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Abstract

The capacity scaling of extended two-dimensional wireless networks is known in the high attenuation regime,
i.e. when the power path loss exponent α is greater than 4. This has been accomplished by deriving information
theoretic upper bounds for this regime that match the corresponding lower bounds. On the contrary, not much is
known in the so-called low attenuation regime when 2 ≤ α ≤ 4. (For one-dimensional networks, the uncharacterized
regime is 1 ≤ α ≤ 2.5.) The dichotomy is due to the fact that while communication is highly power-limited in the
first case and power-based arguments suffice to get tight upper bounds, the study of the low attenuation regime
requires a more precise analysis of the degrees of freedom involved. In this paper, we study the capacity scaling of
extended wireless networks with an emphasis on the low attenuation regime and show that in the absence of small
scale fading, the low attenuation regime does not behave significantly different from the high attenuation regime.

I. INTRODUCTION

In their seminal study [1] of the capacity of ad hoc wireless networks, P. Gupta and P. R. Kumar
consider n nodes randomly located on the unit disk. The nodes are randomly paired into n/2 source
destination pairs and each source wants to communicate to its destination at a common rate Rn. They
show under certain assumptions on the physical layer that derive from state-of-the art communications
practice, that the maximally achievable rate per source-destination pair Rn decreases like Rn ≤ K√

n
as the

system size increases. Although their original set-up considers a fixed area network, their result can be
readily extended to the case where the network area scales with n. For a d-dimensional extended network,
where the area (or the volume) occupied by the network increases linearly in n keeping the density of
the users constant, their result yields

Rn ≤ K

n
1
d

. (1)

It is not a priori clear whether this limitation is a consequence of the assumptions on the physical layer or
is inherent to the problem. With the motivation to study wireless networks without making any particular
assumption on the way communication is established, there has been some subsequent work [2], [3], [4],
[5] that tackles the problem from an information-theoretic point of view. These works have lead to the
following partial answers to the problem.

A commonly accepted complex base-band equivalent model for a frequency flat wireless channel is
that the transmitted signals are attenuated by a factor g of the form

g(r) =
e−γr

rα/2
h with γ ≥ 0, α ≥ d, (2)

and further corrupted by additive noise. (See [6, Chapter 2] for a detailed discussion on this model.) In (2),
r is the distance between the transmitter and the receiver, α is called the power path loss exponent, γ is the



absorption constant and thus the first term represents the attenuation of the signal due to electromagnetic
propagation. The second term h models small scale fading due to constructive and destructive interference
of multiple signal paths between the transmitter and the receiver. The literature on scaling laws for wireless
networks has concentrated on the two extremes where either the small-scale fading coefficient is not present
in the model (h = 1) or is assumed to be independent and identically distributed across all node pairs in
the wireless network. The results obtained can be roughly summarized as follows: for two-dimensional
networks, the scaling law in (1) has been confirmed by information theoretic arguments for absorptive
media (γ > 0) or under the assumption of large power path loss (α > 4), for both the cases where small
scale fading is absent in the model (considered in [2], [4]) or is i.i.d across all node pairs in the network
(considered in [3], [5]). For one-dimensional networks, (1) has been confirmed for α > 2.5. In the more
interesting case where there is no absorption and the attenuation is moderate, the only results are due
to O. Lévêque and E. Telatar in [4], where they show that without small-scale fading the maximally
achievable rate per source-destination pair still decreases to zero in this regime with increasing system
size. However, the scaling law they obtain is significantly different from (1). More precisely, they show
that if α > (d ∨ 2(d− 2)), then

Rn ≤ K
n

1
α log n

n
1
d

(3)

where a ∨ b is the maximum of a and b. Observe that the upper bound in (3) decreases much slower to
zero than that in (1), especially when α is close to d.

The restriction of the above mentioned information theoretic results to the high attenuation regime seems
due to the fact that they all rely on power-based arguments. Extended wireless networks are power limited
in the high attenuation regime and power-based arguments suffice to get tight upper bounds. However, the
study of the low attenuation regime requires a more precise analysis of the degrees of freedom involved.
This is the aim of the current paper; by performing a detailed mathematical analysis, we strengthen the
results of [4] for one and two-dimensional networks. For one-dimensional networks, we recover the scaling
law in (1) up to logarithmic terms for all α > 0. For two-dimensional networks and again α > 0, we get
a scaling law that is only slightly larger than (1) and can be regarded as a significant improvement to the
already known results for the attenuation regime of interest (2 ≤ α ≤ 4).

A crucial remark is worth emphasizing once more: the results in [4] as well as the results in the present
paper are obtained by considering the channel model with no small scale fading. This assumption leads
to an interesting subsequent mathematical analysis of the problem, involving in particular the study of
determinants of Cauchy matrices. The reader should be aware that the results below do not apply to the
channel model with small scale fading. While the model we are studying can be of interest in its own
right, one should not discard the potential impact of small scale fading in general, since it may bring
some extra degrees of freedom to the problem, that may allow to overcome the bottlenecks in wireless
networks in the low attenuation regime. This remains as one of the important open problems concerning
the capacity scaling of wireless networks.

II. MAIN RESULT

We consider a network of n users (or nodes) independently and uniformly distributed on a domain D
whose area increases linearly with n. The nodes are randomly paired up into n/2 source-destination pairs
without any consideration on their respective locations. Each source has the same traffic rate Rn to send
to its destination node and a common average transmit power constraint P applies for all nodes. The
transmitted signals are attenuated by a factor

g(r) =
1

rα/2
(4)
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over distance r.1 Let us also introduce the following classical notation for a sequence of random variables
(An) and numbers (bn):

An ≤ bn with high probability

if
lim

n→∞
P(An ≤ bn) = 1.

Our main results are the following.

Theorem 2.1: Consider a one-dimensional extended random network and the channel model given in
(4) with α > 0. The maximally achievable rate Rn per source-destination pair in the network is bounded
above by

Rn ≤ K1
(log n)3

n
, with high probability

where K1 > 0 is a constant independent of n.

Theorem 2.2: Consider a two-dimensional extended random network and the channel model given in
(4) with α > 0. The maximally achievable rate Rn per source-destination pair in the network is bounded
above by

Rn ≤ K2
n

1
α+8 (log n)3

√
n

, with high probability

for a constant K2 > 0 and independent of n.

Although the results presented above as well as the discussions in the previous section are in terms of
rate per source-destination pair, the corresponding results on sum-rate defined as nRn, also referred to
as aggregate throughput in the literature, are immediate. Indeed, a closer look to our approach in the
following section will reveal that we actually go from the later to the first one: we first derive an upper
bound on the achievable sum-rate through a cut-set of the network. The assumption that there are order
n randomly chosen source-destination pairs willing to communicate at a common rate then allows us to
establish the corresponding upper bound on the rate per communicating pair.

