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Abstract— Resource allocation is investigated for fading relay networks have been addressed from various aspects, ingludi
channels under separate power constraints at the source and jnformation-theoretic capacity [4], [5], [6], [7], [8], [9[10],
relay nodes. As a basic information-theoretic model for fathg [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], R1]

relay channels, the parallel relay channel is first studiedwhich . ;
consists of multiple independent three-terminal relay chanels diversity [22], [23], [24], [25], outage performance [2627],

as subchannels. Lower and upper bounds on the capacity are @nd cooperative coding [28], [29], [30]. Central to the stod
derived, and are shown to match, and thus establish the capitg  wireless relay channels is the problem of resource allooati

for thg parallel relay channel with degraded sybchannels. 1ﬁ.iS For examp|e' the source and re|ay nodes can dynamica”y
capacity theorem is further demonstrated via the Gaussian gjocate their transmit powers to achieve a better ratedf th
parallel relay channel with degraded subchannels, for whib the . . Lo .

synchronized and asynchronized capacities are obtained. HE fading state information is available. Reso_urce allocafior
Capacity achieving power allocation at the source and re|ay relay Channels a.nd I’IetWOI'kS haS been Stud|ed by Sevel’alrece
nodes among the subchannels is partially characterized fothe papers, including [9], [31], [32], [33], [34], [26]. Commdn
synchronized case and fully characterized for the asynchmized gl of these studies is the assumption that the source aay rel
case. The fading relay channel is then studied, which is bade nodes are subject to a total power constraint.

on the three-terminal relay channel with each communicatio . - .

link being corrupted by a multiplicative fading gain coefficient as In this paper, we study wireless fading relay channels, g/her
well as an additive Gaussian noise term. For each link, the ting W€ assume that the source and relay nodes are subject to
state information is assumed to be known at both the transmier ~ separate power constraints instead of a total power camistra
and the receiver. The source and relay nodes are allowed to This assumption is more practical for wireless networks,
allocate their power ad_aptlvely according to the instantamrous because the source and relay nodes are usually geographical
channel state information. The source and relay nodes are .
assumed to be subject to separate power constraints. For Hot separateq, and are h_ence supported by separ_ate poweesuppli
the full-duplex and half-duplex cases, power allocationstat Under this assumption, the resource allocation problefs fal
maximize the achievable rates are obtained. In the half-dulgx under a class ahax-minproblems. We connect suchax-min
case, the power allocation needs to be jointly optimized witthe  problems to theminimaxtwo hypothesis testing problem (see,
channel resource (time and bandwidth) allocation betweenhe e.g., [35, I1.C]), and apply a similar technique to find ogim

two orthogonal channels over which the relay node transmitand . th - locati trategies for fadi
receives. Capacities are established for fading relay chaels that (in themax-minsense) resource allocation strategies for fading

satisfy certain conditions. relay channels.

We first study the parallel relay channel, which consists
of multiple independent relay channels and serves as a basic
information-theoretic model for fading relay channels. We
derive a lower bound on the capacity based on the partial
) ) decode-and-forward scheme as well as a cut-set upper bound.

The three-terminal relay channel was introduced by Vafje show that the two bounds match and establish the capacity
der Meulen [1] and was initially studied primarily in thego, the parallel relay channel with degraded subchannélis T
context of multiuser information theory [1], [2], [3]. In Y€ generalizes the capacity result in [36, Th. 12] to multiple-s
cent years, relaying has emerged as a powerful techniquesfinnels. We also demonstrate that the parallel relay efisin
improve the reliability and throughput of wireless netwark not 5 simple combination of subchannels in that the capacity
An understanding of wireless relay channels has thus becogigpe parallel relay channel can be larger than the sum of

an important area of research. Wireless relay channels afd capacities of subchannels, as was also remarked in [36,

The material in this paper was presented in part at the Asitdbonference Sec. V”]- ) )
on Signals, Systems and Computers, Pacific Grove, Califpiov. 2004. We then study the Gaussian parallel relay channel with
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be solved numerically for cases where the optimization iglay channel is introduced and studied. In Secfioh I, the

nonconvex. We also study the asynchronized capacity, whemimal resource allocation that achieves the capacityttfer

the source and relay inputs are required to be independébaussian parallel relay channel with degraded subchannels

This capacity is easier to achieve in practice due to thelsimpis studied. In Sectiof 1V, resource allocation for the fadin

transceiver design for the source and relay nodes. We fuflyll-duplex relay channel is presented. In Secfidn V, reseu

characterize the capacity-achieving power allocationhat tallocation for the fading half-duplex relay channel is $takl

source and relay nodes in closed form. where the three scenarios described above are considered.
We then move on to study the fading relay channel, whidfinally in Sectior VI, we give concluding remarks.

is based on the classical relay channel with each trangmissi

link being corrupted by a multiplicative stationary and iy

fading process as well as an additive white Gaussian noise Il. PARALLEL RELAY CHANNELS

process. The fading relay channel is a special case of the

parallel relay channel, with each subchannel correspgrniin  |n this section, we study the parallel relay channel, which

one fading state realization. We assume that both the traggrves as a basic information-theoretic model for the fadin

mitter and the receiver know the channel state informason, relay channels that are considered in Sectiofs IV[@nd V. The

that the source and relay nodes can allocate their tranemisarallel relay channel also models the relay channel winere t

powers adaptively according to the instantaneous fadiaig stsource and relay nodes can transmit over multiple frequency

information. We consider the resource allocation problem fbands with each subchannel corresponding to the channel ove

two fading relay models: full-duplex and half-duplex. one frequency band. It is shown in this section that in cattra
The fading full-duplex relay channel has been studied @ the parallel point-to-point channel, the parallel retignnel

[9], where lower and upper bounds on the capacity we¢ not a simple combination of independent subchannels.

derived, along with the resource allocation that optimtbese  pefinition 1: A parallel relay channel witti” subchannels

bounds, under a total power constraint for the source aag retsee Fig.[]l) consists of< finite source input alphabets

nodes. In this paper, we assume separate power constrapts  y,., K finite relay input alphabetstzy, ..., Xrk,
for the source and relay nodes and study the power allocatign finite destination output alphabef,...,Vx and K
that optimizes the capacity bounds. We focus on the MQfRite relay output alphabet¥ri, ..., Vrx. The transition

practical asynchronized case. We obtain the power alloeatipropability distribution is given by
that maximizes an achievable rate, and show that the optimal
power allocation may béwo-level water-filling orthogonal K
division water-filling or iterative water-filling depending on Hpk(yk,yRk|xk,:ka) (1)
the channel statistics and the power constraints. We also k=1
establish the asynchronized capacity for channels thafsat
a certain condition. wherexy € Xy, 2rk € Xpk, Yr € Vi, andyry € Vry for
We further study a fading half-duplex relay channel modef,=1.-.., K.
where the source node transmits to the relay and destinatiod (2"#,n) code consists of the following:
nodes in one channel, and the relay node transmits to the One message sV = {1,2,...,2"#} with the message
destination node in an orthogonal channel. We introduce a W uniformly distributed oveiV;
parametep to represent the channel resource (time and band-e One encoder at the source node that maps each message
width) allocation between the two orthogonal channels. We w € W to a codeword
study three scenarios. In Scenario I, where the two orthalgon
channels share the channel resource equally, f.es, 1/2, (@11, s Ziny - K1+ EKR);
we show that the optimal power allocation falls into three
cases depending on the ranges of power constraints at thg A set of relay functiong f;}"_, such that forl < i < n:
source and relay nodes. The optimal power allocation for the
relay node is always water-filling, but the power allocation
the source node is not water-filling in general. In scendio |
the channel resource allocation paraméteieeds to be same
for all channel states but can be jointly optimized with the
power allocation. In Scenario Ill, which is the most general
scenariof) can change with channel realizations and is jointly
optimized with power allocation. For both Scenarios Il and . .
lll, we derive the jointly optimal and power allocation that Note that the relay node is allowed to jointly encode and
maximize the achievable rate. Furthermore, we show that tﬂ%COde across the K pgrallel supchannels.
lower bound achieves the cut-set upper bound if the channef® "ate 12 is achievablef there exists a sequence @nR’@) _
statistics and power constraint satisfy a certain conlitio®@d€s with the average probability of error at the destmai
We hence establish the capacity for these channels over i€ 9oing to zero as goes to infinity.
possible power and channel resource allocations. The following theorem provides lower and upper bounds on
The paper is organized as follows. In Secfidn II, the pakrallthe capacity of the parallel relay channel.

(leia s 7xRKi)

= fi(yri1,--- yYR1[i—1]5+ -+ s YRK1, - - - 73/RK[1’—1]);

e One decoder at the destination node that maps a received

sequenceyis, ..., Yin,-- -, YK1,---,Yxn) 10 @ message
w e W.
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Fig. 1. Parallel relay channel

Theoreml: For the parallel relay channel, a lower bound Remark?2: In the achievable scheme, the relay node first

on the capacity is given by decodes information sent by the source node over each sub-
K channel. The relay node then reassigns total decoded infor-
Ciop = max min { ZI(Xk, X V), mation to each ;ubchannel to forward to the destination node
P Hence information that was sent to the relay node over one
K (2)  subchannel may be forwarded to the destination node over
ZI(QkQYRk|XRk) + I(Xk;YkIQk,XRk)} other subchannels, as long as the total rate at which the rela
P node can forward information to the destination node over al
whereQy, for k = 1,..., K are auxiliary random variables.SUbChannels is larger than the total rate at which the redagn

can decode information from the source node.

