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Abstract— Resource allocation is investigated for fading relay
channels under separate power constraints at the source and
relay nodes. As a basic information-theoretic model for fading
relay channels, the parallel relay channel is first studied,which
consists of multiple independent three-terminal relay channels
as subchannels. Lower and upper bounds on the capacity are
derived, and are shown to match, and thus establish the capacity
for the parallel relay channel with degraded subchannels. This
capacity theorem is further demonstrated via the Gaussian
parallel relay channel with degraded subchannels, for which the
synchronized and asynchronized capacities are obtained. The
capacity achieving power allocation at the source and relay
nodes among the subchannels is partially characterized forthe
synchronized case and fully characterized for the asynchronized
case. The fading relay channel is then studied, which is based
on the three-terminal relay channel with each communication
link being corrupted by a multiplicative fading gain coefficient as
well as an additive Gaussian noise term. For each link, the fading
state information is assumed to be known at both the transmitter
and the receiver. The source and relay nodes are allowed to
allocate their power adaptively according to the instantaneous
channel state information. The source and relay nodes are
assumed to be subject to separate power constraints. For both
the full-duplex and half-duplex cases, power allocations that
maximize the achievable rates are obtained. In the half-duplex
case, the power allocation needs to be jointly optimized with the
channel resource (time and bandwidth) allocation between the
two orthogonal channels over which the relay node transmitsand
receives. Capacities are established for fading relay channels that
satisfy certain conditions.

Index Terms— Capacity, max-min, parallel relay channels,
resource allocation, wireless relay channels.

I. I NTRODUCTION

The three-terminal relay channel was introduced by van
der Meulen [1] and was initially studied primarily in the
context of multiuser information theory [1], [2], [3]. In re-
cent years, relaying has emerged as a powerful technique to
improve the reliability and throughput of wireless networks.
An understanding of wireless relay channels has thus become
an important area of research. Wireless relay channels and
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networks have been addressed from various aspects, including
information-theoretic capacity [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
diversity [22], [23], [24], [25], outage performance [26],[27],
and cooperative coding [28], [29], [30]. Central to the study of
wireless relay channels is the problem of resource allocation.
For example, the source and relay nodes can dynamically
allocate their transmit powers to achieve a better rate if the
fading state information is available. Resource allocation for
relay channels and networks has been studied by several recent
papers, including [9], [31], [32], [33], [34], [26]. Commonto
all of these studies is the assumption that the source and relay
nodes are subject to a total power constraint.

In this paper, we study wireless fading relay channels, where
we assume that the source and relay nodes are subject to
separate power constraints instead of a total power constraint.
This assumption is more practical for wireless networks,
because the source and relay nodes are usually geographically
separated, and are hence supported by separate power supplies.
Under this assumption, the resource allocation problem falls
under a class ofmax-minproblems. We connect suchmax-min
problems to theminimaxtwo hypothesis testing problem (see,
e.g., [35, II.C]), and apply a similar technique to find optimal
(in themax-minsense) resource allocation strategies for fading
relay channels.

We first study the parallel relay channel, which consists
of multiple independent relay channels and serves as a basic
information-theoretic model for fading relay channels. We
derive a lower bound on the capacity based on the partial
decode-and-forward scheme as well as a cut-set upper bound.
We show that the two bounds match and establish the capacity
for the parallel relay channel with degraded subchannels. This
generalizes the capacity result in [36, Th. 12] to multiple sub-
channels. We also demonstrate that the parallel relay channel is
not a simple combination of subchannels in that the capacity
of the parallel relay channel can be larger than the sum of
the capacities of subchannels, as was also remarked in [36,
Sec. VII].

We then study the Gaussian parallel relay channel with
degraded subchannels. There are two types of capacity that
can be defined for this channel. The first is the synchronized
capacity, where the source and relay inputs are allowed to
be correlated. To achieve the capacity, the source and relay
nodes need to choose an optimal correlation parameter for each
subchannel, and further to choose an optimal power allocation
across the subchannels under separate power constraints. We
characterize the optimal solutions for the cases where the
optimization is convex, and provide equations that need to
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be solved numerically for cases where the optimization is
nonconvex. We also study the asynchronized capacity, where
the source and relay inputs are required to be independent.
This capacity is easier to achieve in practice due to the simpler
transceiver design for the source and relay nodes. We fully
characterize the capacity-achieving power allocation at the
source and relay nodes in closed form.

We then move on to study the fading relay channel, which
is based on the classical relay channel with each transmission
link being corrupted by a multiplicative stationary and ergodic
fading process as well as an additive white Gaussian noise
process. The fading relay channel is a special case of the
parallel relay channel, with each subchannel corresponding to
one fading state realization. We assume that both the trans-
mitter and the receiver know the channel state information,so
that the source and relay nodes can allocate their transmission
powers adaptively according to the instantaneous fading state
information. We consider the resource allocation problem for
two fading relay models: full-duplex and half-duplex.

The fading full-duplex relay channel has been studied in
[9], where lower and upper bounds on the capacity were
derived, along with the resource allocation that optimizesthese
bounds, under a total power constraint for the source and relay
nodes. In this paper, we assume separate power constraints
for the source and relay nodes and study the power allocation
that optimizes the capacity bounds. We focus on the more
practical asynchronized case. We obtain the power allocation
that maximizes an achievable rate, and show that the optimal
power allocation may betwo-level water-filling, orthogonal
division water-filling, or iterative water-filling depending on
the channel statistics and the power constraints. We also
establish the asynchronized capacity for channels that satisfy
a certain condition.

We further study a fading half-duplex relay channel model,
where the source node transmits to the relay and destination
nodes in one channel, and the relay node transmits to the
destination node in an orthogonal channel. We introduce a
parameterθ to represent the channel resource (time and band-
width) allocation between the two orthogonal channels. We
study three scenarios. In Scenario I, where the two orthogonal
channels share the channel resource equally, i.e.,θ = 1/2,
we show that the optimal power allocation falls into three
cases depending on the ranges of power constraints at the
source and relay nodes. The optimal power allocation for the
relay node is always water-filling, but the power allocationfor
the source node is not water-filling in general. In scenario II,
the channel resource allocation parameterθ needs to be same
for all channel states but can be jointly optimized with the
power allocation. In Scenario III, which is the most general
scenario,θ can change with channel realizations and is jointly
optimized with power allocation. For both Scenarios II and
III, we derive the jointly optimalθ and power allocation that
maximize the achievable rate. Furthermore, we show that the
lower bound achieves the cut-set upper bound if the channel
statistics and power constraint satisfy a certain condition.
We hence establish the capacity for these channels over all
possible power and channel resource allocations.

The paper is organized as follows. In Section II, the parallel

relay channel is introduced and studied. In Section III, the
optimal resource allocation that achieves the capacity forthe
Gaussian parallel relay channel with degraded subchannels
is studied. In Section IV, resource allocation for the fading
full-duplex relay channel is presented. In Section V, resource
allocation for the fading half-duplex relay channel is studied,
where the three scenarios described above are considered.
Finally in Section VI, we give concluding remarks.

II. PARALLEL RELAY CHANNELS

In this section, we study the parallel relay channel, which
serves as a basic information-theoretic model for the fading
relay channels that are considered in Sections IV and V. The
parallel relay channel also models the relay channel where the
source and relay nodes can transmit over multiple frequency
bands with each subchannel corresponding to the channel over
one frequency band. It is shown in this section that in contrast
to the parallel point-to-point channel, the parallel relaychannel
is not a simple combination of independent subchannels.

Definition 1: A parallel relay channel withK subchannels
(see Fig. 1) consists ofK finite source input alphabets
X1, . . . ,XK , K finite relay input alphabetsXR1, . . . ,XRK ,
K finite destination output alphabetsY1, . . . ,YK and K
finite relay output alphabetsYR1, . . . ,YRK . The transition
probability distribution is given by

K
∏

k=1

pk(yk, yRk|xk, xRk) (1)

wherexk ∈ Xk, xRk ∈ XRk, yk ∈ Yk, andyRk ∈ YRk for
k = 1, . . . ,K.

A
(

2nR, n
)

code consists of the following:
• One message setW = {1, 2, . . . , 2nR} with the message
W uniformly distributed overW ;

• One encoder at the source node that maps each message
w ∈ W to a codeword

(x11, . . . , x1n, . . . , xK1, . . . , xKn);

• A set of relay functions{fi}ni=1 such that for1 ≤ i ≤ n:

(xR1i, . . . , xRKi)

= fi(yR11, . . . , yR1[i−1], . . . , yRK1, . . . , yRK[i−1]);

• One decoder at the destination node that maps a received
sequence(y11, . . . , y1n, . . . , yK1, . . . , yKn) to a message
ŵ ∈ W .

Note that the relay node is allowed to jointly encode and
decode across the K parallel subchannels.

A rateR is achievableif there exists a sequence of
(

2nR, n
)

codes with the average probability of error at the destination
node going to zero asn goes to infinity.

The following theorem provides lower and upper bounds on
the capacity of the parallel relay channel.
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Fig. 1. Parallel relay channel

Theorem1: For the parallel relay channel, a lower bound
on the capacity is given by

Clow =maxmin

{

K
∑

k=1

I(Xk, XRk;Yk),

K
∑

k=1

I(Qk;YRk|XRk) + I(Xk;Yk|Qk, XRk)

} (2)

whereQk for k = 1, . . . ,K are auxiliary random variables.
The maximum in (2) is over the joint distribution

K
∏

k=1

pk(qk, xRk, xk)pk(yk, yRk|xk, xRk).

An upper bound on the capacity is given by

Cup = maxmin

{

K
∑

k=1

I(Xk, XRk;Yk),

K
∑

k=1

I(Xk;Yk, YRk|XRk)

} (3)

where the maximum in (3) is over the joint distribution

K
∏

k=1

pk(xRk, xk)pk(yk, yRk|xk, xRk).

Remark1: The lower bound (2) generalizes the rate given
in [37, Theorem 1] based on the decode-and-forward scheme.

Proof: To derive the lower bound (2), we use the
following achievable rate for the relay channel based on the
partial decode-and-forward scheme given in [3]:

R <maxmin
{

I(XR, X ;Y ), I(Q;YR|XR) + I(X ;Y |Q,XR)
} (4)

We set Q = (Q1, . . . , QK), X = (X1, . . . , XK),
XR = (XR1, . . . , XRK), Y = (Y1, . . . , YK), and YR =
(YR1, . . . , YRK) in the above achievable rate. We further
choose(Q1, X1, XR1), . . ., (QK , XK , XRK) to be indepen-
dent, and then obtain the lower bound (2).

The upper bound (3) is based on the cut-set bound [2, The-
orem 4] and the independency of theK parallel subchannels.

Remark2: In the achievable scheme, the relay node first
decodes information sent by the source node over each sub-
channel. The relay node then reassigns total decoded infor-
mation to each subchannel to forward to the destination node.
Hence information that was sent to the relay node over one
subchannel may be forwarded to the destination node over
other subchannels, as long as the total rate at which the relay
node can forward information to the destination node over all
subchannels is larger than the total rate at which the relay node
can decode information from the source node.

The lower and upper bounds in Theorem 1 do not match in
general. We next study a class of parallel relay channels with
degraded subchannels. For this channel, the lower and upper
bounds match, and we hence establish the capacity. Moreover,
this capacity provides an achievable rate for the case where
the subchannels are either stochastically degraded or reversely
degraded (e.g., fading relay channels).

Definition 2: Consider the parallel relay channel with de-
graded subchannels. Assume each subchannel is either de-
graded or reversely degraded, i.e., each subchannel satisfies
either

pk(yk, yRk|xk, xRk)

= pk(yRk|xk, xRk)pk(yk|yRk, xRk),
(5)

or

pk(yk, yRk|xk, xRk)

= pk(yk|xk, xRk)pk(yRk|yk, xRk).
(6)

We note that the parallel relay channel with degraded
subchannels has been studied in [36, Sec. VII] for the two-
subchannel case. We now generalize the result in [36, Sec. VII]
to channels with multiple subchannels. In fact, our main focus
is on the Gaussian case considered in this section and Section
III.

