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Exponential Diversity Achieving Spatio–Temporal
Power Allocation Scheme for Fading Channels
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Abstract—In this paper, we analyze optimal (in space and time)
adaptive power transmission policies for fading channels when
the channel-state information (CSI) at the transmitter (CSIT) and
the receiver (CSIR) is available. The transmitter has a long-term
(time) average power constraint. There can be multiple antennas
at the transmitter and at the receiver. The channel experiences
Rayleigh fading. We consider beamforming and space–time coded
systems with perfect/imperfect CSIT and CSIR. The performance
measure is the bit error rate (BER). We show that in both coded
and uncoded systems, our power allocation policy provides expo-
nential diversity order if perfect CSIT is available. We also show
that, if the quality of CSIT degrades then the exponential diversity
is retained in the low SNR region but we get only polynomial
diversity in the high SNR region. Another interesting conclusion
is that in case of imperfect CSIT and CSIR, knowledge of CSIT
at the receiver is very important. Finally, for the optimal power
control policy of the uncoded system we find the error-exponents
which provide the rate versus diversity-order tradeoff for this
policy. This tradeoff is of an entirely different nature than the
well-known Zheng–Tse tradeoff.

Index Terms—Beamforming, channel-state information receiver
(CSIR), channel-state information transmitter (CSIT), convolu-
tional codes, error exponents, fading channels, power allocation,
rate versus diversity order tradeoff, space–time codes.

I. INTRODUCTION

WIRELESS channels are essential to provide ubiquitous
connectivity to the users. However, due to multipath

fading, low bandwidth, and broadcast nature, providing Quality
of Service (QoS) to users in such channels has been a chal-
lenge. Currently, a tremendous effort is being invested into
increasing the capacity and reducing the bit error rate (BER)
of wireless channels. A significant gain can be achieved by
using multiple antennas at the transmitter and at the receiver
(multiple-input–multiple-output (MIMO)) (see [6], [9], [14],
[16], and [23]).

In an additive white Gaussian noise (AWGN) channel
the BER decreases (for various error correcting codes and
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modulation schemes) exponentially with the signal-to-noise
ratio (SNR). However, the average BER in a Rayleigh-fading
channel decreases only inversely with SNR, at least at high
SNR’s. This indicates a severe degradation in performance
caused by Rayleigh fading. This degradation can be partially
mitigated by a fully interleaved convolution code of minimum
distance, (where the BER can decrease as ).
However, this is done at the cost of reduced information rate,
increased receiver complexity and increased decoding delay.
Alternatively, the degradation in BER performance due to
fading can be partially mitigated by using multiple antennas at
the transmitter and the receiver. For example, if antennas are
used at the transmitter and at the receiver, one can achieve
BER decay at a rate (called a diversity order of

) ([14], [16]). This diversity order can be achieved with
Space-Time codes, even if the transmitter does not have any
knowledge of the channel ([14], [16], [22]). If the transmitter
also has CSI, even if not exact, it can be exploited to obtain
further reduction in BER ([11], [12], [14], [16], [28]). But, the
diversity order remains . It is generally believed to be the
maximum diversity order one can achieve for a Rayleigh-fading
channel (although if a convolutional code with minimum dis-
tance and interleaving is used, one can get the diversity
order of ).

Power control in multiuser environment has been studied in
[4].

In all the works cited above and in the references therein,
the power allocation is among the different transmit antennas
(space-only power allocation). This is apparently due to the fact
that the power allocation in time does not yield much improve-
ment in capacity for a Rayleigh-fading channel. However, it is
shown in [2] and [19] that power allocation in time can provide
significant reduction in BER (it can also substantially increase
the outage capacity [26]). The results in [2] and [19] are for
single-input–single-output (SISO) system. A close look at the
results in [2] and [19] reveals that even for an SISO system with
Rayleigh fading, the power allocation policies obtained in [2]
and [19] provide exponential diversity order, i.e., the BER de-
creases exponentially with SNR, as in an AWGN channel. Parts
of this paper appeared in ISIT 2004 and the 43rd Allerton Conf
where we proved exponential diversity (see also [20]). Also re-
cently in [13] a diversity order much higher than is ob-
tained for channels with CSIT.

This paper takes a close look at the exponential diversity order
aspect of the policies provided in [2] and [19]. We also study
the corresponding policies for the MIMO systems. For perfect
CSIT case, our power allocation policy provides an exponential
diversity order, i.e., the BER, , where
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is a positive constant, and is an increasing function of
and . We have provided the lower bounds on the exponential
diversity order we achieve.

We also study the more realistic scenario of partial CSI at the
transmitter and/or receiver. We obtain a very interesting result
that as the quality of CSIT degrades, the exponential diversity
is observed in the low SNR regime but we get only polynomial
diversity (as in previous studies) for high SNR case. However,
our policies still provide significant improvements in BER as
compared to previous studies ([11], [14], [16], [28]). Another
interesting result we obtain is that in case of partial CSIT, it is
important for the receiver to know CSIT.

In our earlier work [20], we studied the bounds on the beam-
forming approach in multiple-input–single-output (MISO) sys-
tems with perfect CSIT (and perfect CSIR). The present work is
an extension of [20]. We provide the BER performance bounds
for the perfect and imperfect CSIT and CSIR cases for SISO,
MISO, and MIMO systems. Furthermore, the power allocation
policy considered in [20] is an extension of [11], whereas here,
we report that the power allocation policy of perfect CSIT case
can be extended to the imperfect CSIT case (without any degra-
dation in BER performance as compared to [20]).

For our optimal policy for an uncoded system we also obtain
error exponents. This way we obtain rate versus diversity order
tradeoff as studied in [27] (although our method of error expo-
nents is different from that in [27]). The method of [27] has been
used in [13] for channels with CSIT. Error exponents for MIMO
channels (without CSIT) have been studied in [9], [25] while for
SISO channels with CSIT in [1] and [15]. [1] and [15] do not
provide diversity order for their power control policies.