The maximum in[(p) is over the joint distribution The lower and upper bounds in Theorem 1 do not match in

K general. We next study a class of parallel relay channels wit
Hpk(QkaIRkvxk)pk(ykvy3k|xkvak)- degraded subchannels. For this channel, the lower and upper
k=1 bounds match, and we hence establish the capacity. Moreover

An upper bound on the capacity is given by this capacity provides an achievable rate for the case where
K the subchannels are either stochastically degraded orsedye
. degraded (e.g., fading relay channels).
Cop = I1( Xk, Xrr; Ye), — . ,
p = HAX TN { ; (X, Xws Vi) Definition 2: Consider the parallel relay channel with de-
K (3) graded subchannels. Assume each subchannel is either de-
ZI(XkQYk,YRk|XRk) graded or reversely degraded, i.e., each subchannel estisfi
| either
where the maximum ir({3) is over the joint distribution Pr(Yk YRE| Tk TRE) 5)
K = pr(Yrk|Tk, TRE)DPE (Y| YRES TRE),
11 pe (e, 2)pr r yraler, wrx). or
k=1
Remark 1: The lower bound[{2) generalizes the rate given Pr(Yk, YRE| Tk TRE) ©6)
in [37, Theorem 1] based on the decode-and-forward scheme. = pr(Yr|Zk, TrE )Pk (YRE| YK, TRE)-

Proof: To derive the lower bound]2), we use the We note that the parallel relay channel with degraded
following achievable rate for the relay channel based on tg&bchannels has been studied in [36, Sec. VII] for the two-

partial decode-and-forward scheme given in [3]: subchannel case. We now generalize the result in [36, Séc. VI
) to channels with multiple subchannels. In fact, our mairusoc
R <maxmin is on the Gaussian case considered in this section and Bectio

{100, X7, 1Q:valXm) 1 viQ X)) @I o
We define the set to contain the indices of the subchannels
We set @ = (Qi1,...,Qk), X = (X1,...,Xk), that satisfy[(b), i.e., those subchannels where the sdorce-
Xr = (Xg1,.-,Xgk), Y = (Y1,...,Yk), and Y = relay channel is stronger than the source-to-destinatiam-c
(Yr1,...,Yrr) in the above achievable rate. We furthenel. Then the seti® contains the indices of the subchannels
choose(Q1, X1, Xr1), ..., (Qx, X, Xrx) to be indepen- that satisfy [[(B), i.e., those subchannels where the sdorce-
dent, and then obtain the lower bounhd (2). relay channel is weaker than the source-to-destinationratia
The upper bound{3) is based on the cut-set bound [2, TH¢ete that in general the parallel relay channel with degilade
orem 4] and the independency of thé parallel subchannels. subchannels is neither a degraded relay channel nor a ebvers
B degraded channel. For this channel, the lower and upper



bounds given in Theorefd 1 match and establish the followimglationship at one time instant is as follows.

capacity theorem. _ Fork e A, Yie = Xn + Znn
Theorem?2: For the parallel relay channel with degraded - ,
subchannels, the capacity is given by Yi = Xi + VorReXRE + ZRE + 2, ©)
K
C' = max min Z I(Xn, Xre:; Ye) whereZ g, andZ;, are independent Gaussian random variables
P o with variancesoz, and o7 — 0%, respectively. Fok € A,
(7) az > 012%.
> T(X0; Vi | Xe) + Y (X3 Yl Xk) - Fork € A°, Yre = X + Zi + Ziy
red . . kEA. o Y = Xk + /PrEX RE + Z,s
where the maximum is over the joint distribution (10)

K whereZ;, andZj,,. are independent Gaussian random variables

L1 peCome x)pn (o, yanlon, wan)- with varianceso? and 0%, — o2, respectively. Fork € A°,
k=1 . . 2 2 AR
Remark3: Theorenl2 generalizes the capacity of the pafizs = k- IN (8) and [10)pr. (assumed to be positive) indi-

allel relay channel with unmatched degraded subchannelsCR{€s the ratio of the relay-to-destination SNR to the sotwe
[36, Theorem 12] to channels with multiple subchannels. destination SNR for subchannel We assume that the source

Proof: The achievability follows fromCio, in @) by and relay inqu sequences are subject to the following geera
setting @, = X, for k € A and settingQ, = ¢ for k € POWer constraints:

Ac. The converse follows fronty, in (@) by applying the | » XK 1 K
degradedness conditioris (5) ahdl (6). " - > Y E[XR] <P, and - S>> B[ Xk <Pr.
Note that the partial decode-and-forward scheme achieves=1 k=1 i=1 k=1

the capacity of the parallel relay channel with degraded sub (11)

channels. From the selection €f; in the above achievability wr:ter(?;nlsér;estggﬁ 'fr;g?nxjg) and T10) that the subchannels
proof, it can be seen that the relay node decodes all th

information sent over the degraded subchannels@Qg+ X with €A sapsfy thec deg_radedness conditiéh (5) an(.j-the
i . ubchannels wittk € A satisfy the degradedness condition
for k € A, and decodes no information sent over the revers : ; .
degraded subchannels, i.€, = ¢ for k € A¢. Hence for the - Hence the Gaussian cha_mnel defined[in (9) (10) is
o ' the parallel relay channel with degraded subchannels. The

subchannels wittk € A€, the link from the source node to thefollowing capacity theorem is based on Theof@m 2.

relay node can be eliminated without changing the capaéity 0 Theorem3: The capacity of the Gaussian parallel relay

the channel. channel with degraded subchannels is given by
However, the relay node still plays an important role in thé

reversely degraded subchannels by forwarding informatian € = max

it has decoded in other degraded subchannels to the destinat Ckor Pe<P, 41 Pre<Pr,

node. This is different from the role of the relay node in a 0<Br<1, for k=1,....K

information at all. Furthermore, we see that in the parallel
relay channel, information may be transmitted from the seur

node to the relay node in one subchannel, and be forwarded
y I u w Zc(ﬂkpk)+zc(ﬂkpk) }

. : K _
single reversely degraded channel, where it does not farwar . { <Pk + priPri + 2 /ﬂkkakaRk>
min ZC 5 5
k=1 g

to the destination node over other subchannels, as we have 0%
commented in Remark] 2. More importantly, in contrast to
. ; . (12)
the parallel point-to-point channel, the capacity of theapial -
relay channel with degraded subchannels in Thedrem 2 ashere3; = 1 — 3, and the functiorC(z) := $log(1 + z).
be larger than the following sum of the capacities of thn (12), the parameteg; indicates correlation between the
subchannels source input and the relay input to subchanhneand P, and
Pg;. indicate the source and relay powers that are allocated
max min Z I(Xp, Xre; Vi), Z I( Xy Yre| X re) for transmission over subchannel
ked ked Proof: The achievability follows from Theoref 2 by
i Z 1(Xp: Vi | X n)- choosing the following joint distribution:
ke Ac Xy ~ N (0, Pre,),
(8) X}, ~ N(0, BrPy), with X, independent ofX gy,
This demonstrates that the parallel relay channel is not a

simple combination of independent subchannels. This fasth X, =

also been pointed out in [36, Remark 15] for two-subchannel Rk
case. (13)

We now consider a Gaussian example of the parallel reld@e converse is similar to the steps in the converse proof in
channel with degraded subchannels. The channel inputibutf2, Sec. IV], and is omitted. [ ]

2
g
keA keAe k




Note that the capacity in Theordm 3 is sometimes referred
to as the synchronized capacity, because the source awyd rela
nodes are allowed to use correlated inputs to exploit coltere
combining gain. This may not be practical for encoder design
It is hence interesting to study the asynchronized capacity
where the source and relay nodes are assumed to use indepen-
dent inputs. The following asynchronized capacity is dstiv R, (t(ao))
by settingB, =1 fork=1,..., K in (12). -
Corollary 1: For the Gaussian parallel relay channel with
degraded subchannels, the asynchronized capacity is biven Ry (L)

K
C = max min ZC (—Pk—i_pi};k‘PRk) , 1
Sily Pu<P, k=1 Tk “
ko1 Pre<Pr (14) Fig. 2. lllustration of functionsV (o) and R(«, t)
P P,
ZC(T’“)Jr Zc<—’;> .
k€A I Rk ke Ac Tk o . . . .
To obtain the capacity in Theoreh 3 and the asynchronizégdfinding the minimax detection rule in the two hypothesis
capacity in Corollary1L, we still need to solve the optimiaat testing problem (see, e.g., [35, Sec. II.C]).
problems in [IR) and[{14), i.e., to find the jointly optimal Consider the following function:
correlation parameter§s;, fork = 1,..., K} and power . _
allocations{ (P, Pri), for k=1,..., K}in ([@2), and to find Rle,1) = afa(t) + (1 = o) B (1), 0<a<l (16)
the optimal power allocation( Py, Pri), for k=1,..., K} As a function ofa, R(a,t) is a straight line fromR(0,t) =
in (I4). We study these optimization problems in the next,(t) to R(1,t) = R;(t). Hence the maximization irl_(15)

Ry (E(ao))

Ry (1)

section. corresponds to maximizing the minimal of the two end points
of the line R(«,t) over all possible € G.
I1l. OPTIMAL RESOURCEALLOCATION FOR GAUSSIAN We further define a function
PARALLEL RELAY CHANNELS WITH DEGRADED V(a) := max R(o, t) = R(a, t), (17)
SUBCHANNELS teg

In this section, we study the optimization problems[inl (12}heret(*) maximizesR(«, t) for fixed o. From the definitions

and [14), which arenax-minoptimization problems. We first of V/(a) and R(«, ), it is easy to see the following two facts
introduce a general technique for solving this classek-min  (see Fig[P for an illustration):

optimization problems. We then demonstrate the applinatio Fact 1: The functiorl’
of this technique by finding the optimal solutions inJ(12) .for aelo,1];

and [14). We obtain the analytic form of the jointly optimal Fact 2: For any power allocation rules G, R(, t) as

correlation parameterfy, for k = 1,..., K} and power a function ofa is completely below the convex
allocation {(Py, Pgy), for k = 1,..., K} that achieve the curve V(o) or tangent to it.

synchronized capacity for the cases where the optimizationA K | solution to th o timizati
problem is convex. We also obtain a closed-form solution for nown general solution 1o the max-min optimization
the optimal{(Ps, Prs), for k — 1,..., K} that achieve the problem |_n_I(I$). is summarlfeq in the foI_Iowmg proeosmon.
asynchronized capacity. This optimal solution may haveghr .Proposmonl. Supp?fgq IS a so_lut|on t_o V(') -~
different structures depending on the channel SNRs andrpov%m“e[ovl] V(O‘.)‘ Thent IS a max-min rule,l €., "?‘SOIUUO”
constraints. This optimal power allocation is directlyated to to th((z*)max-mm pr(glg)lem |n[:(15). The rela_t|onsh|p between
the power allocation for the fading full-duplex relay chahn Ri(£* ) and Ry(¢* ) falls into the following three cases

presented in Sectidn V. (see FigLB): ) *
Case 1. Ifa* =0, Ry(¢t(®)) > Ry(t(®"));

, _ Case 2: Ifa* =1, Ry(t(®7)) < Ry(te)));
A. Technique to Solve a Class of Max-Min Problem Case 3: (Equalizer rule) 16 < o* < 1, R, (t®") =
Consider the following max-min problem: Ro(t(e7).
This technique of finding the max-min solution is applied
throughout the paper.

