefore impossible to achievd (1) by
only amplifying-and-forwarding with one relay. The DDF sche was proposed independently
in [6], [10], [11] in different contexts. In [6], it is showrhat the DDF scheme does achieve
(@) in the low multiplexing gain regimer(< 0.5) but it fails in the high multiplexing gain
regime, which is due to theausalityof the decode-and-forward scheme. Intuitively, to achieve
the MISO bound with a multiplexing gain, the source and the relay need to cooperate during
at leastr-portion of the time. However, before this might possiblypan, the relay also needs
at leastr-portion of the time to decode the source signal (even withaasSian source-relay
link). Therefore, it is impossible for the DF schemes to aghithe MISO bound fo2r > 1.

Being optimal in the single-relay case, the generalizatbthe NAF and the DDF schemes
proposed in [6], also the best known in each class, fails pdo#ixthe potential spatial diversity
gain in the high multiplexing gain regime: ¢~ 0.5) with the growth of the network size. The
suboptimality of these two schemes becomes very signifitand large number of relays, as
shown in Fig[l. Our goal is therefore to find a practical sobhe¢hat can possibly fill the gap

between the two schemes and the MISO bound. In this work, wesfon the class of slotted
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Fig. 1. Diversity-multiplexing tradeoff of av-relay channel : NAF, DDR/s. MISO bound.

amplify-and-forward (SAF) schemes because of the follgwattractive properties :

1) Low relaying complexity. The relays only need to scalerdneeived signal and retransmit
it.

2) Existence of optimal codes with finite framelength. Wel witow that any SAF scheme
is equivalent to a linear fading channel, whose DMT is adtdely perfect [12]M x M
codes. The code length for avi-slot SAF scheme is therefore at mdgt.

3) Flexibility. The source does not have to know the numberaddys or the relaying
procedure. The coding scheme only depends on the numbebptsf/dl and is always
optimal in terms of DMT.

A natural question is raiseds it possible for a half-duplex SAF scheme to achieve thedMIS

bound [1)? And how to achieve it if it is possibl&Ris question is partially answered in this

work. The main contributions of this work are as follows :

« For a generalV-relay M-slot SAF scheme, we establish a new upper bound :

d*(r):(l—r)++N<1— Mj\/_flr)+, @)

from which we conclude that it is impossible to achieve th&MIbound with a finite length,

even without the half-duplex constraint. This bound is hesvéending to the MISO bound
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when M goes to infinity. Then, we argue that the suboptimality of Aheelay NAF scheme
is due to the fact that only half of the source signapistectedby the relays.

« Inspired by the upperboundl(2), we propose a half-duplexiesatinl SAF scheme. The
basic idea is to let as many slots as possibke, (M — 1) be forwarded by the relays in
the simplest way. Foil/ = 2 and an arbitraryN, the proposed scheme corresponds to
the single-relay NAF scheme combined with the relay sedacticheme [7] and the DMT
upper bound is achieved. For arbitrard, M), we show that the sequential SAF achieves
the DMT upper bound in the extreme case where all relays alatéxl from each otherge.,
there is no physical link between the relays. Neverthekasn without the relays isolation
assumption, simulation results show that a significant payaén over the NAF scheme is
obtained by the sequential SAF scheme.

« In particular, we show explicitly that the two-relay threlet sequential SAF scheme dom-
inates the two-relay NAF scheme for multiplexing gaing. 2/3. It is therefore the best
known two-relay amplify-and-forward scheme.

In this paper, we use boldface lower case lettets denote vectors, boldface capital lettdds

to denote matrice<’ /' represents the complex Gaussian random varighlel-]' respectively
denote the matrix transposition and conjugated transposiiperations/|-|| is the vector norm
and||-|| is the Frobenius matrix nornjz)” meansmax (0, z). The dot equal operatet denotes

asymptotic equality in the high SNR regimee.,

B : logp; . log ps
P1=p2 Means SNlRlinoo logSNR SNlngloo log SNR’

and <, > are similarly defined.

The rest of the paper is organized as follows. Sediibn llothices the system model and
the class of SAF schemes. In Sectiod Ill, we establish anruppand on the DMT of any
SAF schemes, using a genie-aided model. Then, Section Ipopes a sequential SAF scheme
that achieves the previously provided DMT upper bound inaterconditions, when using two
scheduling schemes. To show the performance of the propasetne, numerical results with the
sequential SAF scheme are presented in SeCtion V, compartbe tNAF scheme and the non-
cooperative scheme. Finally, we provide some concludintarks in Sectiof VI. For continuity

of demonstration, all detailed proofs are left in the Appgnd

October 31, 2018 DRAFT



[l. SYSTEM MODEL
A. Basic Assumptions

The considered system model consists of one sasiroee destinationl and N relays (coop-
erative terminalsjy, . . ., ry. The physical links between terminals are slowly faded aedchaod-
eled as independent quasi-static Rayleigh channelsthe channel gains do not change during
the transmission of a cooperation frame, which is definedraaeg to different schemes (pro-
tocols). The gain of the channel connectiagand d is denoted byg,. Similarly, g; and h;
respectively denote the channel gains betwgeand d and the ones betwees andr;. v;;
is used to denote the channel gain betweeand r;,. Channel quality between terminals is
parameterized by the variance of the channel gains. Unkbesvaise indicated, the relays work

in half-duplex mode, that is, they cannot transmit and rexeit the same time.

