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The effect of fading, channel inversion, and
threshold scheduling on ad hoc networks

Steven Weber, Member, IEEE, Jeffrey G. Andrews, Senior Member, IEEE, Nihar Jindal, Member, IEEE

Abstract— This paper addresses three issues in the field of ad
hoc network capacity: the impact of i) channel fading, ii) channel
inversion power control, and iii) threshold–based scheduling on
capacity. Channel inversion and threshold scheduling may be
viewed as simple ways to exploit channel state information (CSI)
without requiring cooperation across transmitters. We use the
transmission capacity (TC) as our metric, defined as the maximum
spatial intensity of successful simultaneous transmissions subject
to a constraint on the outage probability (OP). By assuming the
nodes are located on the infinite plane according to a Poisson
process, we are able to employ tools from stochastic geometry
to obtain asymptotically tight bounds on the distribution of the
signal-to-interference (SIR) level, yielding in turn tight bounds
on the OP (relative to a given SIR threshold) and the TC. We
demonstrate that in the absence of CSI, fading can significantly
reduce the TC and somewhat surprisingly, channel inversion only
makes matters worse. We develop a threshold-based transmission
rule where transmitters are active only if the channel to their
receiver is acceptably strong, obtain expressions for the optimal
threshold, and show that this simple, fully distributed scheme
can significantly reduce the effect of fading.

I. INTRODUCTION

This paper addresses two issues of contemporary interest
in the field of ad hoc network capacity. First, we characterize
the effect of random channel variations, due both to shad-
owing/fading and to random distances between transmitter–
receiver pairs. Second, this paper considers the effect of local
channel state information, namely through pairwise schedul-
ing and power control. Through analysis we are able to
obtain asymptotically tight lower and upper bounds on the
transmission capacity. We anchor our discussion around three
examples: lognormal shadowing, Rayleigh fading, and nearest
neighbor transmissions (in a Poisson field).

Although fading without any channel state information
(CSI) is shown to decrease capacity, fading might in fact
enable an increase in capacity if it can be exploited. To inves-
tigate this we consider two simple ways to utilize local CSI:
channel inversion power control and threshold–based schedul-
ing. Both mechanisms require coordination only between each
transmitter and its intended receiver, i.e., no coordination
between transmitters is required. Because the transmission
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capacity definition includes a universal SINR target, it may
seem intuitive that channel inversion would be helpful, by
saving power (and hence interference) from privileged links,
and by providing assistance to underprivileged links to help
them to avoid outage. However, we prove that although
channel inversion power control may help an individual link
and does promote fairness, it lowers the network capacity as
a whole.

Next, we characterize the potentially significant positive
capacity impact of exploiting CSI for threshold–based schedul-
ing. In particular, each transmitter elects to transmit only if the
channel to its receiver is acceptably strong. Our results demon-
strate that this simple scheduling rule provides significant
capacity gains in a completely distributed manner. In effect, the
threshold rule introduces multi-user diversity into the network
by activating only those links with acceptable channel quality.
A scientific contribution of this paper relative to prior work
on ad hoc network scheduling is a novel framework for
concisely and explicitly characterizing the effect of fading and
scheduling in terms of the network and system parameters.

Some simplifying assumptions made in this paper are as
follows. First, we assume narrowband fading, i.e., each chan-
nel is affected by a single scalar gain. Second, transmissions
are slotted in time and multiple hop communication is not
explicitly considered. The goal of the considered framework
is to quantify the maximum number of simultaneous successful
transmissions per unit area; how these transmissions are used
as far as routing packets over multiple hops is presently
outside its scope. Third, we ignore retransmissions, which will
reduce the effective network capacity. Finally, we assume that
candidate transmitters are randomly located independent of
one another, in particular according to a homogeneous Poisson
point process. The rest of our modeling assumptions are given
in Section III.

A. Transmission capacity

Throughout the paper we will employ transmission capacity
(TC) as the primary performance metric. The TC was in-
troduced in [1], and is defined as the maximum number of
successful communication links that can be accommodated
per unit area, subject to a specified constraint on the outage
probability (OP) relative to a target signal to interference ratio
(SIR)1. TC therefore quantifies the area spectral efficiency in
an ad hoc network from an outage perspective. A particular
advantage of the TC framework is its amenability to precise

1Noise can also be included, but this is a negligible effect for interference-
limited ad hoc networks, which is our case of interest.
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analysis. This allows the impact of physical layer effects
(like fading) on link layer scheduling policies to be more
precisely characterized. Recently the TC has been employed to
characterize capacity in a variety of scenarios, e.g., coverage
[2], the capacity of irregular ad hoc networks [3], succes-
sive interference cancellation [4], or for better understanding
of contention-based scheduling [5]. In addition to ad hoc
networks, the transmission capacity is also an appropriate
metric for general open spectrum usage (e.g., Wi-Fi, cognitive
radio) where many (non-cooperative) transmitter-receiver pairs
operate in the same frequency band.

In [1], the transmission capacity of an ad hoc network is
studied for a network with path loss attenuation (no fading),
fixed transmission power, and Aloha–style transmission at-
tempts. In such a network the only source of randomness is
the locations of the transmitters, modeled as a homogeneous
Poisson process. An outage occurs whenever the SINR falls
below an SINR threshold β; in this simple setup the transmis-
sion capacity is

c(ε) =
ε

πβ
2
α d2

+ Θ(ε2), (1)

where d is the fixed distance between each transmitter-receiver
pair and α > 2 is the path loss exponent. Note that c(ε) has
units of expected number of successful transmissions per unit
area.

Relationship to transport capacity. The transmission ca-
pacity (TC) is closely related to the popular transport capacity
metric introduced by Gupta and Kumar [6]. The transport
capacity is defined as the maximum weighted sum rate of
communication over all pairs of n nodes, where each pair’s
communication rate is weighted by the distance separating
them. A number of papers have studied transport capacity from
an information theoretic perspective [7], [8], [9], [10], [11],
and the best result to date has shown that the transport capacity
is CT (n) = Θ(n) when nodes have a minimum distance
separating them and the path loss exponent obeys α ≥ 4. This
minimum distance means that the area required for n nodes is
also A(n) = Θ(n). As both transport capacity and the arena
area are linear in n it follows that CT (n)/A(n) = Θ(1). That
is, the transport capacity per unit area is a constant, and has
units of bit-meters/second per unit area. The importance of
this result is that i) the transport capacity per unit area is
independent of the number of nodes (for n large), and ii)
local (one hop) communication is order optimal.

The transmission capacity can be converted into units of
bit-meters/second per unit area by simply multiplying by the
product of the average transmission rate times the average
transmission distance. In the outage setting considered here
successful transmissions have rate r = log2(1 + β) (bps)
and transmissions have a mean distance d (meters). It fol-
lows that the transmission capacity is c(ε)rd in units of bit-
meters/second per unit area. We can write c(ε)rd = Θ(1) to
emphasize that the transmission capacity is order optimal, and

thus order equivalent to the transport capacity2. This constant
depends upon the fundamental network parameters such as
α, β, r, d, ε, as well as the particular technologies that are
assumed, e.g. successive interference cancellation, CSI, power
control, etc.

The contribution of the transport capacity framework is to
prove optimality and achievability of Θ(1) bit-meters/second
per unit area for as wide a class of networks as possible.
Because transport capacity seeks to make as few assumptions
as possible regarding network behavior, the lower and upper
constants obtained in proving the result are given only in terms
of the path loss exponent and the minimum distance between
nodes (see e.g., (8.1) in [11]). Furthermore, the density of
the network is not explicitly considered in works that have
developed upper bounds to transport capacity scaling. Our
interest, on the other hand, is in determining the value of
the unknown constant for various networks and transmission
strategies (i.e., achievability schemes) of practical interest. The
two metrics arise from distinct aims: transmission capacity
aims to study the performance of a specific network (and
gives performance expressions in terms of those specific model
parameters), while transport capacity aims at establishing
fundamental bounds over a broad class of networks.

B. Overview of main results
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Fig. 1. Illustration of two uses of CSI to combat fading channels:
threshold based scheduling (top left) and channel inversion power control
(top right). The bottom row gives the corresponding baseline mode (Aloha
scheduling and fixed transmission power). In channel threshold scheduling
the transmitter elects to transmit provided the channel gain (hij ) is above a
specified threshold. In channel inversion power control the transmitter selects
a transmission power such that the received power is a specified value (here,
1).

The main contribution of this paper is a comprehensive
investigation of the effect of narrowband fading, both with
and without CSI, on the transmission capacity of an ad
hoc network. Two different strategies, channel inversion and
threshold-scheduling, that potentially mitigate the effect of
fading are considered, and all four combinations of the strate-
gies are analyzed (see Figure 1).

2Recent work has shown that the 1/
√
n throughput scaling of multi-hop,

which essentially corresponds to linear scaling of transport capacity in an
extended network, can actually be exceeded for path loss exponents between
2 and 3 [12]. As a result, transmission capacity corresponds to an achievable
rate that is not order–optimal for 2 ≤ α < 3, but maximizing this quantity
is still meaningful because multi-hop is currently the prevalent means of
communication in ad hoc networks.
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TABLE I
MATHEMATICAL SUMMARY OF MAIN RESULTS.

Scheduling Power control Interference expression Outage prob. bound O.P. rate const. Notes
Random access No power control Y = 1

W0

P
i∈Φ Ψi0|Xi|−α ql = 1− E[e−Θµ(p)] Θ = πE[Ψδ]W−δβδ µ(p) = λp, δ = 2

α

Random access Channel inversion Y =
P
i∈Φ

1
Wi

Ψi0|Xi|−α ql = 1− e−θµ(p) θ = E[Θ]

Threshold sched. No power control Y = 1
W0|t

P
i∈Φ Ψi0|Xi|−α ql = 1− E[e−Θ(t)µ(t)] Θ(t) = πE[Ψδ]W−δt βδ µ(t) = λP(W > t)

Threshold sched. Channel inversion Y =
P
i∈Φ

1
Wi|t

Ψi0|Xi|−α ql = 1− e−θ(t)µ(t) θ(t) = E[Θ(t)]

Summary of some of the mathematical results. In all four
scenarios the received signal at a reference receiver 0 at the
origin is√

P0Z0

√
Ψ00D

−α2
0 +

∑
i∈Φ

√
PiZi

√
Ψi0|Xi|−

α
2 , (2)

where D0 is the random distance separating the signal trans-
mitter from the reference receiver, α is the path loss exponent,
Zi is the signal intended for RX i, Pi is the transmit power
of TX i, |Xi| is the distance from TX i to RX 0, and Ψij

is the fading coefficient on the link from TX i to RX j. The
corresponding SIR is given by:

SIR =
P0Ψ00d

−α∑
i∈Φ PiΨi0|Xi|−α

. (3)

We denote the received signal power at the reference receiver
by W0 with W0 = P0Ψ00d

−α, and similarly use Wi to
denote the signal power at the i-th transmitter’s receiver. It
is often convenient to work with the inverse of the SIR, i.e.,
the interference to signal ratio (ISR) , which we denote as Y .
Using the definition of W0, Y can be expressed as:

Y =
1
W0

∑
i∈Φ

PiΨi0|Xi|−α. (4)

The probability of outage, q, is the probability the SIR falls
below the SIR outage threshold β, or equivalently is the
probability the ISR is too large: q = P(Y > y) for y = 1/β.

Table I summarizes some of the mathematical results for
these four scenarios. The first two columns identify the four
scenarios of scheduling and power control. The third column
gives the expression for the random variable Y denoting the
ISR seen by a typical receiver at the origin. The received
signal power is unity for channel inversion, W0 = 1. Without
power control the signal power is a random variable W0 under
random access, and a random variable W0|t under threshold
scheduling. The random variable W0 is a random channel
strength between a transmitter and its associated receiver; W0|t
is the same but conditioned on the channel strength being
above the threshold t. The interference is summed over the
interferers Φ, which form a Poisson point process of intensity
µ(p) (random access with probability p), or µ(t) (threshold
scheduling with threshold t). Without power control the in-
dividual interference contribution from interferer i at location
Xi is simply the random channel gain Ψi0 times the pathloss
|Xi|−α. With power control the interference contribution is
multiplied by the random variable 1/Wi (random access) or
1/Wi|t (threshold scheduling) representing the random power
selected by node i in compensating for the channel to i’s
intended receiver.

The fourth column gives an explicit expression for an
asymptotically tight lower bound on the outage probability, ql.
The lower bounds for no power control involve the moment
generating function (MGF) of a random variable Θ (for
random access) or Θ(t) (for threshold scheduling), while the
lower bounds for channel inversion are exponentially decreas-
ing at rate θ (for random access) or θ(t) (for threshold schedul-
ing). We call Θ,Θ(t), θ, θ(t) the rate constant for the outage
probability decay (although Θ,Θ(t) are random variables);
the rate constants are given in the fifth column. Finally, the
sixth column gives the other expressions needed to translate
the outage probability expressions back to fundamental model
parameters. First, λ is the intensity of potential transmitters.
Under random access with transmission probability p the
intensity of actual transmitters is µ(p) = λp. Under threshold
scheduling with threshold t the intensity of actual transmitters
is µ(t) = λP(W > t), where W is a random channel strength
between a transmitter and its associated receiver.