Alternatively, one can allow an arbitrary traffic pattern and ask what is the maximum total bit-meters-
per-second that the random network can reliably support. First introduced in [1], this is the transport
capacity of the network and is formally defined as

Tc(n) = sup
∑
i,j
i 6=j

Rijrij, (5)

where we have the supremum over all possible traffic patterns, that is all feasible n × n rate matrices
{Rij : 1 ≤ i ≤ n, 1 ≤ j ≤ n}. The quantity Rij is the rate of transmission from node i to node j and
rij is the distance between the two nodes. Our intermediate result on the achievable sum-rate through a
cut-set of the network can be used to derive the following conclusions on the transport capacity of one
and two-dimensional random networks.

Theorem 2.3: Let α > 0. The transport capacity of a one-dimensional extended random network is
bounded above by

Tc(n) ≤ K3 n (log n)3, with high probability;

1Following the general convention, we use the power path loss exponent α to describe the attenuation in Sections I and II. We will switch
to δ = α/2 in the following sections, which turns out to be more handy for the analysis.
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Fig. 1. The network is depicted after the introduction of “mirror” users. Note that the original nodes are depicted in black while the “mirror”
users are depicted in white. Our approach concentrates on the traffic requests that pass the imaginary boundary on the y-axis from left to
right, depicted in bold lines in the figure.

similarly, the transport capacity of a two-dimensional extended random network is bounded above by

Tc(n) ≤ K4 nn
1

(α+8) (log n)3, with high probability,

where K3 > 0 and K4 > 0 are constants independent of n.

Note that the result in Theorem 2.3 is more general than the results in Theorems 2.1 and 2.2.

The paper is organized as follows: in the following section, we introduce our approach by first con-
centrating on two-dimensional networks and then pointing out the simplifications arising for the one-
dimensional case.2 We prove Theorem 2.1 in Section IV and Theorem 2.2 in Section V. The corresponding
results for the transport capacity in Theorem 2.3 are discussed in Section VI. Section VII contains our
conclusions.

III. OUR APPROACH

For simplicity, let us assume that the two-dimensional domain D is a rectangle D = [−√n,
√

n] ×
[0,
√

n]. We start by dividing D into two equal parts [−√n, 0] × [0,
√

n] and [0,
√

n] × [0,
√

n]. We
first concentrate on bounding the total information flow from one half of the network to the other, or
equivalently the sum of the rates of communications passing through the imaginary boundary on the
y-axis, say from left to right. A simple statistical argument then allows to use this result for bounding
above the achievable common rate Rn for order n source destination pairs.3

Since we are interested in upper bounds, we make a series of optimistic assumptions: we first introduce
n additional “mirror” users that help relaying traffic, where the mirror location of (xi, yi) is (−xi, yi). The
mirror users are only helpers for establishing the original traffic requests and do not have their own traffic
demand. Their introduction brings a useful symmetry to the problem: there are now exactly n users on each
side of the domain symmetrically located with respect to the y-axis. See Figure 1. Because of the symmetry,

2The approach has already been introduced in [4] and [7].
3To establish the result on transport capacity, we actually need a more general result. Namely, we need an upper bound on the sum of the

rates of communications passing through any linear cut of the network, not only the special cut dividing the network into two equal halves.
However, the results for a general cut follow by simple modifications of the analysis for the middle cut. We postpone all discussions related
to transport capacity to Section VI.
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the locations of the nodes on the right half domain are now enough to characterize the configuration of the
whole network. By possibly re-numbering the nodes, we will denote by (Li := (xi, yi), i = 1, . . . , n) these
right-hand domain locations. Note that (L1, L2, . . . , Ln) form a family of two-dimensional independent
random variables uniformly distributed on the set [0,

√
n] × [0,

√
n]. A further optimistic assumption is

that all the users on the left half domain can cooperate freely and even distribute their power resources
among themselves in order to establish communication in the most efficient way with the users on the
right half domain, which in turn can also cooperate at no cost. This assumption allows to bound above the
total information flow from the left half of the network to the right half, by the capacity of the following
point-to-point MIMO channel,

Vi =
n∑

j=1

Gn
ijUj + Zi, i = 1, ...n,

where U1, . . . , Un denote the signals transmitted by the left-hand side nodes, V1, . . . , Vn are the signals
received by the right-hand side nodes and (Z1, . . . , Zn) is a vector of circularly symmetric complex
Gaussian random variables with unit variance. The entries of the n× n channel matrix Gn are given by

Gn
ij =

1

((xi + xj)2 + (yi − yj)2)
δ
2

(6)

where ((xi, yi), i = 1, . . . , n) are the right-hand side node locations. Note that the left-hand side nodes are
located on the symmetric locations ((−xi, yi), i = 1, . . . , n), hence the pairwise gains in (6). Note also
that δ = α/2. In the following sections, we will sometimes use the notation

Gn {L1, . . . Ln} (7)

to emphasize the dependence of the n×n matrix Gn to the configuration (L1, . . . Ln) or omit the argument
when no confusion arises. Under the total power constraint

n∑
j=1

E
[|Uj|2

] ≤ nP

the capacity of the above channel, which bounds above the maximum flow of information from one half
of the network to the other, is given by

C2D
n = max

Pk≥0:
Pn

k=1 Pk≤nP

n∑

k=1

log
(
1 + Pkλ

2
k

)

where λk are the eigenvalues of the symmetric matrix Gn. Noticing that Pk ≤ nP for each k and that
the λk are non-negative (see Appendix I), we further obtain

C2D
n ≤

n∑

k=1

log
(
1 + nPλ2

k

) ≤
n∑

k=1

log
(
1 +

√
nPλk

)2

= 2 log det
(
I +

√
nP Gn

)
. (8)

In the one-dimensional case, we have n nodes that are uniformly and independently distributed on the
line segment [−n, n]. Adding n “mirror” relay nodes, as in the two-dimensional case, we end up with a
symmetrical configuration with respect to the origin: the n nodes on the right-hand side are uniformly and
independently distributed on the line segment [0, n] and those on the left are located at “mirror” positions.
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Since all arguments leading to the upper bound in (8) also apply in this case, the total information flow
from left to right is again bounded above by

C1D
n ≤ 2 log det

(
I +

√
nP Hn

)
, (9)

however the corresponding channel matrix Hn now has the following simpler structure:

Hn
ij =

1

(xi + xj)δ
(10)

where x1, . . . , xn denote the positions of the nodes on [0, n].
Under the assumption that the n/2 source-destination pairs are chosen uniformly at random, it is trivial

to show that there will be order n communication requests that need to pass the boundary in the middle
from left to right. We can therefore conclude that the maximally achievable rate per communication pair
in the network is bounded above by

Rn ≤ K5
Cn

n
(11)

for a constant K5 > 0 independent of n.4 In the rest of the paper, we will focus on the problem of
determining the scaling of the upper bound on C1D

n given by (9) and (10) and that on C2D
n given by (6)

and (8). Note that the structure of the one-dimensional matrix Hn in (10) is much simpler than the two-
dimensional matrix Gn in (6). Indeed, for δ = 1, Hn becomes a Cauchy matrix and an explicit expression
for its determinant is known. A precise analysis of the determinant leads to the result in Theorem 2.1 for
one-dimensional networks. This result then serves as a basic tool for tackling the two-dimensional case.