We define the setA to contain the indices of the subchannels
that satisfy (5), i.e., those subchannels where the source-to-
relay channel is stronger than the source-to-destination chan-
nel. Then the setAc contains the indices of the subchannels
that satisfy (6), i.e., those subchannels where the source-to-
relay channel is weaker than the source-to-destination channel.
Note that in general the parallel relay channel with degraded
subchannels is neither a degraded relay channel nor a reversely
degraded channel. For this channel, the lower and upper
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bounds given in Theorem 1 match and establish the following
capacity theorem.

Theorem2: For the parallel relay channel with degraded
subchannels, the capacity is given by

C =maxmin

{

K
∑

k=1

I(Xk, XRk;Yk),

∑

k∈A

I(Xk;YRk|XRk) +
∑

k∈Ac

I(Xk;Yk|XRk)

}

.

(7)

where the maximum is over the joint distribution

K
∏

k=1

pk(xRk, xk)pk(yk, yRk|xk, xRk).

Remark3: Theorem 2 generalizes the capacity of the par-
allel relay channel with unmatched degraded subchannels in
[36, Theorem 12] to channels with multiple subchannels.

Proof: The achievability follows fromClow in (2) by
settingQk = Xk for k ∈ A and settingQk = φ for k ∈
Ac. The converse follows fromCup in (3) by applying the
degradedness conditions (5) and (6).

Note that the partial decode-and-forward scheme achieves
the capacity of the parallel relay channel with degraded sub-
channels. From the selection ofQk in the above achievability
proof, it can be seen that the relay node decodes all the
information sent over the degraded subchannels, i.e.,Qk = Xk

for k ∈ A, and decodes no information sent over the reversely
degraded subchannels, i.e.,Qk = φ for k ∈ Ac. Hence for the
subchannels withk ∈ Ac, the link from the source node to the
relay node can be eliminated without changing the capacity of
the channel.

However, the relay node still plays an important role in the
reversely degraded subchannels by forwarding informationthat
it has decoded in other degraded subchannels to the destination
node. This is different from the role of the relay node in a
single reversely degraded channel, where it does not forward
information at all. Furthermore, we see that in the parallel
relay channel, information may be transmitted from the source
node to the relay node in one subchannel, and be forwarded
to the destination node over other subchannels, as we have
commented in Remark 2. More importantly, in contrast to
the parallel point-to-point channel, the capacity of the parallel
relay channel with degraded subchannels in Theorem 2 can
be larger than the following sum of the capacities of the
subchannels

max min

{

∑

k∈A

I(Xk, XRk;Yk),
∑

k∈A

I(Xk;YRk|XRk)

}

+
∑

k∈Ac

I(Xk;Yk|XRk).

(8)

This demonstrates that the parallel relay channel is not a
simple combination of independent subchannels. This fact has
also been pointed out in [36, Remark 15] for two-subchannel
case.

We now consider a Gaussian example of the parallel relay
channel with degraded subchannels. The channel input-output

relationship at one time instant is as follows.

For k ∈ A, YRk = Xk + ZRk

Yk = Xk +
√
ρRkXRk + ZRk + Z ′

k,
(9)

whereZRk andZ ′
k are independent Gaussian random variables

with variancesσ2
Rk and σ2

k − σ2
Rk, respectively. Fork ∈ A,

σ2
k > σ2

Rk.

For k ∈ Ac, YRk = Xk + Zk + Z ′
Rk

Yk = Xk +
√
ρRkXRk + Zk,

(10)

whereZk andZ ′
Rk are independent Gaussian random variables

with variancesσ2
k and σ2

Rk − σ2
k, respectively. Fork ∈ Ac,

σ2
Rk ≥ σ2

k. In (9) and (10),ρRk (assumed to be positive) indi-
cates the ratio of the relay-to-destination SNR to the source-to-
destination SNR for subchannelk. We assume that the source
and relay input sequences are subject to the following average
power constraints:

1

n

n
∑

i=1

K
∑

k=1

E
[

X2
ki

]

≤ P , and
1

n

n
∑

i=1

K
∑

k=1

E
[

X2
Rki

]

≤ PR .

(11)
wherei is the time index.

It can be seen from (9) and (10) that the subchannels
with k ∈ A satisfy the degradedness condition (5) and the
subchannels withk ∈ Ac satisfy the degradedness condition
(6). Hence the Gaussian channel defined in (9) and (10) is
the parallel relay channel with degraded subchannels. The
following capacity theorem is based on Theorem 2.

Theorem3: The capacity of the Gaussian parallel relay
channel with degraded subchannels is given by

C = max
P

K

k=1 Pk≤P,
P

K

k=1 PRk≤PR,

0≤βk≤1, for k=1,...,K

min

{

K
∑

k=1

C
(

Pk + ρRkPRk + 2
√

β̄kρRkPkPRk

σ2
k

)

,

∑

k∈A

C
(

βkPk

σ2
Rk

)

+
∑

k∈Ac

C
(

βkPk

σ2
k

)

}

.

(12)

whereβ̄k = 1− βk, and the functionC(x) := 1
2 log(1 + x).

In (12), the parameter̄βk indicates correlation between the
source input and the relay input to subchannelk, andPk and
PRk indicate the source and relay powers that are allocated
for transmission over subchannelk.

Proof: The achievability follows from Theorem 2 by
choosing the following joint distribution:

XRk ∼ N (0, PRk),

X ′
k ∼ N (0, βkPk), with X ′

k independent ofXRk,

Xk =

√

β̄kPk

PRk

XRk +X ′
k

(13)

The converse is similar to the steps in the converse proof in
[2, Sec. IV], and is omitted.



5

Note that the capacity in Theorem 3 is sometimes referred
to as the synchronized capacity, because the source and relay
nodes are allowed to use correlated inputs to exploit coherent
combining gain. This may not be practical for encoder design.
It is hence interesting to study the asynchronized capacity,
where the source and relay nodes are assumed to use indepen-
dent inputs. The following asynchronized capacity is derived
by settingβk = 1 for k = 1, . . . ,K in (12).

Corollary 1: For the Gaussian parallel relay channel with
degraded subchannels, the asynchronized capacity is givenby

C = max
P

K

k=1 Pk≤P,
P

K

k=1 PRk≤PR

min

{

K
∑

k=1

C
(

Pk + ρRkPRk

σ2
k

)

,

∑

k∈A

C
(

Pk

σ2
Rk

)

+
∑

k∈Ac

C
(

Pk

σ2
k

)

}

.

(14)

To obtain the capacity in Theorem 3 and the asynchronized
capacity in Corollary 1, we still need to solve the optimization
problems in (12) and (14), i.e., to find the jointly optimal
correlation parameters{βk, for k = 1, . . . ,K} and power
allocations{(Pk, PRk), for k = 1, . . . ,K} in (12), and to find
the optimal power allocations{(Pk, PRk), for k = 1, . . . ,K}
in (14). We study these optimization problems in the next
section.

III. O PTIMAL RESOURCEALLOCATION FOR GAUSSIAN

PARALLEL RELAY CHANNELS WITH DEGRADED

SUBCHANNELS

In this section, we study the optimization problems in (12)
and (14), which aremax-minoptimization problems. We first
introduce a general technique for solving this class ofmax-min
optimization problems. We then demonstrate the application
of this technique by finding the optimal solutions in (12)
and (14). We obtain the analytic form of the jointly optimal
correlation parameters{βk, for k = 1, . . . ,K} and power
allocation {(Pk, PRk), for k = 1, . . . ,K} that achieve the
synchronized capacity for the cases where the optimization
problem is convex. We also obtain a closed-form solution for
the optimal{(Pk, PRk), for k = 1, . . . ,K} that achieve the
asynchronized capacity. This optimal solution may have three
different structures depending on the channel SNRs and power
constraints. This optimal power allocation is directly related to
the power allocation for the fading full-duplex relay channel
presented in Section IV.

A. Technique to Solve a Class of Max-Min Problem

Consider the following max-min problem:

max
t∈G

min {R1(t), R2(t)} (15)

wheret is a real vector in a setG, andR1(t) andR2(t) are
real continuous functions oft. An optimal t∗ is referred to as
a max-min rule.

We now introduce a technique to solve the max-min
problem (15). We will also illustrate this technique with a
geometric interpretation. This technique is similar to that used
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in finding the minimax detection rule in the two hypothesis
testing problem (see, e.g., [35, Sec. II.C]).

Consider the following function:

R(α, t) := αR1(t) + (1− α)R2(t), 0 ≤ α ≤ 1. (16)

As a function ofα, R(α, t) is a straight line fromR(0, t) =
R2(t) to R(1, t) = R1(t). Hence the maximization in (15)
corresponds to maximizing the minimal of the two end points
of the lineR(α, t) over all possiblet ∈ G.

We further define a function

V (α) := max
t∈G

R(α, t) = R(α, t(α)), (17)

wheret(α) maximizesR(α, t) for fixedα. From the definitions
of V (α) andR(α, t), it is easy to see the following two facts
(see Fig. 2 for an illustration):

Fact 1: The functionV (α) is continuous and convex
for α ∈ [0, 1];

Fact 2: For any power allocation rulet ∈ G, R(α, t) as
a function ofα is completely below the convex
curveV (α) or tangent to it.

A known general solution to the max-min optimization
problem in (15) is summarized in the following proposition.

Proposition1: Supposeα∗ is a solution to V (α∗) =
minα∈[0,1] V (α). Thent(α

∗) is a max-min rule, i.e., a solution
to the max-min problem in (15). The relationship between
R1(t

(α∗)) andR2(t
(α∗)) falls into the following three cases

(see Fig. 3):

Case 1: Ifα∗ = 0, R1(t
(α∗)) ≥ R2(t

(α∗));
Case 2: Ifα∗ = 1, R1(t

(α∗)) ≤ R2(t
(α∗));

Case 3: (Equalizer rule) If0 < α∗ < 1, R1(t
(α∗)) =

R2(t
(α∗)).

This technique of finding the max-min solution is applied
throughout the paper.

B. Optimal Resource Allocation for Gaussian Parallel Relay
Channel: Synchronized Case

In this subsection, we apply Proposition 1 to find jointly
optimal {βk, for k = 1, . . . ,K} and {(Pk, PRk), for k =
1, . . . ,K} that solve the max-min problem in (12). This
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optimal solution provides the optimal correlation between
the source and relay inputs over each subchannel and the
optimal source and relay power allocation among theK
subchannels that achieve the synchronized capacity of the
Gaussian parallel relay channel with degraded subchannels.
We study the asynchronized case in the next subsection.

To simplify notation, we let

P = (P1, . . . , PK), PR = (PR1, . . . , PRK),

β = (β1, . . . , βK)
(18)

and

G =

{

(P , PR, β) :

K
∑

k=1

Pk ≤ P,

K
∑

k=1

PRk ≤ PR,

0 ≤ βk ≤ 1, for k = 1, . . . ,K

} (19)

The max-min optimization problem in (12) can be written
in the following compact form.

C = max
(P,P

R
,β)∈G

min{R1(P , PR, β), R2(P , PR, β)}

where

R1(P , PR, β)

=

K
∑

k=1

C
(

Pk + ρRkPRk + 2
√

β̄kρRkPkPRk

σ2
k

)

R2(P , PR, β) =
∑

k∈A

C
(

βkPk

σ2
Rk

)

+
∑

k∈Ac

C
(

βkPk

σ2
k

)

(20)
According to Proposition 1, the max-min rule that solves

(20) may fall into the following three cases.
Case 1:α∗ = 0, and(P (0), P

(0)
R , β(0)) is a max-min rule,

which needs to satisfy the condition

R1(P
(0), P

(0)
R , β(0)) ≥ R2(P

(0), P
(0)
R , β(0)). (21)

By definition, (P (0), P
(0)
R , β(0)) maximizes

R(0, P , PR, β) = R2(P , PR, β). (22)

It is readily seen that the followingβ(0) is optimal:

β
(0)
k =

{

1, if P
(0)
k > 0;

arbitrary if P (0)
k = 0.