B. Slotted Amplify-and-Forward

1) Definition: In the paper, we study a particular class of amplify-andvéod schemes that we
call slotted amplify-and-forward (SAF). More precisely, &-relay M-slot scheme is specified
by the following requirements :
. a cooperation frame is composed bf slots of [ symbols, denoted by; € C*!, i =
1,..., M,

« during the:™ slot, the sources transmitsz; and the;™ relayr., j = 1,..., N transmits
T, € Cixt;

. the received symbols at th# relay and the destination are respectively denotegl byy, €

C1, with
( N

Yi=9goZi + Zgj Zr;it 24,
j=1

N (3)
Yr,i = hjx; + Z Vi Trpi T Zrj i
k=1,k#j
wherez,;, 2., ; € CH! are i.i.d. AWGN with unit variance;
» according to the AF constraint,, ; can only be linear combination of the vectgrs,, ...y, ;
that it receives in previous slotse.,
i—1
T =Y DO (4)
k=1
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Wherepf.fg depends on the AF protocol and the schedulinjﬂ;

« the transmitted signat; andz,,; are subject to the short-tetrpower constraint

N
E (HxiH2+ZHmWH2> <1-SNR, Vi. (5)
j=1

For example, the NAF scheme [6] is aW-relay (2/NV)-slot scheme and the non-orthogonal
relay selection scheme [7] is aN-relay two-slot scheme. Furthermore, any AF scheme with
cooperation frame lengtlh, can also be regarded as @nslot SAF scheme with slot length
constraint/ = 1.

In the SAF model, the knowledge of channel state informafiG8l) is not specified. We
assume that the cooperations between terminals are catediby a scheduler (that exists phys-
ically or logically). Depending on how much CSI the schedtias, the coordination (scheduling)
can be static (no CSle.g, NAF) or dynamic (based on global CSt.g, relay selection).
Therefore, for each relay, the coefficier@,gz}’s in (4) are decided basing on its own CSI
and the scheduling information it receives from the schexddlo be realistic, we assume in our
work that all terminals have receiver CSI only, and that dejpey on applications the scheduler
may have global CSI but can only send order information tortays, in order to minimize
the signaling overhead.

2) Equivalent channelNote that in the considered scheme, there is only one sougoals
stream|z; - - -x| and all relayed signat,,; can be eventually expressed as a noisy linear
combination ofzy, ..., z,,, as shown byl(3) andl(4). Therefore, without going to theitigtae
can verify that the transmission of a cooperation frame \aitlp SAF scheme described above

can be written in the following compact form

-y = VSNRH [z, ---zy| + 2+ Z, (6)

whereX ¢ CM*! s the normalizé%l(by v'SNR) codeword matrixH € CM*M s the equivalent
channel matrix consisting of functions of the channel coieffits and the{pl(.f,z}’s in @); Z,
CM*l ~ CN(0,1) is the AWGN at the destination arfl, € C**! ~ CN(0,%,) is the effective

We do not consider power control in our work.

2For simplicity, we keep the same notatien, . ..,z to denote the normalized codeword.
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accumulated noiecaused by the AF operations at each relay during the whohsrission;
the total noise is thu€ = Z,+Z. ~CN(0,Z) with E =1+ X..

C. Diversity-Multiplexing Tradeoff and Achievability

Let us recall the definition of the multiplexing and diveysgains.
Definition 1 (Multiplexing and diversity gain [9])A coding schemégC(SNR)} is said to achieve
multiplexing gainr anddiversity gaind if

R(SNR) . log Fe(SNR)
SNF}Lnoo log SNR rand SNlRanOO logSNR

where R(SNR) is the data rate measured by bits per channel use (PCU)P&i3NR) is the

=—d

average error probability using the maximum likelihood (Miecoder.

Theorem 1:The DMT of any SAF scheme with equivalent channel mofkl (6) is
d(r) = dug(Mr), (7)

with dg(r) being the DMT of the linear channdll(6). Furthermore, by wgzing a full rate
M x M space-time code with non-vanishing determinant (NVD), & @ code that achieves
the tradeoffd(r) for the SAF scheme. The code construction only depends osltheumber
M.

Proof: The equality[(VV) is obvious, sinc¥ is the normalization factor of the channel use.
The achievability is immediate from the results in [13], [14tating that the DMT of a fading
channel with any fading statistics can be achieved by a &i# NVD code. [ |

Since the optimal code construction is independent of thafastatistics of the channel, the
only information that the source needs for coding is the nemds slotsM. In practice,M is
decided by the scheduler, based on the channel coherenegdénoding complexity, etc. The
relaying strategies are between the destination and thgsreind can be completely ignored by
the source. When no relay is helping, the equivalent chamiaélix is diagonal. In this case, even
if the source is not aware of the non-relay situation, thdidason can decode the signal with
linear complexity. All these properties make SAF schemesy flexible and suitable for wireless

networks, especially foad hocnetworks where the network topology changes frequently.

3The ! columns ofZ. are mutually independent and each column has the same aosarimatrixz..
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[1l. GENIE-AIDED SAF AND UPPERBOUND OF THEDMT

From (3) and[(4), it is clear that an SAF scheme is actuallméelfiby{p,gg}. Therefore, it
is impossible to get the DMT of an SAF without precisir{gg}z}. However, we can establish
an upper bound on the DMT of any SAF scheme, which is indeperafehe choice of{pgfg}.
To this end, we will first introduce the genie-aided SAF model

A. The Genie-Aided Model

We consider the following genie-aided model. We assumelibfiire the transmission of the
i slot, the relays know exactly the coded sigmalfor any j < i, via the genie. However, the
relays are not allowed to decode the message embedded iigtiad, slue to the AF constraint.
The half-duplex constraint is also relaxed. Therefore himit" slot, the relays can transnany

linear combinations of the vectoss, ..., x;,_4, i.e,

i—1

T =Y 10, (8)

k=1
where ll(],g can be set arbitrarily as long as the power constraint (5atisfied. Obviously, the
genie-aided SAF provides better performance than theraligbAF does, since unlike ifl(4)
where we can only choose the coefficientsypf;, we are now free to choose the coefficients
of x,. Moreover, there is no accumulated noise in the genie-aledel.
The equivalent channel model for the genie-aided SAF ikistihe form of [6), except that