IV. ONE-DIMENSIONAL NETWORKS

The outline of the proof of Theorem 2.1 goes as follows 5: we start by considering the upper bound
on C1D

n given in (9). Using the following identity, valid for any n× n matrix A:

det(I + A) = 1 +
∑

∅6=J⊂{1,...,n}
det(A(J)), where A(J) = (aij)i,j∈J , (12)

we obtain that the upper bound 2 log det
(
I +

√
nPHn

)
on C1D

n can be expressed in terms of determinants
of the form

Dδ(xJ) = det

((
1

(xi + xj)δ

)

i,j∈J

)
, where xJ = (xi)i∈J . (13)

The first step of the proof consists of showing that for any δ > 0, there exist positive constants K6, K7, K8

and η independent of m such that

Dδ(xJ) ≤ Km
6 mK7m

(
1

xmin

)K8m

D1(xJ)η, (14)

where m = |J | and xmin = min{xi : i = 1, . . . , n}. We can therefore focus on the case δ = 1, for which
we have the following explicit expression (see for instance [8, p. 202]):

D1(xJ) =




∏
i,j∈J
i<j

(xj − xi)
2




/( ∏
i,j∈J

(xi + xj)

)
. (15)

4We have not used a superscript for Cn, implying that using either C1D
n or C2D

n gives the corresponding result for one or two-dimensional
networks.

5Note that this result was already proved in [7] under stronger assumptions on the attenuation factor δ.
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The second part of the proof is a detailed study of the configuration xJ maximizing D1(xJ) and leads to
the following estimate: there exists K9 > 0 independent of m such that

D1(xJ) ≤ 1

(xmin)m
exp(−K9 m3/2). (16)

Finally, combining estimates (14) and (16) together with formula (12) and the fact that xmin is typically
of order 1 allows us to bound C1D

n above by

C1D
n ≤ K̃1 (log n)3, with high probability. (17)

Equation (11) then leads to the conclusion of Theorem 2.1.

Proof of Theorem 2.1: Part I
The proof of the following lemma can be found in [7].
Lemma 4.1: Let δ > 0 and J ⊂ {1, . . . , n}. The determinant defined in (13) satisfies the following

identity:

Dδ(xJ) =
1

m! Γ(δ)m

(∏

k∈J

∫

R+

dtk tδ−1
k

)
det

((
e−ti xj

)
i,j∈J

)2

,

where m = |J | and Γ is the Euler Gamma function.
Notice that in order to shorten the notation, we have written

(∏

k∈J

∫

R+

dtk tδ−1
k

)
det

((
e−ti xj

)
i,j∈J

)2

in place of the somewhat less ambiguous expression
∫

R+

dtk1 tδ−1
k1

· · ·
∫

R+

dtkm tδ−1
km

det
((

e−ti xj
)

i,j∈J

)2

,

where k1, . . . , km enumerate the elements of J .
Lemma 4.2: Let γ, δ > 0 be such that either γ < δ < 1 or 1 < δ < γ. Let also f : R+ → R be a

measurable function such that both tγ−1 f(t)2 and f(t)2 are integrable on R+. Then
∫

R+

dt tδ−1 f(t)2 ≤
(∫

R+

dt tγ−1 f(t)2

) δ−1
γ−1

(∫

R+

dt f(t)2

) γ−δ
γ−1

Proof: Let us write tδ−1 f(t)2 = u(t) v(t), where

u(t) = tδ−1 f(t)
2(δ−1)

γ−1 and v(t) = f(t)
2(γ−δ)

γ−1 .

Using Hölder’s inequality with p = γ−1
δ−1

∈ (1,∞) and q = γ−1
γ−δ

∈ (1,∞) (so that 1
p

+ 1
q

= 1), we obtain
∫

R+

dt u(t) v(t)

≤
(∫

R+

dt u(t)
γ−1
δ−1

) δ−1
γ−1

(∫

R+

dt v(t)
γ−1
γ−δ

) γ−δ
γ−1

=

(∫

R+

dt tγ−1 f(t)2

) δ−1
γ−1

(∫

R+

dt f(t)2

) γ−δ
γ−1

.

7



Lemma 4.3: Let γ, δ > 0 be such that either γ < δ < 1 or 1 < δ < γ. Then for all J ⊂ {1, . . . , n}, we
have

Dδ(xJ) ≤
(

Γ(γ)
δ−1
γ−1

Γ(δ)

)m

Dγ(xJ)
δ−1
γ−1 D1(xJ)

γ−δ
γ−1 ,

where m = |J |.
Proof: Let tJ = (ti)i∈J . A multidimensional version of Lemma 4.2 shows that for a measurable

function f : Rm
+ → R,

((∏

k∈J

∫

R+

dtkt
δ−1
k

)
f(tJ)2

)

≤
((∏

k∈J

∫

R+

dtkt
γ−1
k

)
f(tJ)2

) δ−1
γ−1

((∏

k∈J

∫

R+

dtk

)
f(tJ)2

) γ−δ
γ−1

provided that both integrals on the right-hand side are finite. From this and Lemma 4.1, we deduce that

Dδ(xJ)

=
1

m! Γ(δ)m

(∏

k∈J

∫

R
dtk tδ−1

k

)
det

((
e−ti xj

)
i,j∈J

)2

≤ 1

m! Γ(δ)m

((∏

k∈J

∫

R
dtk tγ−1

k

)
det

((
e−ti xj

)
i,j∈J

)2
) δ−1

γ−1

·
((∏

k∈J

∫

R
dtk

)
det

((
e−ti xj

)
i,j∈J

)2
) γ−δ

γ−1

=
1

m! Γ(δ)m
(m! Γ(γ)m Dγ(xJ))

δ−1
γ−1 (m! Γ(1)m D1(xJ))

γ−δ
γ−1

=

(
Γ(γ)

δ−1
γ−1

Γ(δ)

)m

Dγ(xJ)
δ−1
γ−1 D1(xJ)

γ−δ
γ−1 ,

since Γ(1) = 1.
Lemma 4.4: For any δ > 0, there exist positive constants K6, K7, K8 and η independent of m such that

Dδ(xJ) ≤ Km
6 mK7m

(
1

xmin

)K8m

D1(xJ)η,

where xmin = min{xi : i = 1, . . . , n}.
Proof: Let us recall the definition of the permanent of an m×m matrix A(J) = (aij)i,j∈J :

perm(A(J)) =
∑

σ∈S(J)

∏
i∈J

ai,σ(i).

Let us also define for γ > 0 and J ⊂ {1, . . . , n}:

Pγ(xJ) = perm

((
1

(xi + xj)γ

)

i,j∈J

)
.
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Noticing that Dγ(xJ) ≤ Pγ(xJ), we obtain using Lemma 4.3 that for any δ > 0, there exists γ > 0 such
that either γ < δ < 1 or 1 < δ < γ, and

Dδ(xJ) ≤
(

Γ(γ)
δ−1
γ−1

Γ(δ)

)m

Pγ(xJ)
δ−1
γ−1 D1(xJ)

γ−δ
γ−1 . (18)

By definition of the permanent, we have the trivial bound

Pγ(xJ) =
∑

σ∈S(J)

∏
i∈J

1

(xi + xσ(i))γ
≤

∑

σ∈S(J)

∏
i∈J

1

xγ
i

≤ m!