(o) is continuous and convex

max min { R (t), Ra(t)} (15)

wheret is a real vector in a seaf, and R;(t) and Rz (t) are i . )
real continuous functions gf An optimal¢* is referred to as B. Optimal Resource Allocation for Gaussian Parallel Relay
a max-min rule Channel: Synchronized Case

We now introduce a technique to solve the max-min In this subsection, we apply Propositibh 1 to find jointly
problem [I5). We will also illustrate this technique with aptimal {3, for ¥k = 1,..., K} and {(Px, Prx), for k =
geometric interpretation. This technique is similar totthsed 1,..., K} that solve the max-min problem if_(12). This



and
g = {PPR,B ZP]C<P ZPRk}<PR7
Ry (1)) (19)
0< 8 <1, forkzl,...,K}
The max-min optimization problem if_(112) can be written
in the following compact form.
ot =0 1 C= (E,gjg)eg min{Rl(Ba BRaé)v RQ(Bv BRvﬁ)}
«
Case 1 where
RI(P PRvﬂ)
c (Pk + prePri + 2\/ BkPRkPkPRk>
k=1 o
B P, B P,
) Ra(P, Pr. B) Zc(’“’“) Zc(’“’“)
Ry(t )) keA TRk k€Ae
(20)
Ru(te)) According to Propositioi]1, the max-min rule that solves
Rla, ) e (20) may fall into the following three cases.
o~ Case 1:a* =0, and (P, P, 5©) is a max-min rule,
which needs to satisfy the condition
0 a*=1
o Ry(P©, PR 3) > Ry(P™, PR 3. (21)
Case 2 By definition, (P(*), P, 5() maximizes
R(07£7 BRvg) = RQ(Ba BRaé)' (22)
V() It is readily seen that the following® is optimal:
]go) _ {1, if Pézi > 0; (23)
Rg(g(“*)) _____ —_— Ry (t7) arbitrary if P, =0.
! f with 89 given in [23), Ro(P, Py, ) is a function of P
: Rla ila )) only. Moreover, it is a convex function @?. Then the Kuhn-
| = Tucker condition (KKT condition) (see, e.g., [38, p. 314531
, characterizes the necessary and sufficient condition tteat t
0 a* 1 optimal P needs to satisfy. The Lagrangian is given by
« p K
Case 3 L= ZC( ) ZC(k>—A<ZPk—P>,
Fig. 3. lllustration of Cases 1, 2, and 3 in Proposifion 1 keA Rk keAc k=1 (24)
which implies the following KKT condition:
oL 1 1
op, ~2m2 o+ ="
optimal solution provides the optimal correlation between®** n 0{% + Pk o .
the source and relay inputs over each subchannel and the with equality if P, >0, if k € A; (25)
optimal source and relay power allocation among tie 9L 1 . 1 \<o0
subchannels that achieve the synchronized capacity of thep, = 2In2 o + Py -
Gaussian parallel relay _channel Wlth degraded subchannels with equality if P, >0, i k € A°.
We study the asynchronized case in the next subsection. ©
To simplify notation, we let Hence the optimaP, "’ is given by
1 5 \ " .
— —0 , if ke A;
PO _ (2111 2\ R’“) (26)
BZ(P17"7PK)7 BR:(PR]."-'7PRK)1 k 1 2 + .
_ (18) — ot , if ke A
B=(B1,---,BK) 21n 2\



where\ is chosen to satisfy the power constra{rjy‘z{:1 P, <
P. The function(:)* is defined as

(x)F = {

For case 1 to happeng<0>,£§§>,g<0)) needs to satisfy the
condition [21). To characterize the least pour needed for
case 1to happe[ﬁgg) needs to maximizé&®, (P\”, P, B ©))
with B(O) glven |n 23) andP” given in [28), respectwely

The optlmaIP
the foIIowmg Lagrang|an

04 kaPRk i
L= ZC - —pu ZPRk—PR , (28)
k k=1

The KKT condition is given by
oc 1
OPpy

if x>0
if v <0.

T

: @7)

) PRk
2In2 U%-FP]EO)-FkaPRk
with equality if Pgi > 0

—u<0

— 3

(29)
which implies
P(O) 02

PRk

J20

+
Rk = ) , fork=1,...,K

(30)
wherey is chosen to satisfy the power constraEle Pri <
Pg.

Note that[(3D) also follows directly from the standard water

filling solution if we further derive[(28) in the following fm:

T () o)
—u@pm_pR)

with P, P, and 8 given in [28), [3D), and(23),
respectively, conditio (21) becomes

PREPRE

+ crk (31)

S5 (Bt omr)
k=1 Uk
(0) P}EO) (32)
>y el )+ cl L
k€A Rk keAe k

This condition is equivalent to the threshold conditiBp >
Pr . (P). The thresholdPr ., (P) is a function of the source
power constrainf’, and is determined by the value Bf; that
results in equality in[(32).

By definition, (P, P, 5(V) maximizes
R(11£7£R7é) = RI(BaBRaé)-

We note that

B = {0
(35)

arbitrary,
It can be shown thaf?; (P, Py, 3) is a convex function
of (P,Pp) for ﬁ(l) given in [35). To derive the optimal

(34)

it PY>0, andPY) > 0;
otherwise

can be obtained by the KKT condition via(p(1) p(l ) that maximizesz; (P, PR’ﬂ(l ), the Lagrangian

can be wr|tten as

K
P, P, 2/ prE Pi. P,
E_ZC< %k + PRELRE + 2V PRE LR PRE
k=1

)

o
K K (36)
—x\(ZP —P) —,LL(ZPRk_PR>
k=1 k=1
The optimal(P), P'})) needs to satisfy the following KKT

condition:

oL 1 V' Py + Vpri Pri: < \/P.
OP, 2In2 013 (\/ + v/ prE Pric )2 - ’
with equality if P, > 0;
oL 1 VPt VprePre i Pri
OPrr 22 o2+ (VPi + VpriPri)? ~ PRE
with equality if Pry > 0.
(37)
From [37), it is clear thatP =0 < P( ) = 0.
According to [35), we havékl)P N =0fork=1,... K,

which |mpI|esR2(_(1),£(1),ﬁ Dy = 0. Hence cond|t|orﬂ33)

cannot be satisfied. Theref(?re, case 2 never happens.
Case 3:0 < a* < 1, and (P*") Bg*),ﬁ(o‘*)) is a max-

min rule, wheren* is determined by the following condition

Ry (P, Ple7) g7y = Ry(P®), Pl gy,
), Pe), gl
R(a*, P, Py, B) = a*Ry(P, Py, B) + (1 —

(38)
@)y that maximizes

a*)RQ(Bv BR? ﬁ)
(39)
for a fixeda*. This optimization problem is not convex. Now
the KKT condition provides only a necessary condition that t
optimal (P®"), P”) 37 needs to satisfy. One can still
perform a brute force search over thdgg P, 3) that satisfy
the KKT condition to find the optima(P(®"), P&, 5"y,

We need to derivéP®

Therefore, if case 1 occurs, the optimal source powElowWever, it may be too complex to |mplement SUCh an optimal

allocation P(O) has awater-f|ll|ng form, and the optimal
relay power aIIocatlonP ) also has awater- -filling form
with P{” + o2
correlation parametes, ©) = 1 for P, > 0, which indicates
that coherent comb|n|ng is not needed for this case.

Case 2:a* = 1, and (P, PY), 3M) is a max-min rule,
which needs to satisfy the condition

Ri(PW, PY, W) < Ry(PV, P pW),

(0)

(33)

as the equwalent noise levels. The optlmd

solution that involves designing correlated source andyrel
inputs and also involves allocating the source and relayepsw
Plntly with the correlation parameter for each subchannel
Hence it may not be worth searching for the jointly optimal
solution (P7), P{¢™)| (@), except in case 1, where using
independent source and relay inputs is optimal and the aptim
power allocatior( P(® B( )) is simpler. It is hence more in-
teresting to study the asynchronized case, where it is asgum
that the source and relay nodes use independent inputs.



C. Optimal Resource Allocation for Gaussian Parallel Relayhis condition is equivalent to the threshold conditiBp >
Channel: Asynchronized Case Pr..(P), where the threshol®z ., (P) is determined by the

In this subsection, we solve the max-min problem[in (14Yalue of Px that results in equality in[(34). The threshold
This problem is simpler than the max-min problem [nl(12) .« (P) is clearly a function of the source power constraint
because the optimization is over the power allocatiBnP ) D) o _ .
only, and does not involve the correlation parameferghis ~ Case 2:a” =1, and(L"”, P’) is a max-min rule, which
also makes the optimal solution easy to implement in practid’e€ds to satisfy the condition
In the following, we fully characterize the optimal power 1) p) 1) p)

. . . < .

allocation, which may take three possible structures. BB, Py) < B (27, Pr’) (45)

We let By definition, (P, P};)) maximizes
K K

g= {(2, Pp): > P<P > Pa< PR} . (40) R(1, P, Pg) = Ri(P, Pp). (46)
k=1 k=1

and rewrite the max-min optimization problem [n14) in thgr\:leeﬂlii[gr;gaeggﬁfiggtv)e&\}v)rilt?ei caosnvex function of 2, Pp).

following manner:

K K
. P, + P,
C= R1(P,Pg), Ra(P, P — 2k T PRETRE ) _ _
(gfgi))(eg min{R1(P, Pr), R2(P, Pr)} L= ZC < Uﬁ > A (Z P P)
where S = (47)
K Pk+kaPRk (41) _M<ZPPJ¢_PR>
Ri(P, Pg) = ZC Q52 k=1
k=1 k
P, P According to the KKT condition(P™"), PV needs to satisfy
Ra2(P,Pg) = ZC (Tk) + Z C (—g) r
keA TRk keAe Tk 3_£ 1 ) 1 <\
= . <\,
We apply Propositioi]1 to solvd (41), and consider the 0P, 22 o} +P,k +kal_DRk,
following three cases. with equality if £, > 0; (48)
Case L:a* =0, and(P©, P} is a max-min rule, which oc 1 1 N
needs to satisfy the condition OPrr  2In2 o0} 4+ Py + prePrr ~ pri
Rl(P(O),ng)) > RQ(P(O)’ng)). (42) with equality if Pri > 0
The optimal(P®, P} can be derived following the stepsWhICh implies
that are similar to those in case 1 of the synchronized case, 1 +
i< i if A< £ = (= — 02 Pre =0
and is given by <pE7 =\ gman " %k) o rk = 0,
( 1 ; )+ if keA % A
oy O : if ke fA>-— P,=0, Pg= — "k
PO 21n 2\ Rk+ Z ome’ RTD Pk (21n2M ka) ’
1 9 . +
- c 1
(21112/\ U’“) ’ Thed If A= Pt priPri = (5757 — oF
+ PRE 21n 2\
L pO 2 (49)
PO =t %) | fork=1,.. K _ _
2In2u pre  PRE where\ andy are chosen to satisfy the power constraints. In