(23)

With β(0) given in (23),R2(P , PR, β) is a function ofP
only. Moreover, it is a convex function ofP . Then the Kuhn-
Tucker condition (KKT condition) (see, e.g., [38, p. 314-315])
characterizes the necessary and sufficient condition that the
optimalP (0) needs to satisfy. The Lagrangian is given by

L =
∑

k∈A

C
(

Pk

σ2
Rk

)

+
∑

k∈Ac

C
(

Pk

σ2
k

)

− λ

(

K
∑

k=1

Pk − P

)

,

(24)
which implies the following KKT condition:

∂L
∂Pk

=
1

2 ln 2
· 1

σ2
Rk + Pk

− λ ≤ 0,

with equality if Pk > 0, if k ∈ A;

∂L
∂Pk

=
1

2 ln 2
· 1

σ2
k + Pk

− λ ≤ 0,

with equality if Pk > 0, if k ∈ Ac.

(25)

Hence the optimalP (0)
k is given by

P
(0)
k =















(

1

2 ln 2λ
− σ2

Rk

)+

, if k ∈ A;
(

1

2 ln 2λ
− σ2

k

)+

, if k ∈ Ac

(26)
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whereλ is chosen to satisfy the power constraint
∑K

k=1 Pk ≤
P . The function(·)+ is defined as

(x)+ =

{

x if x ≥ 0

0 if x < 0.
(27)

For case 1 to happen,(P (0), P
(0)
R , β(0)) needs to satisfy the

condition (21). To characterize the least powerPR needed for
case 1 to happen,P (0)

R needs to maximizeR1(P
(0), PR, β

(0))

with β(0) given in (23) andP (0) given in (26), respectively.

The optimalP (0)
R can be obtained by the KKT condition via

the following Lagrangian:

L =

K
∑

k=1

C
(

P
(0)
k + ρRkPRk

σ2
k

)

− µ

(

K
∑

k=1

PRk − PR

)

, (28)

The KKT condition is given by

∂L
∂PRk

=
1

2 ln 2
· ρRk

σ2
k + P

(0)
k + ρRkPRk

− µ ≤ 0,

with equality if PRk > 0

(29)

which implies

P
(0)
Rk =

(

1

2 ln 2µ
− P

(0)
k

ρRk

− σ2
k

ρRk

)+

, for k = 1, . . . ,K

(30)
whereµ is chosen to satisfy the power constraint

∑K
k=1 PRk ≤

PR.
Note that (30) also follows directly from the standard water-

filling solution if we further derive (28) in the following form:

L =

K
∑

k=1

C
(

P
(0)
k

σ2
k

)

+

K
∑

k=1

C
(

ρRkPRk

P
(0)
k + σ2

k

)

− µ

(

K
∑

k=1

PRk − PR

)

.

(31)

With P (0), P
(0)
R , and β(0) given in (26), (30), and (23),

respectively, condition (21) becomes

K
∑

k=1

C
(

P
(0)
k + ρRkP

(0)
Rk

σ2
k

)

≥
∑

k∈A

C
(

P
(0)
k

σ2
Rk

)

+
∑

k∈Ac

C
(

P
(0)
k

σ2
k

) (32)

This condition is equivalent to the threshold conditionPR ≥
PR,u(P ). The thresholdPR,u(P ) is a function of the source
power constraintP , and is determined by the value ofPR that
results in equality in (32).

Therefore, if case 1 occurs, the optimal source power
allocation P (0) has a water-filling form, and the optimal
relay power allocationP (0)

R also has awater-filling form
with P

(0)
k + σ2

k as the equivalent noise levels. The optimal
correlation parameterβ(0)

k
= 1 for P (0)

k > 0, which indicates
that coherent combining is not needed for this case.

Case 2:α∗ = 1, and(P (1), P
(1)
R , β(1)) is a max-min rule,

which needs to satisfy the condition

R1(P
(1), P

(1)
R , β(1)) ≤ R2(P

(1), P
(1)
R , β(1)). (33)

By definition, (P (1), P
(1)
R , β(1)) maximizes

R(1, P , PR, β) = R1(P , PR, β). (34)

We note that

β
(1)
k =

{

0, if P
(1)
k > 0, andP (1)

Rk > 0;

arbitrary, otherwise.
(35)

It can be shown thatR1(P , PR, β) is a convex function
of (P , PR) for β(1) given in (35). To derive the optimal

(P (1), P
(1)
R ) that maximizesR1(P , PR, β

(1)), the Lagrangian
can be written as

L =

K
∑

k=1

C
(

Pk + ρRkPRk + 2
√
ρRkPkPRk

σ2
k

)

− λ

(

K
∑

k=1

Pk − P

)

− µ

(

K
∑

k=1

PRk − PR

) (36)

The optimal(P (1), P
(1)
R ) needs to satisfy the following KKT

condition:

∂L
∂Pk

=
1

2 ln 2
·

√
Pk +

√
ρRkPRk

σ2
k + (

√
Pk +

√
ρRkPRk)2

≤ λ
√

Pk,

with equality if Pk > 0;

∂L
∂PRk

=
1

2 ln 2
·

√
Pk +

√
ρRkPRk

σ2
k + (

√
Pk +

√
ρRkPRk)2

≤ µ

√

PRk

ρRk

,

with equality if PRk > 0.
(37)

From (37), it is clear thatP (1)
k = 0 ⇐⇒ P

(1)
Rk = 0.

According to (35), we haveβ(1)
k P

(1)
k = 0 for k = 1, . . . ,K,

which impliesR2(P
(1), P

(1)
R , β(1)) = 0. Hence condition (33)

cannot be satisfied. Therefore, case 2 never happens.
Case 3:0 < α∗ < 1, and (P (α∗), P

(α∗)
R , β(α∗)) is a max-

min rule, whereα∗ is determined by the following condition

R1(P
(α∗), P

(α∗)
R , β(α∗)) = R2(P

(α∗), P
(α∗)
R , β(α∗)). (38)

We need to derive(P (α∗), P
(α∗)
R , β(α∗)) that maximizes

R(α∗, P , PR, β) = α∗R1(P , PR, β)+ (1−α∗)R2(P , PR, β)
(39)

for a fixedα∗. This optimization problem is not convex. Now
the KKT condition provides only a necessary condition that the
optimal (P (α∗), P

(α∗)
R , β(α∗)) needs to satisfy. One can still

perform a brute force search over those(P , PR, β) that satisfy

the KKT condition to find the optimal(P (α∗), P
(α∗)
R , β(α∗)).

However, it may be too complex to implement such an optimal
solution that involves designing correlated source and relay
inputs and also involves allocating the source and relay powers
jointly with the correlation parameter for each subchannel.
Hence it may not be worth searching for the jointly optimal
solution (P (α∗), P

(α∗)
R , β(α∗)), except in case 1, where using

independent source and relay inputs is optimal and the optimal
power allocation(P (α∗), P

(α∗)
R ) is simpler. It is hence more in-

teresting to study the asynchronized case, where it is assumed
that the source and relay nodes use independent inputs.
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C. Optimal Resource Allocation for Gaussian Parallel Relay
Channel: Asynchronized Case

In this subsection, we solve the max-min problem in (14).
This problem is simpler than the max-min problem in (12),
because the optimization is over the power allocation(P , PR)
only, and does not involve the correlation parametersβ. This
also makes the optimal solution easy to implement in practice.
In the following, we fully characterize the optimal power
allocation, which may take three possible structures.

We let

G =

{

(P , PR) :

K
∑

k=1

Pk ≤ P,

K
∑

k=1

PRk ≤ PR

}

, (40)

and rewrite the max-min optimization problem in (14) in the
following manner:

C = max
(P,P

R
)∈G

min{R1(P , PR), R2(P , PR)}

where

R1(P , PR) =

K
∑

k=1

C
(

Pk + ρRkPRk

σ2
k

)

R2(P , PR) =
∑

k∈A

C
(

Pk

σ2
Rk

)

+
∑

k∈Ac

C
(

Pk

σ2
k

)

(41)

We apply Proposition 1 to solve (41), and consider the
following three cases.

Case 1:α∗ = 0, and(P (0), P
(0)
R ) is a max-min rule, which

needs to satisfy the condition

R1(P
(0), P

(0)
R ) ≥ R2(P

(0), P
(0)
R ). (42)

The optimal(P (0), P
(0)
R ) can be derived following the steps

that are similar to those in case 1 of the synchronized case,
and is given by

P
(0)
k =















(

1

2 ln 2λ
− σ2

Rk

)+

, if k ∈ A
(

1

2 ln 2λ
− σ2

k

)+

, if k ∈ Ac

P
(0)
Rk =

(

1

2 ln 2µ
− P

(0)
k

ρRk

− σ2
k

ρRk

)+

, for k = 1, . . . ,K

(43)

where λ and µ are chosen to satisfy the power constraints
∑K

k=1 Pk ≤ P and
∑K

k=1 PRk ≤ PR.
We refer to the optimal(P (0)

k , P
(0)
Rk ) in (43) as two-level

water-filling for the following reason. The optimalP (0) is first
obtained viawater-filling with respect to the noise levelsσ2

Rk

and σ2
k. The optimalP (0)

R is then obtained viawater-filling
with P

(0)
k +σ2

k as equivalent noise levels, whereP (0) is treated
as an additional noise level.

With (P
(0)
k , P

(0)
Rk ) given in (43), condition (42) becomes

K
∑

k=1

C
(

P
(0)
k + ρRkP

(0)
Rk

σ2
k

)

≥
∑

k∈A

C
(

P
(0)
k

σ2
Rk

)

+
∑

k∈Ac

C
(

P
(0)
k

σ2
k

) (44)

This condition is equivalent to the threshold conditionPR ≥
PR,u(P ), where the thresholdPR,u(P ) is determined by the
value of PR that results in equality in (44). The threshold
PR,u(P ) is clearly a function of the source power constraint
P .

Case 2:α∗ = 1, and(P (1), P
(1)
R ) is a max-min rule, which

needs to satisfy the condition

R1(P
(1), P

(1)
R ) ≤ R2(P

(1), P
(1)
R ). (45)

By definition, (P (1), P
(1)
R ) maximizes

R(1, P , PR) = R1(P , PR). (46)

We first note thatR1(P , PR) is a convex function of(P , PR).
The Lagrangian can be written as

L =

K
∑

k=1

C
(

Pk + ρRkPRk

σ2
k

)

− λ

(

K
∑

k=1

Pk − P

)

− µ

(

K
∑

k=1

PRk − PR

) (47)

According to the KKT condition,(P (1), P
(1)
R ) needs to satisfy

∂L
∂Pk

=
1

2 ln 2
· 1

σ2
k + Pk + ρRkPRk

≤ λ,

with equality if Pk > 0;

∂L
∂PRk

=
1

2 ln 2
· 1

σ2
k + Pk + ρRkPRk

≤ µ

ρRk

,

with equality if PRk > 0

(48)

which implies

If λ <
µ

ρRk

, Pk =

(

1

2 ln 2λ
− σ2

k

)+

, PRk = 0,

If λ >
µ

ρRk

, Pk = 0, PRk =

(

1

2 ln 2µ
− σ2

k

ρRk

)+

,

If λ =
µ

ρRk

, Pk + ρRkPRk =

(

1

2 ln 2λ
− σ2

k

)+

(49)

whereλ andµ are chosen to satisfy the power constraints. In
general,λ 6= µ

ρRk
. The equation (49) implies anorthogonal di-

vision water-fillingpower allocation, i.e., for each subchannel,
either the source node or the relay node allocates a positive
amount of power. This power allocation is similar to the
optimal power allocation for fading multiple access channels
[39].