(xmin)γm
.

So (18) finally implies that

Dδ(xJ) ≤
(

Γ(γ)
δ−1
γ−1

Γ(δ)

)m (
m!

(xmin)γm

) δ−1
γ−1

D1(xJ)
γ−δ
γ−1 .

Setting K6 = Γ(γ)
δ−1
γ−1

Γ(δ)
, K7 = δ−1

γ−1
, K8 = γ(δ−1)

γ−1
, η = γ−δ

γ−1
and observing that all these constants are positive

completes the proof of the lemma.

Finally, the proof of the key estimate (16) can be found in [7].

Proof of Theorem 2.1: Part II
Let us now gather together all estimates. By (9) and (12), we have

exp(C1D
n /2)

≤ det
(
I +

√
nP H

)
= 1 +

∑

∅6=J⊂{1,...,n}
det

(√
nP H(J)

)

= 1 +
∑

∅6=J⊂{1,...,n}
(nP )|J |/2 Dδ(xJ)

= 1 +
n∑

m=1

(nP )m/2
∑

J⊂{1,...,n}
|J|=m

Dδ(xJ).

Using successively (14) and (16), we obtain

exp(C1D
n /2)

≤ 1 +
n∑

m=1

(nP )m/2 Km
6 mK7m

(
1

xmin

)K8m ∑
J⊂{1,...,n}
|J|=m

D1(xJ)η

≤ 1 +
n∑

m=1

(nP )m/2Km
6 mK7m

(
1

xmin

)(K8+η)m∑
J⊂{1,...,n}
|J|=m

exp(−K9η m3/2).

Since ∑
J⊂{1,...,n}
|J|=m

1 =

(
n
m

)
≤ nm,

9



we obtain that for some K10 and K11 > 0:

exp(C1D
n /2) ≤ 1 +

n∑
m=1

exp
(
K10m

(
log n + (log(1/xmin))

+)−K11m
3/2

)

where a+ = max(a, 0). Choosing m0 =

⌈(
K10

K11

(
log n + (log(1/xmin))

+))2
⌉

, we moreover have

exp(C1D
n /2) ≤ 1 +

m0−1∑
m=1

exp
(
K10m

(
log n + (log(1/xmin))

+)−K11m
3/2

)

+
n∑

m=m0

exp
(
K10m

(
log n + (log(1/xmin))

+)−K11m
3/2

)

≤ 1 +

m0−1∑
m=1

exp
(
m0K10

(
log n + (log(1/xmin))

+))
+

n∑
m=m0

1

≤ m0 exp
(
K11m

3/2
0

)
+ n. (19)

Before employing the assumption that the network is uniformly distributed over the domain [−n, n]
and that the considered cut is at the origin, let us summarize our current results since they apply in more
generality. (19) implies that there exists a constant K12 > 0 independent of n such that for sufficiently
large n

C1D
n ≤ 2 log det

(
I +

√
nP Hn

)
≤ 2K12

(
log n + (log(1/xmin))

+)3
, (20)

which is a uniform upper bound on the achievable sum-rate through any cut-set of any arbitrary one-
dimensional network consisting of n nodes. xmin is half the distance between the closest nodes to the cut
from left and right. Notice that considering any cut-set of an arbitrary linear network, placing the origin
in the middle of the closest nodes from left and right and introducing mirror users with respect to the
origin results in symmetrical configuration with n users on each side. This has been the only assumption
we have used in our analysis up to now.

In the specific case of interest where the n nodes are uniformly distributed on [−n, n] and the cut
considered divides the network into two halves [−n, 0] and [0, n], the introduction of mirror users results
in n nodes on each half, symmetrically located, but with the additional property that the nodes are
uniformly and independently distributed on each-half. In this case, for any ζ > 0, we have

P

(
xmin ≤ 1

nζ

)
≤ nP

(
x1 ≤ 1

nζ

)
= n

1

n1+ζ
=

1

nζ
→

n→∞
0,

which means that
xmin ≥ 1

nζ
, with high probability.

By choosing K̃1 = 2K12(1 + ζ)3, we conclude that the achievable sum-rate between the two halves of
the random network is bounded above by

C1D
n ≤ K̃1 (log n)3, with high probability,

which completes the proof of Theorem 2.1. ¥
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V. TWO-DIMENSIONAL NETWORKS

Our approach for two-dimensional networks is completely different from the approach followed in the
one-dimensional case. Note that the approach that leads to the tight upper bound for one-dimensional
networks heavily depends on the existence of an explicit formula (15) for the determinant in (13) in the
special case δ = 1. This allows to study the configuration of nodes that maximize this determinant, in terms
of which we are able to upper bound the behavior of (9) for any random configuration. Unfortunately,
the approach does not generalize to the two-dimensional case. Instead, we consider the upper bound in
(8) for two-dimensional networks which as in the one-dimensional case is a random quantity since the
channel matrix Gn{L1, . . . , Ln} is a function of random node positions {L1, . . . , Ln}. The first part of the
proof of Theorem 2.2 investigates the expected behavior of this upper bound over random node locations
and establishes the following result,

EL1,...,Ln

[
log det(I +

√
nPGn{L1, . . . , Ln})

]
≤ K̃2

√
nn

1
2(δ+4) (log n)3. (21)

The basic ingredient is the result established for one-dimensional networks. We divide the planar network
into strips and look at the behavior of the upper bound in (8) for one such strip. The motivation behind is
that the asymptotic behavior of the upper bound in (8) evaluated for a strip should not be much different
from the upper bound in (9) governing a linear network since the degrees of freedom provided in one
of the dimensions is strictly limited for the strip and will be exhausted with increasing number of users.
Although we are unable to prove this claim, the approach is still useful and gives us improved upper
bounds for planar networks.

The second part of the proof establishes the concentration of log det(I +
√

nPGn) around its mean.
More precisely, we are showing that for any ε > 0 and λ > 0,

lim
n→∞

P
(∣∣∣log det(I +

√
nPGn)− E

[
log det(I +

√
nPGn)

]∣∣∣ ≥ λn
1
2
+ε

)
= 0. (22)

Combining (21) and (22) together with (11) then leads to the conclusion of Theorem 2.2.6

Proof of Theorem 2.2: Part I

Let us start by dividing the domain D into N =
√

n
ε

equal strips, namely

Si = [−√n,
√

n]× [(i− 1)ε, iε ] for i = 1, 2...N. (23)

Let us denote the total number of users in the horizontal strip Si by the random variable 2ni. Recall that
due to the introduction of “mirror” users, each strip has symmetric left and right-hand side configuration.
See Figure 2. We recall the generalized Hadamard’s Inequality (or Fischer’s Inequality). See [10, Thm
9.C.1]. If A(n) is n × n Hermitian non-negative definite matrix and (Ami , i = 1, . . . , p) are the diagonal
blocks of A of given sizes {mi} (such that n =

∑p
i=1 mi) then

det(A) ≤
p∏

i=1

det (Ami).