Design implications of the mathematical results. The
following list some of the design insights implied by the
mathematical results.

a) Random access, no power control: This is the baseline
mode. We compute the transmission capacity in this mode
under fading channels and compare it with the transmission
capacity under pure path loss. The effect of fading is to reduce

the transmission capacity by the factor
(
E[Ψ

2
α ]E[Ψ−

2
α ]
)−1

.
Fading of the desired signal has a negative effect while fading
of interfering signals has a positive effect. However, the net
effect of fading is negative for any distribution because the
above quantity is always less than unity. For example, in
Rayleigh fading with α = 3 the loss is a factor of 0.41.

b) Random access, channel inversion: Performing chan-
nel inversion actually decreases the transmission capacity
relative to no power control. One positive effect of chan-
nel inversion is that it assists with fairness. If the distance
between a transmitter-receiver pair is large compared to the
average and/or the channel gain coefficient is small, the outage
probability of this pair would be considerably higher than
the network–wide average without channel inversion. Channel
inversion neutralizes distance and/or fading disadvantages and
essentially puts all transmitter–receiver pairs on equal footing,
but this fairness can come at the cost of reduced transmission
capacity. The capacity reduction is very small at low outage
levels, but is much more significant at moderate and high
outage levels.

c) Threshold scheduling, no power control: Threshold
scheduling increases the transmission capacity relative to ran-
dom access. With threshold scheduling, users transmit only if
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the fading coefficient to the desired receiver is above some
threshold t. Scheduling changes the distribution of Ψii (for
all i) from the unconditional distribution Ψ to the conditional
distribution of Ψ given Ψ ≥ t (but leaves the distribution of
Ψij for i 6= j unchanged). Eliminating the fading coefficients
below the threshold t can significantly reduce outage for many
fading distributions of interest (e.g., Rayleigh fading), and
therefore can significantly increase the intensity of transmis-
sions. Performance with threshold-based scheduling can equal
or even exceed that of a path-loss only network.

d) Threshold scheduling, channel inversion: Channel in-
version in fact has little impact on the transmission capacity
under threshold scheduling. Threshold scheduling precludes
transmission attempts by nodes in deep fades, and as such all
transmitting nodes will require only moderate power to invert
their channels.

The remainder of the paper is organized as follows. Section
II describes related work. Section III introduces the mathe-
matical model. The TC for fading channels under random-
ized transmissions (with and without channel inversion) is
derived in Section IV; TC under threshold based transmission
decisions (with and without channel inversion) is derived in
Section V. Section VI contains the numerical and simulation
results. A brief conclusion is offered in Section VII. All proofs
are found in the Appendix.

II. RELATED WORK AND PRELIMINARIES

A. Fading channels

Computing the TC under the assumed channel fading model
involves computing the tail probability of the random SIR seen
by a typical receiver. The SIR can be viewed as the spatial
analog of the familiar temporal power-law shot noise process,
where the cumulative effect of the impulse response of Poisson
driven shocks in time is replaced with the cumulative effect
of the channel response of a Poisson driven set of interferers
in space. Previous results on spatial shot noise processes
in wireless networks have characterized the aggregate co-
channel interference under distance attenuation with random
fading as a stable random process [13], [14], [15]. In [15],
an exact expression for the outage capacity in a Rayleigh
fading environment, assuming randomized transmissions and
no power control, is derived using the moment generating
function of the interference power. Interestingly, the lower
bound to outage probability for the case of channel inversion in
a Rayleigh fading environment exactly matches the expression
in [15]; this is discussed in detail in Section IV-D.

Our characterization of the TC under general fading models
relies upon results from three distinct but related fields of
study: stable distributions, shot noise processes, and spatial
co-channel interference models.

Stable distributions. Stable distributions, introduced by
Lévy in 1925 [16], are defined as distributions that are closed
under convolution. More precisely, the random variable X is
said to be stable if, for X1, X2 independent and identically
distributed (iid) copies of X , there exist constants a, b, c, d
such that

aX1 + bX2
d= cX + d, (5)

where the equality holds in distribution, see e.g., Shao and
Nikias [17]. Except in special cases (e.g., Gaussian and
Cauchy), there is no closed form expression for the PDF
or CDF of a stable random variable. Instead, the family is
parameterized by its characteristic function. For the sub-family
of symmetric stable random variables (the case of relevance to
us) the characteristic function is

φ(t) = E
[
eitX

]
= exp

{
−γ|t|δ

}
, (6)

where γ > 0 is dispersion parameter and 0 ≤ δ ≤ 2 is the
characteristic or stability exponent. Stable random variables
with δ < 2 have fractional moments given by

E[|X|p]
{
<∞, 0 ≤ p ≤ δ,
=∞, p > δ

, (7)

and E[|X|p] < ∞ for all p ≥ 0 for the Gaussian case
of δ = 2 [17]. In particular all stable random variables
(except the limiting Gaussian case) have infinite variance. The
importance of stable distributions is illuminated by the so-
called generalized CLT: for {Xi} iid and {an}, {bn} with
an →∞, then

1
an

n∑
i=1

Xi − bn
D→ X, (8)

iff X is stable, where the convergence is in distribution [17].
Petropulu et al. [18] have further developed the implications of
stable distributions on signal processing in communications.

Shot noise process. The shot noise process was first
described by Schottky [19] in 1918, and was soon applied
to noise modeling in a wide variety of fields. The general shot
noise process, using the notation of Lowen and Teich [20], is
a functional

I(t) =
∞∑

j=−∞
h(t− tj), (9)

where {tj} is a stationary Poisson process on R and h(t)
is the (linear, time-invariant) impulse response function. Thus
I(t) is the superposition of responses seen at time t caused by
all previous times tj ≤ t. Extensive work was done by Rice
et al. from the 1940s through the 1970s to characterize the
CDF and PDF of the random variable I(t), e.g., [21]. More
recent algorithms for computation are found in Gubner [22].
A characterization of the stochastic process {I(t), t ∈ R} is
provided by Lowen and Teich [20] for the important case when
h(t) is a power law, i.e.,

h(t) = Kt−β , 0 ≤ A ≤ t ≤ B <∞, 0 < β ≤ 2, (10)

and K can be either deterministic or random. They make the
important observation that I(t) is a stable random variable
for certain values of β,A,B. Their framework is restricted to
the time-dimension, i.e., the points tj are times in a Poisson
process on R1.

Spatial co-channel interference models. The use of spa-
tial models for co-channel interference in packet radio (ad
hoc) networks goes back at least to 1978 where Musa and
Wasylkiwskyj [23] consider the impact of node locations on
the aggregate interference. This idea was further developed
by Sousa and Silvester in a series of papers in the early
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1990s [13], [24], [25]. Sousa and Silvester characterize the
aggregate co-channel interference as a stable distribution,
although they do not mention anywhere that it is a shot-noise
process. Sousa’s work is the first, as far as we are aware,
to connect the aggregate interference generated by a distance
dependent power law path loss channel model with a stable
distribution (although spatial connections were made as early
as 1919 by Holtsmark in astronomy [26], see [17]). Ilow and
Hatzinakos [14] characterize the impact of random channel
effects on the aggregate co-channel interference. They study
the individual and combined impacts of lognormal shadowing
and Rayleigh fading on the aggregate interference, where the
interference effects are subject to a distance dependent path
loss attenuation. Our work extends theirs in that their focus
was on identifying the impact of the fading model on the
parameters of the characteristic function of the interference,
while our focus is on link layer capacity and the benefit of CSI.
Baccelli et al. consider the impact of co-channel interference
on link layer scheduling through the use of stochastic geometry
[15]. Their proposed multiple hop spatial reuse Aloha protocol
maximizes a performance metric they call the spatial density
of progress. Their focus is on optimizing the power and
access probability of Aloha protocols, whereas our focus is
on characterizing the benefit of threshold scheduling with CSI
on capacity.

B. Threshold scheduling with channel state information
Distributed channel-aware wireless scheduling has received

extensive attention in the literature. Much of this work is game
theoretic in that transmission decisions of neighboring trans-
mitters are coupled: an active neighboring interferer reduces
the SIR seen by a receiver, which makes it less likely for that
receiver’s transmitter to transmit [27]. The coupling of these
decisions severely limits analytical tractability, and in practice
can also result in adverse behavior and/or require considerable
overhead.

In contrast, our approach precludes the transmitter in-
teraction presumed in the game-theoretic approaches, i.e.,
transmission decisions are independent for each transmitter.
The success or failure of an individual transmission attempt,
however, is of course dependent upon the joint decisions of all
transmitters. In particular, we consider the realistic scenario
where each user monitors the channel to just its desired
recipient (either through channel reciprocity or a very low
rate feedback channel), and then transmits opportunistically
only when the channel strength is above a threshold. We
characterize the optimum threshold, and show that this simple
approach increases the capacity significantly over a channel-
blind Aloha approach. The proposed threshold scheduling
scheme is fully distributed and extremely simple, and can be
viewed as an optimal scheduling approach under the specified
side information constraint. Although the proposed approach
is obviously suboptimal compared to a centralized scheduler
with global channel knowledge, our scheme has the benefits
of being more practical as well as yielding to analysis. In
particular, through stochastic geometry we obtain tight upper
and lower bounds on the OP and TC under an arbitrary
threshold, and from here obtain the TC-optimal threshold.

Prior work on quantifying ad hoc network capacity with
transmitter CSI includes Toumpis and Goldsmith [28], who
determined that fading actually increases the achievable rate
regions (as opposed to the overall ad hoc network capacity)
by providing statistical diversity, since the best set of transmit-
receive pairs can be selected. This however, would require
a global centralized search which is impractical. Toumpis
and Goldsmith argue in a second paper that although fading
reduced a transport capacity lower bound by a logarithmic
factor, fading actually increased the overall network capacity
[29]. Using the transport capacity framework, some interesting
recent results by Gowaiker et al. include a study on entirely
random channels (no geometric dependence) that showed
that shadowing or obstructions could increase the transport
capacity [30]. Xue and Xie [9] and Xie and Kumar [8] study
fading channels with geometric considerations valid for path-
loss exponents greater than three that supported their previous
results in the absence of fading. A recent review of this
research thrust is found in the monograph by Georgiadis,
Neely, and Tassiulas [31]. Essentially, in order to fully exploit
fading, some delay must be introduced, which results in a
delay-capacity tradeoff. We will not consider this tradeoff in
this paper, however.

III. MATHEMATICAL MODEL

For a random variable X we will write FX(x) for the cumu-
lative distribution function (CDF), fX(x) for the probability
density function (PDF), and F̄X(x) = 1 − FX(x) for the
complementary CDF (CCDF). The exception to this rule is
that Q(z) = P(Z > z) and Q−1(p) are used to denote the
CCDF and inverse CCDF for Z a standard normal N (0, 1)
random variable. We write X ∼ FX to denote that X is a
random variable with distribution FX . The superscripts l, u
will denote lower and upper bounds. Table II summarizes the
notation used throughout the paper.

A. Channel model
We consider a general class of channel models consisting of

a deterministic distance-dependent path loss component with
path loss exponent α > 2, and a random distance-independent
component. In particular, let

h(d, ψ) = ψd−α (11)

be the far-field attenuation in signal power over a distance
d with a channel gain ψ. The distance independent channel
gain, ψ, is assumed to be independent across channels and
independent of the node position. Note that this model has a
singularity as d → 0; this matter is discussed in some detail
in [13] and [15]. Because we consider the network from an
outage perspective, such a singularity has only a negligible
effect on our results. For example, if an interferer is very
close to a receiver, the above channel model would lead to
an artificially small SIR. However, the receiver would very
likely be in outage even if the singularity was removed, and
thus there is no effect on the outage probability. Furthermore,
we assume the distribution on transmitter–receiver pair separa-
tion distances precludes the possibility of nearby transmitter–
receiver pairs. Although the singularity at the origin is not
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TABLE II
SUMMARY OF NOTATION.

Symbol Meaning
α > 2 path loss exponent
δ = 2

α
< 1 stability exponent

Ψ, ψ (random, fixed) channel fading gain
D, d (random, fixed) transmitter to receiver distance
Π = {Xi} PPP of potential transmitters
λ intensity of Π
Φ ⊂ Π PPP of actual transmitters
µ ≤ λ intensity of Φ
Y = 1/SIR normalized aggregate interference at origin
β minimum SIR required for successful reception
y = 1/β maximum normalized interference for reception
q(µ) outage probability for a typical receiver
τ(µ) spatial throughput of successful transmissions
c(ε) transmission capacity with outage constraint ε
p = µ/λ transmission probability without CSI
κ constant governing performance without CSI
θ = κβδ constant governing performance without CSI
W = ΨD−δ signal strength at receiver
t min. signal strength for transmission with CSI
µ(t) = λF̄W (t) intensity of transmissions with CSI
κ(t) function governing performance with CSI
θ(t) = κ(t)βδ function governing performance with CSI
γ(t) = θ(t)µ(t) normalized intensity of transmissions with CSI
γ−1(g) inverse of γ(t)

physically meaningful, it turns out that retaining the singularity
significantly simplifies the analysis without materially affect-
ing the numerical and simulation results. As explained further
in the numerical and simulation results section (Section VI),
for purposes of analysis we will retain the singularity (dmin =
0), but all our simulation results will employ dmin > 0. Our
results will illustrate that the results are essentially unaffected
by the singularity.

For simplicity and analytical tractability we ignore back-
ground thermal noise. In an interference limited network the
noise contribution is minimal. Our earlier work [1] contained
models with additive noise, and it was shown there was no
appreciable effect unless the network was extremely sparse. Of
course, it is straightforward to numerically verify this claim.

We study network performance both with and without chan-
nel inversion. In the absence of channel inversion we assume
that unit power is employed; this results in no loss of generality
because in the absence of additive noise increasing the power
linearly increases both the signal and interference, leaving
the SIR unaffected. Under channel inversion each transmitter
employs a power p = 1/w where w = h(ψ, d) is the channel
gain connecting the transmitter with its intended receiver; this
results in unit signal power at the intended receiver. The impact
of channel inversion on link layer performance for Poisson
distributed transmitters is also addressed by Baccelli et al.
[15].

B. Network model

Consider a large ad hoc network, where the locations of po-
tential transmitters at a typical point in time form a stationary
Poisson point process (PPP) Π = {Xi} on the plane R2. The
spatial density of the point process is denoted by λ, giving
the average number of potential transmitters per unit area. We

also assume that each potential transmitter, i, has an associated
intended receiver (not in Π), and we let the index i refer to
the pair consisting of transmitter i and its associate receiver i.
The assumption that each potential transmitter has a receiver
that is not a potential transmitter precludes the possibility of
collisions where a transmitter attempts to communicate with
another node that is already transmitting.