For case 2 to happen,(P (1), P
(1)
R ) needs to satisfy the

condition (45), i.e.,

K
∑

k=1

C
(

P
(1)
k + ρRkP

(1)
Rk

σ2
k

)

≤
∑

k∈A

C
(

P
(1)
k

σ2
Rk

)

+
∑

k∈Ac

C
(

P
(1)
k

σ2
k

) (50)

This condition essentially requires that the relay powerPR is
small compared to the source powerP .
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Case 3:0 < α∗ < 1, and(P (α∗), P
(α∗)
R ) is a max-min rule,

whereα∗ is determined by the condition

R1(P
(α∗), P

(α∗)
R ) = R2(P

(α∗), P
(α∗)
R ). (51)

We first derive(P (α∗), P
(α∗)
R ) that maximizes

R(α∗, P , PR) = α∗R1(P , PR) + (1− α∗)R2(P , PR). (52)

for a givenα∗, andα∗ will be determined later.
The Lagrangian can be written as

L =α∗
K
∑

k=1

C
(

Pk + ρRkPRk

σ2
k

)

+ (1− α∗)
∑

k∈A

C
(

Pk

σ2
Rk

)

+ (1− α∗)
∑

k∈Ac

C
(

Pk

σ2
k

)

− λ

(

K
∑

k=1

Pk − P

)

− µ

(

K
∑

k=1

PRk − PR

)

(53)

which implies the following KKT condition:

For k ∈ A,
∂L
∂Pk

=
α∗

2 ln 2
· 1

σ2
k + Pk + ρRkPRk

+
1− α∗

2 ln 2
· 1

σ2
Rk + Pk

≤ λ,

with equality if Pk > 0;

(54)

For k ∈ Ac,
∂L
∂Pk

=
α∗

2 ln 2
· 1

σ2
k + Pk + ρRkPRk

+
1− α∗

2 ln 2
· 1

σ2
k + Pk

≤ λ,

with equality if Pk > 0;

(55)

For k = 1, . . . ,K,
∂L

∂PRk

=
α∗

2 ln 2
· ρRk

σ2
k + Pk + ρRkPRk

≤ µ,

with equality if PRk > 0.
(56)

The optimal (P (α∗), P
(α∗)
R ) can be solved by an iterative

algorithm. For a givenPR, the value ofP can be obtained by
solving (54) and (55), and its components have the following
form:

Pk =



















positive rootx of (58) if it exists, otherwise0,

if k ∈ A;

positive rootx of (59) if it exists, otherwise0,

if k ∈ Ac

(57)
where the roots are determined by the following equations:

α∗

2 ln 2
· 1

x+ ρRkPRk + σ2
k

+
1− α∗

2 ln 2
· 1

x+ σ2
Rk

= λ (58)

α∗

2 ln 2
· 1

x+ ρRkPRk + σ2
k

+
1− α∗

2 ln 2
· 1

x+ σ2
k

= λ (59)

whereλ is chosen to satisfy the power constraint
∑K

k=1 Pk ≤
P . For a givenP , the value ofPR can be obtained by using
(56), and its components have the following form:

PRk =

(

α∗

2 ln 2µ
− Pk

ρRk

− σ2
k

ρRk

)+

, for k = 1, . . . ,K

(60)
whereµ is chosen to satisfy the power constraint

∑K
k=1 PRk ≤

PR.
If we iteratively obtainP andPR according to (57) and (60)

with an initial PR, we show in the following that(P , PR)

converges to an optimal(P (α∗), P
(α∗)
R ). We refer to this

optimal power allocation as theiterative water-fillingpower
allocation. We finally need to search over0 ≤ α ≤ 1 to find
α∗ that satisfies the equalizer condition (51).

Proof of Convergenece:We show that(P , PR) obtained
iteratively according to (57) and (60) converges to an optimal
(P (α∗), P

(α∗)
R ). We first note that after each iteration the

objective function (52) either increases or remains the same.
We also note that the objective function is bounded from the
above because of the power constraints at the source and relay
nodes. Hence the objective function must converge. It is easy
to check that for a givenP , the objective function is a strictly
concave function ofPR, and (60) yields the unique optimal
PR. It is also true that for a fixedPR, (57) yields the unique
optimalP . Hence as the objective function converges,(P , PR)
must converge. Moreover,(P , PR) converges to the solution
of the KKT conditions, which are sufficient for(P , PR) to
be optimal because the objective function is concave over
(P , PR) ∈ G. �

We now summarize the optimal power allocation that solves
(41) in the following theorem.

Theorem4: The optimal solution to (41), i.e., the optimal
power allocation that achieves the asynchronized capacity(14)
falls into the following three cases:

Case 1: The optimal (P , PR) takes thetwo-level water-
filling form and is given by (43). This case happens if
PR > PR,u(P ) where the thresholdPR,u(P ) is determined
by equality of (44).

Case 2: The optimal(P , PR) takes theorthogonal division
water-filling form and is given by (49). This case happens if
condition (50) is satisfied.

Case 3: The optimal (P , PR) takes theiterative water-
filling form and is obtained iteratively by (57) and (60).

IV. FADING FULL -DUPLEX RELAY CHANNELS

In this section, we study the three-terminal relay channel [1],
[2] in the context of wireless networks, where nodes commu-
nicate over time-varying wireless channels. We are interested
in how the source and relay nodes should dynamically change
their power with wireless channel variation to achieve optimal
performance. Such wireless relay channels can be modelled by
the fading full-duplex relay model, where each transmission
link of a three-terminal relay channel [1], [2] is corrupted
by a multiplicative fading gain coefficient in addition to an
additive white Gaussian noise term (see Fig. 4). The fading
relay channel is referred to as thefull-duplexchannel because
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the relay node is allowed to transmit and receive at the same
time and in the same frequency band.

X Y

RR XY :

Source

Relay

Destination

1h

2h
3h

Fig. 4. Fading full-duplex relay channel

The channel input-output relationship at each symbol time
can be written as

Y =
√
ρ1 h1X +

√
ρ2 h2XR + Z,

YR =
√
ρ3 h3X + ZR,

(61)

where h1, h2, and h3 are fading gain coefficients corre-
sponding to the three transmission links, respectively, and are
assumed to be independent complex proper random variables
(not necessarily Gaussian) with variances normalized to 1.We
further assume that the fading processes{h1i}, {h2i}, and
{h3i} are stationary and ergodic over time, wherei is the
time index. In (61), the additive noise termsZ and ZR are
independent proper complex Gaussian random variables with
variances also normalized to 1. The parametersρ1, ρ2, andρ3
represent the link gain to noise ratios of the corresponding
transmission links. The input symbol sequences{Xi} and
{XRi} are subject to separate average power constraintsP
andPR, respectively, i.e.,

1

n

n
∑

i=1

E|Xi|2 ≤ P,
1

n

n
∑

i=1

E|XRi|2 ≤ PR. (62)

Remark4: The fading relay channel is a special case of
the parallel relay channel with each subchannel corresponding
to one fading state realization. In particular, for a given fading
state the fading relay channel is a Gaussian relay channel by
(61). However, since this Gaussian channel is not physically
degraded, the fading relay channel is not a Gaussian parallel
relay channel with degraded subchannels that is consideredin
Sections II and III, where physically degradedness is assumed
for each subchannel.

We assume that the transmitter and the receiver know the
channel state information instantly. Hence the source and relay
nodes can allocate their transmitted signal powers according to
the channel state information to achieve the best performance.
Our goal is to study the optimal power allocation at the
source and relay nodes. As in Section III-C, we are interested
in the asynchronized case for the fading full-duplex relay
channel, where the source and relay nodes are required to use
independent inputs. The main reason is because this simplifies
the transmitter design, and is more practical in distributed
networks, where nodes need to construct their codebooks
independently.

For notational convenience, we collect the fading coeffi-
cientsh1, h2 andh3 in a vectorh := (h1, h2, h3). We define

a setA := {h : ρ3|h3|2 > ρ1|h1|2}, which contains all the
fading statesh with the source-to-relay link being better than
the source-to-destination link. The complement of the setA
is Ac := {h : ρ3|h3|2 ≤ ρ1|h1|2}. We define a setG that
contains all power allocation functions that satisfy the power
constraints, i.e.,

G = {(P (h), PR(h)) : E[P (h)] ≤ P, E[PR(h)] ≤ PR} .
(63)

The following lower and upper bounds on the asynchronized
capacity of the fading full-duplex relay channel were givenin
[9].

Lemma1: ([9]) For the fading full-duplex relay channel,
lower and upper bounds on the asynchronized capacity are
given by

Clow = max
(P (h),PR(h))∈G

min

{

2E
[

C
(

P (h)ρ1|h1|2 + PR(h)ρ2|h2|2
)]

,

2EA

[

C
(

P (h)ρ3|h3|2
)]

+ 2EAc

[

C
(

P (h)ρ1|h1|2
)]

}

(64)

Cup = max
(P (h),PR(h))∈G

min

{

2E
[

C
(

P (h)ρ1|h1|2 + PR(h)ρ2|h2|2
)]

,

2E
[

C
(

P (h)(ρ1|h1|2 + ρ3|h3|2)
)]

}

(65)
Note that the rates in the lower bound of Lemma 1 are the
same as the achievable rates in Corollary 1.

The optimal power allocation that maximizes the lower
bound (64) and the upper bound (65) were obtained in [9]
under a sum power constraint, i.e., the source and relay nodes
are subject to a total power constraint. In this paper, we assume
that the source and relay nodes are subject to the separate
power constraints as given in (62) and (63), and derive the
optimal power allocations that maximize the bounds (64) and
(65), respectively. We also characterize the conditions where
the lower and upper bounds match and determine the capacity
of the channel.

Using the same technique as in Section III-C, we charac-
terize the optimal power allocation that maximizes the lower
bound (64) of the fading relay channel. This optimal power
allocation takes the same three structures as those given in
Section III-C, and is summarized in the following for the sake
of completeness.

Optimal power allocation that maximizes the
lower bound (64):

Case 1 (two-level water-filling): If PR ≥ PR,u(P ), the
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optimal (P (0)(h), P
(0)
R (h)) is given by

P
(0)(h) =

8

>

>

<

>

>

:

„

1

λ ln 2
−

1

ρ3|h3|2

«+

, if h ∈ A,
„

1

λ ln 2
−

1

ρ1|h1|2

«+

, if h ∈ Ac

(66)
where λ is chosen to satisfy the power constraint
E[P (h)] = P .