Z. =0 and thatH can be specified as
N
H=gI+» gL ©
7j=1

where each matrid; € C**M is strictly lower-triangular withL; (i, k) = lf”k)

B. Upper Bound on the DMT

Theorem 2:The optimal DMT of an/N-relay M-slot genie-aided SAF scheme is

& (r) = (1—r)++N(1— MA{1T)+’ (10)

for any M > 1. It is achievable by using uniquely the relay with largesayedestination gain
to sendz; in the (i + 1) slot,i = 1,..., M — 1.
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Proof: See AppendiXB. [

Corollary 1: The DMT of any N-relay M-slot SAF scheme is upper-bounded by]|(10) for
any M > 1.
In this theorem, we exclude the cadé = 1 for the obvious reason that the single-slot SAF
scheme corresponds to the non-cooperative case. In theltivoase {/ = 2), this upper bound
is actually achievable by previously proposed half-dugleixemes : 1) with single-relayv(= 1),
the NAF is shown in [6] to achievé (1L0); 2) fa¥ > 1, the upper bound is achievable by the
relay selection NAF scheme [7] if the scheduler have glol&ll @ by beamforming if the relays
could have transmitter CSI. Intuitively, the upper boundight in the two-slot case since the
half-duplex constraint is implicitly imposed by the SAF nebd

On the other hand, in the single-relay casé= 1), the upper bound is not tight fav/ > 2 :
it is shown in [6] that the NAF scheme is the best single-rédalf-duplex AF scheme in the
DMT sense. The looseness of the bound in the single-relag isadue to the fact that the upper
bound is obtained by relaxing the half-duplex constrainiciwhs too strong in the single-relay

case.

C. Implications

From the upper bound (1L0), two observations can be made : F) SAhemes can never
achieve the MISO bound with a finite number of slots, even euthithe half-duplex constraint,
and 2) SAF schemes can never beat the non-cooperative s¢beme- % In fact, the first
observation can be seen as a necessary condition of thedseoen and it applies to all AF
schemes as they can be seenasdot SAF schemes.

Intuitively, even in the genie-aided model, the last slohat protected by any relay. This is
due to the causality of the relay channel, not to the halfi@uponstraint. Therefore, at most
M — 1 slots out of M slots can be protected, which explains the suboptimality-fo % In
the same way, since only slots out of2/V slots are protected by one relay in the NAF scheme,
the NAF scheme is not better than the non-cooperative sclieme> 0.5.

As stated in [6], an important guideline for cooperativeedsity is to let the source keep
transmitting all the time so that the maximum multiplexirgjrgis achieved. Here, we provide

another guideline let most of the source signal be protected by extra paBased on this
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Fig. 2. Frame structure and relaying procedure of NAF andiesstipl SAF, solid box for transmitted signal and dashed box

for received signal.

guideline, we propose, in next section, a sequential SAErsehand we show that this scheme

actually achieves the upper boumdl(10) in some particulsesa

IV. THE SEQUENTIAL SAF SCHEME

As previously stated, the NAF scheme is optimal in the sknglay case, due to the half-duplex
constraint. We consider the multiple-relay case in the oéshe paper.

Let us consider the following sequential SAF scheme. Fitrstllpin order to achieve the full
multiplexing gain, the source must transmit during all thleslots. Then, from the beginning
of the second slot, in each slot, there is one and only ong felavarding a scaled version of
what it received in the previous slot. In such a way,— 1 slots out of M slots of the source
signal are forwarded by at least one relay. Here, we can stdhis is only possible when we
have more than one relay, where different relays can aligata help the source to alleviate
the half-duplex constraint. Thus, we have £ M — 1 effective relaysry, ...,f; during the
transmission of a specific source. The mapping between Higekys and the effective relays
is accomplished by relays scheduling that will be discudaeget on. The frame structure and

the relaying procedure are illustrated in Hig. 2, compacethé NAF scheme.

A. Equivalent Linear Fading Channel

In SAF schemes, there is no difference in data processingliffarent symbols within the

same slot. Thus, we can consider one symbol from a slot, witloss of generality. With the
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previous description of the sequential SAF scheme, we Hawddilowing signal model :
Yai = V7 SNR go x; + /7 SNR g, 4 Bi—l Yri-1 T Zd,i

yri = VT SNR hiz; + /7 SNR¥;_1, bi_y Yri—1+ Zri
wherez; is the transmitted symbol from the source in tHeslot; y,; andy,; are the received

(11)

symbols at the™ effective relay and at the destination, respectively, ia#h slot; z,;'s and
z,;'s are independent AWGN with unit varianck; and gini=1,..., N, are the channel gains
from the source to theé" effective relay and from the™" effective relay to the destination,
respectively:y;_,; is the channel gain between thie— 1)" and thei™ effective relay:b; is the
processing gain at thé" effective relay subject to the power constraﬂiﬂéi ym\z) < 1. The
power allocation factors;, 7;, i =1,..., M satisfnyVil(m- + ;) = M. Finally, we sett; =0
andb, = 0.
We can express the signal modell(11)df slots in the following vector form

Y. = VSNRgodiag(a)z + Uy, + 24 12)
12
y, = VSNRdiag(h) diag(a)x + Ugy, + 2.

whereT 2 U (I-Uy) ', a € RY*" with a; = \/7;, andU,, U, are M x M matrices defined

as

_— 0" 0
| diag(c) 0
o o]

Us =
| diag(d) O]

with ¢,d € CV*! whose components are defineddy +/7:+1 SNR g; b; andd; £ /11 SNR 5,411 bs
fori=1,...,N.BothU, andU, are forward-shift like matrices.