Let Ψij denote the random channel gain for the channel
between the transmitter of pair i and the receiver of pair
j. The channel gains are independent across both receivers
(Ψij is independent of Ψik), and across transmitters (Ψji

is independent of Ψki). Let FΨ be the common distribution
for the channel gains. Let Di represent the distance between
the transmitter and intended receiver of pair i; the distances
{Di} are assumed to be iid with common distribution FD.
As discussed in the introduction, we restrict our attention
to transmission policies where each transmitter’s decision is
made independent of the other transmitter decisions. It follows
that the relevant state information for each transmitter i’s
decision is the pair (Ψii, Di) describing the channel with its
intended receiver.

Our attention will focus on a (typical) reference receiver,
without loss of generality assumed to be located at the origin,
o. The reference receiver and its associated transmitter are
pair number 0. It follows that the performance will depend
upon not only each pair’s channel information (dictating which
transmitters will elect to transmit), but also upon the channel
information connecting each transmitter with the reference re-
ceiver at the origin (dictating the typical receiver performance).
We encode all this state information by forming the marked
Poisson point process (MPPP)

Π = {(Xi, Di,Ψii,Ψi0), i ∈ N}. (12)

Let |Xi| denote the distance from each transmitter i to the
reference receiver at the origin.

The PPP Φ ⊂ Π denotes the set of actual interferers at
the typical time under consideration. Because the transmission
decisions are made independently across transmitters and
independent of their locations, it follows that Φ is also a
stationary MPPP, albeit with a smaller intensity, denoted as
µ ≤ λ. We discuss transmission decision rules for obtaining Φ
from Π in Sections IV (using random transmission decisions)
and V (using threshold based transmission decisions). Rather
than work with the SIR we will instead work with its inverse,
Y = 1

SIR0
, which can be thought of as the aggregate co-

channel interference power normalized by the signal power.
The normalized aggregate interference seen at the reference
receiver is

Y =
∑
i∈Φ Pih(|X|i,Ψi0)
P0h(D0,Ψ00)

=
∑
i∈Φ PiΨi0|Xi|−α

P0Ψ00D
−α
0

, (13)

where {Pi} are the transmission powers employed. The SIR
seen at the reference receiver is therefore

SIR0 =
1
Y

=
P0Ψ00D

−α
0∑

i∈Φ PiΨi0|Xi|−α
. (14)
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C. Performance metrics

Three performance metrics are studied in this paper: the
outage probability, the spatial throughput, and the transmission
capacity.

Outage probability. A reception is assumed successful
provided the SIR seen at the receiver exceeds a specified
β > 0, with an outage resulting if this condition is not satisfied.
Let q(µ) denote the probability of outage when the intensity
of attempted transmissions is µ:

q(µ) = P(SIR0 < β) = P(Y > 1/β) = F̄Y (y), (15)

where y = 1/β is the ISR requirement.
The SIR-based outage probability introduced above corre-

sponds very simply to achievability in the information the-
oretic sense. If all nodes are assumed to transmit Gaussian
symbols and the channel is narrowband, the mutual informa-
tion between the transmitting (Xi) and receiving node (X̂i) is
given by:

I(Xi; X̂i|Φ) = log2(1 + SIRi), (16)

where SIRi is the SIR seen by receiver i. Since only the
term I(Xi; X̂i|Φ) is considered, an implicit assumption is that
multi-user interference is treated as noise (interference can be
cancelled, see [4]). Mutual information, or rate, is measured
conditioned on channel conditions, node locations, the instan-
taneous set of transmitters, and the fading coefficients. Thus,
the quantity in (16) measures the rate of reliable information
flow from Xi to X̂i at a snapshot of the network. Of course,
this mutual information expression is only meaningful if the
conditioning variables are fixed during transmission. Most
importantly, this requires that the time scale of fading be larger
than packet durations.

In the outage formulation, the instantaneous mutual infor-
mation is treated as a random variable (a function of random
interferer locations and channel conditions) and an outage
occurs whenever this random variable falls below the desired
rate of communication. Thus, for rate R the outage probability
is given by Pout = P(I(Xi; X̂i|Φ) < R). Since there is a one-
to-one mapping between mutual information and SIR in this
expression, outage can equivalently be stated in terms of SIR,
as in (15) with β = 2R − 1.

Spatial throughput. The spatial throughput is the expected
spatial density of successful transmissions:

τ(µ) = µ(1− q(µ)), (17)

i.e., the product of the attempted transmission intensity (µ)
times the average probability of success (1− q(µ)).

Transmission capacity. The spatial throughput often ob-
scures the fact that high throughput is sometimes obtained at
the expense of unacceptably high outage. This is especially
important in ad hoc networks as wasted transmissions both
cause unnecessary interference for other nodes and they waste
precious energy. As a simple example of high throughput
achieved through high outage, note that classic slotted Aloha
has a throughput of the form Ge−G, which is maximized for
an attempt rate of G = 1. The optimal throughput at G = 1 is
1/e ≈ 0.32, but the outage probability is 1−1/e ≈ 0.68. Thus
68% of all attempted transmissions must fail to achieve the

optimal throughput. For many important network applications,
e.g., streaming media, high levels of outage are unacceptable,
and as such it is desirable that the network operate in a
low outage regime. With this in mind, we define the optimal
contention density, ν(ε), as the maximum spatial density of
attempted transmissions such that the corresponding outage
probability is ε ∈ [0, 1]. The parameter ε serves as a proxy
for network quality of service. The optimal contention density
is found by solving q(ν) = ε for ν, i.e., ν = q−1(ε),
where q−1 is the inverse of (15). Having found the optimal
contention density, we define the transmission capacity as the
corresponding spatial density of successful transmissions,

c(ε) = ν(ε)(1− ε) = q−1(ε)(1− ε). (18)

The advantage of the transmission capacity framework is that
it yields the maximum throughput that can be obtained subject
to a maximum permissible outage probability, i.e., a QoS
requirement.

IV. PERFORMANCE WITHOUT THRESHOLD SCHEDULING

In this section we present analytical results for the per-
formance metrics introduced in Section III-C when transmis-
sion decisions are made randomly; performance results with
threshold scheduling decisions are given in Section V. Under
randomized transmissions the set of actual transmitters, Φ,
is obtained from the set of possible transmitters, Π, by each
node electing to transmit at random with probability p = µ

λ ,
for any desired µ ≤ λ. We provide analytical results for
performance with fixed (unit) power (Section IV-A) and with
channel inversion (Section IV-B), and then provide detailed
discussion (Section IV-C) as well as examples (Section IV-D).

A. Performance without threshold scheduling and without
channel inversion

Looking at the three performance metrics in Section III-C
it is apparent that they each depend upon the distribution of
Y in (13). In the absence of channel inversion, the normalized
aggregate interference seen by the reference receiver is

Y =
1
W0

∑
i∈Φ

Ψi0|Xi|−α, W0 = Ψ00D
−α
0 , (19)

where W0 is the received signal power. Because transmission
decisions are made by each node at random (independent of
the channel state), it follows that each node electing to transmit
has W0 ∼ FW , where FW (w) = P(W ≤ w) = P(ΨD−α ≤
w) is expressible in terms of the known distributions FΨ and
FD. The distribution of Y may be expressed in terms of the
distribution of Y conditioned on W0:

F̄Y (y) =
∫ ∞

0

F̄Y |W (y|w)dFW (w). (20)

Previous work by Ilow and Hatzinakos [14] has charac-
terized the conditional distribution F̄Y |W (y|w) as a stable
distribution. This forms the starting point of our analysis. For
easy reference we combine results from Theorems 1, 2, and
3 from Ilow and Hatzinakos [14] and repeat them below in a
single theorem using our notation.
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Theorem 1: (Ilow and Hatzinakos [14]). Under randomized
transmissions and lacking channel inversion, the conditional
distribution F̄Y |W (y|w) in (20) is symmetric stable with
characteristic function given by (6), with stability parameter
δ = 2/α < 1 and dispersion parameter

γ(w) =
Γ(2− δ)

1− δ
cos
(
π
δ

2

)
κ(w)µ, (21)

for Γ(·) the Gamma function and

κ(w) = πE[Ψδ]w−δ. (22)
As mentioned in the introduction, stable distributions are

awkward to work with as they do not have closed form ex-
pressions for their PDF or CDF. This motivates the importance
of the bounds on the CCDF given in the next theorem.

Theorem 2: Under randomized transmissions and lacking
channel inversion, the expressions F̄uY , F̄

l
Y are upper and

lower bounds on the CCDF F̄Y (y) of the random variable
Y in (19):

F̄uY (y) = 1− E

(1−
δ

2−δKµy
−δ

(1− δ
1−δKµy

−δ)2

)+

e−Kµy
−δ

 ,
F̄ lY (y) = 1− E

[
e−Kµy

−δ
]
, (23)

where random variable K is defined as:

K = πE[Ψδ]W−δ = πE[Ψδ]Ψ−δD2, (24)

Ψ ∼ FΨ and D ∼ FD. The lower bound is asymptotically tight
as y → ∞ and the upper bound has an asymptotic bounded
error. Specifically:

F̄ lY (y) = κµy−δ +O(y−2δ), (25)
F̄Y (y) = κµy−δ +O(y−2δ), (26)

F̄uY (y) =
2

2− δ
κµy−δ +O(y−2δ), (27)

for
κ = E[K] = πE[Ψδ]E[Ψ−δ]E[D2]. (28)

The full proof is provided in the Appendix. The lower bound
F̄ lY (y) is the probability that a single term in the sum in (19)
is larger than y, i.e., the probability that there exists at least
one dominant interferer that individually contributes enough
interference to cause outage relative to threshold y. Note that
due to fading, a dominant interferer need not correspond to the
nearest interferer. Indeed, considering only the contribution of
the nearest interferer gives a weaker bound. The upper bound
F̄uY (y) is obtained by application of the Chebychev inequality.
We now make several remarks on the theorem:

Asymptotic impact of channel variations. The impact
of the random channel fading gains, {Ψij}, and the random
distances separating transmitters and receivers, {Di}, on the
asymptotic CCDF bounds in (25)-(27) is confined to the
fractional moments E[Ψδ]E[Ψ−δ]E[D2]. Since the asymptotic
lower bound is tight in most scenarios of interest, as explained
in further detail below, the fractional moments are generally
able to completely capture the effect of fading and random
distances. When channel inversion is employed, then the
fractional moment dependence actually holds for the upper
and lower bounds themselves, as shown in Section IV-B.

Looseness of the upper bound. The asymptotic looseness
of the upper bound depends only on the path loss exponent α
and not on the random channel effects, i.e.,

lim
y→∞

F̄uY (y)
F̄Y (y)

= lim
y→∞

F̄uY (y)
F̄ lY (y)

=
2

2− δ
=

α

α− 1
. (29)

Moreover, the upper bound is increasingly tight as α increases.
The fact that the upper bound, which is based on the Cheby-
chev inequality, is not tight suggests the use of tighter upper
bounds such as the Chernoff bound. This is in fact a viable
approach in theory, although it is often not computationally
feasible. An upper bound using the Chernoff bound instead
of the Chebychev bound is developed in the Appendix, along
with a discussion of the associated computational obstacles.

Tightness of the lower bound. The lower bound is tight
as y → ∞, i.e., as one moves further along the tail of the
distribution of Y (also corresponding to β → 0). The lower
bound captures the probability of outage being caused by one
or more individually dominant interferers, and thus ignores the
probability that there is no single dominant interferer but the
aggregate interference level summed over all interferers causes
an outage. As a result, the fact that the lower bound is tight
as y →∞ is intuitive given the fact that the distribution FW
of the channel W = ΨD−α is a subexponential distribution,
a sub-class of heavy tailed distributions [32]. A key property
of a subexponential distribution is that with high probability
sums of subexponential random variables achieve large values
by individual terms in the sum being large:

lim
x→∞

P(X1 + · · ·+Xn > x)
P(max{X1, . . . , Xn} > x)

= 1, n ≥ 2. (30)

In the present context, as β decreases (or equivalently, as y
increases) it is increasingly unlikely that a group of interferers
could collaboratively cause an outage for the reference receiver
without at least one of them being a dominant interferer. In
most scenarios of interest, the desired outage probability is
quite low and therefore y is sufficiently large. As a result,
the asymptotic lower bound in (25) is generally very accurate.
The SIR threshold can also be reduced through spreading (e.g.,
direct sequence code division multiple access) or coding. The
impact of spreading on the outage probability (and transmis-
sion capacity) is addressed in [1] where the SIR requirement
is reduced by the spreading factor.

We now utilize the results of Theorem 2 to generate bounds
on the performance metrics of interest. Under randomized
transmission, each potential transmitter i ∈ Π transmits at
random (with fixed power) with a specified probability p. In
this case the intensity of attempted transmissions (the intensity
of Φ) is µ = λp.

Theorem 3: Under randomized transmissions and without
channel inversion, the bounds on the outage probability (15)
are:

qu(µ) = 1− E

(1−
δ

2−δΘµ

(1− δ
1−δΘµ)2

)+

e−Θµ

 ,
ql(µ) = 1− E[e−Θµ], (31)

where
Θ = Kβδ = πE[Ψδ]Ψ−δD2βδ, (32)
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and Ψ ∼ FΨ and D ∼ FD. The bounds on the spatial
throughput (17) are:

τ l(µ) = µE

(1−
δ

2−δΘµ

(1− δ
1−δΘµ)2

)+

e−Θµ

 ,
τu(µ) = µE[e−Θµ]. (33)

The bounds on the transmission capacity (18) are

cl(ε) = qu,−1(ε)(1− ε),
cu(ε) = ql,−1(ε)(1− ε), (34)

where qu,−1, ql,−1 are the inverses of qu, ql in (31).
The expressions in the theorem are easily obtained by

substituting the bounds on F̄Y (y) from Theorem 2 into the
performance metric expressions for q(µ) (15), τ(µ) (17), and
c(ε) (18). A discussion of Theorem 3 is found after Corollary
3 in Section IV-B, which gives the analogous results when
channel inversion is employed.