We show a very interesting result that the expurgated bound
([7]) (or the ensemble average bound) decays exponentially with
SNR in low and high rate region but not in the middle region.
Furthermore, the exponential diversity is lost in the low rate
region when CSIT is not perfect.

We obtain the results explicitly for BPSK modulation but
most of the analysis can be extended to more general constella-
tions in the same way.

The rest of the paper is organized as follows. In Section II,
we explain the perfect CSIT system model and the optimiza-
tion problem. We consider SISO, MISO, and MIMO systems
and provide exponential diversity. In Section III, we study
the system with imperfect CSIT. In Section IV, we study the
case of imperfect CSIR. We study the BER performance of a
space–time coded system with our power allocation policy in
Section V. Section VI provides the error exponents and rate
versus diversity tradeoff. Section VII concludes the paper.

II. SYSTEM WITH PERFECT CSIT

We consider a single user narrowband (flat fading) commu-
nication system employing transmit antennas and receive
antennas. We describe the channel between th receive antenna
and th transmit antenna by a complex Gaussian random
variable . Thus, the matrix, represents
the channel. We assume independent Rayleigh fading on each
of the diversity branches. Also, we assume the fading to vary
independently from one symbol to another i.e.,

is an independent and identically distributed (i.i.d.) process
(this represents fast fading or a slow fading channel with
perfect interleaving). The additive noise, , is temporally
and spatially white with mean zero and follows a multivariate
complex circular Gaussian distribution, ,
i.e., and , where denotes
Hermitian. Coherent signalling is assumed.

In this section, we consider the perfect CSIT and CSIR case,
where the channel is known to the transmitter and receiver
(generalization to imperfect CSIT and CSIR will be consid-
ered in Sections III and IV). In this case, the optimum (in the
SNR or BER sense) power allocation in space is achieved by
beamforming [14]. We call this as Space-Only Power Alloca-
tion (SOPA). It is to be noted that in SOPA, the total power
transmitted in a symbol duration is constant. On the other hand,
we use the CSIT, to compute the power to be allo-
cated in each symbol duration while satisfying the beamforming
power allocation. We call this as Space–Time Power Allocation
(STPA). Thus, in STPA, the total power transmitted in a symbol
duration varies from one symbol to another, but the long term
(time) average of transmit power is fixed.

We derive the optimal power allocation policy here. The
output of the matched filter is sampled at symbol rate and the
received complex signal vector at time is given by

(1)

where is the transmitted symbol, is the input beam-
forming weight vector, is the transmit power, and

is the SNR at the output of the channel.
We define , as the average SNR per branch. Be-
cause of the i.i.d. assumptions of and , the optimal power
at time does not need to depend upon previous decisions and
hence we can drop the time index.

The maximum likelihood (ML) detection of given cor-
responds to

(2)

where

Thus, the performance of the MIMO system (SISO and MISO
systems are special cases) can be interpreted as the output of an
AWGN channel with . The transmit
weight vector is chosen to maximize the output SNR subject
to the average transmit power constraint. The optimum is
the normalized eigenvector of corresponding to its largest
eigenvalue, ([14]) and . For a given (= ), the
BER is given by

(3)

where
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and and are constants. Typically, the value of is related to
the minimum distance in the constellation, and is related to
the number of constellation points that achieve this minimum
distance. For and with gray coding and

give the exact BER. For an accurate (for
high SNR) and useful approximation of the BER is obtained
([21]) by setting and . For

and high SNR, an approximate BER can be obtained
with and ([21]).

The optimization problem of minimizing the BER given in
(3) subject to the average transmit power constraint is

(4)

where is the pdf of .
In the following, we will take . The solution of this

problem will provide the optimal (in the BER sense) power al-
location policy in space and time. Applying Lagrange’s method
to the above problem, we get the following family of uncon-
strained optimization problems parameterized by a multiplier

The above unconstrained minimization corresponds to mini-
mizing for any given . The Q function is
complicated, but can be replaced by an upper bound .
Since is a convex function of , the optimum

can be obtained by differentiating it w.r.t. and equating to
zero. This provides the optimum solution

for

for
(5)

where is found by solving

(6)

It should be noted here that depends on the average SNR
per branch, and the modulation scheme. Also, the transmitter
should have the complete knowledge of the fading statistics to
compute and the instantaneous fade values to compute .
In the following we will call this policy STPA (space–time
power allocation). As against this the policy that allocates
power optimally among antennas but constant from symbol
to symbol, as done in previous studies ([14], [16]) will be called
SOPA (space only power allocation).

The average BER is given by

(7)

where is the cumulative density function (cdf) of .
The SNR (where , the largest eigen-

value of ) and its distribution varies for the SISO, MISO,
and MIMO cases. It is possible to compute (7) exactly in
each of these cases (either by numerical computation or via
computing the integral by a Monte-Carlo method). However,
in the following sections, we will show that the BER decays

exponentially by providing explicit upper bounds. We study
the cutoff and the bounds on the BER for SISO, MISO,
and MIMO cases separately. We consider modulation
scheme throughout the paper (although, as mentioned above,
by choosing and appropriately, we can consider other modu-
lation schemes). This optimization problem was approximately
solved for Convolutional and Turbo codes in [2].

A. SISO

We consider a system with single transmit antenna and single
receive antenna (i.e., ). The channel, is a com-
plex Gaussian random variable with mean and variance .
Here, the beamforming element . Thus, the SNR
of the channel is given by . The cutoff

is computed from

Taking , we obtain

From [8, p. 573, eq. 4.362 (2)]1

where Re . Thus,

Using [3, Th. 2]

Thus, using (see Appendix I)

(8)

Therefore, from (7), using the upper bound on Q-function

Using [3, Th. 2]

Therefore, from (8)

(9)

This shows exponential diversity.
Let us compare the performance of the above STPA scheme

with SOPA (which for SISO is same as no power control). From
[18, p. 818], for SOPA we obtain, which

tends to 0 as for .