By possibly re-numbering the nodes, we can apply this inequality to the non-negative definite matrix
(I +

√
nPGn) with the diagonal blocks referring to the N strips we have introduced. This yields

C2D
n ≤ 2 log det(I +

√
nPGn) ≤

N∑
i=1

2 log det(I +
√

nPGni {Si}). (24)

6Part of this work was presented in [9].
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Fig. 2. The division of the two-dimensional network into horizontal strips.

where Si refers to the configuration of the strip Si. Let us now consider the expected value of this upper
bound over random node locations, thus

E(x1,y1),...,(xn,yn)

[
log det(I +

√
nPGn)

]

≤ En1,...,nN

[
EX(S1),...,X(Sn);Y (S1),...,Y (Sn)

[ N∑
i=1

log det(I +
√

nPGni {Si})
]]

=
N∑

i=1

Eni

[
EX(Si)

[
EY (Si)

[
log det(I +

√
nPGni {Si})

]]]
(25)

where the subscripts denote the variables with respect to which the expectation is performed. X(Si) and
Y (Si) refers to the collection (x1, . . . , xni

) and (y1, . . . , yni
) denoting the x and y-coordinates of the

nodes in Si respectively. It is easy to see that the terms in (25) governing different strips Si are equal.
Without loss of generality, we concentrate on the strip S1 with number of users n1 and configuration
S1. For notational convenience, we denote the matrix Gn1 {S1} by Gn1 , X(S1) by X and Y (S1) by Y ,
however we keep in mind that the node locations (xi, yi), 1 ≤ i ≤ n1 are now uniformly and independently
distributed on the set S1 = [0,

√
n]× [0, ε]. Considering the inner most expectation for given n1 and X and

recalling that log det(·) is a concave function on the set of positive definite matrices, we apply Jensen’s
Inequality to obtain

EY

[
log det(I +

√
nPGn1)

]
≤ log det

(
I +

√
nPEY [Gn1 ]

)
. (26)

Let us recall the expression for the entries of the matrix Gn1 given by (6), that is

Gn1
ij =

1

((xi + xj)2 + (yi − yj)2)
δ
2

. (27)

Note that given (xi, i = 1, . . . , n1), each yi, 1 ≤ i ≤ n1 is uniformly and independently distributed in the
interval [0, ε] and the random variable y = (yi − yj)

2 has a distribution py(y) supported on the interval

12



[0, ε2] when i 6= j. Thus the entries of the matrix EY [Gn1 ] are given by

EY

[
Gn1

ij
i 6=j

]
=

∫ ε2

0

py(y)
1

((xi + xj)2 + y)
δ
2

dy

EY [Gn1
ii ] =

1

(2xi)δ
. (28)

The matrix EY [Gn1 ] can be written as a sum of two matrices

EY [Gn1 ] = D′n1 + G′n1

where G′n1 is the matrix whose entries are given by

G′n1

ij =

∫ ε2

0

py(y)
1

((xi + xj)2 + y)
δ
2

dy

and D′n1 is the diagonal matrix that compensates the difference between the diagonal entries of G′n1 and
EY [Gn1 ]. Thus,

D′n1

ii =
1

(2xi)δ

∫ ε2

0

py(y)

(
1−

(
1 +

y

(2xi)2

)− δ
2

)
dy.

The entries of the diagonal matrix D′n1

ii can be bounded above by making use of the relation

1− (1 + x)−γ =

∫ x

0

γ(1 + z)−γ−1dz ≤ γx sup
z∈[0,x]

(1 + z)−γ−1 ≤ γx

valid for any γ > 0, which yields

D′n1

ii ≤ δ/2

(2xi)δ+2

∫ ε2

0

ypy(y)dy ≤ δε2

2(2xi)δ+2
= Dn1

ii (29)

where Dn1 is defined as the upper bounding diagonal matrix. In Appendix II, we prove that the difference
matrix Hn1 −G′n1 whose entries are given by

Hn1
ij −G′n1

ij =
1

(xi + xj)δ
−

∫ ε2

0

py(y)
1

((xi + xj)2 + y)
δ
2

dy.

is non-negative definite. This fact together with (29) implies that Dn1 + Hn1 − D′n1 − G′n1 is a non-
negative definite matrix. Recalling that the log det(·) is not only concave, but also increasing on the set
of non-negative definite matrices (see [10], 16.E) gives

log det
(
I +

√
nPEY [Gn1 ]

)
= log det

(
I +

√
nPD′n1 +

√
nPG′n1

)

≤ log det
(
I +

√
nPDn1 +

√
nPHn1

)

≤ log det
(
I +

√
nPDn1

)
+ log det

(
I +

√
nPHn1

)
(30)

The last inequality in (30) is a property of non-negative definite matrices and can be obtained by
specializing the following entropy relation to independent Gaussian vectors.

Lemma 5.1: If X , Y and Z are independent random variables (or vectors) then,

h(Y + X + Z) + h(X) ≤ h(Y + X) + h(X + Z).

13



Proof: First note that the random variables Y , Y + X and Y + X + Z form a Markov chain and
the data processing theorem gives us

I(Y ; Y + X + Z) ≤ I(Y ; Y + X).

Expanding this inequality gives the desired result:

I(Y ; Y + X + Z) ≤ I(Y ; Y + X)

h(Y + X + Z)− h(Y + X + Z | Y ) ≤ h(Y + X)− h(Y + X | Y )

h(Y + X + Z)− h(X + Z) ≤ h(Y + X)− h(X)

h(Y + X + Z) + h(X) ≤ h(Y + X) + h(X + Z)

Looking closer at the two terms in (30), we notice that the second term resembles the upper bound (9)
governing one-dimensional networks except that Hn1 is now n1 × n1 matrix with n1 ≤ n. However, by
the interlacing property of symmetric matrices (see [11, Thm 4.3.8]) the n1 largest eigenvalues of any
symmetric matrix Hn that has Hn1 as an upper left submatrix dominate the eigenvalues of Hn1 . Using
also the fact that I +

√
nPHn has all its eigenvalues larger than 1 since Hn is non-negative definite (see

Appendix I), we have

log det
(
I +

√
nPHn1

)
≤ log det

(
I +

√
nPHn

)

≤ K12

(
log n + (log(1/xmin))

+)3
, (31)

which follows from (20) with xmin = min{xi : i = 1, . . . , n1}. Recalling that (xi, i = 1, . . . , n1) are
uniformly and independently distributed on [0,

√
n], we have,

P
(
xmin ≤ n−( 1

2
+µ)

)
≤ n1P

(
x1 ≤ n−( 1

2
+µ)

)
≤ nP

(
x1 ≤ n−( 1

2
+µ)

)
= n−µ,

for any µ > 0. Considering the expectation of (31) over X yields,

EX

[
log det

(
I +

√
nPHn1

)]

≤ EX

[
K12

(
log n + (log(1/xmin))

+)3
]

= EX

[
K12

(
log n + (log(1/xmin))

+)3 ∣∣ xmin ≥ n−1
]
P

(
xmin ≥ n−1

)

+
∞∑

µ=1

EX

[
K12

(
log n + (log(1/xmin))

+)3 ∣∣ n−(µ+1) ≤ xmin ≤ n−µ
]
P

(
n−(µ+1) ≤ xmin ≤ n−µ

)

≤ 23 K12(log n)3 + K12(log n)3

∞∑
µ=1

(µ + 2)3n
1
2
−µ

≤ K13(log n)3, (32)

for a constant K13 > 0 and independent of n.