(43) general\ # St—. The equatior[(49) implies asrthogonal di-
where A and . are chosen to satisfy the power constraint‘Q_Sion water-fﬁﬁngpower allocation, i.e., for each subchann(_el_,
Zszl P, < P and Zszl Pri < Phr. either the source nod(_a or the relay nqde gllocgtgs a positive

We refer to the optima(P,SO),PgQ) in @3) astwo-level amount of power. Thls power_allocatu_)n is similar to the
water-filling for the following reason. The optima®) is first optimal power allocation for fading multiple access chasne

. ; . . . 39].
obtained viawater-filling with respect to the noise levels,), [ 1) p) .
ando. The optimalﬂgg) is then obtained viavater-filling For case 2 to happerlZ, ") needs to satisfy the

condition , i.e.,
with P{”) + 52 as equivalent noise levels, whePé”) is treated (25)

as an additional noise level. K P 4 p py
k REL RE
With (P,go),PgQ) given in [43), condition[(42) becomes ZC < o2
k=1
K (50)
c B + pruPry) pY pY
2\ cye(f)r et
— k g g
k=1 (44) keA Rk keAe k

(0) (0)
> ZC (i) + Z C <PL> This condition essentially requires that the relay poweris
ke Ae

2
ked Rk small compared to the source power



Case 3.0 <a* <1, and(B(o‘*),ng*)) is a max-min rule, where) is chosen to satisfy the power constrayif._, Py, <
wherea™* is determined by the condition P. For a givenP, the value ofPj can be obtained by using
(58), and its components have the following form:

Ry(P), PE7) = By(P) PET). (1) L
* P
. . (a*) (™) L PRk—( a _—k_i) y fork:lv'-'aK
We first derive(P'* ’, P 7) that maximizes 2In21  prRE  PRE (60)
R(a*,P,Pr) = a*Ry(P,Pg) + (1 —a*)Ra(P, Pg). (52) Wherey is chosen to satisfy the power c:onstrzaitjf:1 Pri <
Pg.
for a givena*, anda* will be determined later. If we iteratively obtainP and P, according to[(57) and (60)
The Lagrangian can be written as with an initial P, we show in the following thatP, P)

converges to an optimadﬂ(a*>,£§§*)). We refer to this

K
P P, P i i i i -filli
L —a* ZC k + PI;k Rk (1—a*) Z C 2k optlma_l power z?\llocatlon as thieerative water-filling power
oy B allocation. We finally need to search oveK « < 1 to find

= K hed a* that satisfies the equalizer conditiénl(51).
F(1—a) Z c <£§> _ (Z P, — P) Proof of ConvergeneceWe show that(P, P5) obtained
beac Ok =1 iteratively according to[(37) an@_(60) converges to an ogkim
K (P?, ple)). We first note that after each iteration the
— i <Z Pri — PR> objective function[(5R) either increases or remains theesam
k=1 We also note that the objective function is bounded from the

(53) above because of the power constraints at the source ayd rela
nodes. Hence the objective function must converge. It ig eas

which implies the following KKT condition: to check that for a giver®, the objective function is a strictly

oL a* 1 concave function ofP,, and [€0) yields the unique optimal
orkEA  SB T oma T Pt priPm Pp. ltis also true that for a fixed s, (51) yields the unique
o optimal P. Hence as the objective function converdds, P )
et 1 (54) 7
+ 2 ol + P <A must converge. Moreove(P, P) converges to the solution
) "Rk b of the KKT conditions, which are sufficient fofP, Py) to
with equality if £, > 0; be optimal because the objective function is concave over
P,Pp)eg. [
e oL ar 1 (B, Pr) €
Fork € A%, oP, 2In2 o2 + Py, + pri Pri We_ now summgrize the optimal power allocation that solves
1— o 1 (55) (41) in the following theorem.
+ 5m2 ot Py <A Theorem4: The optimal solution to[(41), i.e., the optimal
ith i k'f P . power allocation that achieves the asynchronized cap@ily
with equality If . > 0; falls into the following three cases:
or . Case 1 The optimal (P, Pj) takes thetwo-level water-
Fork=1,...,K, - . . PRk < filing form and is given by [(43). This case happens if
9 Pry ?1112 Uk_"‘_Pk + PRI Pri Pr > Pg.(P) where the threshold®r ,(P) is determined
with equality if Pgri > 0. by equality of [44).

(56) Case 2 The optimal(P, P) takes theorthogonal division
. . water-filling form and is given by[(49). This case happens if
The optimal (P®"), P{?")) can be solved by an iterative condition [50) is satisfied.
algorithm. For a giverPp, the value ofP can be obtained by  Case 3 The optimal (P, Pj;) takes theiterative water-

solving (54) and[(355), and its components have the followingling form and is obtained iteratively by (57) arld160).
form:

positive rootz of (58) if it exists, otherwise), IV. FADING FULL-DUPLEX RELAY CHANNELS
if ke A In this section, we study the three-terminal relay chantiel [
) positive rootz of (59) if it exists, otherwise), [2_] in the context of V\_/ireles_s networks, where nodes_ commu-
it ke A° nicate over time-varying wireless channels. We are intedes

57) in how the source and relay nodes should dynamically change

where the roots are determined by the following equations:their power with wireless channel variation to achieve ojpti
performance. Such wireless relay channels can be modstled b

*

e’ 1 1—a* 1 the fading full-duplex relay model, where each transmissio

2In2 =+ priPrr + o? + 2In2 T+ 0%y, =A (58) link of a three-terminal relay channel [1], [2] is corrupted
by a multiplicative fading gain coefficient in addition to an
o 1 1—a* 1 additive white Gaussian noise term (see [Eg. 4). The fading

2In2 =z + prkPri + 0% 2In2 =+ o} =1 (59 relay channel is referred to as thdl-duplexchannel because
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the relay node is allowed to transmit and receive at the samesetA := {h : p3|h3|? > p1]|h1|?}, which contains all the

time and in the same frequency band. fading stateg: with the source-to-relay link being better than
the source-to-destination link. The complement of the 4et
Relay is A¢ := {h : p3|h3]® < p1]h1]?}. We define a seg that

contains all power allocation functions that satisfy thevpo

YR : XR . .
constraints, 1.e.,
PN
. G ={(P(h), Pr(h)) : E[P(h)] < P, E[Pg(h)] < Pr}.
hl

Source X Y Destination 63)

The following lower and upper bounds on the asynchronized
capacity of the fading full-duplex relay channel were given
[9].
i i i . Lemmal: ([9]) For the fading full-duplex relay channel,
The channel input-output relationship at each symbol tiM&yer and upper bounds on the asynchronized capacity are

can be written as given by
Y:\/p_lth+\/p_2h2XR+Z, (61)
Yr = \/%hB’X + ZR? Ciow =

where hy, ho, and hz are fading gain coefficients corre-
sponding to the three transmission links, respectivelgh ae ,in {2E {C(P(Q)p1|h1|2 + PR(ﬁ)p2|h2|2)} ’

assumed to be independent complex proper random variables

(not necessarily Gaussian) with variances normalized Wel.

further assume that the fading process$és;}, {ho;}, and 2E 4 {C(P(ﬁ)p3|h3|2)} + 2E Ac [C(P(ﬁ)p1|h1|2)}
{hs;} are stationary and ergodic over time, wherés the
time index. In [€l), the additive noise ternds and Z are (64)
independent proper complex Gaussian random variables with

variances also normalized to 1. The parameters., andps

represent the link gain to noise ratios of the corresponding’,, = max

transmission links. The input symbol sequendes;} and (P(h).Pr(k)eg

{Xri} are subject to separate average power constrdints
and Pg, respectively, i.e.,

Fig. 4. Fading full-duplex relay channel

max
(P(h),Pr(h))€g

min {QE [C(P(Q)p1|h1|2 + PR(ﬁ)pz|h2|2)} ;

n n
% Y EIX| <P, % Y EXpl < Pr. (62) 28 [(P(B) (o1 b + pslhal?))]
=1 =1
Remark4: The fading relay channel is a special case of _ (65)
the parallel relay channel with each subchannel correspgndNote that the rates in the lower bound of Lemia 1 are the
to one fading state realization. In particular, for a givadifg SaMe as the achievable rates in Corolldry 1.
state the fading relay channel is a Gaussian relay channel by'he optimal power allocation that maximizes the lower
(7). However, since this Gaussian channel is not phygicallound [6#) and the upper bourld (65) were obtained in [9]
degraded, the fading relay channel is not a Gaussian paralgder a sum power constraint, i.e., the source and relaysnode
relay channel with degraded subchannels that is consideredre subject to a total power constraint. In this paper, werass
Sectiongl andTll, where physically degradedness is assunthat the source and relay nodes are subject to the separate
for each subchannel. power constraints as given if_(62) arid](63), and derive the
We assume that the transmitter and the receiver know tpetimal power allocations that maximize the bourids (64) and
channel state information instantly. Hence the source elayr (65), respectively. We also characterize the conditionereh
nodes can allocate their transmitted signal powers acogtdi  the lower and upper bounds match and determine the capacity
the channel state information to achieve the best perfocmanof the channel.
Our goal is to study the optimal power allocation at the Using the same technique as in Section IlI-C, we charac-
source and relay nodes. As in Section T]I-C, we are intedesteerize the optimal power allocation that maximizes the lowe
in the asynchronized case for the fading full-duplex relayound [6%) of the fading relay channel. This optimal power
channel, where the source and relay nodes are required to aifecation takes the same three structures as those given in
independent inputs. The main reason is because this siegplifsectio{ TI-G, and is summarized in the following for the sak
the transmitter design, and is more practical in distriduteof completeness.
networks, where nodes need to construct their codebooks ) ) _
independently. Optimal power allocation that maximizes the
For notational convenience, we collect the fading coeffi- lower bound (64):
cientshy, he andhg in a vectorh := (hq, ha, h3). We define Case 1 (two-level water-filling): If Pr > Pg,.(P), the




optimal (P (h), PY” (h)) is given by

(L - Ly if heA
P(O)(ﬁ) _ /\1i12 p3|}113|2 +7 - ’
_ , if he A°

Aln2 p1|h1|2 -
(66)

where X\ is chosen to satisfy the power constraint
E[P(h)] = P.

2 5(0) +
win2 p2|hal|?
where ;1 is chosen to satisfy the power constraint
E[Pr(h)] = Pr.