1The exponential integral Ei(�x) = � dt and the function

E (x) = dt, where x > 0.
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Fig. 1. BER versus average SNR for a SISO system with perfect CSIT.

In Fig. 1, we plot the upper bound given in (9) along with
for STPA and SOPA. One observes that at least for high SNR,
the upper bound is quite tight. It is clear from Fig. 1 that the
fall in BER with SNR is exponential in the case of STPA and
linear in the case of SOPA. It is also evident from Fig. 1 that as
SNR, increases STPA provides significant performance gain
as compared to SOPA. For example, to achieve a BER of ,
STPA requires an SNR of 10 dB whereas SOPA requires an SNR
of 16 dB, thus providing a power saving of 6 dB. For a more
stringent BER requirement, the power saving by STPA is even
more significant.

B. MISO

We consider a system with transmit antennas and
receive antenna. The channel in this case is a

vector, . Here, the beamforming vector is
, and the SNR of the channel is given by

. The cutoff is given
by

where .
We can easily show that the right side equals

where (for ). Thus, using [3,
Th. 2]

and hence

Using Appendix I, we get

(10)

Therefore

(11)

(12)

and hence

(13)

Thus, we see the exponential decay of with SNR. As in-
creases, the rate of BER decay increases.

We compare the BER performance of the STPA scheme with
the SOPA scheme. For SOPA scheme, the exact BER is (see [14,
pp. 42–43])

as

We plot from (11) in Fig. 2 for and . For com-
parison, we have also included the curve for SOPA of [14]. One
can see significant gains in BER for our policy as compared to
the SOPA. The bound (12) is too loose and hence not provided.

It is worth mentioning here that the BER performance due to
Uniform Power Allocation in MISO case is the same as that of
SISO case evaluated by replacing with , i.e.
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Fig. 2. BER versus average SNR for a MISO systems with perfect CSIT.

C. MIMO

For this system, the maximum SNR for an average transmit
power constraint is achieved by beamforming in the direction
of the eigenvector corresponding to the largest eigenvalue,
of the Wishart distributed matrix, . Thus, the SNR of the
channel is . It is to be noted that the nonzero
eigenvalues (and the distribution) of and are same.
Hence, without loss of generality, we consider the case
(i.e., the BER of the system with transmit antennas and
receive antennas will be the same as that of the system with
transmit antennas and receive antennas).

The density function of the largest eigenvalue of the Wishart
distributed matrix is given by ([5])

(14)

where ’s are constants which depend upon and .
Therefore, the cutoff is found by solving the equation

Solving this equation, we get (see Appendix II)

(15)

where was defined earlier and, and are defined in
Appendix II ( and defined in the Appendix are different for

and .) The average BER satisfies

(16)

TABLE I
1=K FOR VARIOUS (n ; n )

Fig. 3. BER versus average SNR for (4,2) MIMO systems with perfect CSIT.

The parameter for various values of ( , ) is numerically
computed and shown in Table I.

The approximation given by (16) is very tight and is plotted
in Fig. 3 for . It also shows the exponential
decay of with SNR and (using Table I) that the rate of decay
increases with .

The exact BER expression for SOPA is given in [5], (19). The
uniform power allocation case here is also equivalent to a SISO
system evaluated by replacing with , i.e.

Fig. 3 shows the BER performance of a MIMO system with
and for SOPA and uniform power allocation

scheme also. It is clear from Fig. 3 that the fall in BER with
SNR is exponential for STPA, polynomial for SOPA and linear
for uniform power allocation. Also, the power saving due to
STPA over the other schemes is substantial. For example, STPA
achieves a BER of at 1 dB whereas SOPA requires 6 dB
to achieve the same BER. This gain margin increases with BER.

III. SYSTEM WITH IMPERFECT CSIT

The system model considered here is the same as in Section II,
except that the channel-state information available at the trans-
mitter is noisy. We assume that is the transmitter’s estimate
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of the channel. could be a delayed version or a finite preci-
sion representation or a noisy version of . We assume that
and are jointly complex Gaussian with the correlation
between and . These assumptions are commonly made in
this literature (see the references provided).

Now the optimal transmit power will be the same as in (5)
except that we use instead of , i.e., compute , where

and is the largest eigenvalue of . Coherent
signaling is assumed. The output of the matched filter is sampled
at symbol duration and the received complex signal vector is
given by

where is the SNR estimate at the transmitter
is the instantaneous transmit power and

is the input weight vector (eigenvector of corre-
sponding to the largest eigenvalue ). Also, we define to be

. As before, we drop the time index .
The imperfect CSIT is modeled as

(17)

where is the estimation error independent of and has dis-
tribution . Equivalently, (as can be seen by the
joint distribution of )

(18)

where is the estimation error independent of and has
distribution ( and are used interchangeably
in the rest of the paper). (17) can be a reasonable model if is
a quantized version of and then is quantization noise. (18)
represents the situation when is a delayed version of and

(the channel state during the th symbol transmission) is an
Autoregressive process.

We assume that the receiver has perfect CSI and also the
transmitter’s knowledge of the channel. When is a delayed
or quantized version of , this assumption will be satisfied. The
case when the receiver does not know will be covered in the
next section.

The average BER is given by

(19)

The density function, is the same as that of the per-
fect CSIT case. As with perfect CSIT (19) can be actually com-
puted. But, we obtain bounds on it which provide a better insight
on the behavior of as the SNR changes. Since has the
same distribution as corresponding to the perfect CSIT case,
the bounds on the cutoff values, computed for the perfect
CSIT case hold good for the imperfect CSIT case. But, for the
imperfect CSIT case, we also need to derive the conditional pdfs

for the SISO, MISO, and MIMO cases which we
obtain in the following.

A. SISO

For , the (scalar) channel .
Since , where

and are the real and imaginary parts of . Clearly,
and are Gaussian distributed (given ), with means,

and Im . Therefore,
. The variance of and is .