B. Performance without threshold scheduling and with chan-
nel inversion

In this paper we consider two distinct ways in which CSI
may be exploited by the transmitter: threshold scheduling of
transmissions and channel inversion. Channel inversion is a
specific type of power control in which the transmitted power
is an inverse function of the channel quality. This is by far
the most prevalent form of power control in current wireless
networks. Although fast channel inversion is a widely known
feature of CDMA cellular networks for avoiding the near-
far problem, channel inversion is also used in all cellular
networks (sometimes called Automatic Gain Control) and also
in the Bluetooth ad hoc networking standard to adjust for
transmission range and channel quality. Therefore, in this sec-
tion we consider performance without threshold scheduling but
with channel inversion. Performance with threshold scheduling
but without channel inversion is discussed in Section V-A,
and performance with both threshold scheduling and channel
inversion is discussed in Section V-B.

Each transmitter i ∈ Φ that elects to transmit employs
transmit power Pi = 1

Wi
, where Wi = ΨiiD

−α
i is the channel

gain separating transmitter and receiver i; this ensures the
signal power at receiver i is unity.3

Under channel inversion, the normalized aggregate interfer-
ence seen at the reference receiver is

Y =
∑
i∈Φ

1
Wi

Ψi0|Xi|−α, Wi = ΨiiD
−α
i . (35)

Because transmission decisions are made randomly, it follows
that the Wi’s are iid according to distribution FW , which is
also the distribution of W0 in the case of no channel inversion.

3A sufficient condition for channel inversion to require finite power almost
surely is that the support of W exclude the interval [0, ε) for some ε > 0.
A necessary condition for finite average power is that E[1/W ] < ∞. For
some distributions, such as Rayleigh fading, the quantity E[1/W ] is actually
infinite. The analytical results still hold in this scenario, but this condition
clearly makes channel inversion impractical. However, in Section V-B we
combine channel inversion with a minimum fading threshold, so that channel
inversion is feasible for essentially any distribution.

In the case of no channel inversion, the normalized inter-
ference contribution of every interferer is divided by W0, the
coefficient describing the channel fade and the distance-based
path loss between the reference TX and RX. As a result, the
reference RX is very sensitive to the value of W0. When
channel inversion is used, the normalized contribution of each
interferer is divided by a different Wi, namely its own effective
channel coefficient. Therefore, channel inversion completely
eliminates sensitivity to W0, which does not even appear in
(35), but instead introduces sensitivity to the effective channel
coefficients Wi of the interfering nodes.

The analysis with channel inversion is very similar to
that without channel inversion, and the following corollaries
are the analogues of Theorems 1, 2, and 3 for randomized
transmissions with channel inversion.

Corollary 1 (to Theorem 1): Under randomized transmis-
sions with channel inversion, the random variable Y in (35) is
symmetric stable with characteristic function given by (6), with
stability parameter δ = 2/α < 1 and dispersion parameter γ
given by (21) with κ(w) replaced with κ in (28).

The corollary follows from Theorems 1, 2, and 3 in Ilow
and Hatzinakos [14].

Corollary 2 (to Theorem 2): Under randomized transmis-
sions with channel inversion, the expressions F̄uY , F̄

l
Y are

upper and lower bounds on the CCDF F̄Y (y) of the random
variable Y in (35):

F̄uY (y) = 1−

(
1−

δ
2−δκµy

−δ

(1− δ
1−δκµy

−δ)2

)+

e−κµy
−δ
,

F̄ lY (y) = 1− e−κµy
−δ
, (36)

where κ is given in (28). The upper bound is nontrivial for
all κµy−δ < h(δ), defined as

h(δ) =
1

2(2− δ)

[
(1− δ)(5− 3δ)

δ
−
√
δ(9− 5δ)

]
. (37)

The lower bound is asymptotically tight as y → ∞ and the
upper bound has an asymptotic bounded error. Specifically,
F̄ lY (y), F̄Y (y), F̄u(y) have asymptotic expansions given in
(25)-(27).

The proof is found in the Appendix. The bounds on the
CCDF of FY in Corollary 2 may be used to obtain perfor-
mance bounds for q(µ) (15), τ(µ) (17), and c(ε) (18), as
shown in the following corollary.

Corollary 3 (to Theorem 3): Under randomized transmis-
sions and with channel inversion, the bounds on the outage
probability (15) are:

qu(µ) = 1−

(
1−

δ
2−δ θµ

(1− δ
1−δ θµ)2

)+

e−θµ,

ql(µ) = 1− e−θµ, (38)

where

θ = E[Θ] = κβδ = πE[Ψδ]E[Ψ−δ]E[D2]βδ, (39)
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and Ψ ∼ FΨ and D ∼ FD. The bounds on the spatial
throughput (17) are:

τ l(µ) = µ

(
1−

δ
2−δ θµ

(1− δ
1−δ θµ)2

)
e−θµ,

τu(µ) = µe−θµ. (40)

The bounds on the transmission capacity (18) are

cl(ε) = qu,−1(ε)(1− ε),

cu(ε) =
−(1− ε) log(1− ε)

θ
, (41)

where qu,−1 is the inverse of qu in (38).
Comparing Corollaries 1, 2, and 3 with their corresponding
Theorems 1, 2, and 3, it is apparent that the primary impact
of channel inversion is to remove the need to condition on
the received signal power (which is unity under channel
inversion). Comparing Theorem 1 and Corollary 1, adding
channel inversion means the unconditioned distribution FY is
stable (instead of the conditioned distribution FY |W ), and the
dispersion parameter is given by constant κ in (28) instead
of the function κ(w) in (22). Note that κ(w) = E[K] =
E[κ(W )]. In Theorem 2 the bounds on the CCDF F̄Y are
expressed in terms of expectations of functions of the random
variable K in (24); in Corollary 2 the bounds on the CCDF F̄Y
are expressed in terms of the same functions, with K replaced
by its expected value, κ = E[K]. A similar comment holds for
Theorem 3 and Corollary 3. Note that the bounds in Theorems
2 and 3 require evaluating an integral, while the bounds in
Corollaries 2 and 3 only require evaluating a constant.

The intuition for this difference is quite straightforward.
Without channel inversion, the marks of the Poisson process in
(19) are Ψi0

W0
and are not independent because W0 appears in

each term. As a result, the distribution of Y conditioned on W0

must be considered, which results in an additional expectation
in the associated bounds. With power control, the marks of
the Poisson process in (35) are Ψi0

Wi
and thus are independent.

C. Discussion

In this section we discuss the preceding analytical results
by comparing performance with and without channel inversion
as well as studying the effect of channel fading and random
distances on ad hoc network performance.
The effect of channel inversion. By applying Jensen’s in-
equality to the convex function e−θµ, we can order the outage
probability lower bounds in Theorem and Corollary 3 as:

qlnpc(µ) = 1− E[e−Θµ] < 1− e−E[Θ]µ = qlpc(µ), (42)

where npc and pc denote no power control and power control
respectively. Thus channel inversion strictly increases the
lower bound on outage probability. The intuition for this
increase appears to come from the difference in the normalized
interference expressions with and without channel inversion
in (35) and (19), respectively. With channel inversion, the
reference receiver is vulnerable to signal fades of any of its
nearby interferers (i.e., small values of Wi); without channel
inversion, the reference receiver is vulnerable only to a fade

on its own channel W0. Channel inversion introduces an
undesirable diversity on the interference power that increases
the likelihood of a nearby dominant interferer causing an
outage. Numerical results indicate that similar conclusions
hold for the actual outage probability, not just for the analytical
bounds.

There are a few other relevant issues concerning channel
inversion that should also be mentioned. If channel inversion is
used the average transmission power is E[1/W ]. An equivalent
fixed power system that delivers the same average received
power would only require transmission power of 1

E[W ] , which
by Jensen’s inequality is smaller than E[1/W ]. Thus, channel
inversion essentially requires greater transmission power, or
alternatively delivers less received power, than a system using
fixed power. As a result, using channel inversion has the
potential of pushing it from the interference-limited regime
into the noise-limited regime. This effect does not appear
in our SIR-based analysis, but we note that this effect is
less pronounced when channel inversion is combined with
threshold scheduling in Section V-B because the threshold
eliminates small values of Wi and thus decreases the difference
between E[1/W ] and 1

E[W ] .
One positive effect of channel inversion is that it assists

with fairness. If the distance between a transmitter-receiver
pair is large compared to the average and/or the channel
gain coefficient is small, the outage probability of this pair
would be considerably higher than the network-wide average
without channel inversion. Channel inversion neutralizes
distance and/or fading disadvantages, and essentially puts all
transmitter-receiver pairs on equal footing. What our results
show is that there is a quantifiable network-wide penalty for
doing so.

Effect of random distance and fading. In order to understand
the effect of random Tx-Rx distance and fading, it is useful
to rewrite the expression for the transmission capacity upper
bound cu(ε) for a power-controlled system given in (41):

cu(ε) =
−(1− ε) log(1− ε)

θ
≈ ε(1− ε)

θ

=
ε(1− ε)β−δ

πE[Ψδ]E[Ψ−δ]E[D2]
, (43)

where we have used − log(1 − ε) ≈ ε for small values of
ε.4 Although this bound holds for channel inversion power
controlled systems, it is also extremely accurate for systems
using fixed transmission power when ε is small because the
asymptotically tight (i.e., for ε→ 0) outage lower bound given
in (25) leads to the same transmission capacity upper bound
stated above.

Channel variations reduce transmission capacity. Applying
Jensen’s inequality to the convex function 1

x and random
variable Ψδ yields

E[Ψδ]E[Ψ−δ] ≥ 1, (44)

4When there is no fading (Ψij = 1), transmitter to receiver distances are
fixed (Di = r), and ε is small, (43) recovers the TC given in Theorem 1 in
[1], which describes the TC of a network in which there is only path-loss.
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with equality iff Ψ is deterministic. As a result, θ in (39) is
strictly larger under random Ψ than under deterministic Ψ, and
thus fading reduces transmission capacity under randomized
transmissions with channel inversion. It can also be seen that
variations in the distances separating transmitters and receivers
also reduces transmission capacity. The ratio of θ with variable
{Di} over θ with fixed {Di} (with the same mean) is given
by

E[D2]
E[D]2

= 1 +
Var[D]
E[D]2

, (45)

the right hand term is the factor by which θ increases due
to random distances, and thereby reduces the transmission
capacity.

Separating the effects of signal and interference fading.
The effect of fading can be more clearly elucidated by
separating signal and interference fading:

Corollary: Under randomized transmissions with channel
inversion, if the reference channel gain Ψ00 is drawn accord-
ing to distribution FΨS (S for signal) while the interference
channel gains {Ψi0} are drawn (iid) according to a possibly
different distribution FΨI (I for interference), all results of
Corollaries 1, 2, and 3 hold with κ in (28) defined as:

κ = πE[Ψδ
I ]E[Ψ−δS ]E[D2]. (46)

This statement follows from the fact that the proof of
Corollary 2 only depends on the δ-moment of Z = Ψi0

Ψ00
Dα

0

given by E[Zδ] = E[Ψδ
i0]E[Ψ−δ00 ]E[D2

0], and thus does not
require Ψ00 and Ψi0 to follow the same distribution.

To simplify discussion, without loss of generality assume
E[ΨS ] = E[ΨI ] = 1. Since the functions x−δ and xδ are
convex and concave, respectively, for 0 < δ < 1, Jensen’s
inequality yields E[Ψ−δS ] ≥ E[ΨS ]−δ = 1 and E[Ψδ

I ] ≤
E[ΨI ]δ = 1. As a result, fading of the desired signal reduces
transmission capacity, while fading of interfering signals in-
creases transmission capacity.

Since the function x−δ approaches infinity as x → 0, if
FΨS has a large amount of mass near the origin the fractional
moment E[Ψ−δS ] can be very large, thereby leading to a
significant reduction in transmission capacity. The proceeding
section shows that this indeed the case when ΨS is exponential
(i.e., Rayleigh fading), where E[Ψ−δS ]→∞ as δ → 1.

There are distributions for which the fractional moment
E[Ψδ

I ] can be made arbitrarily small, implying an arbitrarily
large increase in transmission capacity, but this is certainly
the exception. A simple calculation shows that E[Ψδ

I ] is lower
bounded by the probability ΨI is greater than or equal to unity
(i.e., the mean), which is reasonably large for typical fading
distributions.

Therefore, it is safe to say that signal fading can have
a rather significant negative effect on transmission capacity,
while interference fading leads to a less significant positive
effect. If the fading distributions are identical, then (44)
indicates that the net effect of fading is negative.

Maximum achievable spatial throughput and TC. The opti-
mal transmission probability to maximize the spatial through-
put upper bound τu(λp) in (40) is pu,∗ = 1

λθ , and thus the

bound optimal intensity of transmission attempts is µu,∗ =
1
θ ∧ λ. The corresponding bound on optimal throughput is

τu,∗ = τu(µu,∗) =
1
eθ
, λ > 1/θ. (47)

The outage probability constraint that maximizes the transmis-
sion capacity upper bound cu(ε) in (41) is εu,∗ = 1− 1/e ≈
0.63, with a corresponding bound on transmission capacity of

cu,∗ = cu(εu,∗) =
1
eθ

= τu,∗, λ > 1/θ. (48)

Note that maximizing the spatial throughput and TC incurs a
potentially unacceptable high outage probability: almost two
thirds of all attempted transmissions must fail to maximize
capacity. The assumption that λ > 1/θ means that the spatial
intensity of potential transmitters in Π is sufficiently large to
“saturate” the network, i.e., the network will not be under-
utilized due to a lack of available transmitters. We emphasize
that the optimality of pu,∗, µu,∗, εu,∗ holds for the bounds,
not the performance metric itself, however our numerical and
simulation results will shown that the approximation is valid
over most regimes of interest.