P
(0)
R (h) =

„

1

µ ln 2
−

1 + ρ1|h1|
2P (0)(h)

ρ2|h2|2

«+

(67)

where µ is chosen to satisfy the power constraint
E[PR(h)] = PR.
The thresholdPR,u(P ) as a function of the source power
P can be solved using the following equation

E
h

C
“

P
(0)(h)ρ1|h1|

2 + P
(0)
R (h)ρ2|h2|

2
”i

= EA

h

C
“

P
(0)(h)ρ3|h3|

2
”i

+ EAc

h

C
“

P
(0)(h)ρ1|h1|

2
”i

(68)

Case 2 (orthogonal division water-filling): The optimal
(P (1)(h), P

(1)
R (h)) is given by

If
λ

ρ1|h1|2
≤

µ

ρ2|h2|2
,

P
(1)(h) =

„

1

λ ln 2
−

1

ρ1|h1|2

«+

, P
(1)
R (h) = 0;

If
λ

ρ1|h1|2
>

µ

ρ2|h2|2
,

P
(1)(h) = 0, P

(1)
R (h) =

„

1

µ ln 2
−

1

ρ2|h2|2

«+

(69)

whereλ andµ are chosen to satisfy the power constraints
E[P (h)] = P andE[PR(h)] = PR.
Case 2 happens if the following condition is satisfied:

E
h

C
“

P
(1)(h)ρ1|h1|

2 + P
(1)
R (h)ρ2|h2|

2
”i

,

≤ EA

h

C
“

P
(1)(h)ρ3|h3|

2
”i

+ EAc

h

C
“

P
(1)(h)ρ1|h1|

2
”i

(70)

Case 3 (iterative water-filling): The optimal
(P (α∗), P

(α∗)
R ) can be obtained by the following

iterative algorithm. For a givenPR(h), the value ofP (h)
is given by

P (h) =

8

>

>

>

<

>

>

>

:

positive rootx of (72) if it exists, otherwise0,
if h ∈ A;

positive rootx of (73) if it exists, otherwise0,
if h ∈ Ac

(71)
where the roots are determined by the following equations:

α∗

ln 2
·

ρ1|h1|
2

ρ1|h1|2x+ PR(h)ρ2|h2|2 + 1

+
1− α∗

ln 2
·

ρ3|h3|
2

1 + ρ3|h3|2x
= λ

(72)

α∗

ln 2
·

ρ1|h1|
2

ρ1|h1|2x+ PR(h)ρ2|h2|2 + 1

+
1− α∗

ln 2
·

ρ1|h1|
2

1 + ρ1|h1|2x
= λ

(73)

where λ is chosen to satisfy the power constraint
E[P (h)] = P . For a givenP (h), the value ofPR(h)
is given by

PR(h) =

„

1

µ ln 2
−

1 + ρ1|h1|
2P (h)

ρ2|h2|2

«+

(74)

where µ is chosen to satisfy the power constraint
E[PR(h)] = PR.
The power allocation(P (h), PR(h)) obtained iteratively
from (71) and (74) with an initialPR(h) converges to
an optimal (P (α∗)(h), P

(α∗)
R (h)). The parameterα∗ is

determined by the following equalizer condition:

E
h

C
“

P (h)ρ1|h1|
2 + PR(h)ρ2|h2|

2
”i

= EA

h

C
“

P (h)ρ3|h3|
2
”i

+EAc

h

C
“

P (h)ρ1|h1|
2
”i

(75)

The optimal power allocation for the upper bound (65) can
be derived in a similar fashion but it is omitted here since this
optimization does not have an operation meaning. In general,
the upper and lower bounds do not match. In the following
theorem, we characterize the condition where the two bounds
match and establish the asynchronized capacity.

Theorem5: For the fading full-duplex relay channel, if the
channel statistics and the power constraints at the source and
relay nodes satisfy the condition (70), then the asynchronized
capacity is given by

C = 2E
[

C
(

P (1)(h)ρ1|h1|2 + P
(1)
R (h)ρ2|h2|2

)]

(76)

where the capacity achieving power allocation
(P (1)(h), P

(1)
R (h)) takes the orthogonal (time) division

water-filling form given in (69).
Proof: The lower bound (64) and the upper bound (65)

have one term in common inside the “min” in their expression.
If condition (70) is satisfied, case 2 happens when solving
the max-min problem for the lower bound (64). In this case,
the common term of the bounds is optimized by the power
allocation in (69) and determines both bounds that result in
Cup = Clow. This common value is thus the asynchronized
capacity.

The condition given in Theorem 5 essentially requires that
the relay powerPR be small compared to the source power
P . In this case, the optimal scheme is to maximize the rate
at which the source and relay nodes can transmit to the
destination node. The optimal scheme is to let the source and
relay nodes have a time division access of the channel. For a
given channel state realization, the node with a better channel
to the destination node is allowed to transmit. This is similar
to the optimal power allocation scheme for the fading multiple
access channel studied in [39].

V. FADING HALF-DUPLEX RELAY CHANNELS

In this section, we study a fading half-duplex relay channel
model, where the source node transmits to the relay and
destination nodes in one channel (channel 1), and the relay
node transmits to the destination node in an orthogonal channel
(channel 2). We introduce a parameterθ to represent the
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channel resource (time and bandwidth) allocation between the
two orthogonal channels. We draw this fading half-duplex
relay channel model in Fig. 5 with the solid and dashed
lines indicating the transmission links of channels 1 and 2,
respectively.

X 1Y

RR XY :

Source

Relay

Destination

1h

2h
3h

2Y

Fig. 5. Fading half-duplex relay model

The input-output relationship for the fading half-duplex
relay channel is given by

Y1 =
√
ρ1 h1X + Z1,

Y2 =
√
ρ2 h2XR + Z2,

YR =
√
ρ3 h3X + ZR,

(77)

whereh1, h2, andh3 are fading gain coefficients that satisfy
the same assumptions as for the fading full-duplex relay
channel in Section IV. The additive noise termsZ1, Z2,
and ZR are independent proper complex Gaussian random
variables with variances normalized to 1. The parametersρ1,
ρ2, and ρ3 represent the link gain to noise ratios of the
corresponding transmission links. The source and relay input
sequences are subject to the same power constraints (62) as
in the fading full-duplex relay channel.

As in the full-duplex case, the channel state information is
assumed to be known at both the transmitter and the receiver.
Hence the source and relay nodes can allocate their powers
adaptively according to the instantaneous channel state in-
formation. The half-duplex channel has an additional channel
resource allocation parameterθ that may also be optimized.
Our goal is to find the jointly optimalθ and power allocation
for the source and relay nodes that achieve the best rate. We
also derive an upper bound on the capacity, which helps to
establish capacity theorems for some special cases.

We study three scenarios. In Scenario I, we fixθ = 1
2 ,

and only consider the maximization of the achievable rate
over the power allocation at the source and relay nodes. In
Scenario II, we restrictθ to be same for all channel states, and
jointly optimize the achievable rate over this single parameter
θ and power allocation. In Scenario III, which is the most
general scenario, we further allowθ to change with channel
state realizations, and optimize the achievable rate over all
possible channel resource and power allocations.

A. Scenario I: Fixedθ = 1/2

In this subsection, we study Scenario I, where the two
orthogonal channels share the channel resource equally, i.e.,
the channel resource allocation parameterθ = 1/2. We use
this scenario to demonstrate the three basic structures of

the optimal power allocation, which take simple forms. The
optimal power allocation can be implemented in a distributed
manner at the source and relay nodes, because each node needs
to know only the channel state information of the links over
which it transmits.

In the following, we first give an achievable rate for this
channel, and then find an optimal power allocation that max-
imizes this achievable rate.

Proposition2: An achievable rate for the fading half-
duplex relay channel Scenario I is given by

Clow = max
(P (h),PR(h))∈G

min

{

E
[

C
(

2P (h)ρ1|h1|2
)

+ C
(

2PR(h)ρ2|h2|2
)]

,

EA

[

C
(

2P (h)ρ3|h3|2
)]

+ EAc

[

C
(

2P (h)ρ1|h1|2
)]

}

(78)
Proposition 2 follows easily by using steps that are similar

to the achievability proof for Theorems 2 and 3 and by using
the channel definition (77).

The optimal power allocation that maximizesClow in (78)
can be derived by applying Proposition 1, and are given in the
following three cases. The details of the proof are relegated
to Appendix I.

Optimal power allocation that maximizes the
lower bound (78):

Case 1: If PR ≥ PR,u(P ), the optimal
(P (0)(h), P

(0)
R (h)) is given by

P
(0)(h) =

8

>

>

<

>

>

:

1

2

„

1

λ ln 2
−

1

ρ3|h3|2

«+

, if h ∈ A,

1

2

„

1

λ ln 2
−

1

ρ1|h1|2

«+

, if h ∈ Ac

(79)
where λ is chosen to satisfy the power constraint
E[P (h)] = P .

P
(0)
R (h) =

1

2

„

1

µ ln 2
−

1

ρ2|h2|2

«+

(80)

where µ is chosen to satisfy the power constraint
E[PR(h)] = PR.
The thresholdPR,u(P ) as a function of the source power
P can be solved using the following equation:

E
h

C
“

2P
(0)
R (h)ρ2|h2|

2
”i

= EA

h

C
“

2P (0)(h)ρ3|h3|
2
”

− C
“

2P (0)(h)ρ1|h1|
2
”i

.

(81)

Case 2:If PR ≤ PR,l(P ), the optimal(P (1)(h), P
(1)
R (h))

is given by

P
(1)(h) =

1

2

„

1

λ ln 2
−

1

ρ1|h1|2

«+

(82)

P
(1)
R (h) =

1

2

„

1

µ ln 2
−

1

ρ2|h2|2

«+

(83)

whereλ andµ are chosen to satisfy the power constraints
E[P (h)] = P andE[PR(h)] = PR.
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The thresholdPR,l(P ) can be solved using the following
equation:

E
h

C
“

2P
(1)
R (h)ρ2|h2|

2
”i

= EA

h

C
“

2P (1)(h)ρ3|h3|
2
”

− C
“

2P (1)(h)ρ1|h1|
2
”i

.

(84)

Case 3: If PR,l(P ) ≤ PR ≤ PR,u(P ), the optimal
(P (α∗)(h), P

(α∗)
R (h)) is given by

P
(α∗)(h) =
8

>

>

<

>

>

:

positive rootx of (86) if it exists, otherwise0,
if h ∈ A;

1

2

„

1

λ ln 2
−

1

ρ1|h1|2

«+

, if h ∈ A
c

(85)

where the rootx is determined by the following equation

α∗

2 ln 2
·

1
1

2ρ1|h1|2
+ x

+
1− α∗

2 ln 2
·

1
1

2ρ3|h3|2
+ x

− λ = 0.

(86)

P
(α∗)
R (h) =

1

2

„

α∗

µ ln 2
−

1

ρ2|h2|2

«+

(87)

The parametersλ andµ are chosen to satisfy the power
constraints given in (63). The parameterα∗ is determined
by the following condition:

E
h

C
“

2P (α∗)(h)ρ1|h1|
2
”

+ C
“

2P
(α∗)
R (h)ρ2|h2|

2
”i

= EA

h

C
“

2P (α∗)(h)ρ3|h3|
2
”i

+ EAc

h

C
“

2P (α∗)(h)ρ1|h1|
2
”i

.

(88)

It can be seen that in all cases the optimal power allocation
PR(h) for the relay node depends only on the fading gainh2

of the relay-to-destination link and it is always a water-filling
solution. However, the optimal power allocationP (h) for the
source node in general depends on the fading gainsh1 andh3

corresponding to two links (source-to-destination and source-
to-relay), and it is not a water-filling solution in general.Only
in cases wherePR is large or small compared toP , i.e.,
wherePR ≥ PR,u(P ) or PR ≤ PR,l(P ), the optimalP (h)
depends only on the fading gain of one link and it reduces
to a water-filling solution. This is intuitive because whenPR

is small compared toP , we should make the multiple access
transmission from the source and relay nodes to the destination
node as strong as possible, and hence the power allocation at
the source node should be based on the fading gainh1 of the
source-to-destination link. WhenPR is large compared toP ,
we should transmit as much information as possible from the
source node to the relay node, and hence the power allocation
at the source node should be based on the fading gainh3 of
the source-to-relay link.