Thus, the density function follows a noncen-
tral chi-square distribution

where is the Gamma function. The average BER is

(20)

(21)

where

(22)

We plot in Fig. 4 the BER (calculated from (19)) of the power
allocation policy defined in (5) for different values of of
a SISO system. Rayleigh fading is assumed and the average
fading gain is taken to be one. It is evident from Fig. 4 that
exponential diversity is retained for low but is
lost in the high SNR region (even for , which im-
plies an error of the order of 15% in the estimation of ). This
means that the BER performance in low SNR region is inher-
ently limited by the additive noise of the channel and in high
SNR region it is limited by the channel estimation error. One
interesting point to be deduced from here is that the finite bit
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Fig. 4. BER versus average SNR for an SISO system with Imperfect CSIT.

Fig. 5. Upper bound versus average SNR of SISO system.

precision of the feedback (channel estimate) can be coarser at
low SNR but should be finer at high SNR.

The behavior of BER as a function of SNR for imperfect CSIT
explained in the above paragraph is captured partly in the upper
bound (21). Fig. 5 shows the behavior of the two terms in (21)
as a function of SNR. It is evident from Fig. 5 that up to a cer-
tain SNR, the first term dominates and later on the second term.
Thus, one can expect an exponential fall of BER in the low SNR
region (which is caused by the channel noise, since this term is
also present in the perfect CSIT case). As SNR increases, the
effect of estimation error is more prominent and the BER fall in
SNR becomes polynomial.

B. MISO

Let be the CSI available at
the transmitter. The transmitter does beamforming by choosing
the transmit weight vector / . The instanta-
neous transmit power is chosen as if was the true channel.

Thus, the instantaneous transmit power is (com-
puted using (5)) and is given by .

The SNR is and the BER for a given is

(23)

From (10) we obtain the cutoff

Let , where is the real part of
and is the imaginary part of ,

i.e., and
. The random variables and

are real Gaussian variables (given ) and let their means
be and respectively. Clearly,
and the variance of and is . The
conditional pdf is noncentral chi-square
distribution

The average BER is given by

(24)
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Fig. 6. BER versus average SNR for different values of � of MISO (4; 1)
system.

(25)

where is given in (22).
The BER performance of system is shown in Fig. 6.

Here also, we observe the exponential fall of BER at low SNR.
But, at high SNR the exponential decay is lost. This behavior
can be explained from (25) in the same way as is done in Fig. 5.

Fig. 7. BER versus average SNR for different values of � of MIMO (4;2)
system.

C. MIMO

As in the perfect CSIT case, the transmitter does beam-
forming by forming a transmit weight vector, which is the
eigenvector corresponding to the largest eigenvalue of .
Thus, the signal model is

and the power allocation policy is given by (see
(5)). We define as . The average BER is

(26)

As the joint density function is not analytically
tractable, we simulate the system for and for dif-
ferent values of . The BER performance results are provided
in Fig. 7.

The exponential fall in low SNR regime is observed in this
case also. Similarly, one can observe that at high SNR, the im-
perfect CSIT causes the BER to fall polynomially with SNR.
Comparing Figs. 6 and 7, we can see that as increases from
to , there is a substantial increase in diversity gain. For ,
there is a gain in SNR of 3 dB for achieving a BER of
by the system over the system. The diversity gain
diminishes as decreases. For , we can see that
the BER performance of and systems is almost the
same.

IV. BEAMFORMING SYSTEM WITH IMPERFECT CSIT AND CSIR

The system model considered here is the same as in
Section III except that the channel estimate at the receiver,

is not perfect. There are two possible scenarios that may
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arise, viz. the receiver may or may not know the CSIT ( and
) which are necessary for estimation of the transmitted bit.

The penalty for not knowing the CSIT is different in MIMO
and MISO cases as we shall show. We consider MISO and
MIMO systems with imperfect CSIT and imperfect CSIR in
the following (SISO case is just a special case of MISO).

A. MISO

We consider a system with transmit antennas and
receive antenna. The optimal beamforming vector is

given by and the SNR estimate at the transmitter,
is .

1) CSIT Not Known at the Receiver: We first consider the
case when the receiver does not know CSIT. The decoding
will be done as per (2) (with and used instead of
and ). It is to be noted that only the sign of the real part
of is of importance and not its magnitude.

Also from (2) we can say that the imaginary part of the above
quantity does not influence the decision, since the magnitude
of the imaginary part of does not depend on . Furthermore,

will always be a positive number and so will

have no role in the decoding process. Hence the channel state
information at the receiver is not important for decoding nor
does it influence the performance in single receiver antenna
systems. When the CSIT is perfect, the analysis of Section
II holds, but when the CSIT is imperfect, the analysis of
Section III does not hold, because there it was assumed that
the CSIT as well as perfect CSIR was available at the receiver.
When the CSIT is imperfect and not available at the receiver,
we analyze the performance here.

Based on the above discussion, we know that the sign of
is the decoding criterion. Thus the probability of error is

By symmetry

As per the model assumed for imperfect CSIT in Section III

Hence

Since the components of are independent complex Gaussian
random variables, is circularly sym-
metric complex Gaussian given (and hence ), (and has
variance (since )). We assume that the
channel noise and are independent. Then

where is complex Gaussian with variance
. Therefore the performance of this system

Fig. 8. Average BER versus SNR for different values of � of MISO (2; 1)
system, where the receiver does not know the CSIT.

is the same as that of an AWGN channel with
. Thus the average BER is

(27)

The distribution of is given by the distri-
bution. We have numerically computed the above expression
and plotted in Fig. 8. We observe that at smaller values of
SNR, the exponential diversity is maintained but at large
values of SNR, the BER is more or less constant. This can
be predicted by having a closer look at (27). As , (for

, which happens for dB for )
. Thus for small , the term in the square

root in (27) becomes approximately and hence
by the results of Section II, we get exponential diversity. As

and hence the term in the

square root tends to . Thus for large , the BER be-
comes approximately constant. For the intermediate values of
channel SNR, we get diversity order changing from exponential
to linear to sublinear to constant. The important parameter here
is the magnitude of which will decide the
diversity order. An appropriate system can be designed such
that at the working SNR levels, we can guarantee exponential
diversity, but the price will be a higher value of , that is a
better feedback and estimation. Also if we need to operate in
higher regions of SNR, we should have even higher values of

, while if we desire to operate at lower SNR levels, we can
work with lower values of .