From (12), we finally get the equivalent vector channel
y, = VSNRHz + 2.
where the equivalent channel matrix and noise are in theviatlg form :
H- (goI n Tdiag(ﬁ)) diag(a) (13)

z2=24+Tz,, 14
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From (14), the covariance matrix of the noiseds = I + TT". We can show that the largest
and smallest eigenvalues Bf, satisfy A\pax (22) = Amin (E2) = SNR?, which implies that the
DMT of the proposed scheme depends onlyFrand not on¥,.

Now, let us take a closer look at the equivalent channel mali which is lower-triangular.
For simplicity, we ignore the termiag(a) in our analysis since it does not impact the DMT.
The main diagonal of the equivalent channelid, representing the direct (source-destination)
link. The off-diagonal entries are defined Bydiag(h), where thei" sub-diagonglis Uu.-u;'.
diag(fz), representing the source-relays-destinaiitiop link. Since the off-diagonal entries are
independent of the main diagonal entries, extra protedtiotme source signal is provided and

therefore the diversity gain is obtained.

B. Isolated Relays

Calculating the DMT of the sequential SAF being prohibitimegeneral, we search for an
approximation. Intuitively speaking, the source signajrdeles with the number of hops, since
the channel in each hop is faded and that each normalizatitreaelays weakens the signal
power. Therefore, one possible approximation is to ignbeeithop links fori > 1, which is
equivalent to the special scenario where ralays isolated withr;_, for j =2,..., N. In this
case, the DMT can be obtained explicitly.

Proposition 1: When the relays are isolated from each other,5; ;11 = 0, Vi, the DMT (10)
is achievable with the sequential SAF scheme.

This proposition is proved in the following paragraphs. Miihe assumption of relay isolation,
we haveT = U, and H is therefore a bidiagonal matrix. The special formHfallows us get
the following lemma that is crucial to the proof.

Lemma 1:

Gih

. o\ M N 2
max det (I+SNRHH") > (14 SNR|g|)" + ] (1 + SNR ) (15)
b, .

Proof: Using the bidiagonal property di (See AppleTclliﬂ for details), we have

o M il -2 -2
det (I+SNRHH') > (SNRgol")" + ] (1+SNR Gihi| 7ir1SNR |B; )
i=1

T=U.I1-Uy) '=U. (I+Ud—|—U,2,+m).
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Since we can always find, 7 andb that satisfy simutaneouslgfiHSNR|Z~9i\2 = SNR? and the
power constraint (5), the lemma is proved. [ |
We can now introduce the scheduling strategies that pehmitsequential SAF to achieve the
DMT upper bound :
1) Dumb schedulingFor N = kN with k& being any integer, the relays help the source in a
round-robin manneti.e., ; = r;_1), 1. For N = kN +m with m € [1, N — 1], we first

order the relays,...,ry in such a way that
min{Cy,...,Cy} > max{Cy,,1,...,Cy}.

where(C; are the cost function defined by
A SNR? |b; gi hil®
Then, we apply the round-robin scheduling.

(16)

2) Smart schedulingFirst, select the two “best” relays in the sense that these lhargest cost
function C; defined by[(16). Then, we apply the dumb scheduling on theseadlays, as
if we were in the two-relay\/-slot case.

These two scheduling strategies maximigatistically the RHS of [(I5) in the high SNR
regime, so that upper bound {10) is achieved. The detailedfps provided in Appendix IC.
Even though both schemes achieve DNIT](10) under the reldgtiso assumption, the smart
scheme outperforms the dumb scheme in a general case, twtiay isolation. Since the cost
function C; is the effective SNR of the relayed signal at the destinaifidhe ™" relay is used,
the basic idea of the smart scheduling is to avoid using tlael™lbelays, where the noise level
is higher than the other relays in average. Therefore)irslots, noise amplification is less
significant with the smart scheduling than with the dumb dakieg. The impact is investigated
in the next section, with the simulation results. Note thaioh scheduling scheme to be used
depends strongly on the available CSI at the schedulerelstheduler has no CSI at all, dumb
scheduling is used and we s&t= kN (or M = kN + 1).

As an example, Fid.l3 shows the DMT of different cooperatigbesnes for a three-relay
channel, with relay isolation assumption. Fdr= 2, the DMT of the proposed scheme coincides
with that of the NAF scheme. With increasidg, the proposed scheme is approaching the MISO

bound, which makes it asymptotically optimal.
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Fig. 3. Diversity-multiplexing tradeoff of different theerelay schemes with isolated relays.

C. Non-Isolated Relays

With interconnected relays, the DMT of the sequential SAGaserally unknown, except for
the following two cases.

1) Two-Slot with Arbitrary Number of Relays: Note that foe tharticular cases\/ = 2, i.e,,

k =0 andm = 1, the above analysis is valid whether the relays are isoldtech each other

or not. This is because the maximum number of hops in the chanriel Therefore, the DMT
(@0) for M = 2 and arbitraryN is achieved by the sequential SAF with scheduler CSI, where
the scheduler selects the relay with largést It also corresponds to the relay selection NAF
scheme [7].

2) Two-Relay and Three-Slot:

Proposition 2: The two-relay three-slot sequential SAF scheme achieve®MTs of Fig[4,
where the relay ordering is such that|* > |h,|?, i.e. the relay with worse source-relay link
transmits first.