We now provide numerical results for a Rayleigh fading
half-duplex relay channel. We assume that the fading co-
efficients h1, h2 and h3 are independent, zero-mean, unit
variance, proper complex Gaussian random variables (i.e.,the
amplitudes|h1|, |h2| and |h3| have a Rayleigh distribution).
We further assumeρ1 = 0.1, ρ2 = 0.1, and ρ3 = 1. We
assume the power constraint at the source node isP = 3

dB. This corresponds to the practical environment where the
relay node is close to the source node. In Fig. 6, we plot the
achievable rates for Scenario I optimized over power allocation
(P (h), PR(h)). We also indicate the corresponding max-min
optimization cases to achieve these rates. It can be seen that the
achievable rate increases as the relay power increases in cases
2 and 3, and saturates when the relay power falls into case
1. This is because in case 1 the relay power is large enough
to forward all the information decoded at the relay node to
the destination node, and the achievable rate is limited by the
capacity of the source-to-relay link.
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Fig. 6. Optimal achievable rates in Scenario I
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Fig. 7. Ranges of source and relay powers with correspondingmax-min
optimization cases in Scenario I

In Fig. 7, we plot the ranges of the source and relay powers
with their corresponding max-min optimization cases. The
solid line in the graph divides cases 1 and 3, and corresponds
to the threshold functionPR,u(P ). The dashed line divides
cases 2 and 3, and corresponds to the threshold function
PR,l(P ). It is clear from the graph that when the relay power
is small compared to the source power, the optimal power
allocation falls into case 2, and when the relay power is large
compared to the source power, the optimal power allocation
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falls into case 1. Since the achievable rate (based on the
decode-and-forward scheme) saturates in case 1, it is not
useful to increase the relay power beyond the solid line in
Fig. 7 if the decode-and-forward scheme is adopted. Hence
the solid line PR,u defines the relay powers that provide
the best decode-and-forward rates under Scenario I for the
corresponding source powers.

B. Scenario II: Sameθ for All Channel States

In Scenario I,θ is fixed at1/2; i.e., the channel resource of
time and bandwidth is equally allocated for the two orthogonal
channels. Such equal channel resource allocation may not be
optimal, and therefore we consider Scenario II, where the
channel resource allocation parameterθ needs to be optimized
jointly with power allocation. We also assume thatθ is the
same for all channel states to make the system design simple.
As in Scenario I, the optimal solution of Scenario II can alsobe
implemented in a distributed manner at the source and relay
nodes. This is because the optimalθ depends only on the
channel statistics, not on the channel state realizations.The
power allocation at each node depends only on the channel
state of the links over which the node transmits.

We first give an achievable rate (lower bound on the
capacity) and a cut-set upper bound on the capacity. We then
study the joint channel resource and power allocations that
optimize these bounds. We also characterize the condition
when the two bounds match and establish the capacity.

Proposition3: An achievable rate for the fading half-
duplex relay channel scenario II is given by

Clow = max
0≤θ≤1,(P (h),PR(h))∈G

min

{

E

[

2θC
(

P (h)ρ1|h1|2
θ

)

+ 2θ̄C
(

PR(h)ρ2|h2|2
θ̄

)]

,

EA

[

2θC
(

P (h)ρ3|h3|2
θ

)]

+ EAc

[

2θC
(

P (h)ρ1|h1|2
θ

)]

}

(89)

whereθ̄ = 1− θ. An upper bound on the capacity is given by

Cup = max
0≤θ≤1,(P (h),PR(h))∈G

min

{

E

[

2θC
(

P (h)ρ1|h1|2
θ

)

+ 2θ̄C
(

PR(h)ρ2|h2|2
θ̄

)]

,

E

[

2θC
(

P (h)(ρ3|h3|2 + ρ1|h1|2)
θ

)]

}

.

(90)
We provide the optimal channel resource and power allo-

cations(θ, P (h), PR(h)) that solve (89) in the following. The
proof of optimality is relegated to Appendix II.

Optimal resource allocation that maximizes the
lower bound (89):

Case 1:This case is included in case 3 with the parameter
α being allowed to take the value of0.
Case 2: The optimal (θ(1), P (1)(h), P

(1)
R (h)) can be

obtained by the following iterative algorithm. For a given

θ, the power allocation(P (h), PR(h)) are given by

P (h) = θ

„

1

λ ln 2
−

1

ρ1|h1|2

«+

(91)

PR(h) = θ̄

„

1

µ ln 2
−

1

ρ2|h2|2

«+

, (92)

whereλ andµ are chosen to satisfy the power constraints.
For a given(P (h), PR(h)), the value ofθ is given by the
root of the following equation:

2E

»

C

„

P (h)ρ1|h1|
2

θ

«

− C

„

PR(h)ρ2|h2|
2

θ̄

«–

=
1

ln 2
E

»

P (h)ρ1|h1|
2

θ + P (h)ρ1|h1|2
−

PR(h)ρ2|h2|
2

θ̄ + PR(h)ρ2|h2|2

–

.

(93)

The resource allocation(θ, P (h), PR(h)) obtained itera-
tively from (91),(92), and (93) converges to the optimal
(θ(1), P (1)(h), P

(1)
R (h)).

This case happens if the following condition is satisfied

θ̄
(1)E

"

C

 

P
(1)
R (h)ρ2|h2|

2

θ̄(1)

!#

≤ θ
(1)EA

"

C

„

P (1)(h)ρ3|h3|
2

θ(1)

«

− C

„

P (1)(h)ρ1|h1|
2

θ(1)

«

#

.

(94)

Case 3:The optimal(θ(α
∗), P (α∗)(h), P

(α∗)
R (h)) can be

obtained by the following iterative algorithm. For a given
θ, the power allocation(P (h), PR(h)) is given by

P (h) =

8

>

>

>

>

<

>

>

>

>

:

positive rootx of (96) if it exists, otherwise0,
if h ∈ A,

θ

„

1

λ ln 2
−

1

ρ1|h1|2

«+

if h ∈ Ac;
(95)

where the rootx is determined by the following equation:

α∗θ

ln 2
·

1
θ

ρ1|h1|2
+ x

+
(1− α∗)θ

ln 2
·

1
θ

ρ3|h3|2
+ x

− λ = 0.

(96)

PR(h) = θ̄

„

α∗

µ ln 2
−

1

ρ2|h2|2

«+

. (97)

The parametersλ andµ are chosen to satisfy the power
constraints.
For a given(P (h), PR(h)), the value ofθ is the root of
the following equation:

2α∗EA

h

C
“

P (h)ρ1|h1|
2

θ

”i

− α∗

ln 2
EA

h

P (h)ρ1|h1|
2

θ+P (h)ρ1|h1|2

i

− 2α∗E
h

C
“

PR(h)ρ2|h2|
2

θ̄

”i

+ α∗

ln 2
E
h

PR(h)ρ2|h2|
2

θ̄+PR(h)ρ2|h2|2

i

+ 2EAc

h

C
“

P (h)ρ1|h1|
2

θ

”i

− 1
ln 2

EAc

h

P (h)ρ1|h1|
2

θ+P (h)ρ1|h1|2

i

+ 2(1− α∗)EA

h

C
“

P (h)ρ3|h3|
2

θ

”i

− 1−α∗

ln 2
EA

h

P (h)ρ3|h3|
2

θ+P (h)ρ3|h3|2

i

= 0
(98)

The resource allocation(θ, P (h), PR(h)) obtained itera-
tively from (95),(97), and (98) converges to the optimal
(θ(α

∗), P (α∗)(h), P
(α∗)
R (h)).
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Finally, the parameterα∗ is determined by the condition

E

"

θ
(α∗)C

 

P (α∗)(h)ρ1|h1|
2

θ(α
∗)

!

+ θ̄
(α∗)C

 

P
(α∗)
R (h)ρ2|h2|

2

θ̄(α
∗)

!#

,

= EA

"

θ
(α∗)C

 

P (α∗)(h)ρ3|h3|
2

θ(α
∗)

!#

+EAc

"

θ
(α∗)C

 

P (α∗)(h)ρ1|h1|
2

θ(α
∗)

!#

.

(99)

The optimization for the upper bound (90) can be performed
in a similar manner, and is not presented in this paper. In
general, the lower bound (89) and the upper bound (90) do
not match. In the following theorem, we characterize the
condition under which the two bounds match and hence yield
the capacity of this channel.

Theorem6: For the fading half-duplex relay channel Sce-
nario II, if the channel statistics and the power constraints
satisfy the condition (94), then the capacity is given by

C = E

[

2θ(1)C
(

P (1)(h)ρ1|h1|2
θ(1)

)

+ 2θ̄(1)C
(

P
(1)
R (h)ρ2|h2|2

θ̄

)] (100)

where the capacity achieving resource allocation
(θ(1), P (1)(h), P

(1)
R (h)) can be obtained iteratively from

(91), (92) and (93).
The proof of Theorem 6 is similar to the proof of Theorem

5, and is hence omitted.
Remark5: The capacity in Theorem 6 refers to the largest

rate under Scenario II that can be achieved over all possible
channel resource allocation parametersθ and over all possible
power allocation rules(P (h), PR(h)).

The condition given in Theorem 6 tends to be satisfied either
when the relay powerPR is small compared to the source
powerP , or when the relay is much closer to the source than
to the destination.

In Fig. 8, we plot the lower and upper bounds on the capac-
ity of Scenario II for the same Rayleigh fading relay channelas
in Fig. 6. Both bounds are optimized over(θ, P (h), PR(h)). It
can be seen from Fig. 8 that when the relay power is less than
a threshold (4 dB), the two bounds match and determine the
capacity of Scenario II. This demonstrates our capacity result
in Theorem 6 and the condition when the lower and upper
bounds match. Fig. 8 also shows that the gap between the
lower and upper bounds is small even when the relay power
is large.

In Fig. 9, we plot the ranges of the source and relay powers
with their corresponding max-min optimization cases. The
dashed line in the graph divides cases 2 and 3. Similar to
Fig. 7, the optimal power allocation falls into case 2 when the
relay power is small compared to the source power. However,
we see that Fig. 9 deviates from Fig. 7 in that case 1 (where
the achievable rate saturates) is missing in Scenario II. This
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explains why the achievable rate under Scenario II continues
to increase beyond the point where the rate under Scenario I
saturates (see Fig. 11 in Section V-C).

In Fig. 10, we plot the optimal value ofθ as a function
of the relay power, and observe that it is not a monotonic
function. When the relay power is small, as the relay power
increases, the optimalθ decreases so that more of the channel
resource is assigned to the relay-to-destination link to make
more use of the relay node. When the relay power is large,
as the relay power increases, the optimalθ increases. This is
because the relay power is now large enough to forward all the
information decoded at the relay node to the destination node
even with a small amount of the channel resource, and hence
more of the channel resource is needed for the source node
to transmit more information to the relay node. This behavior
of the optimalθ is similar to that of the Gaussian half-duplex
relay channel studied in [37].

C. Scenario III:θ Changes with Channel States

In Scenario II, the parameterθ is required to be the same
for all channel states, and only the power allocations are
dynamically adjusted according to the instantaneous channel
state. In this subsection, we study Scenario III, whereθ is
also allowed to change with the channel state realizations,and
θ(h) is optimized jointly with power allocation(P (h), PR(h)).
However, for the source and relay nodes to decideθ(h) for
each channel state, each node needs to know the channel
realizations on all transmission links. This makes the system
design more complex, and not as practical as Scenario II. We
include the analysis of the resource allocation for this scenario
mainly for the sake of completeness.

Proposition4: An achievable rate for the fading half-
duplex relay channel Scenario III is given by:

Clow = max
0≤θ(h)≤1,

(P (h),PR(h))∈G

min

{

E
[

2θ(h)C
(

P (h)ρ1|h1|
2

θ(h)

)]

+ E
[

2θ̄(h)C
(

PR(h)ρ2|h2|
2

θ̄(h)

)]

,

EA

[

2θ(h)C
(

P (h)ρ3|h3|
2

θ(h)

)]

+ EAc

[

2θ(h)C
(

P (h)ρ1|h1|
2

θ(h)

)]

}

(101)

An upper bound on the capacity is given by

Cup = max
0≤θ(h)≤1,

(P (h),PR(h))∈G

min

{

E
[

2θ(h)C
(

P (h)ρ1|h1|
2

θ(h)

)]

+ E
[

2θ̄(h)C
(

PR(h)ρ2|h2|
2

θ̄(h)

)]

,

E
[

2θ(h)C
(

P (h)(ρ3|h3|
2+ρ1|h1|

2)
θ(h)

)]

}

.