The thresholdPg,..(P) as a function of the source power
P can be solved using the following equation

B [c(POWer Il + P Wpalhaf) |
—Ea4 [c (p<°> (Q)p3|h3|2)} (68)
+Eae [¢(POWpn )]

Case 2 (orthogonal division water-filling): The optimal
(P (n), P (h)) is given by

TR
pilha|> = palhal?’
POGR) = (o — 1 : P (h) =0;
- Aln2  pi|ha?2) R A= ’
A I
fF —r > —C
pilhal?> = palhof?
PO =0, POmw=(—e 1 i
- B \uin2  pafhef?
6

where\ andy are chosen to satisfy the power constraints
E[P(h)] = P andE[Pr(h)] = Pr.
Case 2 happens if the following condition is satisfied:

B [¢(PY®plm | + P Wpelhal?)]
< Ea [c(PO wpslhsl*)] (70)
+Bac [C(POwprlml?)]

Case 3 *(iterative water-filling): The optimal
(P PY)) can be obtained by the following
iterative algorithm. For a give’z(h), the value ofP(h)
is given by

positive rootx of (72) if it exists, otherwisd),

P(h) = if heA;
~ ) positive rootz of (73) if it exists, otherwise),
if heA°
(71)
where the roots are determined by the following equations:
o p1lha|?
In2 hi|? Pr(h ha|? +1
n2 pilhifPz + f(_)/)2| 2| ;r 72)
+ 11—« ) p3|h3| _
In2 1+ ps|hs|?x
o pilha|?
In2 hi|? Pr(h ha|?2 +1
n2 pilhifPz+ f(_)/)2| 2| 2+ 73)
y1l-c prlha|

n2 1+ p1)hi|?z -
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where A is chosen to satisfy the power constraint
E[P(h)] = P. For a givenP(h), the value of Pr(h)

is given by
1 1+pmPh)\"
Pr(h) = — = 74
=(B) (uln? p2lhal? (7
where p is chosen to satisfy the power constraint
E[Pr(h)] = Pr.

The power allocation( P(h), Pr(h)) obtained iteratively
from (71) and [(7ZW) with an initialPr(h) converges to
an optimal (Pm*)(@),P](?“*)(@)). The parameterr™ is

determined by the following equalizer condition:

E[e(P@pslhf? + Pa(hpelha]?)]
= B4 [C(P(W)psihsf*) (75)
+Eac [C(P()pr )]

The optimal power allocation for the upper bouhd](65) can
be derived in a similar fashion but it is omitted here sinds th
optimization does not have an operation meaning. In general
the upper and lower bounds do not match. In the following
theorem, we characterize the condition where the two bounds
match and establish the asynchronized capacity.

Theorem5: For the fading full-duplex relay channel, if the
channel statistics and the power constraints at the sountte a
relay nodes satisfy the condition {70), then the asynchashi
capacity is given by

C =2E [c (P<1>(b)p1|h1|2 + Pél)(ﬁ)pzthIQ)} (76)

where the capacity achieving power allocation
(PW(h), P (h)) takes the orthogonal (time) division
water-filling form given in [6D).

Proof: The lower bound[(84) and the upper bouhd] (65)
have one term in common inside the “min” in their expression.
If condition (70) is satisfied, case 2 happens when solving
the max-min problem for the lower bound {64). In this case,
the common term of the bounds is optimized by the power
allocation in [69) and determines both bounds that result in
Cyp = Ciow. This common value is thus the asynchronized
capacity. ]

The condition given in Theorefd 5 essentially requires that
the relay powerPr be small compared to the source power
P. In this case, the optimal scheme is to maximize the rate
at which the source and relay nodes can transmit to the
destination node. The optimal scheme is to let the source and
relay nodes have a time division access of the channel. For a
given channel state realization, the node with a better oélan
to the destination node is allowed to transmit. This is smil
to the optimal power allocation scheme for the fading mistip
access channel studied in [39].

V. FADING HALF-DUPLEX RELAY CHANNELS

In this section, we study a fading half-duplex relay channel
model, where the source node transmits to the relay and
destination nodes in one channel (channel 1), and the relay
node transmits to the destination node in an orthogonalraan
(channel 2). We introduce a parameterto represent the
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channel resource (time and bandwidth) allocation betwken the optimal power allocation, which take simple forms. The
two orthogonal channels. We draw this fading half-duplesptimal power allocation can be implemented in a distridute
relay channel model in Fid.]5 with the solid and dashemanner at the source and relay nodes, because each node needs
lines indicating the transmission links of channels 1 and & know only the channel state information of the links over
respectively. which it transmits.
In the following, we first give an achievable rate for this
Relay channel, and then find an optimal power allocation that max-
Y Xp imizes this achievable rate.
~ h Proposition2: An achievable rate for the fading half-
h, A duplex relay channel Scenario | is given by

Y. o _
2 Destination Crow =
Source X > Y,

h min {E [c(2P@pr |11 ?) +C(2Prmpalhal?)]

Fig. 5. Fading half-duplex relay model

max
(P(h),Pr(h))€g

E4 [C(2P(ﬁ)/)3|h3|2)] +Eae [C (QP(E)P1|h1|2)}
The input-output relationship for the fading half-duplex

o (78)
relay channel is given by Propositior 2 follows easily by using steps that are similar
Yy = /p1 i X + Z1, to the achievability proof for Theorerii$ 2 3 and by using

Ys = /P2 hoXg + Za, 77) the channgl definitiod {17). _ o _
Vi = \/p3 hsX + Z The optlmal power al!ocatlon thz_;\t. maximizés., in (IE)

R p3 s R can be derived by applying Propositioh 1, and are given in the
whereh;, he, andhs are fading gain coefficients that satisfyfollowing three cases. The details of the proof are relahate
the same assumptions as for the fading full-duplex relay Appendix].
channel in Sectioi_IV. The additive noise ternis, Z, Optimal power allocation that maximizes the
and Zr are independent proper complex Gaussian random |ower bound (78).
variables with variances normalized to 1. The parameters
p2, and p3 represent the link gain to noise ratios of the
corresponding transmission links. The source and relaytinp

Case 1: If Pgr > Pr,(P), the optimal
(PO (h), Py (h)) is given by

sequences are subject to the same power constraidts (62) as 1 1 1 + .

in the_fading full-duplex relay channel. . o PO () = 3 ()\ln2 - —p3|h3|2) if heA,
As in the full-duplex case, the channel state information is 7)1 1 1 " e

assumed to be known at both the transmitter and the receiver. 2\ AIn2  pi|haf?2) it he

Hence the source and relay nodes can allocate their powers (79)

where X\ is chosen to satisfy the power constraint

adaptively according to the instantaneous channel state in E[P(h)] = P.

formation. The half-duplex channel has an additional cenn
resource allocation parametérthat may also be optimized. ©) 1 1 1 +

Our goal is to find the jointly optimad and power allocation Pr”(h) = 2 (m - m) (80)
for the source and relay nodes that achieve the best rate. We , , ,
also derive an upper bound on the capacity, which helps to ‘g{}fﬁh‘)‘] ls P;hosen to satisfy the power constraint

establish capacity theorems for some special cases. The thresholdPr,..(P) as a function of the source power

We study three scenarios. In Scenario |, we fix= 3, P can be solved using the following equation:

and only consider the maximization of the achievable rate

over the power allocation at the source and relay nodes. In  E [C(sz(af)) (E)P2|h2|2)}

Sgenarlo I_I, we restriof Fo be same for all chan.nel states, and — B, [C (2P(0) (b)pglh:sIQ) B C(2P<O) (@)p1|h1l2)}
jointly optimize the achievable rate over this single pagtan @
# and power allocation. In Scenario Ill, which is the most

general scenario, we further allogvto change with channel Case 2:If Pr < Pr,(P), the Optima|(P(1)(ﬁ)7pj(_c1)(ﬁ))
state realizations, and optimize the achievable rate oller a is given by

possible channel resource and power allocations. n
POy =2 (o - —— (82)
. . - 2\ AIn2 p1|h1|2
A. Scenario I: Fixedd = 1/2

. . . +

In this subsection, we study Scenario |, where the two P};)(h) _ l( ro 1 ) (83)
orthogonal channels share the channel resource equally, i. - 2 \pn2 polhof?

the channel resource allocation parameter 1/2. We use where\ and . are chosen to satisfy the power constraints

this scenario to demonstrate the three basic structures of E[P(h)] = P andE[Pr(h)] = Pr.

1)
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The thresholdPr ;(P) can be solved using the following dB. This corresponds to the practical environment where the

. 1/ a 1 \" ]

PP I)(h) = = - 87 p,=01, 0,701, p;=1
() =3 (uln? pz|h2l2) ®

The parameters. and i are chosen to satisfy the power

constraints given i (83). The parameter is determined

by the following condition: 0.4

h1v hz' h3 ~CN(0,1)

Source Power P=3 dB |

equation: relay node is close to the source node. In Elg. 6, we plot the
E (2P (1) pol s 2 achievable rates for Scenar!oloptlmlzed over poyveraﬂona.
[ ( w (B)palh| )} (P(h), Pr(h)). We also indicate the corresponding max-min
=Ea [c (2P(1)(Q)p3|h3|2) - C(QP(l)(ﬁ)p1|h1|2)} . optimization cases to achieve these rates. It can be seghé¢ha
(84) achievable rate increases as the relay power increaseses ca
Case 3:1f Ppi(P) < Px < Pru(P), the optimal 2 ano_l 3 and saturc_';ltes when the relay power falls into case
(P (h), P () is given by 1. This is because in case 1 the relay power is large enough
L TR to forward all the information decoded at the relay node to
P (h) = the destination node, and the achievable rate is limitechby t
positive rootz of (B8) if it exists, otherwise), capacity of the source-to-relay link.
if heA;
+ 1.3 T T
1<L—%) , if he A ol L :
2\Aln2  pifha ' Case 2 ., Case3 Case 1
(85) 11 | |
where the root: is determined by the following equation it i :
o 1 1—a" 1 ~ | |
. T + . I —A=0. I 0.9 |‘ :
2In2 2p1|h1 ]2 +x 2In2 2p3|h3|? Tz 86) %0.8 i :.
gor | |

E [c (2P<a*)(@)p1|h1|2) n c(zplg““(g)pzmﬂ?)] 03 0 ‘ ‘ 5 20
—E.4 [c(2P<“*>(g)p3|h3|2)]

. Fig. 6. Optimal achievable rates in Scenario |
+Eae [C(2P(a )(ﬁ)/)1|h1|2)} :