Proof: The DMTs are obtained with the same method as previouslyxpsessing explicitly
the determinantlet (I + SNRHH'). See AppendiXD for details. u
As shown in AppendiXD, even though we have the closed-fortardenant expression, we can
only have a lower-bound on the DMT because of the complexahtant form. Unfortunately,

the lower-bound we get does not coincide with the upper bl for » < 0.5. By adding a
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Fig. 4. Diversity-multiplexing tradeoff of the two-relaglsemes.

relay ordering proceduré/(|> > |hy|%), we finally get a lower-bound equal to the upper bound.
However, this does not necessarily mean that the relay ioglénproves the performance, as
we will show in the next section.

As shown in Figl#, the sequential SAF scheme (with or withelday ordering) outperforms
the two-relay NAF scheme. Since with the three-slot stmgctue protect% of the source signal,
we can beat the non-cooperative scheme(fof r < § It is therefore the best AF scheme

known for the two-relay case. To further improve the DMT, w®u@ld increase the number of

slots.

D. Discussions

1) Artificial Relay-Isolation: Although it is hard to tell if the multi-hop links are harmful
proposition_1 shows that the relay-isolation conditionuffisient to achieve the DMTL(10). If
the scheduler has global CSI, it can order the relays in sushyathat consecutive relays are
separated as far as possible to approximate the relayti@oleondition. An example scheme is
shown in Fig[h.

2) Practical Considerationsin practice, an individual scheduler might not exist phg#ic
in the network. In this case, we can integrate the schedutete into the destination receiver.

To implement the relay ordering, which is essential for theag scheduling and th& £ kN
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Se od

Fig. 5. A scheme to create weak inter-relay connectionsrd@roto approximate the relay-isolation condition. Theeordf

the relays are indicated by the numbers.

case of the dumb scheduling, an intelligent way is similathe RTS/CTS scheme proposed in
[7] described as follows :

« If we have the reciprocity for the forward and the backwaldyalestination linksi.e., the
channel gains are the samg)(for the forward and backward links, an intelligent way to
implement the relay ordering is similar to the RTS/CTS sahgroposed in [7]. First, the
relays measure the source-relay channel quélifyby the reception of th&®TS(Ready-to-
Send) frame from the source. Then, the destination brotsleaslay-probingframe, from
which the relays can estimate the relay-destination cHappeEach relay calculates the cost
function C; and reacts by sending availability frame aftert; time which is proportional
to C;. Therefore, the relay with the largest cost function is tded as relay 1, and so on.
Finally, based on the order, the destination decides a stihgdstrategy and broadcasts the
parametersd.g, the relay ordering for the relays and number of slbfsfor the source,
etc...) in theCTS(Clear-to-Send) frame.

« When there is no reciprocity for the relay-destination $inlve modify the last three steps
as follows. Each relay quantizes the source-relay gain andssit in theavailability frame
to the destination using its own signature. Then, the daistin can estimate the relay-
destination links qualityg;| and also gets the estimatgs| by decoding the signal. Finally,
the destination decides the order based on the cost fusciiot broadcasts tH&T Sframe.

Since we only consider slow fading channels, the orderinglevoot be so frequent and the

signaling overhead is negligible in both cases (the ovethesue is mentioned in [7]). In the

worst case where the above signaling is impossible, a catperorder for the relays should be
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predefined and we apply the dumb scheduling with a slot numbesuch thatd/ — 1 = kN.

In this case, the same DMT is achieved.

V. NUMERICAL RESULTS

In this section, we investigate the numerical results oleiby Monte-Carlo simulations. By
default, we consider a symmetric network, where all the nkanoefficients are i.i.d. Rayleigh
distributed with unit variance. There is therefore agriori advantage of the source-relay links
over the source-destination link. The power allocationdexarer; =7, =05fori =2,..., M
and m; = 1. Information rate is measured in bits per channel use (BP®W compare the
proposed sequential SAF scheme to the NAF scheme and theooperative scheme in both

small network scenario (relays) and large network scenaridg (elays).

A. Two-Relay Scenario

1) Three-Slot CaseFig.[68 shows the performance of the proposed two-relay tbl@escheme
for different spectral efficiencies. Note that with a low sjpal efficiency £ BPCU), the proposed
schemes have almost the same performance as the NAF schemwevéd, when increasing
the spectral efficiency, the gain of our schemes comparetidd\AF strategy increases. For
10 BPCU, the NAF scheme barely beats the non-cooperative sEh&liso note that in all cases,
the scheme with relay ordering proposed in $ec. [V-C.2 ishetter than the one without relay
ordering. Based on that observation, we conjecture thataneachieve the DMT (2) even without
relay ordering in the two-relay three-slot case.

Then, we consider the error rate performance of NVD codes é&chieving the DMT) under
ML decoding. For the two-relay NAF scheme, we use the opticagaleC,; (QAM) proposed
in [14]. For the sequential SAF scheme, we use the pesBfect code construction proposed in
[15], based on QAM constellations, the best knosvx 3 real rotation [16] and the “non-norm”
elementy = 12%2; The vectorized code (frame) lengths &rand9 QAM symbols for the NAF
and the sequential SAF, respectivelyQAM and 64-QAM uncoded constellations are used,
corresponding to the BPCU and6 BPCU counterparts in the outage performance. The frame
error rate (FER) is shown in Fi§. 7{a). It is surprising to seeh a similarity between code
performance and outage performance: for a given probgal§diror or outage respectively), all

SNR differences between the compared schemes are almasdrttee We have a power gain of
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Fig. 6. Outage probabilities for the non-cooperative, NATe aequential SAF scheme with three slots. Two-relay symmet
network. Considered information ratex:6 and 10 BPCU.
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Fig. 7. Error rate performance: sequential S¥d: NAF scheme. Two-relay symmetric network, perfé@ck 3 code for the
three-slot SAF scheme arif} ; for the NAF scheme for the NAR- and 64-QAM for 2 and6 BPCU, respectively.

more than3 dB for FER lower thanl0—3 with 64-QAM. For fairness of comparison between
different frame length, we also show the symbol error ratéopmance in Fig[ 7(B).