D. Examples
We next compute the performance bounds in Theorem 3

and Corollary 3 for three examples. In Example 1 we fix the
transmitter to receiver distances, Di = r, and let Ψ have
a lognormal distribution, capturing the impact of lognormal
shadowing. In Example 2 we again fix Di = r and let Ψ have
an exponential distribution, capturing the impact of Rayleigh
fading. In Example 3 we fix the fading coefficients Ψij = 1
and let D have a distribution corresponding to the distance to
the nearest neighbor in a Poisson process of potential receivers.

Example 1: Lognormal shadowing. Fix Di = r for each
i, and let Ψ be lognormal distributed with parameter σ2, i.e.,
Ψ ∼ LN (0, σ2), where

fΨ(ψ) =
1√

2πσ2ψ
exp

{
− (logψ)2

2σ2

}
, ψ > 0. (49)

Under randomized transmissions in the absence of channel
inversion the distribution of received signal power is

FW (w) = FΨ(wrα) = 1−Q
(

log(wrα)
σ

)
, (50)

where Q(·) is the CCDF of the N (0, 1) standard normal
distribution. It is straightforward to establish that:

E[Ψδ] = E[Ψ−δ] = exp
{
δ2σ2

2

}
, (51)

so that

κ(w) = π exp
{
δ2σ2

2

}
w−δ, κ = π exp{δ2σ2}r2. (52)

The bounds on q(µ) in (31) are

qu(µ) = 1−
∫ ∞

0

(
1−

δ
2−δaµψ

−δ

(1− δ
1−δaµψ

−δ)2

)
×

exp{−aµψ−δ}dFΨ(ψ),

ql(µ) = 1−
∫ ∞

0

exp{−aµψ−δ}dFΨ(ψ), (53)
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for
a = π exp

{
δ2σ2

2

}
r2βδ. (54)

The bounds on τ(µ) and c(ε) in Theorem 3 are computable
from the bounds on q(µ). All quantities in Corollaries 1, 2, 3
are computable from κ given above.

Example 2: Rayleigh fading. Fix Di = r for each i, and
let Ψ be exponentially distributed, i.e., Ψ ∼ Exp(1). Under
randomized transmissions in the absence of channel inversion
the distribution of received signal power is also exponential
with parameter rα, i.e.,

FW (w) = FΨ(wrα) = 1− exp{−wrα}. (55)

It is straightforward to establish that

E[Ψδ] = Γ(1 + δ), E[Ψ−δ] = Γ(1− δ), (56)

so that
κ = π

πδ

sin(πδ)
r2, (57)

where we have used Γ(1 + δ)Γ(1− δ) = πδ
sin(πδ) .

If we plug this value of κ into the lower bound to outage
probability with channel inversion in (38), we get:

ql(µ) = 1− exp{−πµr2Γ(1 + δ)Γ(1− δ)}. (58)

In [15], a closed form expression (Corollary 3.2) for the outage
probability of a system utilizing random transmissions without
channel inversion in a Rayleigh fading environment is derived
using the moment generating function of the interference
power. Remarkably, this expression coincides exactly with the
above expression, which is an outage probability lower bound
when there is channel inversion. As a result, (58) corresponds
to the exact outage probability without channel inversion, and
we can unequivocally state that the use of channel inversion
degrades performance in Rayleigh fading, since (58) is an
outage lower bound when channel inversion is used.

When no channel inversion is employed, we can translate
(58) into exact expressions for the other performance metrics;
these expressions are all upper bounds to performance with
channel inversion:

c(ε) = −β
−δr−2 log(1− ε)(1− ε)
πΓ(1 + δ)Γ(1− δ)

,

τ(µ) = µ exp{−πµβδr2Γ(1 + δ)Γ(1− δ)}. (59)

In Figure 2 the quantity πr2

κ = 1
E[Ψδ]E[Ψ−δ]

, which is the
multiplicative effect of fading on transmission capacity, is
plotted against the path-loss exponent α for Rayleigh fading,
lognormal fading (σ = 6 dB), and the combination of the two.
Both fading distributions have a more benign effect as the
path-loss exponent increases, but note that Rayleigh fading
exacts a very harsh penalty when the path-loss exponent is
near two.

Example 3: Nearest receiver transmissions. Fix Ψij = ψ
for each i, j. Recall Π is the MPPP of intensity λ of potential
transmitters, where each potential transmitter i has an intended
receiver not in Π. Suppose the set of all possible receivers
is a PPP, denoted Π′, of intensity λ′. Consider the case
when each node elects to transmit to its nearest neighbor;
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Fig. 2. Multiplicative effect of Rayleigh and lognormal fading.

for simplicity we ignore the facts that i) multiple potential
transmitters may select the same receiver, and ii) the distances
are dependent random variables. Under these assumptions the
distances, {Di}, are iid with distribution

F̄D(d) = P(Π′ ∩ b(o, d) = ∅) = exp{−πλ′d2}. (60)

Then
E[D] =

1
2
√
λ′
, E[D2] =

1
πλ′

. (61)

Under randomized transmissions in the absence of channel
inversion the distribution of received signal power

FW (w) = F̄D((ψ/w)
1
α ) = exp{−πλ′(ψ/w)δ}. (62)

It follows that κ(w) = πψw−δ and κ = 1
λ′ . The bounds on

q(µ) in (31) are given by

qu(µ) = 1−
∫ ∞

0

(
1−

δ
2−δπβ

δµx2

(1− δ
1−δπβ

δµx2)2

)
×

exp{−πβδµx2}dFD(x),

ql(µ) = 1−
∫ ∞

0

exp{−πβδµx2}dFD(x)

=
βδµ

βδµ+ λ′
. (63)

The lower bounds τ l(µ) and cl(ε) in Theorem 3 are com-
putable from the upper bound on qu(µ), with the upper bounds
being

τu(µ) = µ

(
1− βδµ

βδµ+ λ′

)
, cu(ε) =

λ′

βδ
ε. (64)

All quantities in Corollaries 1, 2, 3 are computable from κ
given above.

V. PERFORMANCE WITH THRESHOLD SCHEDULING

In this section we study the performance when each poten-
tial transmitter i ∈ Π elects to transmit only if the channel
strength to its intended receiver is acceptably strong, i.e., if
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Wi = ΨiiD
−α
i > t, where t is the global channel state

threshold. In particular, the set of actual transmitters, Φ, is
given by Φ = {i ∈ Π : Wi > t}. By the assumed
independence of signal strengths across potential transmitters,
the intensity of attempted transmissions is

µ(t) = λP(ΨD−α > t) = λF̄W (t). (65)

The motivation behind this scheduling policy is the intuition
that transmitting only when the channel to one’s intended re-
ceiver is strong may significantly improve performance above
randomized transmission decisions. We emphasize there is no
claim that the threshold scheduling rule is in any sense globally
optimal: global optimality would require global channel state
knowledge by each node, which is clearly unrealistic. Trans-
mitter channel state information is a realistic assumption when
channel coherence times extend across multiple transmission
attempts, which is the case for all but the highest mobility
systems. We consider performance both with fixed (unit)
power (Section V-A) and with channel inversion (Section V-
B).

Note that a threshold based policy is most feasible when the
timescale of fading is smaller than the allowable packet delays.
If this is the case, delay constraints are not violated even if
a transmitter has to wait multiple coherence times before the
threshold is exceeded. In slow fading scenarios, it may not
be possible to employ only a threshold-based schemes, and
some combination of randomized scheduling and threshold
scheduling may be more appropriate.

A. Performance with threshold scheduling and without chan-
nel inversion

In the absence of channel inversion, the normalized aggre-
gate interference seen by the reference receiver is

Y =
1

W0|t

∑
i∈Φ

Ψi0|Xi|−α, W0|t = Ψ00D
−α
0 , (66)

where W0|t is the received signal power conditioned on the
reference transmitter having an acceptably strong channel.
Notice that the effect of the threshold policy is to change the
distribution of the channel coefficient from the unconditional
distribution of W to the conditional distribution of W given
W ≥ t; the distribution of the interfering channel coefficients
Ψi0 is unaffected because transmission is decided only on the
basis of Ψii.

The distribution of W0|t is then

W0|t ∼ FW |t = P(W ≤ w | W > t), w ≥ t, (67)

which is expressible in terms of the known distributions FΨ

and FD. The distribution of Y may be expressed in terms of
the distribution of Y conditioned on W0|t:

F̄Y (y) =
∫ ∞
t

F̄Y |Wt
(y|wt)dFWt

(wt), (68)

where Wt ∼ FW |t.
Theorem 4: Under threshold based transmissions and lack-

ing channel inversion, Theorems 1, 2, and 3 continue to hold
with the following changes. In Theorem 1, the conditional

distribution F̄Y |W (y|w) in (20) is replaced with F̄Y |Wt
(y|wt)

in (68). In Theorem 2 the upper and lower bounds on the
CCDF F̄Y (y) of the random variable Y in (19) are replaced
with upper and lower bounds on the CCDF F̄Y (y) of the
random variable Y in (66), with K in (24) replaced with

Kt = πE[Ψδ]W−δt , (69)

and κ in (28) replaced with

κ(t) = E[Kt] = πE[Ψδ]E[W−δt ] = πE[Ψδ]
E[W−δ1W>t]

F̄W (t)

= πE[Ψδ]

∫∞
0
x2
[∫∞
txα

v−δdFΨ(v)
]

dFD(x)∫∞
0

[∫∞
txα

dFΨ(v)
]

dFD(x)
. (70)

In Theorem 3 the upper and lower bounds on the outage
probability and the spatial throughput hold with Θ in (32)
replaced with

Θt = Ktβ
δ = πE[Ψδ]W−δt βδ. (71)

The bounds on the transmission capacity are replaced with
the inverses of qu, ql defined in terms of the expectation of
Θt. The proof is found in the Appendix.
Comments on Theorem 4. Several sanity checks are available
to validate the above expression for κ(t). First, note that for
t = 0 (no signal strength threshold for transmission) κ(t)
reduces to κ. Second, consider the case when the channel
fading gains are constant, Ψij = ψ for all i, j. Then it is
straighforward to see that

κ(t) = π
E[D21

D<(ψ/t)
1
α

]

FD((ψ/t)
1
α )

. (72)

Note that the condition D < (ψ/t)
1
α is equivalent to ψD−α >

t, which is the signal strength transmission requirement under
fixed fading and random distances. Finally, consider the case
when the transmitter to receiver distances are constant, Di = r
for all i. Then

κ(t) = πr2E[Ψδ]
E[Ψ−δ1Ψ>trα ]

F̄Ψ(trα)
. (73)

Note that the condition Ψ > trα is equivalent to Ψr−α > t,
which is the signal strength transmission requirement under
random fading and fixed distances.

B. Performance with threshold scheduling and with channel
inversion

Under threshold scheduling the transmitters in Φ are those
potential transmitters in Π with Wi > t. With channel
inversion, each transmitter i employs transmit power Pi = 1

Wi
,

meaning that the maximum transmit power is Pmax = 1
t .

Under this channel inversion scheme the normalized aggregate
interference seen at the reference receiver is

Y =
∑
i∈Φ

1
Wi|t

Ψi0|Xi|−α, (74)

where each Wi|t has distribution FW |t in (67).
Theorem 5: Define

θ(t) = κ(t)βδ, (75)



14

with κ(t) defined in (70). Under threshold based transmissions
with channel inversion, Corollaries 1, 2, and (38) and (40)
in Corollary 3 continue to hold with (κ, θ, µ) replaced with
(κ(t), θ(t), µ(t)). The bounds on the transmission capacity are

cl(ε) = λF̄W (γ−1(qu,−1(ε))), ε ∈ [0, qu(θλ)],
cu(ε) = λF̄W (γ−1(ql,−1(ε))), ε ∈ [0, ql(θλ)], (76)

where γ−1 is the inverse of γ(t) = θ(t)µ(t),
ql,−1(ε) = − log(1 − ε) and qu,−1(ε) are the inverses
of ql, qu in (38) respectively, and θ is given by (39). The
proof is found in the Appendix.

Comments on Theorem 5. By construction both τ(µ) and
c(ε) are concave functions, and have the same maximum value.
We can write:

τ(t) = µ(t) exp{−µ(t)θ(t)}
= λF̄W (t) exp{−πλβδE[Ψδ]E[W−δ1W>t]}.(77)

The derivative is:

d
dt
τ(t) = λ exp{−πλβδE[Ψδ]E[W−δ1W>t]} ×(

d
dt
F̄W (t)− aF̄W (t)

d
dt

E[W−δ1W>t]
)
,(78)

for a = πλβδE[Ψδ]. Note that

d
dt
F̄W (t) = −fW (t),

d
dt

E[W−δ1W>t] = −t−δfW (t),
(79)

so that the sufficient condition for optimality is

d
dt
τ(t) = 0 ⇔ F̄W (t) =

tδ

a
. (80)

The optimal throughput can be expressed as

τ(topt) =
λ

a
tδopt exp{−tδoptE[W−δ1W>topt ]}. (81)

The function κ(t) is monotonically decreasing in t. Taking
the derivative yields:

d
dt
κ(t) =

πE[Ψ−δ]
F̄W (t)2

(
F̄W (t)

d
dt

E[W−δ1W>t]−

E[W−δ1W>t]
d
dt
F̄W (t)

)
=

πE[Ψ−δ]fW (t)
F̄W (t)2

(
E[W−δ1W>t]− t−δF̄W (t)

)
=

πE[Ψ−δ]fW (t)
F̄W (t)2

∫ ∞
t

(w−δ − t−δ)dFW (t)

< 0. (82)

C. Examples

We revisit the three examples introduced in Section IV-D
and compute the various quantities in Theorems 4 and 5.