2) CSIT Known at the Receiver: Now we consider the case
when the CSIT ( and hence ) is known at the receiver.
Suppose we decide to use the for decoding in (2), we shall
get exactly the same BER as in Section IV.A, because for BPSK,
it is only the sign of the real part of that mat-

ters and by using and instead of and , we do
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not change the decision in anyway. But suppose we have a sce-
nario where the receiver has a better channel estimate than the
transmitter and also knows the CSIT. There arises a question as
to which of and to use for decoding. We shall address
this question here.

It is clear that we have to use and not for decoding
in which case we get the same performance as in the previous
section if we also use . Now we will use and and
compare the BER with that of the previous section. The model
assumed for will be similar to the model for . Define

The sign of the real part of will decide the decoding. Thus, by
symmetry, the probability of error is,

Since the model for is similar to that of , from (18)

and given was transmitted,

Given ( and ), the last term in the above expression is
super-Gaussian (e.g., tail of its cdf is lighter than a Gaussian
distribution) and also has variance considerably less than the
other Gaussian noise terms (since CSIR is better than CSIT,
it is reasonable to assume that is close to 1). Thus, it can
be neglected. Hence, by arguments similar to Section IV-A, we
can interpret it as an AWGN channel with noise term with
variance

(28)

Thus, the average BER is given by

(29)

and is plotted in Fig. 9 for and . Again we see
that the diversity order changes from exponential to sub-linear,
for reasons similar to the ones mentioned in the previous sec-
tion. If instead of we use for decoding then in (29) we
will get instead of . Thus by examining the denominator
of (29), we observe that when we can have a better
performance if we decode using as against using and
vice-versa.

We may conclude that for the single antenna receiver, CSIR
gives an advantage only if we know the CSIT at the receiver
and the CSIR is better than the CSIT. If the CSIR is exact, then
knowing CSIT at the receiver provides polynomial diversity at

Fig. 9. Average BER versus SNR for different values of � with � = 0:99
for a MISO (2; 1) system when the receiver knows CSIT.

high SNR as against constant ( diversity) when CSIT is not
known at the receiver.

B. MIMO

In this section, and . The detection will be
done by the rule (2), with replaced by and

(30)

where is the eigenvector of corresponding to its
largest eigenvalue, is the SNR estimate at the
receiver, and

(31)

where is the receive weight vector used for detection.
When CSIT is available at the receiver then the receiver may

decide to use and in place of and in (30) and
(31). In the following, we will also consider this possibility.

Since we consider the BPSK modulation scheme ( is real),
it is enough to consider only the real part of (30) (the imaginary
part offers no performance improvement). Thus the detection
rule is

We observe that by virtue of BPSK modulation, only the sign
and not the magnitude of is important. We analyze the
BER performance for the cases when the CSIT is known and
when the CSIT is not known at the receiver. The model assumed
for CSIT and CSIR will be the same as in the previous sections.

1) CSIT Not Known at the Receiver: Since the receiver does
not know CSIT, the decoding will have to be done using
and . Unlike the MISO case, now the is very crucial.
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Fig. 10. Average BER versus SNR for a MIMO (2; 2) system with imperfect
CSIT (CSIT not known at the R ), imperfect CSIR.

Fig. 11. BER versus average SNR for a MIMO (2;2) system with imperfect
CSIT (CSIT known at the R ) and is used for decoding. CSIR quality is better
than CSIT.

We simulate the system for and
and . It is very clear from Fig. 10 (compare with Fig. 11) that
even with perfect CSIR, if CSIT is not available at the receiver,
a severe penalty has to be paid. The reason for this is that we
do not know the beamformer exactly at the receiver. Most of
the errors are due to this and not due to the channel noise. Thus
when the transmit weight vector is not available at the receiver,
we have to have a very good estimate of the channel at the trans-
mitter as well as at the receiver to
get a reasonable .

2) CSIT Known at the Receiver: Now the receiver knows
the CSIT, and hence the transmit weight vector . There
arises a question as to which ( or ) should be used
for decoding. We shall show that using the better estimate of

(higher ) whether it is the or will give a better
average BER.

As said earlier, it is only the sign of that will decide
the bit and hence also the BER. Define . The
probabilty of error (because of the symmetry), is given by

if we use and for decoding. If then

Conditioned on and , the final term is super-gaussian and
can be neglected with respect to the other two Gaussian noise
random variables since it has significantly smaller variance (es-
pecially when is close to 1) at high SNR, the case of interest
to us. As in Section III, the above System can be interpreted as
an AWGN channel with output

where is circularly symmetric complex Gaussian with vari-
ance

Therefore, the average BER is given by

If we use instead of , we arrive at the same expression
with in place of . Thus the choice of using or for
decoding is to be decided by which of them is better. Similar
to the arguments in Section IV-A, we can explain the diversity
order going from exponential to constant. Fig. 11 has the simu-
lation results. Comparing this with Fig. 10 shows the advantage
of knowing CSIT at the receiver.

From the results of the above two sections, we observe that
the knowledge of CSIT at the receiver is very important (espe-
cially for MIMO systems). The quality of CSIR becomes im-
portant only if it is better than the quality of CSIT available.
However in the scenario where CSIT is not available at the re-
ceiver, one should use CSIR for MIMO systems although we
have observed that for MISO, it is not useful at all. These re-
sults are for BPSK modulation. The conclusion may differ for
other modulation schemes.