As stated in theorerml 1, we can always construct optimal cémtes given SAF scheme. To
focus on the cooperative scheme itself, we only considetitage probability hereafter.

2) Impact of the Number of Slot&ig.[8 shows the outage performance with different numbers

of slots. For2 BPCU, the difference is minor (withihdB). However, foit BPCU, the power gain
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Fig. 9. Power gain to the non-cooperative scheme : impact

Fig- 8. Outage probability of the sequential SAF scheme \gftrghe inter-relay geometric gain. Two-relay network. Ttrg

1 . - i . . . - :
3,5, 9 and 13 slots. Two-relay symmetric network information rate 6 BPCU. Target outage probability10~3.

compared to the three-slot scheme increaseésand3 dB for 5 slots andl3 slots, respectively.
The increasing SNR gain shows the superiority of the schemitbsa larger number of slots in
terms of DMT, even without the relay isolation assumption.

3) Inter-Relay Geometric Gainln Fig.[d, we show the impact of the inter-relay geometric
gain (defined a¥ \%-j|2 JE |hj|2) on the outage performance. In this scenario, all paths tieve
same average channel gaindB), except for the inter-relay channels whose channelsgeaany
form —20 dB (weak interconnection) td0 dB (strong interconnection). The y-axis represents
the power gain to the non-cooperative scheme WitBPCU and outage probability of0—3.
The x-axis represents the inter-relay geometric gain. Asvshin Fig.[9, the NAF scheme is
independent of the geometric gain since there is no intag@mmunication at all in the NAF
scheme. In the weak interconnection regime((dB), the sequential SAF scheme is not sensitive
to the geometric gain and we always have a better performiayeecreasing the slot number.
However, in the strong interconnection regime ({ dB), the performance degrades dramatically
with the increase of inter-relay gain and the increase ohtmaber of slots. Intuitively, the task
of the i effective relay is to protect the source sigag) transmitted in the™ slot. A strong
interconnection between the — 1) relay and the™ relay makese; drowned in the combined

signal ofz,,...,z;_, from the (i — 1)™" relay.
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Fig. 10. Power gain to the NAF scheme with selection : dwssmart scheduling. Symmetric network witB relays. Target

outage probability 1072,

B. Large Network : Dumlys. Smart Scheduling

Now, we consider a large symmetric network witR available relays. We compare the
proposed scheme to the NAF scheme. To ensure fairness, tistddeped NAF is combined
with the relay selection schemee., the source is only helped by the best relay (with largest
C;). For the sequential SAF scheme, both the dumb and the soiatislings are considered.
Obviously, with3 slots, the dumb scheduling is the same as the smart schgdaknshown in
Fig.[10, the power gain increases with spectral efficienogynsng the superiority of our scheme
in terms of DMT. The increase is more significant with a larglet number. With the same slot
number, the curve of the dumb scheduling is parallel to tfidhe smart scheduling, meaning
the same DMT for the same slot number. The power gain is up @ad 16 dB for 6 BPCU
and 10 BPCU, respectively. Faz BPCU, the 13-slot dumb scheduling scheme is worse than the
NAF, since the noise amplification is significant. As we she,dmart scheduling is always better
than the dumb scheduling. In the considered cases;)-8iet smart scheduling outperforms the
13-slot dumb scheduling. Since the optimal codes are resgéetdf length5? and 132 for the
5 slot and thel3 slot cases, the use of smart scheduling can dramaticallyceethe decoding

complexity.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we considered the class of slotted amplify-damvard schemes. We first derived,
for the SAF schemes, an upper bound of the DMT which asyngatbti (when the framelength
grows to infinity) achieves the MISO bound. Then, we propcsed analyzed a sequential SAF
scheme for which the DMT upper bound is achieved in some apeases. In particular, the
two-relay three-slot sequential SAF is optimal within the= 2, M = 3 class and therefore
outperforms all previously proposed two-relay AF schemes.

The superiority of the sequential SAF scheme over the pusiygroposed AF schemes lies in
the fact that it exploits the potential diversity gain in tiigh multiplexing gain regimer(> 0.5),
whereas all previously proposed AF schemes do not beat thheoaperative scheme for> 0.5.
An important guideline for the design of AF schemes was thepgsed : let most of the source
signal be protected by extra paths. We also showed that, ing assmart relay scheduling, the
complexity of decoding can be dramatically reduced. Nuoatniesults on both the outage and
error rate performance reveal a significant gain of our seheempared to previously proposed
AF schemes. Since we can always find optimal codes of finitgthefor any SAF scheme
and the code construction is independent of the number afselthe proposed scheme is a
combination of efficiency and flexibility.

Even though we showed that the sequential SAF scheme is &stycafly optimal in some
particular cases, the DMT for the general case is unknowmottld also be interesting to find a
new SAF scheme, more sophisticated than the sequentiahom@eér to improve the statistical

properties of the equivalent channel matrix.