Considering the expectation over X for the first term in (30) and choosing ε = n−η with η > 0 yields,

EX

[
log det

(
I +

√
nPDn1

)]
= EX

[
n1∑
i=1

log

(
1 +

√
nP

δε2

2(2xi)δ+2

)]

= n1

∫ √
n

0

1√
n

log

(
1 +

δ
√

P

2

n
1
2
−2η

(2x)δ+2

)
dx. (33)
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We have the following lemma from [4, Lemma 2.2] which states that for any C, p > 0 and γ > 1, there
exists a constant K14 > 0 such that for all sufficiently large n,

∫ n

0

dx log

(
1 +

Cnp

xγ

)
≤ K14n

p
γ
∧1 log n

where a ∧ b is the minimum of a and b. Applying this lemma to (33) we have

EX

[
log det

(
I +

√
nPDn1

)]
≤ n1√

n
K14 n

1−4η
2(δ+2) log n, (34)

and performing the last expectation in (25) with respect to n1 yields

En1

[
EX

[
log det

(
I +

√
nPDn1

)]]
≤ εK14 n

1−4η
2(δ+2) log n

since the expected number of nodes in S1 is n
N

= ε
√

n.

Combining all the results we have obtained until now yields the following expectation result:

E(x1,y1),...,(xn,yn)

[
log det(I +

√
nPGn)

]
≤

N∑
i=1

(
εK14 n

1−4η
2(δ+2) log n + K13 (log n)3

)

= K14

√
nn

1−4η
2(δ+2) log n + K13

√
nnη (log n)3

≤ K̃2

√
nn

1
2(δ+4) (log n)3 (35)

for a constant K̃2 > 0 and independent of n by choosing η = 1
2(δ+4)

.

Proof of Theorem 2.2: Part II
There remains to prove that there is concentration around the expectation and that the upper bound in

(35) applies on C2D
n with high probability. For notational convenience, let us define Φn to be the following

real-valued function of node locations (L1, L2, . . . , Ln),

Φn(L1, L2, . . . , Ln) := log det(I +
√

nPGn {L1, L2, . . . , Ln}).
We set out to prove the following proposition.

Proposition 5.2: For any ε > 0 and λ > 0, there exists a constant K15 independent of n such that

P
(
|Φn(L1, L2, . . . , Ln)− E [Φn(L1, L2 . . . , Ln)] | ≥ λn

1
2
+ε

)
≤ K15

n3
.

Before the proof of Proposition 5.2, we introduce a concentration inequality due to McDiarmid [12] that
will be used in the proof of the proposition.

Theorem 5.3: Let (L1, L2, . . . , Ln) be a family of independent random variables with Lk taking values
in a set Ak for each k. Suppose that the real-valued function f defined on ΠAk satisfies

sup
l1∈A1...ln∈An, l′k∈Ak

|f(l1, . . . , lk−1, lk, lk+1, . . . , ln)− f(l1, . . . , lk−1, l
′
k, lk+1, . . . , ln)| ≤ ck.

Then, for any t ≥ 0

P (|f(L1, L2, . . . , Ln)− E[f(L1, L2, . . . , Ln)]| ≥ t) ≤ 2e−2t2/
P

c2k .
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The proof of Proposition 5.2 is based on applying Theorem 5.3 to the function Φn. The crucial step
here is to properly bound the amount of change in the value of the function Φn due to a change in one
of its parameters. Notice however that Φn is unbounded since the xi’s (the random variables denoting the
horizontal positions of the right-hand side nodes) can be arbitrarily close to zero, which implies that the
corresponding diagonal elements of Gn go to infinity. This rather technical problem can be overcome by
showing that the xi’s are all bounded away from zero with high probability as n goes to infinity and under
the condition that they are all bounded away from zero, the amount Φn can be affected from a change in
one of the node positions is bounded by log n. The concentration inequality in Theorem 5.3 can then be
used to show that Φn concentrates around its mean with deviation of order less than n

1
2
+ε for any ε > 0.

Proof of Proposition 5.2: Let us fix µ > 0. As in the one-dimensional case, the probability that any of
(xi, i = 1, . . . , n) is smaller than n−( 1

2
+µ) is bounded above by

P
(
xmin ≤ n−( 1

2
+µ)

)
≤ nP

(
x1 ≤ n−( 1

2
+µ)

)
= n−µ,

since the xi’s are uniformly and independently distributed on [0,
√

n]. On the other hand, under the
condition that xmin ≥ n−( 1

2
+µ), (L1, L2, . . . , Ln) is still a family of independent random variables where

each Li is now uniformly distributed on the set
[
n−( 1

2
+µ),

√
n
]
× [0,

√
n].

We continue the rest of our analysis conditioned on xmin ≥ n−( 1
2
+µ). Let (L1, . . . , Ln−1, Ln) and

(L1, . . . , Ln−1, L
′
n) be two configurations that differ only in the last coordinate, that is, the position of the

nth node. Let Ψn−1 be defined as the following function of n− 1 node locations:

Ψn−1(L1, . . . , Ln−1) := log det(I +
√

nPGn−1{L1, . . . , Ln−1}).
Next, we bound the variation of the function Φn between the two configurations:

|Φn(L1, . . . , Ln−1, Ln)− Φn(L1, . . . , Ln−1, L
′
n)|

≤ |Φn(L1, . . . , Ln−1, Ln)−Ψn−1(L1, . . . , Ln−1)|
+ |Ψn−1(L1, . . . , Ln−1)− Φn(L1, . . . , Ln−1, L

′
n)|. (36)

Concentrating on the first term in (36), let λ1 ≤ · · · ≤ λn be the eigenvalues of the n×n symmetric matrix
I +

√
nPGn {L1, . . . , Ln−1, Ln} and λ̂1 ≤ · · · ≤ λ̂n−1 be the eigenvalues of the n− 1× n− 1 symmetric

matrix I +
√

nPGn−1 {L1, . . . , Ln−1}. Note that by the interlacing property of symmetric matrices, we
have

1 ≤ λ1 ≤ λ̂1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λ̂n−1 ≤ λn.

Moreover, all the eigenvalues are greater than 1 since Gn is a non-negative definite matrix. Expressing
the functions Φn and Ψn−1 in terms of these eigenvalues and recalling that the logarithm function is
monotonically increasing yields

|Φn(L1, . . . , Ln)−Ψn−1(L1, . . . , Ln−1)| =
∣∣∣

n∑
i=1

log λi −
n−1∑
i=1

log λ̂i

∣∣∣

= log λn −
n−1∑
i=1

(log λ̂i − log λi)

≤ log λn.

