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Abstract

In this paper, we consider the discrete memoryless intemfay channel with common information,
in which two senders need deliver not only private messaggesalso certain common messages to
their correspondingreceivers. We derive an achievable rate region for such anghdy exploiting a
random coding strategy, nametascadedsuperposition coding. We reveal that the derived achievabl
rate region generalizes some important existing resultdhfe interference channels with or without
common information. Furthermore, we specialize to a cldsteterministic interference channels with
common information, and show that the derived achievalitenegion is indeed the capacity region for
this class of channels.

Index Terms

Capacity region, cooperative communications, commorrinéion, interference channel, multiple
access channel, superposition coding, simultaneous oherod

. INTRODUCTION

The interference channel (IC) is one of the fundamentaldingl blocks in communication
networks, in which the transmissions between each sendkit@corresponding receiver (each
sender-receiver pair) take place simultaneously andferewith each other. The information-
theoretic study of such a channel was initiated by Shannii,jand has been continued by many
others [2]-[16] and etc. So far, the capacity region of theegal IC remains unknown except
for some special cases, such as the IC with strong inteder€alC) [3], [6], [9], [10], [12], a
class of discrete additive degraded ICs [8], and a class tefrménistic ICs [11]. Alternatively,
various achievable rate regions served as inner boundsafapacity region have been derived
for the general IC [5], [7], [9], [15]. Notably, Carleial [Qbtained an achievable rate region of the
discrete memoryless IC by employing a limited form of theayahsuperposition coding scheme
[17], successivencoding and decoding. Subsequently, Han and Kobayasksf@plished the
best achievable rate region known till date by applying shreultaneoussuperposition coding
scheme consisting of simultaneous encoding and decodidgetl, the improvement of the Han-
Kobayashi region [9] over the Carleial region [7] is priniadue to the use of the simultaneous
decoding. This has been validated in [15], [16], in which Gdpet al. obtained an achievable rate
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region identical with the Han-Kobayashi region but with aamsimplified description, by using
a hybrid of the successive encoding (same as Carleial’ssandltaneous decoding. Moreover,
Carleial [7] introduced the notion of the partial cross-etvability of each sender’s private
information, which means that each receiver is able to depadt of the private information sent
from its non-pairing sender. The derivation of the Han-Kashi region and Chong-Motani-Garg
region followed this notion but Chonet al. made an important observation that the decoding
errors of the crossly observed information can be excludembmputing the probability of error
[15]. With an introduction of the partial cross-observipilthe IC can be viewed as a compound
channel consisting of two associated multiple access @lsafMACSs) (strictly speaking, MAC-
like channels), and thus its achievable rate region can Ipgoaphed by exploiting existing
techniques used for MACs. However, the proof of the convéaseither achievable rate region
(Han-Kobayashi region or Chong-Motani-Garg region) il atit available.

Most of the prior work on the ICs assumes the statisticalpedeence of the source messages
to be transmitted by the senders [2]-[16]. However, thisiaggion becomes invalid in an IC
where the senders need transmit not only the private infibomabut also certain common
information to their corresponding receivers. Such a stena generally modelled as the IC
with common information (ICC). Mariet al. [18] derived the capacity region of a special case
of the ICC, the strong interference channel with commonrmgtion (SICC), and their result
subsumes the capacity region of the SIC (without commorrim&tion) [12] as a special case.
Parallel to the case of the IC, the study of the ICC is closelgited to the prior work on the
MAC with common information (MACC) that has been thoroughktydied by Slepian and Wolf
in [19] and Willems in [20]. As an example, the capacity regaf the SICC shown in [18] can
be interpreted as an intersection of the capacity regionw@funderlying MACC-like channels.
Moreover, our main results also develop upon interpreting@C as a composite channel of
two MACC-like channels.

In this paper, we propose a generalized version of the ssiweesuperposition encoding,
namelycascadedsuperposition encoding, which reduces to Carleial’s ssgige encoding in the
absence of common information. With this encoding schehgesénders’ common information is
conveyed through the channel in a cooperative manner. Aqptire proposed cascaded encoding
scheme along with the simultaneous decoding scheme [9], {i& derive an achievable rate
region for thegeneraltwo-user discrete memoryless ICC. The derived achievadike nregion
subsumes the Chong-Motani-Garg region for the general I@eallsas the capacity region for
the SICC as special cases. Moreover, we derive an achiexatieleegion for a particular class
of ICCs where one of the two senders has no private informdtoits corresponding receiver.
The depiction of the obtained achievable rate region agpeaty simple with only one auxiliary
random variable involved. Proving the converse still appéa be a challenge, which we believe
is as difficult as proving the converse for the Han-Kobayasbion or the Chong-Motani-Garg
region.

Lastly, we investigate a class of deterministic interfeeenhannels with common information
(DICCs), which generalizes the class of DICs (without comnmformation) studied in [11].
Relying on the crucial assumptions we specified for thissclaischannels, we show that our
achievable rate region meets the outer bound of the capaegign, and thus it is actually the
capacity region of this class channels. This in a certaisesémndicates the potential tightness of
the region as an inner bound of the capacity region of thergéxéscrete memoryless ICC.

The rest of the paper is organized as follows. In Section #, fisst introduce our channel
models, including the general ICC and a modified ICC. The fretliiCC serves to reveal the
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information flow through the associated ICC, and facilgatbe derivation of the achievable
rate region for the associated ICC. In Section lll, we preslea achievable rate region for the
general discrete memoryless ICC in both implicit and expfarms. We also provide a detailed
proof of the achievability of the rate region. In Section \& apply the obtained achievable rate
region to three special cases of the ICC including the SI®€,general IC (without common
information), and a class of the ICCs where one of the two eenldas no private information to
transmit. For each case, our achievable rate region emiolrdes the existing results as special
cases or gives a new achievable rate region. In Section IMnwestigate the class of DICCs
for which our achievable rate region is in fact the capac#gion. The paper is concluded in
Section VI.