APPENDIX
A. Preliminaries

For any linear fading Gaussian channel
Yy = VSNRH z + 2

wherez is an AWGN withE{zz'} = I andz is subject to the input power constraint{l [zz'} <
1, the DMT dg () can be found as the exponent of the outage probability initife BNR regime,
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Pou(r1og SNR) = Probf{log det (I + SNRI?E*) < rlogSNR}
— Prob{det (T+ SNRHH') < SNR'}
= SNR—= (). (17)

Lemma 2 (Calculation of diversity-multiplexing tradeofffonsider a linear fading Gaussian
channel defined by for which det <I + SNR fII?T>) is a function of\, a vector of positive
random variables. Then, the DMdg(r) of this channel can be calculated as

du(r) = Oi(gfr) £(a)

wherea; £ —logv;/log SNR is the exponent of;, O(ca,r) is the outage event set in terms of

a andr in the high SNR regime, and «) is the exponential order of the pdf,(«) of o, i.e,

Pa(a) = SNR™(),
Proof: This lemma can be justified by (117) using Laplace’'s methodshasvn in [9].

Lemma 3:Let X be ay2-distributed random variable with¢ degrees of freedom and be

a uniformly distributed random variable in an interval inding 0. Define ¢ £ —1§ggs),\|(R and
n 4 —f;’ggg\l‘; then we have
SNR™ for £ <0,
Pe =
SNR™®  for ¢ > 0;
and
SNR™  forn <0,
Py =

SNR™2 for n > 0.
Lemma 4:Let G be (k + 1) x (k + 1) bidiagonal matrix defined by

0’ 0
diag(z) 0
Then,
k

det (I+GG") > |z + T (1 + |=:f*) -

i=1
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Proof: Define M., £ I+ GG' which is tridiagonal in the following form

1+ |zo|? o} 0
N N P R Pt
ToTy,
« 2 2
0 xorr 1+ |zo|” + |z

For simplicity, let X; £ |z;|*> for i = 0,...,k, D), £ det(M}) and use the formula for the

calculation of the determinant of a tridiagonal matrix [1%e have

Dyy1 = (14 Xo + X3) Dy, — XX Dj—y

(18)
= (14 Xo)Dy 4+ X(Dy — XoDj_1).
Let us rewrite the last equation as
Dyy1 — XoDy = Xp(Dy, — XoDy—1) + Dy, (19)
and defineB;, £ D, — X,D;_1, from (I8) and[(IP), we get
Dk+1 1+ X() Xk Dk
= ) (20)
By 1 Xi| | Br

First, it is easy to show thab, = X2 + 2X, + (X; + 1) and B, = X, + X; + 1. Then, from
(20), it is obvious that, as a polynomial @Ky, ..., X}), D1 has nonnegative coefficients for
any k. Finally, as a polynomial ofX,, D, 's coefficients can be found recursively using](18)

and we have i

Dia(Xo) = X¢*' + [[(1+ Xo) + P(Xo).
=1
where P(X,) > 0 is a polynomial of X, and is always nonnegative. Thus, we have
k
Dyer > X7 + T2+ X)).
i=1
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B. Proof of Theorerh]2

The DMT of the genie-aided model can be obtained by consigdhe equivalent channel
matrix defined by[(9). First, it is upper-bounded, as showthafollowing lemma.
Lemma 5:For the genie-aided modéll(9), let us defigg..|* £ max |g|°, then we have
i=0...N
det (T+ SNRHH") < (14 SNR [go|?)"
(21)

M-1
+ (1+SNR [gmax?) .
Proof: We can prove it in a recursive manner. First, &ny 1) x (n+ 1) lower-triangular

matrix H,,,; can be written as

H, 0
Hn+1:
v g

Let us defineD,..; = det (I+ SNRH,,.,H},,;) andC £ 1 + SNR|g|*. Then, we have

D, 11 = Cdet (I + SNTRWL + SNRH ;Hn)

(a) SNR, o\ -

1=2

= C D, + SNRlw, |* T](1 + SNRA;)

1=2

< CD, + (1+ SNR,|?) (1 -+ SNR [[H,[2)"
< C D+ (14 SNR|H, 4 2)"

with ); the i smallest eigenvalue of,,H! . The inequality (a) comes from the fact thatw!
has only one nonzero eigenvalue and that for any nonnegaiagx A and B, det(A + B) is
maximized when they are simultaneously diagonalizablereawé eigenvalues in reverse order.

By settingH,,.; = H of the genie-aided model, we have
Dyp1 £C Dy + (14 SNR |gmax?)" (22)

since||H,1[I7 < M |go*+ 327 ;1 115117 < |gmax|” Where we use the fact thaL;||7 < SNR”
to meet the power constrainf (5). The inequalityl (22) leadsctly to (21) in a recursive manner.
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Then, the upper bound (1) is achievable by setfihdpidiagonal with

0" 0
HZQOI+ )
Imax 1 0

which can be justified by Lemmid 4. This setting is equivalentising uniquely the relay with
the best relay-destination channel gain to send during the:™ slot.

Now, definea £ [ay, . .. oy, ], Wherea,, is such thatg;|* = SNR™%. By applying Lemma&l2
on the right hand side (RHS) df (1), we get the DMT of the gexitked SAF

with
o M(l - O‘QO)Jr <
O<“’T>‘{<M—1><1—agi>+<r, fori=1...NJ"

Due to the symmetry ofi,, for: =1,..., N, we can solve the linear programming problem by
adding the constraint,, = ... = «,,. Applying Theorenil, we can get the closed-form DMT

@9).