V. OSTBCS WITH IMPERFECT CSIT

In this section, we define the system model of a space-time
coded system and analyze its BER performance with our power
allocation policy defined in (5). We follow the approach given in
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[11] and we borrow the results given in [11] for the sake of com-
pleteness. Let denote the set of code-
words, where is the number of codewords. We assume that
the codewords are of length , i.e., each codeword is described
by a matrix. Actually, the codeword is generated by
a Space-Time code, followed by a precoder matrix, ,
i.e., ( is chosen such that it optimizes cer-
tain performance metric). The channel between the th transmit
antenna and the th receive antenna, is modeled as a zero
mean complex Gaussian random variable. Thus, the
matrix, represents the MIMO channel. We assume a block
fading channel where successive realizations of the channel
corresponding to one codeword are same and the channel varies
independently from one codeword to another. Let be the
transmitted codeword. The received complex signal vectors cor-
responding to one codeword may then be arranged in an
matrix , given by

where represents the AWGN over symbol du-
rations at the receive antennas. The ML decoding of given

corresponds to

where represents the Frobenius norm.
Let .2 Let be the channel estimate

available at the transmitter. Also, let
. Suppose, is the transmitted code-

word. Then, , the probability of wrongly
decoding as given the side information is called the
pairwise error probability (PEP) between and . The
overall design goal is to find which minimizes PEP with
respect to the set of all codewords. This is equivalent to finding
the optimum which minimizes PEP for the worst-case pair

.
We start by conditioning on the true channel realization and

utilize a well-known upper bound on the Gaussian tail function
to arrive at

(32)

where is the Euclidean distance between the code-
words and

where represents the Kronecker product and
.

2vec( � ) is the vectorization operator which stacks the columns of its argu-
ment into a vector.

Since the true channel, and the estimate are jointly com-
plex Gaussian, the pdf of conditioned on is given by

where and represent the conditional mean and co-
variance, respectively. Then from (32)

Let . The
exponent of the above integral is

Thus, the PEP between and is bounded by

From the above equation, we see that the objective function
to minimize the PEP is given by

Hence, we need to minimize for the worst case code-
word pairs . This optimization problem is solved by
Jongren [11]. Since, [11] solves the above optimization problem
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with as a constraint ( is the precoder ma-
trix), the solution of this problem will provide the precoder ma-
trix , which will allocate the power optimally in space. The
second term in the above equation is a constant and does not
depend on the power allocation policy. We combine our power
allocation policy given by (5) with that of Jongren’s policy to
get an optimal power allocation in space and time for Orthog-
onal Space–Time Block Codes (OSTBCs).

We now consider the Alamouti code and find the optimal pre-
coder matrix for it. For the Alamouti code

The optimal (for SOPA) as obtained in [11], is

where and are obtained as follows. Let
and

Also let . If then set and .
If then set and .

The optimum for Space–Time power allocation is given
by

Fig. 12 shows the BER performance of a coded system with
an outer rate- convolutional code and an inner Alamouti
code for and . We observe that for the per-
fect CSIT case, our power allocation policy provides exponen-
tial order diversity gain which is substantially more than the
conventional space-only (SOPA) and uniform power allocation
schemes. Also, when the quality of CSIT degrades ,
the exponential diversity is lost at high SNR for our policy. Al-
though, as for the uncoded system, we still achieve exponential
diversity at low SNR (up to 9 dB in the systems we studied). In
Fig. 12, we note that at and the gain in STPA
compared to SOPA is 2.5 dB and at the gain is 3.2 dB.
As, can be as large as for practical systems (the channel
estimation in GSM is done by a 26-bit midamble sequence; a
ML estimate of from this sequence can provide as large as

for an SNR of 10 dB) our power allocation policy provides
significant improvement in BER performance over the existing
policies.

Fig. 12. BER versus average SNR for an Alamouti and convolutionally coded
(G(D) = f1 +D ; 1 +D +D g) (2; 1) system with Imperfect CSIT.

VI. BLOCK CODED SYSTEM: ERROR EXPONENTS

In this section we provide error exponents for our power con-
trol policy (5). Even though it is not optimized for error expo-
nents, one expects good performance. By studying the error ex-
ponents we can obtain results independently of the modulation
and coding scheme. Also, this will give a Tradeoff between the
rate and diversity-order. We will show that the diversity-order
for each of the SISO, MISO and MIMO systems is exponential
in most of the rate region, but the exact order does depend upon
the rate as well as on and . Furthermore the exponential
diversity is obtained in low rate region (region 1) and high rate
(region 3) but not in the middle (region 2). This is rather counter
intuitive. Also exponentiality is lost in region 1 (but not in re-
gion 3) if exact CSIT is not available.

In the following, we first study the systems with exact CSIT
and CSIR and then with inexact CSIT. If the block error prob-
ability decays as , (where is the block length)
then we will call it exponential diversity of order .

A. Perfect CSIT and CSIR

In this section, we assume perfect CSIT and CSIR. For sim-
plicity we first consider the SISO system, i.e., .
For a discrete input, memoryless channel, by Gallager [7] (see
also [24]) for rate and block length , the ensemble average
bound on block error probability is given by

(33)

where

(34)
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is a distribution on the input alphabet and is the channel
transition function. For small , bound (33) is not tight. In that
region, the expurgated average bound is tighter and is given as

(35)

where

(36)

and

For binary input channels to which we will limit ourselves in
the rest of the paper, the maximizing input distribution in (33)
and (35) is .

The overall rate region from to capacity can be divided into
three regions. In region 1 (low rate region) defined by

for , the expurgated bound (35)
provides the tighter bound. In region 2, defined by

with , the two bounds coincide and the high rate
region (region 3), which is defined by ,
the bound (33) is tighter.