The largest eigenvalue λn of I +
√

nPGδ,n can be bounded by the trace of the matrix and the condition
xmin ≥ n−( 1

2
+µ) implies that

log λn ≤ log
n∑

i=1

(
1 +

√
nP

(2xi)δ

)
≤ c1(µ) + c2(µ) log n
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where c1(µ), c2(µ) > 0 are constants independent of n. The argument for the first term in (36) holds
similarly for the second term. Furthermore, since the numbering of the nodes is arbitrary, the same bound
applies whenever the two configurations differ in a single node location, this single node being any of
the n nodes. We can therefore apply Theorem 5.3 and obtain

P
(
|Φn − E [Φn] | ≥ λn

1
2
+ε

)
≤ P

(
xmin ≤ n−( 1

2
+µ)

)
+ P

(
|Φn − E [Φn] | ≥ λn

1
2
+ε xmin ≥ n−( 1

2
+µ)

)

≤ n−µ + 2 exp

(
− 2λ2n2ε

4 (c1(µ) + c2(µ) log n)2

)

for all λ > 0. Choosing µ = 3 completes the proof of the proposition. ¥

Combining the expectation result in (35) with Proposition 5.2 yields

C2D
n ≤ K̃2

√
nn

1
2(δ+4) (log n)3, with high probability,

which completes the proof of Theorem 2.2. ¥
VI. TRANSPORT CAPACITY OF RANDOM NETWORKS

In the previous sections, the situation where order n communicating pairs wish to establish commu-
nication at a common rate Rn has been considered. In the present section, a more general result on the
transport capacity of the network is obtained, without any prior assumption on the traffic demand. Our
technique follows the approach developed in [2].

Let us first consider one-dimensional networks, where the nodes are arbitrarily located on a line and
numbered in increasing order along the line. The sum in (5) can be split into two parts, one rendering
the information transfer from left to right and the other from right to left

∑
i,j
i6=j

Rijrij =
∑
i,j
i<j

Rijrij +
∑
i,j
i>j

Rijrij. (37)

Considering only the information transfer from left to right and noticing that the same arguments apply
for the second term in (37), we have

∑
i,j
i<j

Rijrij =
n−1∑
i=1

n∑
j=i+1

Rijrij =
n−1∑
i=1

n∑
j=i+1

Rij

j−1∑

k=i

rk,k+1 =
n−1∑

k=1

rk,k+1

(
k∑

i=1

n∑

j=k+1

Rij

)
. (38)

Notice that the expression in brackets in the last equality in (38) refers to the total information flow from
left to right across a cut passing between the nodes k and k+1. Considering both of the terms in (37)
yields,

∑
i,j
i6=j

Rijrij =
n−1∑

k=1

rk,k+1




∑
i,j

i≤k<j

Rij +
∑
i,j

j≤k<i

Rij


. (39)

Equation (39) allows to get a simple upper bound on the transport capacity of arbitrary one-dimensional
networks, that is

Tc(n) = sup
∑
i,j
i6=j

Rijrij ≤ 2L max
1≤k≤n−1

C1D
n (Nk) (40)

where L is the length of the one-dimensional network, Nk is a cut-set passing between nodes k and k +1
and C1D

n (Nk) is the total information flow through this cut-set in either direction, whichever is maximal.
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Equation (40) implies that if one can uniformly bound above the total information flow through any cut-set
of an arbitrary network, then the transport capacity is simply bounded above by twice this bound times
the total length of the network. Once we have the uniform upper bound in (20) on the achievable sum-rate
through any cut-set of a one-dimensional network, it is easy to apply (40) to random networks: in a linear
random extended network, the minimum distance between any two nodes in the network is larger than

1
n1+γ with high probability for any γ > 0. Hence by (20), for all 1 ≤ k ≤ n− 1 the achievable sum-rate
is bounded above by

C1D
n (Nk) ≤ 2 K12 (2 + γ)3 (log n)3,

which in turn yields
Tc(n) ≤ K3 n (log n)3 with high probability

for a constant K3 > 0 and independent of n.

Remark 6.1: The above result says that the transport capacity of a network of n nodes independently
and uniformly distributed on [−n, n] is at most linear in n, up to logarithmic factors. Note moreover that
this result holds for any attenuation coefficient δ > 0. This result has to be compared to the result in [2],
where a super-linear behavior in n of the transport capacity was obtained for small values of δ > 0. The
discrepancy between the two results is explained by the fact that in [2], the distance between the two
farthest nodes is itself super-linear in n, whereas in the present situation, the nodes are constrained to an
interval of length 2n.

It is not difficult to apply the same argument to planar networks. Starting with the sum in (5),
∑
i,j
i6=j

Rijrij ≤
∑
i,j
i6=j

Rij(xij + yij) =
∑
i,j
i6=j

Rijxij +
∑
i,j
i6=j

Rijyij (41)

where xij and yij refer to the positive horizontal and vertical distances between nodes i and j respectively
and inequality follows from triangle inequality. Note that the resulting terms in (41) have an interesting
interpretation: the supremum of each term over all feasible rate matrices will yield the directional transport
capacity of the network in the given direction x or y. With the bound in (41), we are back to the one-
dimensional case. Substituting the expression in (39) for each of the terms in (41) yields

∑
i,j
i 6=j

Rijrij ≤
n−1∑

k=1

xk,k+1




∑
i,j

i≤k<j

Rij +
∑
i,j

j≤k<i

Rij


 +

n−1∑

k=1

yk,k+1




∑
i,j

i≤k<j

Rij +
∑
i,j

j≤k<i

Rij


. (42)

Notice that (42) inherently carries the assumptions made for linear networks. In the first term, the nodes
are assumed to be numbered in increasing x-coordinate; while in the second term, the nodes are numbered
according to their y-coordinate. Equation (42) can also be viewed as considering n− 1 vertical and n− 1
horizontal cut-sets respectively, each cut-set passing between two successive nodes. Similarly to the one-
dimensional case, the equation allows us to establish the following simple upper bound on the transport
capacity of two-dimensional networks,

Tc(n) ≤ 2Lx max
1≤k≤n−1

C2D
n (N x

k ) + 2Ly max
1≤k≤n−1

C2D
n (N y

k ) (43)

where x and y refer to two arbitrary orthogonal directions in the plane, Lx and Ly are the total lengths
of the network in these directions, N x

k is a cut-set perpendicular to the direction x and C2D
n (N x

k ) is the
total flow through this cut-set. N y

k and C2D
n (N y

k ) are defined in a similar way. The upper bound in (43)
can be applied to two-dimensional random networks as follows: The minimum horizontal (or vertical)
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distance between any two nodes in the network is greater than 1
n3/2+γ with high probability for any γ > 0.