Example 1: Lognormal shadowing (continued). Fix Di =
r for each i and let Ψ be lognormal distributed with parameter
σ2, i.e., Ψ ∼ LN (0, σ2), where fΨ(ψ) is given by (49). Under

threshold based transmission decisions, the distribution FW |t
in (67) is given by

FW |t(w) = 1− F̄Ψ(wrα)
F̄Ψ(trα)

= 1−
Q
(

log(wrα)
σ

)
Q
(

log(trα)
σ

) , (83)

where Q(·) is the CCDF of the N (0, 1) standard normal
distribution. It is straightforward to establish that:

E[Ψ−δ1Ψ>trα ] = e
(δσ)2

2 Q

(
log(trα)

σ
+ δσ

)
, (84)

It follows that κ(t) in (70) is

κ(t) = πeδ
2σ2

r2
Q
(

log(trα)
σ + δσ

)
Q
(

log(trα)
σ

) . (85)

Moreover, γ(t) in Theorem 5 is given by

γ(t) = πr2λβδeδ
2σ2

Q

(
log(trα)

σ
+ δσ

)
. (86)

Solving γ(t) = g for t yields

γ−1(g) = r−α exp
{
σQ−1

(
g

πr2λβδeδ2σ2

)
− δσ2

}
. (87)

Example 2: Rayleigh fading (continued). Fix Di = r
for each i and let Ψ ∼ Exp(1). Under threshold based
transmission decisions, the distribution FW |t in (67) is given
by

FW |t(w) = 1− exp{−(w − t)rα}, w > t. (88)

It is straightforward to establish that:

E[Ψ−δ1Ψ>trα ] = Γ(1− δ, trα), (89)

where Γ(a, x) is the incomplete Gamma function. It follows
that κ(t) in (70) is

κ(t) = πΓ(1 + δ)Γ(1− δ, trα)etr
α

r2. (90)

Substituting t = 0 is consistent with (57) since limx→0 Γ(1−
δ, x)ex = Γ(1− δ). Moreover, γ(t) in Theorem 5 is given by

γ(t) = πr2λβδΓ(1 + δ)Γ(1− δ, trα). (91)

Solving γ(t) = g for t yields

γ−1(g) = r−αΓ−1

(
1− δ, g

πr2λβδΓ(1 + δ)

)
, (92)

where Γ−1(a, y) solves Γ(a,Γ−1(a, y)) = y.
Example 3: Nearest receiver transmissions (continued).

Fix Ψij = ψ for each i, j, and let Di ∼ FD in (60). Under
threshold based transmission decisions, the distribution FW |t
in (67) is given by

FW |t(w) = 1− FD((ψ/w)
1
α )

FD((ψ/t)
1
α )

= 1− 1− exp{−πλ′(ψ/w)δ}
1− exp{−πλ′(ψ/t)δ}

. (93)

It is straightforward to establish that:

E[D21
D<(ψ/t)

1
α

] =
1− (1 + πλ′(ψ/t)δ)e−πλ

′(ψ/t)δ

πλ′
. (94)
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It follows that κ(t) in (70) is

κ(t) =
1
λ′
· 1− (1 + πλ′(ψ/t)δ)e−πλ

′(ψ/t)δ

1− e−πλ′(ψ/t)δ
. (95)

Moreover, γ(t) in Theorem 5 is given by

γ(t) =
λ

λ′
βδ
[
1− (1 + πλ′(ψ/t)δ)e−πλ

′(ψ/t)δ
]
. (96)

Solving γ(t) = g for t yields

γ−1(g) = ψ

[
− 1
πλ′

(
1 +W

(
−1
e

(
1− λ′g

λβδ

)))]−α2
,

(97)
where W (x) is the k = −1 branch of the Lambert W function,
satisfying W (x)eW (x) = x [33].

VI. NUMERICAL AND SIMULATION RESULTS

We present numerical and simulation results for the three
examples studied in Sections IV and V. Numerical results are
computed using Mathematica, and our simulator is written in
Perl. The simulation methodology is described in greater detail
in [34]. Throughout this section we set

α = 4, δ = 1
2 , β = 3, λ = 1

100 . (98)

For Examples 1 and 2 where the distances {Di} = r are
constant, we set r = 1

2
√
λ

= 5 meters. For Example 3, where
the fading coefficients {Ψij} = ψ are constant, we set ψ = 1.
The abscissa in all plots of outage probability (q) and spatial
throughput (τ) is p, the probability of transmission under the
randomized transmission rule. The abscissa is also labeled p
for the plots of q and τ under the threshold transmission rule
with threshold t. This is done to facilitate comparison between
the performance plots under the two scheduling rules. For each
p ∈ [0, 1] the threshold t is chosen so that the intensity of
points under the two transmission rules is the same, i.e.,

µ(p) = µ(t) ⇔ λp = λF̄W (t) ⇔ t(p) = F̄−1
W (p). (99)

It follows that the threshold is computed from p using the
function t(p) = F̄−1

W (p).

A. Example 1: Lognormal shadowing

This section presents numerical and simulation results from
Example 1, where the {Di} are constant and the {Ψij} are
lognormal random variables with PDF (49) and σ = log 10

10 6
(6 dB). Solving t(p) = F̄−1

W (p) in (99) yields t(p) =
r−αexp(σQ−1(p)), where Q−1(·) is the inverse of the stan-
dard normal CCDF.

Figure 3 shows four plots of simulation and numerical
results for lognormal shadowing. The top left plot illustrates
the lower and upper bounds along with simulation results for
the outage probability q versus the transmission probability
p under randomized and threshold transmissions with no
channel inversion. The bounds are seen to be reasonably tight,
especially for the usual case of interest where q is small.
Furthermore, the dramatic reduction in outage achievable
through threshold scheduling is apparent. The other three plots
show simulation results for the four cases discussed in the

paper: randomized transmissions with and without channel in-
version, and threshold transmissions with and without channel
inversion. The three plots are of outage probability q versus
transmission probability p, spatial throughput τ versus p, and
the transmission capacity c versus the outage requirement ε.

Several observations merit comment. First, note that as
p → 0 (as t(p) → ∞) channel inversion has no impact on
performance, while as p → 0 (as t(p) → ∞) randomized
and threshold transmissions have identical performance. The
limited impact of channel inversion is especially apparent for
threshold transmissions: for large t (small p) only potential
transmitters with good channels elect to transmit, and thus
there is less need for using channel inversion to compensate
for poor channels compared with smaller t (larger p). For large
p (small t) employing thresholds is increasingly ineffective in
restricting transmissions to nodes with good channels, and as
such becomes equivalent to randomized transmissions.

Second, as discussed in the comments of Section IV and
V, channel inversion always reduces performance (larger q,
smaller τ , smaller c). As discussed, channel inversion is a
compensation mechanism allowing nodes with poor channels
to their receivers to obtain acceptable received signal power.
Although nodes with good channels reduce their power and
hence decrease the amount of interference they cause, the net
effect is undesirable. The intuitive explanation, as noted in
Section IV-C, is that a single dominant interferer is the most
likely contributor to causing outage, so a policy of pairwise
channel inversion increases the likelihood of a dominant
interference event occurring since the chances of at least one
nearby transmitter having a poor channel to its receiver are
reasonably good.

Third, note that the plots of spatial throughput and trans-
mission capacity achieve the same peaks (for each of the four
cases), and that i) the peak capacity under threshold trans-
missions is over twice the peak capacity under randomized
transmissions, and ii) the outage requirement ε required to
obtain those peaks is much smaller for threshold transmissions
than for randomized transmissions. In effect, channel variabil-
ity should not be dealt with through randomization, but instead
should be exploited through threshold scheduling.

B. Example 2: Rayleigh fading

For Example 2 the {Di} are constant and the {Ψij} are
exponentially distributed with parameter 1. Solving t(p) =
F̄−1
W (p) in (99) yields t(p) = − log p

rα . Figure 4 shows four
plots of simulation and numerical results for Rayleigh fading.
The top left plot illustrates the upper and lower bounds and the
simulation results spatial throughput τ versus the transmission
probability p for threshold based transmissions with channel
inversion (dashed curves) and without channel inversion (solid
curves). The other three plots are for the same scenarios as in
Fig. 3. The comments made in Example 1 hold here as well,
but overall the effects are not quite as severe as the channel
variations are not quite as large as in the lognormal case with
σ = 6 dB.
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C. Example 3: Nearest receiver transmissions

In Example 3 the {Di} have CCDF (60) and the {Ψij}
are constant. Solving t(p) = F̄−1

W (p) yields t(p) =
ψ( πλ′

− log(1−p) )
1
δ . The density λ′ of potential receivers in Π′

is set equal to the density of potential transmitters: λ′ = λ.
Figure 5 shows four plots of simulation and numerical

results for nearest receiver transmissions. The top left plot
illustrates the transmission capacity c versus the outage re-
quirement ε for randomized transmissions (solid curves) and
threshold transmissions (dashed curves) with channel inver-
sion. The three curves for each case are the lower and upper
bounds along with simulation results. The bounds are again
seen to be reasonably tight, especially for the small ε case of
usual interest. The other three plots follow as in Examples 1
and 2.

The comments from Examples 1 and 2 apply here as well; in
other words random hop distances behave much like random
channel effects. Note that the bottom right plot of transmission
capacity illustrates that threshold scheduling achieves a three
fold or greater increase in transmission capacity relative to
the capacity under randomized transmissions for all ε < 0.2.
Even more than Examples 1 and 2, this example highlights
the tension between throughput and fairness: in this example
performance is maximized by employing a threshold rule such
that only nodes that are sufficiently close to their intended
receivers are selected to transmit. In Example 2 and to a
lesser extent Example 1, one could argue that the channel
coherence timescale is short enough such that the unfairness
of opportunistic scheduling is of limited concern to the typical
user. Here, however, the transmitter receiver distances are
changing on the timescale of user mobility, meaning the
unfairness of opportunistic scheduling is of much greater
concern.

VII. CONCLUSION

The goal of this paper was to develop a methodology, and
some insights, on how ad hoc network capacity is affected
by temporal variations in channel quality and transmission
distance. We focused on the case where each node has only
local information; in particular it knows the channel to a
desired receiver. This approach, while suboptimal, has the
considerable merits of being realistic and analytically tractable.

We made the following observations, with transmission
capacity and outage probability as the metrics of interest. First,
randomized transmissions perform poorly in the presence of
either fading or variable channel distances. That is, variability
strictly reduces capacity in transmitters that are blind to the
channel. Second, we showed that a policy of channel inversion,
while helping users with poor channels, negatively impacts the
overall network capacity. The intuition is that this increases the
likelihood of a dominant interferer causing an outage: because
of the coupled nature of all the links in an ad hoc network,
channel inversion causes all the nodes in an area to suffer when
a single link is poor. Third, channel variations can be exploited
through the use of simple threshold scheduling, where a user
transmits when its desired channel is above a target. We derive
the optimal threshold, and show that over many ranges of

interest, the capacity is about three times higher than with
no scheduling.

REFERENCES

[1] S. Weber, X. Yang, J. G. Andrews, and G. de Veciana, “Transmission
capacity of wireless ad hoc networks with outage constraints,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4091–4102,
December 2005.

[2] J. Venkataraman, M. Haenggi, and O. Collins, “Shot noise models for the
dual problems of cooperative coverage and outage in random networks,”
in Allerton, Monticello,IL, September 2006.

[3] R. K. Ganti and M. Haenggi, “Regularity, interference, and capacity of
large ad hoc networks,” in IEEE Asilomar, Pacific Grove, CA, October
2006.

[4] S. Weber, J. G. Andrews, X. Yang, and G. de Veciana, “Transmission
capacity of wireless ad hoc networks with successive interference
cancellation,” IEEE Transactions on Information Theory, August 2007.

[5] A. Hasan and J. G. Andrews, “The guard zone in wireless ad hoc
networks,” to appear in IEEE Transactions on Wireless Communications,
2007.

[6] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, March
2000.

[7] A. Jovicic, P. Viswanath, and S. R. Kulkarni, “Upper bounds to transport
capacity of wireless networks,” IEEE Transactions on Information
Theory, vol. 50, no. 11, pp. 2555–2565, November 2004.

[8] L. Xie and P. R. Kumar, “A network information theory for wireless
communication: Scaling laws and optimal operation,” IEEE Transactions
on Information Theory, vol. 50, no. 5, pp. 748–767, May 2004.

[9] F. Xue, L. Xie, and P. R. Kumar, “The transport capacity of wireless
networks over fading channels,” IEEE Transactions on Information
Theory, vol. 51, no. 3, pp. 834–847, March 2005.

[10] L.-L. Xie and P. R. Kumar, “On the path-loss attenuation regime
for positive cost and linear scaling of transport capacity in wireless
networks,” Joint Special Issue of IEEE Transactions on Information
Theory and IEEE/ACM Transactions on Networking on Networking and
Information Theory, vol. 52, no. 6, pp. 2313–2328, June 2006.

[11] F. Xue and P. R. Kumar, Scaling laws for ad hoc wireless networks:
an information theoretic approach, ser. Foundations and Trends in
Networking. Hanover, MA: Now Publishers, 2006.

[12] A. Ozgur, O. Leveque, and D. Tse, “Hierarchical cooperation achieves
optimal capacity scaling in ad hoc networks,” submitted in September,
2006 to IEEE Transactions on Information Theory, revision submitted
in February, 2007.

[13] E. S. Sousa and J. A. Silvester, “Optimum transmission ranges in a
direct-sequence spread-spectrum multihop packet radio network,” IEEE
Journal on Selected Areas in Communications, vol. 8, no. 5, pp. 762–
771, June 1990.

[14] J. Ilow and D. Hatzinakos, “Analytic alpha-stable noise modeling in a
Poisson field of interferers or scatterers,” IEEE Transactions on Signal
Processing, vol. 46, no. 6, pp. 1601–1611, June 1998.

[15] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “An Aloha protocol for
multihop mobile wireless networks,” IEEE Transactions on Information
Theory, vol. 52, no. 2, pp. 421–436, February 2006.

[16] P. Levy, Calcul des Probabilites. Paris: Gauthier–Villars, 1925.
[17] M. Shao and C. L. Nikias, “Signal processing with fractional lower

order moments: stable processes and their applications,” Proceedings of
the IEEE, vol. 81, no. 7, pp. 986–1010, July 1993.