(102)
The optimal resource allocation(θ(h), P (h), PR(h)) that

achieves the maximum of the lower bound (101) is given in
the following. The proof of optimality is relegated to Appendix
III.

Optimal resource allocation that maximizes the
lower bound (101):

Case 1: The optimal resource allocation
(θ(0)(h), P (0)(h), P

(0)
R (h)) is given by

P
(0)(h) =

8

>

>

<

>

>

:

„

1

λ ln 2
−

1

ρ3|h3|2

«+

, if h ∈ A,
„

1

λ ln 2
−

1

ρ1|h1|2

«+

, if h ∈ Ac;

(103)

P
(0)
R (h) =

8

<

:

„

1

µ ln 2
−

1

ρ2|h2|2

«+

, if P (0)(h) = 0;

0, if P (0)(h) > 0,
(104)

whereλ andµ are chosen to satisfy the power constraint
given in (63).

θ
(0)(h) =

(

1, if P (0)(h) > 0;

0, if P (0)(h) = 0.
(105)

For case 1 to happen,(θ(0)(h), P (0)(h), P
(0)
R (h)) needs

to satisfy the following condition:

E
h

C
“

P
(0)
R (h)ρ2|h2|

2
”i

≥ EA

h

C
“

P
(0)(h)ρ3|h3|

2
”

− C
“

P
(0)(h)ρ1|h1|

2
”i

.

(106)

Case 2:The optimal(θ(1)(h), P (1)(h), P
(1)
R (h)) can be

determined by the following iterative algorithm. For a
given θ(h), the power allocation(P (h), PR(h)) is given
by

P (h) = θ(h)

„

1

λ ln 2
−

1

ρ1|h1|2

«+

(107)

PR(h) = θ̄(h)

„

1

µ ln 2
−

1

ρ2|h2|2

«+

(108)

whereλ andµ are chosen to satisfy the power constraints
given in (63). For a given(P (h), PR(h)), the channel
resource allocationθ(h) is the root of the following
equation:

2C

„

P (h)ρ1|h1|
2

θ(h)

«

− 2C

„

PR(h)ρ2|h2|
2

θ̄(h)

«

−
1

ln 2

P (h)ρ1|h1|
2

θ(h) + P (h)ρ1|h1|2
+

1

ln 2

PR(h)ρ2|h2|
2

θ̄(h) + PR(h)ρ2|h2|2

= 0.
(109)

For case 2 to happen,(θ(1)(h), P (1)(h), P
(1)
R (h)) needs

to satisfy the following condition:

E

"

θ̄
(1)(h)C

 

P
(1)
R (h)ρ2|h2|

2

θ̄(1)(h)

!#

≤ EA

"

θ
(1)(h)C

„

P (1)(h)ρ3|h3|
2

θ(1)(h)

«

− θ
(1)(h)C

„

P (1)(h)ρ1|h1|
2

θ(1)(h)

«

#

(110)

Case 3:The optimal(θ(α
∗)(h), P (α∗)(h), P

(α∗)
R (h)) can

be obtained by the following iterative algorithm. For a
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given θ(h), the power allocation(P (h), PR(h)) is given
by

P (h) =

8

>

>

<

>

>

:

positive rootx of (112) if it exists, otherwise0,
if h ∈ A,

θ(h)

„

1

λ ln 2
−

1

ρ1|h1|2

«+

, if h ∈ A
c;

(111)
where the rootx is determined by the following equation:

α∗θ(h)

ln 2

1
θ(h)

ρ1|h1|2
+ x

+
(1− α∗)θ(h)

ln 2

1
θ(h)

ρ3|h3|2
+ x

−λ = 0.

(112)

PR(h) = θ̄(h)

„

α∗

µ ln 2
−

1

ρ2|h2|2

«+

(113)

where the parametersλ and µ are chosen to satisfy the
power constraints (63).
For a given(P (h), PR(h)), the channel resource alloca-
tion θ(h) is determined by

If h ∈ A,

2α∗C

„

P (h)ρ1|h1|
2

θ(h)

«

−
α∗

ln 2

P (h)ρ1|h1|
2

θ(h) + P (h)ρ1|h1|2

− 2α∗C

„

PR(h)ρ2|h2|
2

θ̄(h)

«

+
α∗

ln 2

PR(h)ρ2|h2|
2

θ̄(h) + PR(h)ρ2|h2|2

+ 2(1− α∗)C

„

P (h)ρ3|h3|
2

θ(h)

«

−
1− α∗

ln 2

P (h)ρ3|h3|
2

θ(h) + P (h)ρ3|h3|2

= 0;
(114)

If h ∈ A
c
,

− 2α∗C

„

PR(h)ρ2|h2|
2

θ̄(h)

«

+
α∗

ln 2

PR(h)ρ2|h2|
2

θ̄(h) + PR(h)ρ2|h2|2

+ 2C

„

P (h)ρ1|h1|
2

θ(h)

«

−
1

ln 2

P (h)ρ1|h1|
2

θ(h) + P (h)ρ1|h1|2

= 0.

The parameterα∗ is determined by the condition

E

"

θ
(α∗)(h)C

 

P (α∗)(h)ρ1|h1|
2

θ(α
∗)(h)

!#

+ E

"

θ̄
(α∗)(h)C

 

P
(α∗)
R (h)ρ2|h2|

2

θ̄(α
∗)(h)

!#

,

= EA

"

θ
(α∗)(h)C

 

P (α∗)(h)ρ3|h3|
2

θ(α
∗)(h)

!#

+ EAc

"

θ
(α∗)(h)C

“P (α∗)(h)ρ1|h1|
2

θ(α
∗)(h)

”

#

.

(115)

The optimization for the upper bound (102) can be per-
formed using steps that are similar to those for the lower
bound. In general, the lower bound (101) and the upper bound
(102) do not match. However, we show that if the channel
statistics and the power constraints satisfy the followingcon-
dition, the two bounds match and hence we obtain the capacity
for this channel.

Theorem7: For the fading half-duplex relay channel Sce-
nario III, if the channel statistics and the power constraints
satisfy the condition (110), then the capacity is given by

C =E

[

2θ(1)(h)C
(

P (1)(h)ρ1|h1|2
θ(1)(h)

)]

+ E

[

2θ̄(1)(h)C
(

P
(1)
R (h)ρ2|h2|2
θ̄(1)(h)

)] (116)

where the capacity achieving resource allocation
(θ(1)(h), P (1)(h), P

(1)
R (h)) can be obtained iteratively

from (107), (108) and (109).
The proof of Theorem 7 is similar to that of Theorem 5,

and is omitted.
Remark6: The capacity in Theorem 7 refers to the largest

rate under Scenario III that can be achieved over all pos-
sible channel resource allocationθ(h) and power allocation
(P (h), PR(h)).

The condition given in Theorem 7 is similar to that in
Theorem 6 for Scenario II, and these conditions tend to be
satisfied either when the relay powerPR is small compared
to the source powerP , or when the relay node is much closer
to the source node than to the destination node.
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Fig. 11. Comparison of achievable rates with optimal resource allocations
for Scenarios I, II, and III

In Fig. 11, we plot the achievable rates under Scenario III
optimized over(θ(h), P (h), PR(h)) for the same Rayleigh
fading relay channel as in Fig. 6 and Fig. 8. We compare
these rates with the achievable rates under Scenario I opti-
mized over(P (h), PR(h)) and Scenario II optimized over
(θ, P (h), PR(h)), and with the capacity of the direct link
from the source node to the destination node. It is clear from
the graph that employing the relay node greatly improves
the performance of the source-to-destination channel. Fig. 11
shows that the achievable rate under scenario II is larger than
the achievable rate under Scenario I, particularly when the
relay power is large and the achievable rate under scenario
I saturates. This demonstrates that using a jointly optimal
channel resource allocation parameterθ helps to improve the
achievable rate. As we have commented for Fig. 9, Scenario
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II does not have case 1, and hence the achievable rate under
Scenario II continues to increase when the achievable rate
under Scenario I saturates in case 1. Furthermore, ScenarioIII
has larger achievable rates than Scenario II becauseθ(h) can
be dynamically changed based on the instantaneous channel
state information.

We note that finding an optimal resource allocation for
Rayleigh fading relay channels is a high dimensional op-
timization problem, particularly in Scenario III where the
optimization is jointly over(θ(h), P (h), PR(h)). Although
the problem is convex, the standard convex programming
techniques may converge slowly. However, since we have
obtained the analytical structures of the optimal solutions, our
numerical algorithm converges extremely fast and takes only
a few iterations.

VI. CONCLUDING REMARKS

We have studied capacity bounds for the parallel relay
channel and its special case of the fading relay channel.
We have established capacity theorems for several classes of
channels including the parallel relay channel with degraded
subchannels and its Gaussian case, the full-duplex relay chan-
nel that satisfies certain conditions in asynchronized case, and
the half-duplex relay channel that satisfies certain conditions.

We have studied resource allocation for the Gaussian par-
allel relay channel with degraded subchannels and the fading
relay channel under both full-duplex and half-duplex models.
Our study of resource allocation is different from previous
work on this topic in that we make the more practical
assumption that the source and relay nodes are subject to
separate power constraints rather than a total power constraint.
We have shown that optimal resource allocation under this
assumption may take three different forms depending on the
channel statistics and values of the power constraints.

Finally, we note that the resource allocation problem we
have considered falls under a class ofmax-minproblems and
we have provided a technique for solving such max-min prob-
lems. It is known that the achievable rates of relay channels
when relay nodes use the decode-and-forward scheme are
usually expressed bymax-minforms. Our technique certainly
applies to optimization problems arising in these contexts. In
particular, our technique has been applied to study orthogonal
relay broadcast channels in [40], and can be used to study
more general classes of relay networks with fading links.

APPENDIX I
PROOF OFRESOURCEALLOCATION THAT MAXIMIZES Clow

(78) FOR SCENARIO I

We first letR1(P (h), PR(h)) andR2(P (h), PR(h)) denote
the two terms over which the minimization in (78) is taken.
We can then express (78) in the following compact form:

Clow = max
(P (h),PR(h))∈G

min {R1(P (h), PR(h)), R2(P (h), PR(h))} .
(117)

We apply Proposition 1 to derive the optimal power alloca-
tion rule, which falls into the following three cases.

Case 1:α∗ = 0, and(P (0)(h), P
(0)
R (h)) is an optimal power

allocation, which needs to satisfy the condition

R1(P
(0)(h), P

(0)
R (h)) ≥ R2(P

(0)(h), P
(0)
R (h)). (118)

By definition, (P (0)(h), P
(0)
R (h)) maximizes

R(0, P (h), PR(h)) = R2(P (h), PR(h)). (119)

The optimalP (0)(h) given in (79) follows easily from the
KKT condition. For case 1 to happen,(P (0)(h), P

(0)
R (h))

needs to satisfy the condition (118). It is clear that
R2(P (h), PR(h)) depends only on P (h). The term
R1(P (h), PR(h)) depends on bothP (h) and PR(h).
To characterize the most general condition for case 1 to
happen,PR(h) needs to maximizeR1(P (h), PR(h)). Such
P

(0)
R (h) can be obtained by the KKT condition and is given

in (80). The condition (81) follows from equality of condition
(118).

Case 2:α∗ = 1, and(P (1)(h), P
(1)
R (h)) is an optimal power

allocation, which needs to satisfy the condition

R1(P
(1)(h), P

(1)
R (h)) ≤ R2(P

(1)(h), P
(1)
R (h)). (120)

The optimal(P (1)(h), P
(1)
R (h)) that maximizes

R(1, P (h), PR(h)) = R1(P (h), PR(h)) (121)

can be easily obtained by the KKT condition, and are given
in (82) and (83). The condition (84) follows from equality of
condition (120).