Hence if we consider a family of n2+γ vertical and n2+γ horizontal cuts of the domain D, such that
successive cuts are separated by 1

n3/2+γ vertical or horizontal distance respectively, with high probability
this family contains cut-sets N x

k , k = 1, . . . , n − 1 and N y
k , k = 1, . . . , n − 1. Below, we show that the

expected flow through any cut of the planar network is bounded above by K̃2

√
nn

1
2(δ+4) (log n)3 for some

constant K̃2 > 0 independent of n with probability larger than 1 − K14

n3 as stated in Proposition 5.2.
Applying the union bound on this probability and choosing 0 < γ < 1 allows to establish concentration
simultaneously for all the 2n2+γ cuts considered. We conclude that the transport capacity of a uniformly
distributed two-dimensional random network is bounded above by

Tc(n) ≤ K4 nn
1

2(δ+4) (log n)3, with high probability,

for a constant K4 independent of n.

The expected flow through a vertical or horizontal cut that divide the domain into two asymmetric parts
can be bounded above by making slight modifications in the analysis in Section V. The idea goes as
follows: Consider a vertical cut that divides the domain D into two asymmetric parts: [−(2− a)

√
n, 0]×

[0,
√

n] and [0, a
√

n] × [0,
√

n], where 0 ≤ a ≤ 2 and we have shifted our coordinate system to align
with the cut considered. Similarly to Section V, let us concentrate on the first strip which has n1 nodes
before the introduction of the mirror users, and let us denote the number of nodes in the right-hand side
of the cut by n′1, which implies that there are n1 − n′1 nodes located on the left-hand side. After the
introduction of the “mirror” users (“mirror” with respect to the current cut considered), we still have two
half strips with symmetrical configuration as before, but the n1 right hand-side nodes will not be uniformly
distributed over the right-half strip in this case. Instead, n′1 of the n1 right-hand side nodes are uniformly
and independently distributed on [0, a

√
n]× [0, ε], and the rest n1 − n′1 are uniformly and independently

distributed on [0, (2 − a)
√

n] × [0, ε]. The analysis in Section V follows without any change up to (30).
The estimates (32) and (34) should be verified for the new case. Below we verify estimate (34), (32) can
be verified in a similar manner.

EX

[
log det

(
I +

√
nPDδ

)]

= En′1

[
EX

[
n1∑
i=1

log

(
1 +

√
nP

δε2

2(2xi)δ+2

)] ]

= En′1

[
n′1

∫ a
√

n

0

1

a
√

n
log

(
1 +

√
nP

δε2

2(2x)δ+2

)
dx

+ (n1 − n′1)
∫ (2−a)

√
n

0

1

(2− a)
√

n
log

(
1 +

√
nP

δε2

2(2x)δ+2

)
dx

]

≤ an1

2

1

a
√

n
K14n

1−4η
2(δ+2) log n +

(2− a)n1

2

1

(2− a)
√

n
K14n

1−4η
2(δ+2) log n

≤ n1√
n

K14 n
1−4η

2(δ+2) log n (44)

when ε = n−η with η > 0. Note that the upper bound in (44) is independent of the cut considered. The
rest of the analysis follows in complete analogy with Section V.

VII. CONCLUSION

We have established information theoretic upper bounds on the maximally achievable rate per commu-
nication pair and the transport capacity in one and two-dimensional random wireless networks when the
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medium is not absorptive and the attenuation is moderate. Our results show that in the absence of small
scale fading, the low attenuation regime does not behave significantly different from the high attenuation
regime.
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APPENDIX I
NON-NEGATIVITY OF THE MATRICES H AND G

Let us first consider the one-dimensional case. The entries of the matrix Hn are given by

Hn
jk =

1

(xj + xk)α/2
=

∫ ∞

0

dt
tα/2−1

Γ(α/2)
e−(xj+xk)t,

where Γ is the Euler Gamma function. This implies that Hn is non-negative definite, since

n∑

j,k=1

Hn
jk cj ck =

∫ ∞

0

dt
tα/2−1

Γ(α/2)

(
n∑

j=1

e−xjt cj

)2

≥ 0.

Let us now consider the two-dimensional case. We have the following expression for the entries of the
matrix Gn:

Gn
jk =

1
(
(xj + xk)

2 + (yj − yk)2
)α/4

,

so using the fact that the Fourier transform of

fa(y) =
1

(a2 + y2)α/4

is given by (see [13, formulas I.2.7 and I.18.29])

f̂a(ξ) = Cα

(
ξ2

a

)α−2
4

Kα−2
4

(a |ξ|),
where Kν is the modified Bessel function of second kind and of order ν, we obtain that

Gn
jk =

Cα

(2π)

∫

R
dξ

( |ξ|
xj + xk

)α−2
4

Kα−2
4

((xj + xk) |ξ|) eiξ(yj−yk).

Since by formula 9.6.23 in [14], we have

1

rν
Kν(r) =

√
π

2ν Γ(ν + 1
2
)

∫ ∞

0

dt e−r cosh(t) sinh2ν(t),

for ν > −1
2
, we obtain that the matrix M whose entries are given by

Mjk =

( |ξ|
xj + xk

)α−2
4

Kα−2
4

((xj + xk) |ξ|)

is non-negative definite. So Gn is a convex combination of products of symmetric non-negative definite
matrices, it is therefore itself non-negative definite.
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APPENDIX II
NON-NEGATIVITY OF THE MATRIX H −G′

In this appendix, we prove that the matrix whose entries are given by

Hjk −G′
jk =

1

(xj + xk)δ
−

∫ ε2

0

py(y)
1

((xj + xk)2 + y)
δ
2

dy

is non-negative definite. Obviously, it is sufficient to prove that

Hjk −G′′
jk =

1

(xj + xk)δ
− 1

((xj + xk)2 + y)
δ
2

is a non-negative definite matrix for each y, since H − G′ is a convex combination of matrices of this
type. The proof is actually straightforward when the following equivalent expression for the entries of G′′

is considered

G′′
jk =

1

πΓ(δ)

∫ ∞

0

dt

∫

R

dξ(|ξ| sinh t)δ−1e−|ξ|(cosh t)(xj+xk)−iξy

=
2

πΓ(δ)

∫ ∞

0

dt

∫ ∞

0

dξ(ξ sinh t)δ−1e−ξ(cosh t)(xj+xk) cos(ξy)

where Γ is the Euler Gamma function. The expression is valid for δ > 0 and can be obtained by considering
[13, formulas I.2.7 and I.18.29] and [14, formula 9.6.23]. Noticing that

Hjk =
2

πΓ(δ)

∫ ∞

0

dt

∫ ∞

0

dξ(ξ sinh t)δ−1e−ξ(cosh t)(xj+xk)

yields

n∑

j,k=1

(
Hjk −G′′

jk

)
cjck =

2

πΓ(δ)

∫ ∞

0

dt

∫ ∞

0

dξ(ξ sinh t)δ−1

(
n∑

j=1

cje
−ξxj cosh t

)2

(1− cos ξy) ≥ 0

which proves the desired result.
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[4] O. Lévêque and I. E. Telatar, Information Theoretic Upper Bounds on the Capacity of Large, Extended Ad-Hoc Wireless Networks, IEEE

Trans. Inform. Theory, vol. 51, no. 3, pp. 858–865, 2005.
[5] L. -L. Xie, P. R. Kumar, On the Path-Loss Attenuation Regime for Positive Cost and Linear Scaling of Transport Capacity in Wireless

Networks, IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2313–2328 , 2006.
[6] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005.
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