[18] A. P. Petropulu, J.-C. Pesquet, X. Yang, and J. Yin, “Power-law shot
noise and its relationship to long-memory α-stable processes,” IEEE
Transactions on Signal Processing, vol. 48, no. 7, pp. 1883–1892, July
2000.

[19] W. Schottky, “Uber spontane stromschwankungen in verschiedenen
elektrizitatsleitern,” Annalen der Physik, vol. 57, pp. 541–567, 1918.

[20] S. B. Lowen and M. C. Teich, “Power-law shot noise,” IEEE Transac-
tions on Information Theory, vol. 36, no. 6, pp. 1302–1318, November
1990.

[21] S. O. Rice, “Mathematical analysis of random noise,” Bell Systems
Technical Journal, vol. 23, pp. 282–332, 1944.

[22] J. A. Gubner, “Computation of shot-noise probability distributions and
densities,” SIAM Journal of Scientific Computing, vol. 17, no. 3, pp.
750–761, May 1996.

[23] S. Musa and W. Wasylkiwskyj, “Co-channel interference of spread
spectrum systems in a multiple user environment,” IEEE Transactions
on Communications, vol. 26, no. 10, pp. 1405–1413, October 1978.



17

[24] E. S. Sousa, “Interference modeling in a direct-sequence spread-
spectrum packet radio network,” IEEE Transactions on Communications,
vol. 38, no. 9, pp. 1475–1482, September 1990.

[25] ——, “Performance of a spread spectrum packet radio network link on a
Poisson field of interferers,” IEEE Transactions on Information Theory,
vol. 38, no. 6, pp. 1743–1754, November 1992.

[26] J. Holtsmark, “Uber die verbreiterung von sektrallinien,” Ann. Physik,
vol. 58, no. 4, pp. 577–630, 1919.

[27] M. Felegyhazi and J.-P. Hubaux, “Game theory in wireless networks:
A tutorial,” EPFL Laboratory for Computer Communications and Ap-
plications, Lausanne, Switzerland, Tech. Rep. LCA-REPORT-2006-002,
June 2006.

[28] S. Toumpis and A. J. Goldsmith, “Capacity regions for wireless ad hoc
networks,” IEEE Transactions on Wireless Communications, vol. 24,
no. 5, pp. 736–748, May 2003.

[29] ——, “Large wireless networks under fading, mobility, and delay
constraints,” in Proceedings of IEEE INFOCOM, Hong Kong, March
2004.

[30] R. Gowaikar, B. Hochwald, and B. Hassibi, “Communication over
a wireless network with random connections,” IEEE Transactions on
Information Theory, submitted.

[31] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource allocation and
cross-layer control in wireless networks. Hanover, MA: Foundations
and Trends in Networking (NOW), 2006.

[32] C. Goldie and C. Kluppelberg, “Subexponential distributions,” in A
practical guide to heavy tails: statistical techniques for analysing heavy
tails, R. Adler, R. Feldman, and M. Taqqu, Eds. Birkhauser, 1997.

[33] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the
Lambert W function,” Advances in Computational Mathematics, vol. 5,
pp. 329–359, 1996.

[34] S. Weber and M. Kam, “Computational complexity of outage probability
simulations in mobile ad-hoc networks,” in Proceedings of the 39th an-
nual conference on information sciences and systems (CISS), Baltimore,
MD, March 2005.

[35] D. Stoyan, W. Kendall, and J. Mecke, Stochastic Geometry and its
Applications, 2nd Edition. John Wiley and Sons, 1996.

[36] M. Haenggi, “On distances in uniformly random networks,” IEEE
Transactions on Information Theory, vol. 51, no. 10, pp. 3584–3586,
October 2005.

[37] J. Kingman, Poisson processes. Oxford, U.K.: Oxford Science Publi-
cations, 1993.

APPENDIX

PROOF OF THEOREM 2

The proof consists of three steps: i) obtaining the lower
bound (F̄ lY (y)), ii) obtaining the upper bound (F̄uY (y)), and
iii) obtaining the asymptotic expansions for F̄Y (y), F̄ lY (y),
and F̄uY (y). We begin with some definitions.

Under randomized transmissions and without channel in-
version, the normalized aggregate interference seen by the
reference receiver, Y , is given by (19). It is clear that Y
is the product of a r.v. 1/W0 and a shot noise process with
points {Xi} and marks {Ψi0}. The {Ψi0}, {Xi} and W0 are
all mutually independent. Fix the outage threshold at y > 0
and the received signal power at W0 = w. Split Φ into two
disjoint complementary processes: Φ = Φy,w ∪ Φcy,w, where:

Φy,w =
{
Xi ∈ Φ :

1
w

Ψi0|Xi|−α ≥ y
}
,

Φcy,w =
{
Xi ∈ Φ :

1
w

Ψi0|Xi|−α < y

}
. (100)

Thus Φy,w is the set of points that are individually capable of
causing outage at the reference receiver if the outage threshold
is y and the received signal power is w. It is helpful to think of
the points in Φy,w as the dominant interferers for the reference
receiver, and the remaining points in Φcy,w as the non-dominant
interferers. Note that although the quantities Ψi0 and Xi are

independent for each i in Φ, they are not independent in Φy,w
and Φcy,w. Also, although Φ is a stationary (homogeneous)
Poisson process of intensity µ, both Φy,w and Φcy,w are non-
stationary Poisson processes. Define the aggregate normalized
interference from these processes as

Yy,w =
∑

i∈Φy,w

Ψi0|Xi|−α, Y cy,w =
∑

i∈Φcy,w

Ψi0|Xi|−α, (101)

and note that Y = Yy,w + Y cy,w.
Step 1: lower bound F̄ lY (y). The lower bound on F̄Y (y)

is

F̄Y (y) ≥ F̄ lY (y) = P(Yy,W0 > y)

=
∫ ∞

0

P(Yy,w > y)dFW (w). (102)

To compute the lower bound observe that the event {Yy,w >
y} is the same as the event {Φy,w 6= ∅}. With this observation
we can compute the lower bound using the expression for the
void probability of a Poisson process:

P(Yy,w > y) = 1− P(Φy,w = ∅)

= 1− exp
{
−
∫

R2
µy,w(x)dx

}
, (103)

where µy,w(x) is the density of points in Φy,w at location x:

µy,w(x) = µP
(

1
w

Ψ|x|−α ≥ y
)
. (104)

Noting that the density is radially symmetric, we can switch to
polar coordinates, with slight abuse of notation writing µy,w(r)
for the intensity of Φy,w at distance r. The resulting expression
is simplified by writing F̄Ψ(s) =

∫∞
s
fΨ(ψ)dψ, exchanging

the order of integration, and using the change of variables
s = yrα:

F̄ lY (y) = 1−
∫ ∞

0

e−2πµ
R∞
0 P(Ψ>wyrα)rdrdFW (w)

= 1− E
[
exp

{
−πµE[Ψδ]W−δy−δ

}]
= 1− E

[
exp

{
−Kµy−δ

}]
, (105)

where K = πE[Ψδ]Ψ−δD2. This completes the lower bound.
Step 2: upper bound F̄uY (y). To establish the upper bound,

we condition on Yy,w for each w:

F̄Y (y) =
∫ ∞

0

dFW (w)
[
P(Y > y|Yy,w > y)F̄Yy,w(y)+

P(Y > y|Yy,w ≤ y)FYy,w(y)
]

=
∫ ∞

0

dFW (w)
[
1 · F̄Yy,w(y) + F̄Y cy,w(y)FYy,w(y)

]
=

∫ ∞
0

dFW (w)
[(

1− exp{−πµE[Ψδ]w−δy−δ}
)

+

F̄Y cy,w(y) exp{−πµE[Ψδ]w−δy−δ}
]

= 1−
∫ ∞

0

dFW (w)(1− F̄Y cy,w(y))×

exp{−πµE[Ψδ]w−δy−δ}
= 1− E

[
(1− F̄Y cy,W (y))e−πµE[Ψδ]W−δy−δ

]
, (106)
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where we have used the fact that FYy,w(y) =
exp{−πµE[Ψδ]w−δy−δ}. The upper bound F̄uY (y) on
F̄Y (y) is obtained by finding an upper bound F̄uY cy,w(y) on
F̄Y cy,w(y) for each w. Application of the Chebychev inequality
yields:

F̄Y cy,w(y) ≤ F̄uY cy,w(y) =
Var(Y cy,w)

(y − E[Y cy,w])2
. (107)

We apply Campbell’s Theorem [35] to compute the mean and
variance of Y cy,w. This requires we characterize the density of
points in Φcy,w in the product space R2 ×Ψ, where Ψ = R+

is the support of Ψ. The density at a point (x, ψ) in this space
is µcy,w(x, ψ) = µfΨ(ψ)1|x|−αψ<wy. Straightforward analysis
yields:

E[Y cy,w] =
∫

R2

∫ ∞
0

ψ

w
|x|−αµcy,w(x, ψ)dxdψ

= 2πµ
∫ ∞

0

ψ

w

(∫ ∞
( ψ
wy )

1
α

r1−αdr

)
dFΨ(ψ)

=
2πµ
α− 2

y1− 2
αw−

2
α

∫ ∞
0

ψ
2
α dFΨ(ψ)

=
δ

1− δ
πµE[Ψδ]w−δy1−δ. (108)

Similarly,

Var(Y cy,w) =
∫

R2

∫ ∞
0

(
ψ

w

)2

|x|−2αµcy,w(x, ψ)dxdψ

= 2πµ
∫ ∞

0

(
ψ

w

)2
(∫ ∞

( ψ
wy )

1
α

r1−2αdr

)
dFΨ(ψ)

=
2πµ

2α− 2
y2− 2

α

∫ ∞
0

(
ψ

w

) 2
α

dFΨ(ψ)

=
δ

2− δ
πµE[Ψδ]w−δy2−δ. (109)

Using K = πE[Ψδ]Ψ−δD2 it follows that the upper bound
may be expressed as

F̄Y (y) ≤ 1− E

(1−
δ

2−δKµy
−δ

(1− δ
1−δKµy

−δ)2

)+

e−Kµy
−δ

 ,
(110)

where (x)+ = max{x, 0}.
Step 3: asymptotic expansions. We next obtain the asymp-

totic expansions of F̄Y (y), F̄ lY (y), F̄uY (y) as y → ∞. In all
three cases we will compute the series representations of the
conditional distributions F̄Y |W (y|w), F̄ lY |W (y|w), F̄uY |W (y|w)
conditioned on W0 = w, then recover the unconditioned
distributions by integrating against the distribution FW . We
first obtain the series expansion of F̄Y (y). Equation (29) in
[20] gives the series representation of the PDF of I(t) in
(9) when h(t) is a power law (10) with marks {Ki} and
A = 0, B =∞ and β > 1:

fI(t)(x) =
1
πx

∞∑
n=1

(−1)n+1

n!
Γ(1 + n/β) sin(πn/β) ×[

µ1Γ(1− 1/β)E[K
1
β ]x−

1
β

]n
. (111)

Here µ1 is the intensity of the Poisson process of times {tj}
in (9). Recall that I(t) is a shot noise process on R, not
R2. We can nonetheless use the result to obtain the series
representation of the CCDF of Y by translating the shot noise
process on R2 onto R, then integrating the PDF to get the
CCDF. Translating a Poisson shot noise point process on
R2 onto R is discussed in [14] and [36]; in essence, the
path loss exponent changes from α to α/2 and the intensity
increases from λ to πλ. Applying this transformation yields
the conditional PDF of Y :

fY |W (y|w) =
1

πwy

∞∑
n=1

(−1)n+1

n!
Γ(1 + nδ) sin(πnδ) ×[

πµΓ(1− δ)E[Ψδ](wy)−δ
]n
. (112)

Integrating the conditional PDF yields the conditional CCDF

F̄Y |W (y|w) =
∞∑
n=1

(−1)n+1

n!
1
πnδ

Γ(1 + nδ) sin(πnδ) ×[
πµΓ(1− δ)E[Ψδ](wy)−δ

]n
. (113)

Taking the dominant n = 1 term of the series yields

F̄Y |W (y|w) = µπE[Ψδ](wy)−δ +O((wy)−2δ), (114)

where we have used the identity sin(πδ)
πδ Γ(1 + δ)Γ(1− δ) = 1.

Unconditioning yields

F̄Y (y) =
∫ ∞

0

F̄Y |W (y|w)dFW (w)

= µπE[Ψδ]E[W−δ]y−δ +O(y−2δ). (115)

We next obtain the series representation of the conditional
lower bound F̄ lY |W (y|w):

F̄ lY |W (y|w) = 1− exp
{
−µπE[Ψδ](wy)−δ

}
= 1−

(
1 +

∞∑
n=1

(−1)n(µπE[Ψδ](wy)−δ)n

n!