(88)
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It can be seen that in all cases the optimal power allocation
Pr(h) for the relay node depends only on the fading gain
of the relay-to-destination link and it is always a watdifg
solution. However, the optimal power allocatidt{h) for the
source node in general depends on the fading gairend i3
corresponding to two links (source-to-destination andc®u
to-relay), and it is not a water-filling solution in gener@inly
in cases wherePg is large or small compared t®, i.e.,
where Pr > Pr,(P) or Pp < Pg,(P), the optimal P(h)
depends only on the fading gain of one link and it reduces
to a water-filling solution. This is intuitive because whep
is small compared td, we should make the multiple access
transmission from the source and relay nodes to the destinat o ‘ ‘ ‘ : : :
node as strong as possible, and hence the power allocationa  ° 2 * Source Power P (dB) 12 14
the source node should be based on the fading haiof the
source-to-destination link. WheRy, is large compared t@, Fig. 7. Ranges of source and relay powers with corresponiag-min
we should transmit as much information as possible from tRBlimization cases in Scenario |
source node to the relay node, and hence the power allocation
at the source node should be based on the fading /gaiof In Fig.[4, we plot the ranges of the source and relay powers
the source-to-relay link. with their corresponding max-min optimization cases. The
We now provide numerical results for a Rayleigh fadingolid line in the graph divides cases 1 and 3, and corresponds
half-duplex relay channel. We assume that the fading cw the threshold functiorPr ,(P). The dashed line divides
efficients h1, ho and hz are independent, zero-mean, unitases 2 and 3, and corresponds to the threshold function
variance, proper complex Gaussian random variablesttie., Pr;(P). Itis clear from the graph that when the relay power
amplitudes|h|, |ho| and |hs| have a Rayleigh distribution). is small compared to the source power, the optimal power
We further assume,; = 0.1, po = 0.1, andps = 1. We allocation falls into case 2, and when the relay power isdarg
assume the power constraint at the source nod€ iss 3 compared to the source power, the optimal power allocation

R

Relay Power P_ (dB)




falls into case 1. Since the achievable rate (based on the
decode-and-forward scheme) saturates in case 1, it is not
useful to increase the relay power beyond the solid line in
Fig. [@ if the decode-and-forward scheme is adopted. Hence
the solid line Pr, defines the relay powers that provide
the best decode-and-forward rates under Scenario | for the
corresponding source powers.

B. Scenario Il: Samé for All Channel States

In Scenario 14 is fixed atl/2; i.e., the channel resource of
time and bandwidth is equally allocated for the two orthagjon

channels. Such equal channel resource allocation may not be

optimal, and therefore we consider Scenario Il, where the
channel resource allocation parametereeds to be optimized
jointly with power allocation. We also assume thhais the

same for all channel states to make the system design simple.

As in Scenario |, the optimal solution of Scenario Il can diso
implemented in a distributed manner at the source and relay
nodes. This is because the optintaldepends only on the
channel statistics, not on the channel state realizatiohs.
power allocation at each node depends only on the channel
state of the links over which the node transmits.

We first give an achievable rate (lower bound on the
capacity) and a cut-set upper bound on the capacity. We then
study the joint channel resource and power allocations that
optimize these bounds. We also characterize the condition
when the two bounds match and establish the capacity.

Proposition3: An achievable rate for the fading half-
duplex relay channel scenario Il is given by

Clow = max
0<6<1,(P(h),Pr(h))€G

min {E [290 (7]3@%1'}“'2) +20C (7( gﬂh?'?)} ,
e (P50, e (P20

(89)
wherefd = 1 — 4. An upper bound on the capacity is given by

Cup =

max
0<6<1,(P(h),Pr(h))EG

min{E [296 <7(—)p91|h1|2) +20C (7( )52””'2” ,

B [296 <P(ﬁ)(p3|h3|92 +P1|h1|2))} }
(90)

We provide the optimal channel resource and power allo-
cations(, P(h), Pr(h)) that solve[(8P) in the following. The
proof of optimality is relegated to AppendiX Il.

Optimal resource allocation that maximizes the
lower bound (B89).

Case 1:This case is included in case 3 with the parameter
« being allowed to take the value of

Case 2: The optimal (0, P (n), PL”(h)) can be
obtained by the following iterative algorithm. For a given

14

6, the power allocatior{P(h), Pr(h)) are given by

pwy=o( L 1Y (91)
= Aln2 p1|h1|2
_/ 1 1 +
Pr(h) =0 - 92
w(&) <uln2 pz|h2|2) %2

where)\ andp are chosen to satisfy the power constraints.
For a given(P(h), Pr(h)), the value ofg is given by the
root of the following equation:

9F {C (P(ﬁ)091|h1|2> _c (Pn(ﬁ)g2|h2|2>}

- e [Pl Platal ]
w2 (T P@IT T+ Pl
(93)

The resource allocatiot¥, P(h), Pr(h)) obtained itera-
tively from (91),[92), and[{33) converges to the optimal
(0, PO (h), Py ().

This case happens if the following condition is satisfied

o [ B2 palhaf?
AL

c <P<1)(Q)P3|h3|2)

o)

c PY (h)ps|ha|?
- o) :

Case 3:The optimal(6*”), P(*7)(h), P"")(h)) can be
obtained by the following |terat|ve algorlthm For a given
0, the power allocatio{P(h), Pr(h)) is given by

oVE

<oWE, (94)

positive rootz of ([@8) if it exists, otherwisd),

if heA,
Ph)=q,( 1 1 \"
Aln 2 p1|h1|2
if he AS
(95)
where the root: is determined by the following equation:
a0 1 (1—a")o 1 Ca—o
In2 —2 —+z In2 % 4+
VL | p3lhsl
. ()
~( o 1
Prh) =0 ————— . 97
R(_) <,uln2 p2|h2|2) ( )

The parameters. and i are chosen to satisfy the power
constraints.
For a given(P(h), Pr(h)), the value off is the root of
the following equation:

P(h)p1|hy|? }

* P(h)p1lh|?
20" E 4 [C( 991 1 )} 1n2EA [W
— 2a°E [c (PR_@M)] b etE [ Pr(h)pahs|® ]

0+ Pg (h)p2lha]?
4 2B 4e [c (P(h)m\hﬂ )} _

P(h)py|hy|?
mzbac [e+P<g>2lﬁm2]
+ 2(1 _ Oé*)EA [ (P(h)PS\hS )}
P(h)p3lhs|? }

6+P(h)p3|h3]?

l—«
- 1n2EA[

=0
(98)
The resource allocatioty, P(h), Pr(h)) obtained itera-

tively from (95),(9T), and[(98) converges to the optimal
(07, PO k), PR ()
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Finally, the parametex™ is determined by the condition

Ele@¢c _P(a*)(ﬁ)p1|h1|2 14 ‘ ‘ ‘
9((1* ) —— Upper Bound on Capacity of Scenario Il
1.31 |- = -Lower Bound on Capacity of Scenario Il A
[ PE (B)palhal? ,
+ 9( )C <RQT 5 2 p,=0.1, p,=0.1, p,=1
11r h,,h,, h =~ CN(O,1)
=Ea a(a*)c P(a )(ﬁ)5)3|h3|2 E 1r Source Power = 3 dB
Qa*) 2
£ 091
a* 2 2
+ Eae |:9(a*)c <P( )(h)*p1|h1| >:| . Sos
f(a*)
0.7
(99)
0.6
The optimization for the upper bourld {90) can be performed o)
in a similar manner, and is not presented in this paper. In 04

1
15 20

general, the lower bound(B9) and the upper bolind (90) do
not match. In the following theorem, we characterize the
condition under which the two bounds match and hence yielgy 8. Lower and upper bounds on capacity of Scenario II
the capacity of this channel.

Theorem6: For the fading half-duplex relay channel Sce-
nario Il, if the channel statistics and the power constgint
satisfy the condition[(34), then the capacity is given by

5 10
Relay Power PR (dB)

14

PO (B)py|hy|? s
- e a)prin 12t Prictn
C=E|20 C< 6 ) 10
(100) I
1 Case 3 P
1 9gWe P](%)(Q)_p2|h2|2 g o R
9 N 6F ;/;’
where the capacity achieving resource allocation % ! '
(60, PO)(n), P (h)) can be obtained iteratively from g7 Case 2
©2). (92) and[(9R). g
The proof of Theorernl6 is similar to the proof of Theorem 2r Lt
B, and is hence omitted. bt
Remark5: The capacity in Theoref 6 refers to the largest I L
-4 -2 0 10 12 14

rate under Scenario Il that can be achieved over all possible Source Power P (d8) "

channel resource allocation parameteend over all possible

power allocation rule$P(h), Pr(h)). Fig. 9. Ranges of source and relay powers with corresponaiag-min

" . e — " . (g)timization cases in Scenario Il

The condition given in Theorelm 6 tends to be satisfied either

when the relay power is small compared to the source

power P, or when the relay is much closer to the source than

to the destination.

In Fig.[8, we plot the lower and upper bounds on the capac-

T T
pl=0.1, p2=0.1, p3=1

ity of Scenario Il for the same Rayleigh fading relay charasel 0.85 R .
in Fig.[8. Both bounds are optimized ov@y, P(h), Pr(h)). It 08l e 1
can be seen from Fil] 8 that when the relay power is less than orsl soureponerp2ed 71
a threshold 4 dB), the two bounds match and determine the o7t 1
capacity of Scenario Il. This demonstrates our capacitylres 2 065 ,
in Theorem® and the condition when the lower and upper £ Pt i
bounds match. Fid.]18 also shows that the gap between the 00_55, ,
lower and upper bounds is small even when the relay power o5l ,

is large.

In Fig.[, we plot the ranges of the source and relay powers
with their corresponding max-min optimization cases. The ‘ ‘ ‘ ‘
dashed line in the graph divides cases 2 and 3. Similar to N 0 Relay Power P (dB) 1 20
Fig.[d, the optimal power allocation falls into case 2 whea th
relay power is small compared to the source power. Howeveiy. 10. Optimald as a function of relay power in Scenario I
we see that Fid.]9 deviates from Fig. 7 in that case 1 (where
the achievable rate saturates) is missing in Scenario lis Th
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explains why the achievable rate under Scenario Il coninue  Optimal resource allocation that maximizes the
to increase beyond the point where the rate under Scenario | lower bound (101}
saturates (see Fif. 111 in Section V-C).