For the wireless fading channel with fade and transmit
power , in the bound (33) becomes

(37)

and in the bound (35), we use

(38)

In the rest of the section, we explicitly study these bounds and
error exponents as functions of rate and SNR. This will pro-
vide the diversity versus multiplexing tradeoff. First we study
the SISO system, then the MISO (SIMO will have identical re-
sults) system and finally the general MIMO system. The partial
CSIT case will be studied in Section VI-B.

1) SISO System: In this section we study the bounds (33) and
(35) when . We will consider the three rate regions
mentioned above separately.

In region 1, we consider the expurgated bound. For binary
input, symmetric output channels, this bound is given by the
following set of equations (see, e.g., [24])

(39)

where

(40)

is given by (5) and is exponentially distributed with
mean . The RHS of (40) equals

Then (from [3, Th. 2])

(41)

where is defined in Appendix I.
We have shown in (8)

Therefore, from (41)

and from (39)

(42)

One observes that the block error probability decreases as
. Thus for rate we get exponential diver-

sity of order within region . The diversity versus
rate tradeoff is captured by the function . For the binary
channel the three regions versus SNR are plotted in Fig. 13
and is plotted in Fig. 14. We observe that is de-
creasing with , the decrease being more rapid in the beginning.
In Fig. 15 we plot the upper bound (42) along with that for re-
gions 2 and 3.

It is interesting to compare the above diversity versus rate
tradeoff with that of the channel without fading and Rayleigh-
fading channel without power control. For the AWGN channel
the expurgated bound in region 1 is and for the
Rayleigh channel , providing the diversity orders
exponential and polynomial respectively. One
observes that the same function is providing the diversity
versus rate tradeoff in each case.
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Fig. 13. Three rate regions for SISO channel with perfect CSIT and CSIR.

Fig. 14. �(R) for error exponents in Region 1 for perfect CSIT and CSIR.

Comparing (42) with with the expression for BPSK
in (9), one finds striking similarity. This similarity will con-
tinue to hold for MISO and MIMO systems also in region 1
even though the rate 1 of uncoded BPSK is actually outside
the capacity region.

Next consider region 2. For regions 2 and 3 it is sufficient to
consider the bound (33). In region 2, by definition, the maxi-
mizing is . Therefore

(43)

Fig. 15. Upper bound onP for SISO, perfect CSIT and CSIR,R = 0:9; N =
128.

From (37)

where

(44)

This is a useful result and will be used in future for extending
the results of region 1 to region 2. Thus

(45)

Let us look at the diversity order of this bound. To see the depen-
dence of the term in bracket on SNR, observe that the first term
is and . Thus the second term is .
For low SNR ( close to zero) the second term dominates and
we see exponential diversity. But at a very low SNR, (for a given

) the system may be in region 3. As increases the first term
starts becoming important and rate of decay will decrease. At
very high SNR, the bound will become almost constant and di-
versity will be almost zero. In between, one will see diversity
order decrease from exponential to polynomial to sub-linear be-
fore it becomes zero. In fact, as we see from Fig. 15, (in Fig. 15
we plot the upper bound (33) itself. This shows that this char-
acteristic is not only in our bound (45) but also in (33) itself)
it is only the polynomial and sublinear diversity that we see in
region 2. However, as the above argument shows, the diversity
one sees in region 2 will also depend upon (depending upon

one may or may not see exponential and sub-linear diversity
in region 2). This argument also shows that one may expect ex-
ponential diversity in region 1 and region 3. Furthermore, from
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Fig. 16. Three rate regions for MISO (n ; n ) = (2; 1) channel with perfect
CSIT and CSIR.

(45) we see that the diversity order depends on only to the
extent when the system comes out of region 2.

Again we compare our results with that of channel without
fading and with the Rayleigh-fading channel without power
control. The upper bound on the for the two cases are

and respectively. In
both the cases we have two terms and their contribution to the
overall bound can be explained as above.

Finally consider region 3. In this region
at the maximizing and where

The corresponding upper bound on the block error probability
is plotted in Fig. 15, and one sees an exponential decay here.
Although we do not have explicit diversity versus rate tradeoff
here (of course it can be computed from Fig. 15) the discussion
for region 2 above suggested exponential diversity.

2) MISO System: In this section we consider the system with
. The SIMO system with

has behavior similar to the corresponding MISO system. The
optimal beam former and SNR
is Erlang distributed with parameter and mean . Now the
three regions are plotted in Fig. 16 (for ). One
sees here that region 3 has become even less visible.

With the changes mentioned above the upper bounds on the
block error probability in the three regions can be studied as in
Section VI-A1.

Region 1
Using the relation (40) and knowing that the fading parameter
is distributed

Applying (11) to the right-hand side, implies

which yields the upper bound

for
for

(46)

where (for ). One observes a
diversity order exponential and the diversity
versus rate tradeoff in this region is captured by .

Region 2
Using the relation (44), we arrive at the bound for region 2

The upper bound for is plotted in Fig. 17. The diversity
order in the linear part here is about 1.5 the diversity order of

.
Region 3
The plot of the upper bound on for is provided in

Fig. 17. The region 3 is non vanishing only up to dB (see
Fig. 16). One sees that the upper bound is exponential till this
point and then becomes linear (in region 2).

3) MIMO: The results for the three regions are summerized
as follows:

Region 1
Using from (14) in

(47)

one observes that this expression is very similar to (16). Thus
the results of Appendix II can be used to show



204 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 1, JANUARY 2008

Fig. 17. Upper bound on P for MISO (2; 1), perfect CSIT and CSIR, R =
0:9;N = 128.

Therefore, from (35)

(48)

Hence the exponential diversity order is . Here again
captures the diversity multiplexing tradeoff.

Region 2
Using relation (44) we obtain

The behavior of this bound can be explained as for the SISO
system.

Region 3
In Region 3, we compute numerically the bounds as in the

SISO case and find that we obtain exponential decay of block
error rate. The plot of for is provided in
Fig. 19 and the rate regions are given in Fig. 18. The region 3 is
nonvanishing up to dB.