)

=
∞∑
n=1

(−1)n+1

n!
(µπE[Ψδ])n(wy)−nδ. (116)

Taking the dominant n = 1 term of the series yields

F̄ lY |W (y|w) = µπE[Ψδ](wy)−δ +O((wy)−2δ), (117)

and unconditioning yields

F̄ lY (y) = µπE[Ψδ]E[W−δ]y−δ +O(y−2δ). (118)

Finally, we obtain the first order Taylor series expansion
of the conditional upper bound F̄uY |W (y|w). Define x =
µπE[Ψδ](wy)−δ so that the conditional lower bound is given
by:

g(x) = 1−

(
1−

δ
2−δx

(1− δ
1−δx)2

)+

e−x. (119)

Taking an expansion around x = 0 corresponds to finding
the asymptotic order for large y. The first order Taylor series
expansion of g(x) around x = 0 is easily seen to be

g(x) = g(0)+g′(0)x+O(x2) = 0+
2

2− δ
x+O(x2). (120)
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Substituting back µπE[Ψδ](wy)−δ for x and unconditioning
yields

F̄uY (y) =
2

2− δ
µπE[Ψδ]E[W−δ]y−δ +O(y−2δ). � (121)

PROOF OF COROLLARY 2

The corollary follows from the proof of Theorem 2 with the
following changes. Note that under randomized transmissions
with channel inversion, the normalized aggregate interference
seen at the reference receiver, Y , given by (35), is a shot noise
process, with random marks Zi = Ψi0

Wii
. There is no need to

condition on the received signal power. This means that Φy,w
and Φcy,w in (100) may be replaced with

Φy =
{
Xi ∈ Φ : Zi|Xi|−α ≥ y

}
Φcy =

{
Xi ∈ Φ : Zi|Xi|−α < y

}
, (122)

and Yy,w, Y cy,w in (101) may be replaced with

Yy =
∑
i∈Φy

Zi|Xi|−α, Y cy =
∑
i∈Φcy

Zi|Xi|−α. (123)

Step 1: lower bound F̄ lY (y). The lower bound (105)
becomes

F̄ lY (y) = 1− exp{−2πµ
∫ ∞

0

P(Z > yrα)rdr}

= 1− exp
{
−πµE[Ψδ]E[W−δ]y−δ

}
= 1− exp

{
−κµy−δ

}
. (124)

Step 2: upper bound F̄uY (y). The unconditioned version
of (106) is

F̄Y (y) = P(Y > y|Yy > y)F̄Yy (y) +
P(Y > y|Yy ≤ y)FYy (y)

= 1− (1− F̄Y cy (y))×
exp{−πµE[Ψδ]E[W−δ]y−δ}. (125)

The upper bound is obtained by applying the Chebychev
inequality, replacing (107) with

F̄Y cy (y) ≤ F̄uY cy (y) =
Var(Y cy )

(y − E[Y cy ])2
. (126)

The mean and the variance become

E[Y cy ] =
δ

1− δ
πµE[Ψδ]E[W−δ]y1−δ,

Var(Y cy ) =
δ

2− δ
πµE[Ψδ]E[W−δ]y2−δ. (127)

Instead of (110), the unconditioned upper bound is

F̄Y (y) ≤ 1−

(
1−

δ
2−δκµy

−δ

(1− δ
1−δκµy

−δ)2

)+

e−κµy
−δ
. (128)

The upper bound is non-trivial when F̄uY (y) < 1, where the
critical point F̄uY (y) = 1 corresponds to the solution of

δ

2− δ
x =

(
1− δ

1− δ
x

)2

, (129)

for x = κµy−δ . Solving this equation for x yields the function
h(δ) given in (37).

Step 3: asymptotic expansions. The asymptotic expansions
under channel inversion are the conditional asymptotic expan-
sions from Step 3 of the proof of Theorem 2 with y replacing
wy and Z replacing Ψ. �

CHERNOFF UPPER BOUND

Let {Zi}, y, Φy , Φcy , Yy , Y cy be as in the proof of Corollary
2. In Corollary 2 the Chebychev inequality is used to upper
bound F̄Y cy (y), which in turn yields an upper bound on the
CCDF, F̄uY (y). Our purpose in this section is to discuss the
use of the Chernoff bound instead of the Chebychev bound.
In particular, the Chernoff bound may be used to upper bound
F̄Y cy (y), which yields a tighter upper bound on the CCDF,
F̄uY (y). The Chernoff rate function requires the log moment
generating function (MGF) of the random variable Y cy , defined
as gY cy (θ) = log E[exp{θY cy }]. The log MGF for a functional∑
i∈Π f(xi,mi) of a non-stationary MPPP Π = {(Xi,Ψi)}

with (xi, ψi) ∈ S × Ψ and intensity µ(x, ψ) is given by
Kingman ([37], (5.10), page 58) as:

g(θ) =
∫
S

∫
	

(
eθf(x,ψ) − 1

)
µ(x, ψ)dψ dx. (130)

It is clear that Y cy is a functional of a non-stationary MPPP
with iid marks {Zi}. The intensity of points from the process
Φcy at the point (x, z) ∈ R2 ×Z is

µY cy (x, z) = µ
d
dz

P(Z|x|−α < y) = µfZ(z)1z<y|x|α . (131)

After changing to radial coordinates, it follows that the log
MGF for Y cy is

gY cy (θ) = µ

∫ ∞
0

∫ yrα

0

r
(
eθzr

−α
− 1
)

dFZ(z) dr. (132)

The Chernoff bound on F̄Y cy (y) has a rate function given by
the Legendre transform of the log MGF:

F̄Y cy (y) ≤ exp
{
− sup
θ≥0

[
θy − gY cy (θ)

]}
. (133)

Evaluating the log MGF requires the PDF of the marks
fZ(z), which in turn depends upon the transmission decision
policy. Under randomized transmission decisions with channel
inversion the PDF is

fZ(z) =
∫ ∞

0

wfΨ(wz)dFW (w), (134)

where fW (w) is the unconditioned signal power PDF given
by d

dwFW (w) = d
dwP(ΨD−α < w).

Although the Chernoff bound is in principle computable
using the above equations, it is in practice often not com-
putationally feasible to do so. Note that evaluating the PDFs
fZ(z) and fZ|t(z) requires evaluating a double integral, and
evaluating the MGF gY cy (θ) requires evaluating a double
integral expressed in terms of fZ(z), in effect requiring
a quadruple integral be evaluated for each θ. Further, the
optimal θ in the Chernoff rate function must be computed
numerically. In contrast, the Chebychev inequality, although
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not as tight as the Chernoff bound, is given explicitly without
requiring the evaluation of any integrals. Thus, for both ease
of computability and clarity of exposition we have chosen to
express our results using the Chebychev bound instead of the
Chernoff bound.

PROOF OF THEOREM 4
Theorem 4 asserts that the sole effect of changing from

randomized transmission decisions (without channel inversion)
to threshold based transmission decisions (without channel
inversion) is to change the distribution of the received signal
power. Consider the expressions for the normalized aggregate
interference seen by the reference receiver, Y , under ran-
domized transmissions (19) and under threshold transmissions
(66). They are the same with the exception that W0 in (19)
is replaced with W0|t in (66). Given that all the results in
Theorems 1, 2, and 3 are obtained by first conditioning on
W0, it follows that those same results will hold under threshold
transmissions, with the distribution FW replaced with FW |t.
All that remains is to establish the expression for κ(t) in (70).

Define the random variable Z = Ψ
Wt

. The proof consists of
developing an expression for E[Zδ] in terms of the threshold t,
the distribution for the channel gains, FΨ, and the distribution
for the transmitter to receiver distances, FD. We first identify
the distribution of W conditioned on W > t (step 1), then
identify the distribution of Z conditioned on W > t (step 2),
and finally compute E[Zδ] (step 3).

Step 1: Distribution of W conditioned on W > t. The
conditioned signal strength distribution may be expressed in
terms of the unconditioned signal strength distribution:

FW |t(w) =
FW (w)− FW (t)

F̄W (t)
, w > t, (135)

with corresponding density

fW |t(w) =
fW (w)
F̄W (t)

, w > t. (136)

The unconditioned signal strength distribution depends upon
the distributions FΨ, FD. In particular, the unconditioned
signal strength CDF is

FW (w) =
∫ ∞

0

FΨ(wxα)dFD(x), (137)

and the unconditioned signal strength PDF is

fW (w) =
∫ ∞

0

xαfΨ(wxα)dFD(x). (138)

Step 2: Distribution of Z conditioned on W > t. We
next identify the distribution of Z = Ψ/Wt. The CDF of Z
conditioned on W > t is denoted FZ|t(z), note this does not
mean the distribution of Z conditioned on Z > t.

FZ|t(z) =
∫ ∞
t

FΨ(zw)dFW |t(w)

=
1

F̄W (t)

∫ ∞
t

FΨ(zw)dFW (w). (139)

The PDF is

fZ|t(z) =
1

F̄W (t)

∫ ∞
t

wfΨ(zw)dFW (w). (140)

Step 3: Fractional order moment of Z. We next develop
an expression for E[Zδ]:

E[Zδ] =
∫ ∞

0

zδdFZ|t(z)

=
∫ ∞

0

zδ
[

1
F̄W (t)

∫ ∞
t

wfΨ(zw)dFW (w)
]

dz

=
1

F̄W (t)

∫ ∞
t

w

[∫ ∞
0

zδfΨ(zw)dz
]

dFW (w)

=
1

F̄W (t)

∫ ∞
t

w

[∫ ∞
0

( x
w

)δ
fΨ(x)

1
w

dx
]

dFW (w)

=
E[Ψδ]
F̄W (t)

∫ ∞
t

w−δdFW (w) (141)

= E[Ψδ]
E[W−δ1W>t]

F̄W (t)
. (142)

This last expression gives the fractional moment in terms of
FΨ, FW given in the Theorem. The distribution of W may
be used to obtain the expression in terms of the distributions
FΨ, FD:

E[Zδ] =
E[Ψδ]
F̄W (t)

∫ ∞
t

w−δ
[∫ ∞

0

xαfΨ(wxα)dFD(x)
]

dw

=
E[Ψδ]
F̄W (t)

∫ ∞
0

xα
[∫ ∞

t

w−δfΨ(wxα)dw
]

dFD(x)

=
E[Ψδ]
F̄W (t)

∫ ∞
0

xα
[∫ ∞

txα
v−δx2−αdFΨ(v)

]
dFD(x)

=
E[Ψδ]
F̄W (t)

∫ ∞
0

x2

[∫ ∞
txα

v−δdFΨ(v)
]

dFD(x)

= E[Ψδ]

∫∞
0
x2
[∫∞
txα

v−δdFΨ(v)
]

dFD(x)∫∞
0

[∫∞
txα

dFΨ(v)
]

dFD(x)
. (143)

The above development is elementary, involving only ex-
changing the order of integration and introducing a change
of variables. �

PROOF OF THEOREM 5

Theorem 5 asserts that the sole effect of changing from
randomized transmission decisions (with channel inversion)
to threshold based transmission decisions (with channel inver-
sion) is to change the distribution of the received interference
power. Consider the expressions for the normalized aggregate
interference seen by the reference receiver, Y , under ran-
domized transmissions (35) and under threshold transmissions
(74). They are the same with the exception that Wi in (35)
is replaced with Wi|t in (74). Given that all the results in
Corollaries 1, 2, and 3 depend upon the fractional order
moment E[Zδ], for Z = Ψ/W , it follows that these same
results will hold under threshold transmissions, with Zt =
Ψ/Wt, and fractional order moment E[Zδt ]. All that remains
is to establish the bounds on the transmission capacity given
by (76).

Let θ be the constant given by (39), and let µ ∈ [0, λ] be
a generic intensity of attempted transmissions. Define gmax =
θλ. The outage probability bounds in (38) depend upon µ, θ
only through the product g = θµ; think of εl = ql(g), εu =
qu(g) in (38) as the lower and upper outage probabilities for
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a normalized intensity of transmission attempts g ∈ [0, gmax].
The bounds are both bijections on [0, 1], as such they admit
unique inverses, denoted gl = ql,−1(ε) and gu = qu,−1(ε).
Think of gl, gu as the bounds on the normalized transmission
attempt intensity required for outage probability ε.

Under the threshold decision rule both µ, θ depend upon
t. The function γ(t) = θ(t)µ(t) gives the normalized trans-
mission attempt intensity under each threshold t ∈ R+.
It is clear that γ(t) is monotone decreasing in t onto the
interval [0, gmax], and as such it too admits a unique inverse,
denoted γ−1(g) for g ∈ [0, gmax]. Think of t = γ−1(g) as
the threshold required for a normalized transmission attempt
intensity of g. To summarize, each threshold t ∈ R+ maps to
a normalized intensity of attempted transmissions g = γ(t),
and each g maps to bounds on the outage probability given
by εl = ql(g), εu = qu(g), for ql(g), qu(g) given in (38).

The optimal contention density, ν(ε), has an associated
optimal threshold, t(ε), such that ν(ε) = λF̄W (t(ε)), where
W = ΨD−α. That is, ν(ε) is the maximum intensity of
transmission attempts with an associated outage probability
of ε, but this may also be expressed as the intensity of
potential transmitters, λ, thinned by the probability that a
typical potential transmitter’s signal strength, W , exceeds
some threshold t(ε). Using the above definitions,

tl(ε) = γ−1(ql,−1(ε)), tu(ε) = γ−1(qu,−1(ε)), (144)

with associated bounds on the optimal contention density given
by

νl(ε) = λF̄W (tu(ε)), νu(ε) = λF̄W (tl(ε)). (145)

Finally, the transmission capacity bounds are simply

cl(ε) = νl(ε)(1− ε), cu(ε) = νu(ε)(1− ε). (146)

The requirement that g ∈ [0, gmax] translates to an upper
bound on ε such that ε in cl(ε) must satisfy ε ≤ qu(gmax),
and ε in cu(ε) must satisfy ε ≤ ql(gmax). �
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Fig. 3. Example 1: Lognormal shadowing. All plots are for σ = log 10
10

6 (6 dB). Top left: outage probability q versus the transmission probability p for
both randomized transmissions (solid curves) and threshold transmissions (dashed curves) with no channel inversion. The three curves for each case are the
lower and upper bounds along with simulation results. Other plots: The other three plots show simulation results for the four cases: randomized transmissions
with and without channel inversion, and threshold transmissions with and without channel inversion.
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Fig. 4. Example 2: Rayleigh fading. Top left: Spatial throughput τ versus the transmission probability p for threshold based transmissions with channel
inversion (dashed curves) and without channel inversion (solid curves). The three curves for each case are the lower and upper bounds along with simulation
results. Other plots: The other three plots show simulation results for the four cases: randomized transmissions with and without channel inversion, and
threshold transmissions with and without channel inversion.
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Fig. 5. Example 3: Nearest receiver transmissions. Top left: Transmission capacity c versus the outage requirement ε for randomized transmissions
(solid curves) and threshold transmissions (dashed curves) with channel inversion. The three curves for each case are the lower and upper bounds along with
simulation results. Other plots: The other three plots show simulation results for the four cases: randomized transmissions with and without channel inversion,
and threshold transmissions with and without channel inversion.
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