C. Lower-bound on the DMT with Isolated Relays

1) Dumb scheduling:in the N = kN case with any integek, a round-robin scheme is

optimal since theV slots are equally protected by all the relays. The RHS of Hegomes

N

(1+SNR |go*)" + TT (1 + SNR |gs )" (23)

=1
We carry out the same calculations as in secfioh Il with sommlifications. Definea =
[ty - - - Qgy Qy - - - ). By applying Lemmal2 on(23), we have

N
dg(r) = Oi(nf) (ago + Z(agi + O‘hi))

i=1

with N
M(1—ay)" <r;
Oa,r) = 90 ’ } .
@0 = 1o o <
Note that by using the variable changes £ a, +ap, fori =1,...,N, we get a linear
programming problem with symmetry of ,...,a; . The optimum must satisfy;, = ... =

;= 3, and the optimization problem reduces to

dn(r) =, inf (0 + NB) 24
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with
Oy, ;1) = {

Solving this problem, we get exactly (10).
In the N = kN + m case, the RHS of (15) is directly revised as

M(1—ag)" <r;
(M-1)p<r }

N m

(14 SNR [go)™ + (H (14 SNR g, hn\z)k> [T (1+SNRg; i) . (25)
n=1 i=1

Then, we have the same optimization problém (24) with déffiérconstraints, due to the relay

ordering. Using the same variable changes, we have

( M(1 - O‘go)Jr <7 )
N m
k 1—a )"+ 1—a ) <
Ola,r) = ;( o) ;( o) 7
max{ay ,...,op } <min{a] ..., }

\ J
where the third constraint comes from the fact that= SNR'~%: (SNR|b;|> = SNR®). The
second and the third constraints together are equivalent to

m

N
{kZa—a;ﬁ)* + Y (1—ap,)" < VS C {l,...,N} and |§] = m}, (26)
i=1

i=1
from which we get a symmetric problem far, , i = 1,..., N. We can then prove the same
result as the previous case.

2) Smart schedulingUsing the two “best” relays, we can arrive atl(26) with= 2. Since
our definition of “best” also corresponds to minimum valuex)f, it is not difficult to verify that
the outage region in this case is included in the redion (EZB6us, the DMT is lower-bounded
by that of the dumb scheduling and the achievability is pdove [ |

D. Proof of Proposition 2

Fact 1: Letf 2 [f, fo], U 2 [““ 0 ] andH be a3 x 3 upper-triangular matrix defined by

u21 U222

U 0
Ty

H2
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with ¢ being a scalar. Then, we have
det(TI+SNRHH') = (1+ SNR [g|*) det (T + SNRUU")
+ SNR || f|I” + SNR? | faurs | (27)

+ SNR? [usa f1 — U21f2|2 .
Since non-zero multiplicative constants independent oRSN not appear in the high SNR

regime analysis, froni(13), we consider the following matri
90 0 0

H= g1 ha 9o 0, (28)

g2v12h1 gaha go
where the coefficients/SNR b, andv/SNR b, are neglectedSNR |b;]|* = SNR®). With 27), we
can now obtain the outage event set, in terms of the entrid$. of
In order to apply lemmal2, however, we must get the outageteetiin the high SNR regime,
|2

in terms of«. To this end, we must rewritis, f1 — usy fo|” in (27) in @ more convenient form

of positive variables. Let us use the notatign= |v|* for v being any variable. Then, frori (27)
and [28), we have

Fy = GyH Tyo; Fy = Gy Hy;
Uny = Uz = Go; Uy = G1H;.
Let us rewrite
[ug2 f1 — U21f2|2 = U Iy + U1 Iy — 21/ U1 Ua Fy F cos 0

= (1 —cos0)(Usa 'y + Uy F)

2
+ cos 6 )\/UQQF:[ — \/Ugng‘

with 6 uniformly distributed in[0, 7] and is independent of the other random variables. The

outage probability conditioned ohis maximized wherd is close to0", wherel — cosf ~ %
In this region, we have

92
§(U22F1 + U1 F>)

+ ‘\/U22F1 - \/U21F2

|uga f1 — U21f2|2 =

(29)

2
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Then, from [2¥) and (29), we have the outage regimﬁ, T)

[ (1+SNRGy) det(I+SNRUUY) < SNR'

1+SNR(F, +F,) < SNR”
1+SNR*FU;,; < SNR (30)

1+ SNR?*0?(Up Fy + Uy Fy) < SNR”

| 1+ SNR? |VTF] — VU F|* £ SNR'

The last inequality in[(30) implies
1+ SNR?*(Upy Fy 4 Uy F») <SNR” + 2SNR?\/ Uy  Usy Fy F,

which means that, in the high SNR regime, the outage re@i@ﬁ, r)is includeH in the region
O(a,r) defined by

p

3(1—ay) < 7
(l_ago)_l_(l — Qg _ahl) <
2_a90_a92_ah2 < r
1 - Qgy — Qypp — Qipy < r

’
2— Qgy — gy — Qg — Opy — g < r
2_a91_a92_ah1_ah2_a9 S T

IA

max {r, ¢(ax) }

2 - gy — Qgy — Qpy — Qpy max {Tv ¢(a)}
\ ),

2 - Qgy — Ugy — Qypy — Oy

IN

with ¢(a) =2 — L(ay, + ag, + aqy, + any) — i, — ag,. Let us define
Or(e,r) £ Oa,r)NT(exr)
Or(a,r) £ O(a,7r)NT(a,7)
with
T(a,r) 2 {a : r<o(a)}.

5In this case, we hav&@(H,r) C O(a,r) but O(a,r) ¢ O(H,r)
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SinceO(a, r) = Or(a,r) U OF(ax, r), we have

inf e(a) =min{ inf e(a), inf e(a);,
O(e,r) ( ) {(97-(11,7") ( )(’)?(a,r) ( )}

with e(a) = ay, + ay, + g, + o, + ap, + @4y, + 500 by lemmalB and the independence
between the random variables. Thus, the DMT can be obtaingdtwo linear optimizations.
This problem can be solved numerically using sophisticéitezhr programming algorithms or
softwares. If the relay ordering is such that| > |h,|, we adday, > ay, to the constraints and

carry out the same optimization problem. We can finally get@BMTs of Fig.[4.
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