Case 3: 0 < α∗ < 1, and (P (α∗)(h), P
(α∗)
R (h)) is an

optimal power allocation, whereα∗ is determined by the
following condition

R1(P
(α∗)(h), P

(α∗)
R (h)) = R2(P

(α∗)(h), P
(α∗)
R (h)). (122)

We need to derive(P (α∗)(h), P
(α∗)
R (h)) that maximizes

R(α∗, P (h), PR(h))

= α∗R1(P (h), PR(h)) + (1− α∗)R2(P (h), PR(h)).
(123)

The Lagrangian can be written as

L =α∗EA

[

C
(

2P (h)ρ1|h1|2
)]

+ α∗E
[

C
(

2PR(h)ρ2|h2|2
)]

+ EAc

[

C
(

2P (h)ρ1|h1|2
)]

+ (1− α∗)EA

[

C
(

2P (h)ρ3|h3|2
)]

− λ
(

E[P (h)]− P
)

− µ
(

E[PR(h)]− PR

)

(124)

whereλ andµ are Lagrange multipliers.
For h ∈ A, the KKT condition is given by:

∂L
∂P (h)

=
α∗

2 ln 2
· 1

1
2ρ1|h1|2

+ P (h)
+

1− α∗

2 ln 2
· 1

1
2ρ3|h3|2

+ P (h)

≤ λ, with equality if P (h) > 0
(125)

It is easy to check thatP (α∗)(h) for h ∈ A given in (85)
satisfies the preceding KKT condition. TheP (α∗)(h) for h ∈
Ac in (85) andP (α∗)

R (h) in (87) also follow from the KKT
condition.
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APPENDIX II
PROOF OFRESOURCEALLOCATION THAT MAXIMIZES Clow

(89) FOR SCENARIO II

We letR1(θ, P (h), PR(h)) andR2(θ, P (h), PR(h)) denote
the two terms over which the minimization in (89) is taken.
We can then express (89) in the following compact form:

Clow = max
0≤θ≤1,(P (h),PR(h))∈G

min {R1(θ, P (h), PR(h)), R2(θ, P (h), PR(h))} .
(126)

The max-min problem in (126) can be solved by
using Proposition 1. The main step is to obtain
(θ(α), P (α)(h), P

(α)
R (h)) that maximizes

R(α, θ, P (h), PR(h))

:= αR1(θ, P (h), PR(h)) + (1− α)R2(θ, P (h), PR(h))
(127)

for a givenα. The following lemma states that maximizing
the functionR(α, θ, P (h), PR(h)) over (θ, P (h), PR(h)) is a
convex programming problem and hence can be solved by
standard convex programming algorithms.

Lemma2: For a fixedα, R(α, θ, P (h), PR(h)) is a con-
cave function over(θ, P (h), PR(h)), where0 ≤ θ ≤ 1 and
(P (h), PR(h)) ∈ G.

Lemma 2 can be verified by computing the Hessian of the
function R(α, θ, P (h), PR(h)) (for a fixed α) and showing
that it is negative semidefinite.

We now apply Proposition 1 to study the max-min problem
in (126) by considering the following three cases.

Case 1:α∗ = 0, and(θ(0), P (0)(h), P
(0)
R (h)) is an optimal

resource allocation, which needs to satisfy the condition

R1(θ
(0), P (0)(h), P

(0)
R (h)) ≥ R2(θ

(0), P (0)(h), P
(0)
R (h)).

(128)
We first derive(θ(0), P (0)(h), P

(0)
R (h)) that maximizes

R(0, θ, P (h), PR(h)) = R2(θ, P (h), PR(h)). (129)

It is easy to see that the optimalθ(0) = 1 from the
expression ofR2(θ, P (h), PR(h)), and this results in

R1(θ
(0), P (0)(h), P

(0)
R (h)) ≤ R2(θ

(0), P (0)(h), P
(0)
R (h)).

(130)
Comparing (128) and (130), it is clear that only equality can
be satisfied in (128). Hence this case can be included in the
following case 3 withα∗ being allowed to take the value of
0.

Case 2:α∗ = 1, and(θ(1), P (1)(h), P
(1)
R (h)) is an optimal

resource allocation, which needs to satisfy the condition

R1(θ
(1), P (1)(h), P

(1)
R (h)) ≤ R2(θ

(1), P (1)(h), P
(1)
R (h)).

(131)
We first derive(θ(1), P (1)(h), P

(1)
R (h)) that maximizes

R(1, θ, P (h), PR(h)) = R1(θ, P (h), PR(h)). (132)

The Lagrangian can be written as

L = 2θE

[

C
(

P (h)ρ1|h1|2
θ

)]

+ 2θ̄E

[

C
(

PR(h)ρ2|h2|2
θ̄

)]

− λ
(

E[P (h)]− P
)

− µ
(

E[PR(h)]− PR

)

.

(133)

It is easy to check that the KKT condition implies

P (h) = θ

(

1

λ ln 2
− 1

ρ1|h1|2
)+

(134)

PR(h) = θ̄

(

1

µ ln 2
− 1

ρ2|h2|2
)+

(135)

The KKT condition also implies that the optimalθ(1) needs
to satisfy the following condition:

∂L
∂θ

= 2E

[

C
(

P (h)ρ1|h1|2
θ

)]

− 2E

[

C
(

PR(h)ρ2|h2|2
θ̄

)]

− 1

ln 2
E

[

P (h)ρ1|h1|2
θ + P (h)ρ1|h1|2

]

+
1

ln 2
E

[

PR(h)ρ2|h2|2
θ̄ + PR(h)ρ2|h2|2

]











≤ 0, if θ = 0; (does not happen)

= 0, if 0 < θ < 1;

≥ 0, if θ = 1. (does not happen)
(136)

where the first and third cases do not happen because∂L
∂θ

→ ∞
asθ → 0, and ∂L

∂θ
→ −∞ asθ → 1. It can also be shown that

∂L
∂θ

is monotonically decreasing for0 ≤ θ ≤ 1. Hence∂L
∂θ

has
at most one root for0 ≤ θ ≤ 1.

The iterative algorithm described in (91)-(93) converges
to the solution of the KKT condition given in (134)-(136).
Since the functionR1(θ, P (h), PR(h)) is concave, the solution
of the KKT condition achieves the optimum. Condition (94)
follows from condition (131).

Case 3: 0 < α∗ < 1, and (θ(α
∗), P (α∗)(h), P

(α∗)
R (h)) is

an optimal resource allocation, whereα∗ is determined by the
following condition

R1(θ
(α∗), P (α∗)(h), P

(α∗)
R (h))

= R2(θ
(α∗), P (α∗)(h), P

(α∗)
R (h)).

(137)

We first derive(θ(α
∗), P (α∗)(h), P

(α∗)
R (h)) that maximizes

R(α∗, θ, P (h), PR(h))

= α∗R1(θ, P (h), PR(h)) + (1− α∗)R2(θ, P (h), PR(h)).
(138)

for givenα∗. The Lagrangian can be written as

L =2α∗θEA

[

C
(

P (h)ρ1|h1|2
θ

)]

+ 2α∗θ̄E

[

C
(

PR(h)ρ2|h2|2
θ̄

)]

+ 2θEAc

[

C
(

P (h)ρ1|h1|2
θ

)]

+ 2(1− α∗)θEA

[

C
(

P (h)ρ3|h3|2
θ

)]

− λ
(

E[P (h)]− P
)

− µ
(

E[PR(h)]− PR

)

.

(139)
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For a givenθ, The optimal(P (h), PR(h)) given in (95) and
(97) follows from the KKT condition. The KKT condition also
implies that the optimalθ for a given(P (h), PR(h)) needs to
satisfy the following condition

∂L
∂θ

= 2α∗EA

[

C
(

P (h)ρ1|h1|2
θ

)]

− α∗

ln 2
EA

[

P (h)ρ1|h1|2
θ + P (h)ρ1|h1|2

]

− 2α∗E

[

C
(

PR(h)ρ2|h2|2
θ̄

)]

+
α∗

ln 2
E

[

PR(h)ρ2|h2|2
θ̄ + PR(h)ρ2|h2|2

]

+ 2EAc

[

C
(

P (h)ρ1|h1|2
θ

)]

− 1

ln 2
EAc

[

P (h)ρ1|h1|2
θ + P (h)ρ1|h1|2

]

+ 2(1− α∗)EA

[

C
(

P (h)ρ3|h3|2
θ

)]

− 1− α∗

ln 2
EA

[

P (h)ρ3|h3|2
θ + P (h)ρ3|h3|2

]











≤ 0, if θ = 0; (does not happen)

= 0, if 0 < θ < 1;

≥ 0, if θ = 1. (does not happen)
(140)

where the first and third cases do not happen because∂L
∂θ

→ ∞
asθ → 0, and ∂L

∂θ
→ −∞ asθ → 1.

Therefore, the iterative algorithm described in (95)-(98)
converges to the solution of the KKT condition. Since the
function R(α, θ, P (h), PR(h)) is concave for a givenα, the
solution of the KKT condition achieves the optimum. Condi-
tion (99) follows from condition (137).

APPENDIX III
PROOF OFRESOURCEALLOCATION THAT MAXIMIZES Clow

(101)FOR SCENARIO III

We letR1(θ(h), P (h), PR(h)) andR2(θ(h), P (h), PR(h))
denote the two terms over which the minimization in (101)
is taken. We can then express (101) in the following compact
form:

Clow = max
0≤θ(h)≤1, ∀ h

(P (h),PR(h))∈G

min
{

R1(θ(h), P (h), PR(h)), R2(θ(h), P (h), PR(h))
}

(141)

As in Scenario II, one main step to solve the max-min
problem in (141) is to obtain(θ(α)(h), P (α)(h), P

(α)
R (h)) that

maximizes

R(α, θ(h), P (h), PR(h)) := αR1(θ(h), P (h), PR(h))

+ (1− α)R2(θ(h), P (h), PR(h))
(142)

for a givenα. The following lemma states that maximizing
R(α, θ(h), P (h), PR(h)) over (θ(h), P (h), PR(h)) is a con-
vex programming and hence can be solved by standard convex
programming algorithms.

Lemma3: For a fixedα, R(α, θ(h), P (h), PR(h)) is a con-
cave function over(θ(h), P (h), PR(h)), where0 ≤ θ(h) ≤ 1
for all h and (P (h), PR(h)) ∈ G.

Lemma 3 can be verified by computing the Hessian of the
functionR(α, θ(h), P (h), PR(h)) (for a fixedα) and showing
that it is negative semidefinite.

As for Scenarios I and II, we apply Proposition 1 to study
the max-min problem in (141) by considering the following
three cases.

Case 1:α∗ = 0, and(θ(0)(h), P (0)(h), P
(0)
R (h)) is an opti-

mal resource allocation, which needs to satisfy the condition

R1(θ
(0)(h), P (0)(h), P

(0)
R (h))

≥ R2(θ
(0)(h), P (0)(h), P

(0)
R (h)).

(143)

We first derive(θ(0)(h), P (0)(h), P
(0)
R (h)) that maximizes

R(0, θ(h), P (h), PR(h)) = R2(θ(h), P (h), PR(h)). (144)

It is clear thatθ(0)(h) given in (105) is optimal from the
expression ofR2(θ(h), P (h), PR(h)). The power allocation
P (0)(h) given in (103) then easily follows from the KKT
condition.

For case 1 to happen, condition (143) needs to be satisfied.
To characterize the most general condition for case 1 to
happen, for the givenθ(0)(h) and P (0)(h) PR(h) needs to
maximizeR1(θ

(0)(h), P (0)(h), PR(h)), which has the follow-
ing form:

R1(θ
(0)(h), P (0)(h), PR(h))

= 2E{h:P (0)(h)=0}

[

C
(

PR(h)ρ2|h2|2
)] (145)

The optimalP (0)
R (h) given in (104) then follows from the KKT

condition. Finally, condition (106) follows from condition
(143).

The proofs for cases 2 and 3 are similar to those for Scenario
II given in Appendix II, and are omitted.
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