Case 1: The optimal resource allocation

In Fig. 10, we plot the optimal valug cﬂ as a function 0O n), P<0>(h),P1§°)(@)) is given by
of the relay power, and observe that it is not a monotonic '
function. When the relay power is small, as the relay power ( 1 )* it hed
increases, the optiméldecreases so that more of the channel P(O)(h) _ Aln2  pslhsl? ) = ’
resource is assigned to the relay-to-destination link t&ema - 1 it he Ac
more use of the relay node. When the relay power is large, Aln2  pi|haf2 ) 7 - ’
as the relay power increases, the optimahcreases. This is N (103)
because the relay power is now large enough to forward all the (L _ #) . if PO(R) =0
information decoded at the relay node to the destinatiorenod r (h) pin2 - polha?  (0)
even with a small amount of the channel resource, and hence 0, it P (R) éo%

more of the channel resource is needed for the source node \yhere\ and . are chosen to satisfy the power constraint
to transmit more information to the relay node. This behavio  given in [63).
of the optimalé is similar to that of the Gaussian half-duplex o
relay channel studied in [37]. ¢y — J b it P(h) > 0;

0" (h) 0, it PO () = 0. (105)
C. Scenario lll:6 Changes with Channel States

In Scenario Il, the parametdris required to be the same
for all channel states, and only the power allocations are
dynamically adjusted according to the instantaneous alann g [C (péo)(b)p2|h2|2)]
state. In this subsection, we study Scenario I, whéris
also allowed to change with the channel state realizatiams, > Ea [C (P(O)(ﬁ)p3|h3|2) Y (P<°)(ﬁ)p1|h1|2)}
6(h) is optimized jointly with power allocatiotP(k), Pr(h)). (106)
However, for the source and relay nodes to dedi(le) for
each channel state, each node needs to know the channel

For case 1 to happerid® (h), P (h), P\’ (h)) needs
to satisfy the following condition:

Case 2:The optimal (6" (h), PV (k), PS” (h)) can be
determined by the following iterative algorithm For a

realizations on all transmission links. This makes theesyst given 8(h), the power allocatior{ P(h), Pr(h)) is given
design more complex, and not as practical as Scenario Il. We by B
include the analysis of the resource allocation for thisiace 1 1 +
i P(h) = 0(h) - — (107)
mainly for the sake of completeness. XIn2  pilh|?
Proposition4: An achievable rate for the fading half-
duplex relay channel Scenario Ill is given by: _ 1 1 *
p y g y Pr(h) = 0(h) < R 2) (108)
Crow = max min Hin p2|hz|
0<6(R)<1, where\ andy are chosen to satisfy the power constraints
(P(h),Pr(h))€G given in [63). For a givenP(h), Pr(h)), the channel
) , resource allocatiord(h) is the root of the following
P(h)p1]ha| ] Pr(h)pz|ha| ion:
{E 2o(n)c (2Bl |+ [20(n)c (Leleliel)] equation
2 2 26( <_>p1|h1|2) _QC< 2 (h)pa o )
N [29(h)c (P(ﬁ)f’a\hﬂ )} + Ee [29(h)c(P(ﬁ)P1\h1| )} 0(h) (k)
n 0(h) — 0(h) B L P(ﬁ)p1|h1|2 N i Pg (ﬁ)ﬂ2|h2|2
(101) In2 0(h) + P(h)pr|ma]> * In20(h) + Pr(h)p2|ha?
An upper bound on the capacity is given by =Y (109)
Cup = max min
0<O(h)<1, For case 2 to happertd™ (h), PV (h), PS” (h)) needs
(P(h),Pr(h))€G to satisfy the following condition:
P(B)p |’ ; Pr (1) pa ha? . Py )( )pzlh2l2
{is e (o) e ()] e (H
(1)
2 2 ( ) P p;|h3
B {29(@)0 (P(ﬁ)(PSVIGS(Z;FPth\ >)} } <Ea [a ' ( Tl ) (110)
' i (102) _9(1)(h)c P(l)(_)p1|h1|2
The optimal resource allocatiof®é(h), P(h), Pr(h)) that 00w
achieves the maximum of the lower boumd (1101) is given in
the following. The proof of optimality is relegated to Appix Case 3:The optimal(6*") (h), P*") (h), pj(?a*)(ﬁ)) can

[ be obtained by the following iterative algorithm. For a



given 8(h), the power allocatior{P (L), Pr(h)) is given
by

positive rootx of (I13) if it exists, otherwise,
if heA,

P(ﬁ): 1 1 +
9@<Mn2_m) ’ it heAs
(111)

where the root: is determined by the following equation:

o 0(h) 1 (1—a")o(h) 1 \=0
n2 _o® In2 0(h) AT
o pilhy]? te . p3lh3]? T

(112)
= o 1 +
P =00 (S - ) aw

where the parameters and i are chosen to satisfy the
power constraintd (63).

For a given(P(h), Pr(h)), the channel resource alloca-
tion (k) is determined by

If he A,
v [ P(R)p1|ha]? o P(h)pi|ha|?
2o C( 0(h) ) T m20(h) + P(yp a2
r(h)p2|ha|® a” Pr(h)p2|h2|?
e C( o0 ) T 2800 + Prpalhal
2
+2(1 — ax)C <P( gf;h3| )
_1—oax_ P(h)ps|hs|?
2 0(h) + P(h)ps|hs]?
=0;
(114)
If h e A°,

_2a*C<PR(ﬁ_)P2|h2|2> N Pr(h)pa|ho|?
In2 6(h) + Pr(h)p2|hz|?

P(h)p1|hi]? 1 P(h)p1|h1]?
+2C< o(h) )‘Ewh) Pl 2

The parametet,™ is determined by the condition

o P (h)pa|ha|?
E [9< )(h)C <—9<a*)@ )]
7o) e [ P Weslhal?

* («™) 3|13 2
- o e (2|

. (a™) 2
+ Ee |:9(a )(Q)C<P (E)P1|h1| )

(") (h)
(115)
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Theorem7: For the fading half-duplex relay channel Sce-

nario Ill, if the channel statistics and the power constsin
satisfy the condition[{110), then the capacity is given by
PO (h)py|ha|?
C =E 29(1) h R o Y Ml Ml B
|: (—)C 9(1)(@) (116)
290 (e [ P Wealhal
B 0 (h)
where the capacity achieving resource allocation

(6D (h), P (), P (h)) can be obtained iteratively
from (107), (108) and(109).

The proof of Theoreni]7 is similar to that of Theorém 5,
and is omitted.

Remark6: The capacity in Theorefd 7 refers to the largest
rate under Scenario Ill that can be achieved over all pos-
sible channel resource allocatidiih) and power allocation
(P(h), Pr(k).

The condition given in Theorer] 7 is similar to that in
Theorem[ b for Scenario Il, and these conditions tend to be
satisfied either when the relay powf% is small compared
to the source poweP, or when the relay node is much closer
to the source node than to the destination node.

1.6 T T T T
Optimal achievable rate for Scenario 11l
—— Optimal achievable rate for Scenario Il
= = Optimal achievable rate for Scenario |
140 Capacity of source—to—destination channel
12) p,=0.1, p,=0.1, p =1 il
i~ h,. h,.h, ~CN(0,1)
B T T i ety 3
3 Source Power = 3 dB
2
Q
= 0.8 B
o
0.6 b
04E==- " 4
0.2 I I I I I I I I I
-4 -2 0 2 4 6 8 10 12 14
Relay Power PR (dB)
Fig. 11. Comparison of achievable rates with optimal resewallocations

for Scenarios |, II, and 11l

In Fig.[11, we plot the achievable rates under Scenario Il
optimized over(6(h), P(h), Pr(h)) for the same Rayleigh
fading relay channel as in Fig] 6 and F[d. 8. We compare
these rates with the achievable rates under Scenario | opti-
mized over(P(h), Pr(h)) and Scenario Il optimized over
(0, P(h), Pr(h)), and with the capacity of the direct link
from the source node to the destination node. It is clear from
the graph that employing the relay node greatly improves

The optimization for the upper boun@{102) can be pethe performance of the source-to-destination channel [Hig
formed using steps that are similar to those for the lowshows that the achievable rate under scenario Il is larger th
bound. In general, the lower bourid (101) and the upper bouih@ achievable rate under Scenario I, particularly when the
(I02) do not match. However, we show that if the channetlay power is large and the achievable rate under scenario
statistics and the power constraints satisfy the follonéng- | saturates. This demonstrates that using a jointly optimal
dition, the two bounds match and hence we obtain the capaatyannel resource allocation parametdnelps to improve the
for this channel. achievable rate. As we have commented for Elg. 9, Scenario
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Il does not have case 1, and hence the achievable rate unde€ase 1:o* = 0, and(P( (Q),P}(%O) (h)) is an optimal power
Scenario Il continues to increase when the achievable raféocation, which needs to satisfy the condition

under Scenario | saturates in case 1. Furthermore, Scdhario 0 (0) 0 (0)

has larger achievable rates than Scenario Il beca(secan Ba (P! )(ﬁ)’PR (1)) 2 Ra(P' )(ﬁ)’PR (B)). (118)
be dynamically changed based on the instantaneous charB;ebIefinition,(P(0>(Q),P}(%O) (h)) maximizes

state information.

We note that finding an optimal resource allocation for R(0, P(b), Pr(R)) = Ra(P(h), Pr(h))- (119)
Rayleigh fading relay channels is a high dimensional ofhe optimal P()(k) given in [79) follows easily from the
timization problem, particularly in Scenario Il where the<KT condition. For case 1 to happeriP(® (h), P\ (h))
optimization is jointly over(6(h), P(h), Pr(h)). Although needs to satisfy the condition_(118). It is clear that
the problem is convex, the standard convex programmidty(P(h), Pr(h)) depends only on P(h). The term
techniques may converge slowly. However, since we hava (P(h), Pr(k)) depends on bothP(h) and Pr(h).
obtained the analytical structures of the optimal solgjaour To characterize the most general condition for case 1 to
numerical algorithm converges extremely fast and takeg orflappen,Pr(h) needs to maximizeR,(P(h), Pr(h)). Such

a few iterations. P}(%O) (h) can be obtained by the KKT condition and is given
in (80). The condition[{81) follows from equality of conditi
VI. CONCLUDING REMARKS @1s).

, , Case 2:a* = 1, and(PM (h), P (R)) is an optimal power
We have studied capacity bounds for the parallel re@flocation, which needs to satisf};/ the condition
channel and its special case of the fading relay channel.