B. System With Imperfect CSIT

We follow the notation of the model in Section III. The CSIT
is , which is available at the receiver and the receiver also
knows .

1) SISO System: As in Section III-A, defined in (40) can
be upper bounded as

(49)

where and are defined in Section III-A. This upper bound
is shown in Fig. 5.

We compute the error exponent for different values of SNR
at rate 0.6 in Fig. 20. We find that even with , the

Fig. 18. Three rate regions for MIMO (n ; n ) = (2; 2) channel with perfect
CSIT and CSIR.

Fig. 19. Upper bound on P for MIMO (2,2), perfect CSIT and CSIR, R =
0:9;N = 128.

exponential nature of decay in the high SNR region, i.e., region 1
is lost. It is also observed that the quantitative character of the
exponent in regions 2 and 3 is unchanged due to imperfect CSIT.

We find that though the bound (49) is loose for high SNR, it
gives an intutive understanding as to what actually happens in
Fig. 20. There are two terms in the bound, the first one decays



SHARMA et al.: EXPONENTIAL DIVERSITY ACHIEVING SPATIO–TEMPORAL POWER ALLOCATION SCHEME FOR FADING CHANNELS 205

Fig. 20. Computed block error probability for SISO with Imperfect CSIT
(� = 0:99).

as the bound for Perfect CSIT, but the second (extra) term, due
to the Imperfect CSIT, is an increasing function of SNR and
becomes significant in the high SNR regime (see Fig. 5). This
explains the loss of exponential diversity in the high SNR regime
(region 1). This extra term can be controlled if we have a
very close to 1. So the better the CSIT, the greater is the region
in which we have exponential diversity. This also explains why
the quantitative character of the exponent does not change at
low SNR (region 2 and region 3). We may conclude that we
need to have a very good estimate of the channel
to achieve exponential diversity in region 1.

2) MISO System: The power allocation in space and time
is determined by the channel estimate . The distribution of

is the same as in perfect CSIT case, i.e., .
The conditional distribution of given is given by the
noncentral chisquare as in the case of SISO. On computing the
ensemble and expurgated bounds, we observe that with a
of 0.99 we do not obtain an exponential diversity in region1.
However, as in SISO, the quantitative nature of the bounds for
regions 2 and 3 are not affected. The actual calculations of the
ensemble and expurgated bounds are plotted in Fig. 21 for

.
3) MIMO System: In a MIMO system also the results are

similar to that of SISO and MISO. To obtain exponential diver-
sity in region 1, we need a very good CSIT, else we may have to
be satisfied with a polynomial decay. The computed block error
probabilty is provided in Fig. 22 for .

VII. CONCLUSION

We have analyzed the power allocation problem in space and
time for Rayleigh-fading channels. Similar Analysis can also be
done for other fading distributions. We have shown that the op-
timal power allocation in space and time substantially reduces

Fig. 21. Computed block error probability for MISO (2; 1) with Imperfect
CSIT (� = 0:99).

Fig. 22. Computed block error probability for MIMO (2;2) with Imperfect
CSIT (� = 0:99).

the BER. We observed that in the beamforming case, when per-
fect CSIT is available, our power allocation policy provides ex-
ponential order diversity gain for both coded and uncoded sys-
tems. The diversity gain that we achieve is substantially more
than the conventional Space-Only and uniform power alloca-
tion schemes. Also, when the quality of CSIT degrades, the ex-
ponential diversity is lost at high SNR. The interesting observa-
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tion here is we still achieve exponential diversity at low SNR.
We also study the BER performance of S-T codes (Alamouti
code) with our Space-Time power allocation scheme. We have
observed that our power allocation policy improves the BER
performance of S-T codes also. Infact, the performance of S-T
codes for imperfect CSIT case is better than the power allocation
policy given by [11] and the beamforming as observed in [16]
and [20] for space-only power control. Another interesting con-
clusion is that in case of imperfect CSIT and CSIR, it is more im-
portant for the receiver to know the CSIT than the actual channel
state.

We have also obtained error exponents for our power control
policy. We obtain exponential diversity of the expurgated/en-
semble average bound in low and high rate regions but not in
the intermediate region. The exponential diversity is lost in the
low rate region if the CSIT is not perfect.

APPENDIX I
AN INEQUALITY

Let defined in the interval .
It is a convex increasing function of . Thus, for all

, where depends on
and is given by . We use this bound exten-

sively in our derivations.

APPENDIX II
UPPER BOUND ON FOR MIMO, PERFECT CSIT, CSIR

First we obtain the upper bound for ; then for
.
Case 1:
From (7)

Using (14)

(50)

Now consider the integral

(51)

On computation, we find that (for example, for
dB, ). Then using (7), (50), and (51)

Since the first term is zero

(52)

where

(53)

Now let us calculate . By the average power constraint
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which can be shown to be equal to

where . We can rewrite it as

(54)

Using the fact that

(55)

Thus from (54)

(56)

and hence

(57)

where was defined earlier and

(58)

From [3, Th. 2], is upper bounded by
. We find from numerical calculations that the approxi-

mations are tighter than the bound, and hence the bound shall
override the approximations. Strictly speaking these are not
bounds, but approximations to the bounds and we denote this
relation by . Thus

(59)

where was defined in Appendix I. Hence from (53)

(60)

The for values of dB is very close to 1 and can be
left out in most of the cases.

Case 2:
The analysis is similar to Case 1 until (50).
Now consider the integral

By (55)

since the first term is (see [17], Appendix IV). Thus

(61)

where

(62)

Let us now evaluate . By the average power constraint,
using results from Case 1
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Now using [8], (55), and the fact that is zero (see
[17], Appendix IV)

We find by numerical calculation that the approximations are
tighter than bounds. Thus the bounds shall override the approx-
imations. Therefore

On simplification, we get

where is given by (62) and

Since the expressional form of the bound of is the same
as in Case 1 the same expression will follow and so we obtain

(63)
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