We have established capacity theorems for several clagses o 1 (P(l)(ﬁ%P}(;)(h)) < Rz(P(l)(h),Pg)(ﬁ))- (120)
channels including the parallel relay channel with degdade |}, optimal(PM () P(l)(h)) that maximizes
subchannels and its Gaussian case, the full-duplex relay-ch RS

nel that satisfies certain conditions in asynchronized, case R(1, P(h), Pr(h)) = Ri(P(h), Pr(h)) (121)

the half-duplex relay channel that satisfies certain caomBt can be eas”y obtained by the KKT Condition, and are given

We have studied resource allocation for the Gaussian pg{-(82) and [8B). The conditiof (84) follows from equality of
allel relay channel with degraded subchannels and the dadigbndition [120).

relay channel under both full-duplex and half-duplex medel Case 3:0 < o* < 1, and (p(a*)(b),plg“*)(b)) is an
Our study of resource allocation is different from previougptimal power allocation, where* is determined by the
work on this topic in that we make the more practicgollowing condition

assumption that the source and relay nodes are subject to (@) (a*) B (@) (a*)
separate power constraints rather than a total power eomnistr (P (h), Pr™ (k) = Ro(P' V(h), P’ " (h)). (122)
We have shown that optimal resource allocation under this\we need to derivép(a*)(b),p}(;*)(b)) that maximizes
assumption may take three different forms depending on theR « P(h). Pr(h
channel statistics and values of the power constraints. (a, P(h), Pr(h))

Finally, we note that the resource allocation problem we =& Ri(P(h), Pr(h)) + (1 — a")Ra(P(h), Pr(h)).
have considered falls under a classnudix-minproblems and (123)
we have provided a technique for solving such max-min prob-The Lagrangian can be written as
lems. It is known that the achievable rates of relay channels _ - 2 * 2
when relay nodes use the decode-and-forward scheme aée_a Ea [C (2P@)p1|h1| l} otk [C (2PR(ﬁ)p2|h2| )]
usually expressed byax-minforms. Our technique certainly tEqe [C (2P(ﬁ)p1|h1| )]

applies to optimization problems arising in these contelxts + (1 —a*)E4 [C (2P (h)ps|hs|®)]
particular, our technique has been applied to study orthalgo “MEPMW = P) — u(EIP-(1)] — P
relay broadcast channels in [40], and can be used to study ( [P@)] ) H( [Pr(B)] R)
more general classes of relay networks with fading links. (124)
where\ and i, are Lagrange multipliers.
APPENDIX | For h € A, the KKT condition is given by:
PROOF OFRESOURCEALLOCATION THAT MAXIMIZES oy oL
(78) FOR SCENARIO | OP(h)
We first let By (P(h), Pr(h)) and Re(P(h), Pr(h)) denote o : 1 Llzar : 1

the two terms over which the minimization in{(78) is taken. ~ 22 oG + P(h) 22 55 + P(h)
We can then expresg_(78) in the following compact form: <\ with equality if P(h) > 0

low — P(h H;axh (125)

(P(), Pr(l)eg (117) 1t is easy to check thaP(®)(h) for h € A given in [85)

min {R1(P(h), Pr(h)), Ra(P(h), Pr(h))}- satisfies the preceding KKT condition. TH*") (k) for h €
We apply Propositioh]1 to derive the optimal power allocad® in (85) andP}(;f‘ )(ﬁ) in (87) also follow from the KKT
tion rule, which falls into the following three cases. condition.
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APPENDIXII The Lagrangian can be written as

PROOF OFRESOURCEALLOCATION THAT MAXIMIZES Cioy P(h) o | ha |2 B P hol2
(89) FOR ScENARIO I L =20E [C (%ﬂll)] + 20E {C (Wﬂ

We let R, (6, P(R), Pr(h)) andRx(6, P(h), Pr(h)) denote _ /\(E[p(ﬁ)] _ p) _ M(E[pR(Q)] _ pR)_
the two terms over which the minimization ih_{89) is taken.

We can then expresk_(89) in the following compact form: (133)
It is easy to check that the KKT condition implies
Crow = max ] 1 +
0SBSL(P(h). Pr(k))€G P(h) =0 ( i ) (134)
min {Ry (0, P(h), Pr(h)), R2(0, P(h), Pr(h))}. An2  pi|h?
(126) - 1 1 +
| | Pat) =0 (i = ) (135)
The max-min problem in [{I26) can be solved by pIn2  polhyl

using Proposition []1. The main step is to obtairhe KKT condition also implies that the optimal") needs

(0¢), P (n), PLY (h)) that maximizes to satisfy the following condition:
2 2
R(a,6, P(b), Pr(h)) 9 o [c (M)} om [c (W)}
= O‘Rl(ev P(ﬁ)a PR(E)) + (1 - a)RQ(ev P(ﬁ)a PR(E))
7 _1lg [ P(h)p1]hi|? ] 14 { Pr(h)pz2|hs|? }
m2 0+ P)phil2] " 2 |G+ Pr(h)palhol?

for a given«. The following lemma states that maximizing < it 0 —o0: d th
the functionR(«, 8, P(h), Pr(h)) over (0, P(h), Pr(h)) is a =0, U= 0 (does not happen)
convex programming problem and hence can be solved by} — 0, ff 0<o<L;
standard convex programming algorithms. >0, if 0=1. (does not happen)

Lemma2: For a fixeda, R(a,0, P(h), Pr(h)) is a con- (136)
cave function overd, P(h), Pr(h )) where0 < 6 < 1 and \here the first and third cases do not happen becfise oo
(P(h), Pr(h)) € G. asf — 0, and — —oo asf — 1. It can also be shown that

Lemmal2 can be verified by computing the Hessian of thec ;o monotonlcally decreasing for< 6 < 1. Hence% has
function R(«, 0, P(h), Pr(h)) (for a fixed o) and showing aat most one root fof < 6 < 1.

that it is negative semidefinite. The iterative algorithm described ifi (91)-[93) converges
We now apply Propositionl 1 to study the max-min problery the solution of the KKT condition given i (IB4)-(136).
in (128) by considering the following three cases. Since the functiorR, (¢, P(k), Pr(h)) is concave, the solution

Case 1:a* =0, and (0, PO (h), P (h)) is an optimal of the KKT condition achieves the optimum. Conditidml(94)
resource allocation, which needs to satisfy the condition  follows from condition [(T311).
o o Case 3:0 < o* < 1, and (8", P (h), PY ) (h)) is
Ri(0©, PO (), PY (b)) > Ra(0, PO (), PY(h)).  an optimal resource allocation, whesé is determined by the
(128)  following condition
We first derive(9®, P()(h), P (1)) that maximizes

Ry(07), P (1), PR (1) (137)
R(0,0, P(h), Pr(h)) = R2(0, P(h), Pr(h)).  (129) = Rg(e<a ), PO (), PY7) ().
It is easy to see that the optimal® — 1 from the  We first derive(6(®"), P (h), P{*") (b)) that maximizes
expression ofRy (0, P(h), Pr(h)), and this results in R(a*,8, P(h), Pr(h ))
Ry (6@, PO(B), PP (1)) < Ra(600, PO (0), PR (1), = o Ra(0, P(b), Pr(n) + (1 = a")Ra(0, P(L), Pr(B)).
(130) (138)

Comparing[(128) and (130), it is clear that only equality cafor given o*. The Lagrangian can be written as
be satisfied in[{128). Hence this case can be included in the (R)p1 |7 |2
following case 3 witha* being allowed to take the value of £ =2a"0E [C (7)}

" P 9 hol?
Case 2:a* = 1, and(§(V), P (n), P (b)) is an optimal +20*0E {c (Mﬂ
resource allocation, which needs to satisfy the condition 0 )
P(h)p:|h| (139)
Ry (00, PO (n), P () < R (0D, PO (h), P (B)). e [C ( 0
(131) * (h)ps|hs|*
We first derive(8)), P((h), PY (h)) that maximizes +2(1-a”)0Ea [C ( 9 )]

R(1,0, P(h), Pr(h)) = R1(0, P(h), Pr(h)).  (132) - A(E[P(h)] - P) - u(E[PR(b)] - PR)-
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For a giverd, The optimal( P(h), Pr(h)) given in [9%) and  LemmalB can be verified by computing the Hessian of the
(©7) follows from the KKT condition. The KKT condition also function R(«a, 8(h), P(h), Pr(h)) (for a fixeda) and showing
implies that the optimad for a given(P(h), Pr(h)) needs to that it is negative semidefinite.

satisfy the following condition As for Scenarios | and Il, we apply Propositigh 1 to study
oL the max-min problem in[(141) by considering the following
90 three cases.

e o (PP 0t [ Pbphye | Case o =0 and(0)(h), PO (h), Y (1) is an opt-
A 9 In2 A 0+ P( )p1|h1|2 mal resource allocation, wnich needs 1o satisty the C It

~2a Pr(h)pzlha?\] | o [ Pr(h)palhol? Ri(0©) (h), PO (h), P ()
2078 [C < 0 )] + ln2E {G—FPR )p2|h2|2} > RQ(H(O)(Q),P(O)(ﬁ),P(O)(Q)).

(143)

(B
(B)p1|ha? 1 (L)p1|ha?
+2E 4 {C <+>} ~ oA [M)W] We first derive(8() (h), P©)(n), P, (1)) that maximizes

2
+2(1 - a*)Ba [c (%)} R(0,0(h), P(h), Pr(h)) = Ra(0(h), P(h), Pr(h)). (144)
O)(p
1— o P()ps|hs? It is clear thatd®)(h) given in [10%) is optimal from the
2 IRV AE expression ofR(6(h), P(h), Pr(k)). The power allocation
n + P(R)ps|hs] PO)(h) given in [I0B) then easily follows from the KKT
<0, if 6=0; (does not happen) condition.
=0, if 0<6<1; For case 1 to happen, conditidn (143) needs to be satisfied.
>0, if 9=1. (does not happen) To characterize the most general condition for case 1 to

(140) happen, for the giverd®) (r) and P(V)(h) Pr(h) needs to

maximizeR; (/*) (r), P9 (h), Pr(R)), which has the follow-
where the first and third cases do not happen bec%gse» o0 ing form:

asf — 0, and 2« ae — —oo asf — 1. ©) PO
Therefore, the iterative algorithm described [m](95)(98) F1(677(h), P (h), Pr(h))
converges to the solution of the KKT condition. Since the = 2B 1. po)(n)=0y [C (Pr(R)p2lh2l?)]
function R(a, 8, P(h), Pr(h)) is concave for a givem, the
solution of the KKT condition achieves the optimum. CondiThe optimalPy,” () given in [104) then follows from the KKT

(145)

tion (99) follows from condition[{137). condition. Finally, condition [(106) follows from conditio
(143).
APPENDIXIII The proofs for cases 2 and 3 are similar to those for Scenario

PROOF OFRESOURCEALLOCATION THAT MAXIMIZES Ch,, Il given in Appendix1l, and are omitted.
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