Notations:Random variables and their realizations are denoted byrugase letters and lower
case letters respectively, e.gf, andz. Bold fonts are used to indicate vectors, eX¥.andx.

Il. CHANNEL MODELS AND PRELIMINARIES
A. Discrete Memoryless Interference Channel with Comméordmation

A discrete memoryless IC is usually defined by a quintigle X, P, )i, )s), whereX, and
V;, t = 1,2, denote the finite channel input and output alphabets résplc and? denotes the
collection of the conditional probabilities(y,, y2|x1, z2) Of the receivers obtainingy,, y») €
V1 x Y, given that(xq, z5) € A; x X, are transmitted. The channel is memoryless in the sense
that for n channel uses, we have

p(y1, yalx1,x2) = Hp<y1iu Yail1i, Tai),
i=1
wherex; = (zy,...,2) € X" andy: = (Y, ..., ym) € Y for t = 1,2. The marginal
distributions ofy; andy, are given by

pi(yilzy, @2) = Z p(y1, 2|z, 22),
y2€Y2

p2(y2‘$1,$2) = Z p(y1,y2|$1,$2)-
y1€EN

Building upon an IC, we depict an ICC in Fifgl 1. Sender = 1,2, is to send a private
messagev; € M, = {1,..., M,} together with a common messagg € M, = {1, ..., My}
to its pairing receiver. All the three messages are assuméx tindependently and uniformly
generated over their respective ranges.

Let C denote the discrete memoryless ICC defined above( M M, Ms, n, P.) code exists
for the channelC, if and only if there exist two encoding functions

fliMQXM1—>X1n, fQ:M(]XMQ_)XQn,
and two decoding functions
g1 : Y — Mo x My, go 1 Vo — My x Ma,
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Channel
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Wa x2(w0, w2) Yo (wo, wz)
B f2 S > 02 |

Fig. 1. The interference channel with common information.

such thatmax{Pe(,’{),PéZ)} < P., where Pe(ft‘), t = 1,2, denotes the average decoding error
probability of decodet, and is computed by one of the following:

1
pmw_ - .
el M0M1M2 wo%;w2p<(w0’ wl) # (w()?wl)‘(wo,wl, U)Q)),
n 1 o
Py = MMM, > p((to, ) # (wo, wa)|(wo, wr, ws)).

wowiwz

A non-negative rate triplé Ry, R, R,) is achievable for the chann€l if for any given0 <
P, < 1, and for any sufficiently large, there exists g2nf 2nf onfz Py code.

The capacity region for the channglis defined as the closure of the set of all the achievable
rate triples, while an achievable rate region for the chhfhis a subset of the capacity region.

B. Modified Interference Channel with Common Information

To derive an achievable rate region for the ICC, we first neelet clear about the structure
of the information flow through it. However, this can not bewed from the original ICC
model clearly, and thus it is difficult for one to carry out tt@responding information-theoretic
analysis. To avoid such difficulty, we introduce the modifie€ by following the same approach
used in [9].

The modified ICC inherits the same channel characteristara fts associated ICC, but there
are five streams of messages to be conveyed through the ndodifennel instead of three
through the associated ICC. The five streams of messages,, [;, n, and/; are assumed to
be independently and uniformly generated over the finieSgt= {1, ..., No}, N1 = {1, ..., N1 },
Li={1,...Li}, No={1,..., Ny}, and L, = {1, ..., L, }, respectively.

Denote the modified ICC shown in Figl. 2 by the chan@gl An (N, N1, L1, Ny, Lo, n, P.)
code exists foiC,, if and only if there exist two encoding functions

f12N0XN1X£1—>X{L, fQ:N’OXNQXEQ—)XQn,
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Fig. 2. The modified interference channel with common infation.

and two decoding functions
g1 VI = No x Ni x Ly, g2 1 V5 = No x Ny x Ly,

such thatmax{Pe(f{), Pe(f;)} < P., where the average probabilities of decoding error denbted
Pe(f{) and Pe(f;) are computed as

1 A
PR = —— 0, 711, | z L, na,
el NON1L1N2L2 non%pr((nOanl? 1) % (n(]unlu 1)‘(”07”17 1, N2, 2))7
n 1 A A7
Pe(,z) = m Z p((fo, Nz, l2) # (10, n2,l2)|(no, nas by mas lo)).

nonilinzle

A non-negative rate quintupléRy, Rio, Ri1, Ro1, Reo) IS achievable for the chann&,, if
for any given0 < P. < 1 and any sufficiently large:, there exists g2nfio, 2nfiz onl
onftar onlz 4y Py code forC,,.

Remark 1:It should be noted that compared with Fig. 2 in [9], our modifehannel depicted
in Fig.[d does not include the index (or 7,) in the decoded message vector at decoder 1 (or
decoder 2). This is due to the observation made in [15] tHHtpagh receiver 1 (or receiver
2) attempts to decode the crossly observable private messafpr n;), it is not essential to
include decoding errors of such information in calculatprgbability of error at the respective
receiver. This is also the reason why we call the two assetieittannels of an ICC as MACC-like
channels instead of MACCs.

Lemma 1:If (Ro, Ri2, R11, R21, Ro2) is achievable for the chann€l,,, then(Ry, Rio+Ri1, Ro1+
Rys) is achievable for the associated 1T

Remark 2:Note that with the aid of LemmB@l 1, an achievable rate regiontie modified
ICC can be easily extended to one for the associated ICC.
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[1l. GENERAL DISCRETE MEMORYLESSINTERFERENCE CHANNEL WITHCOMMON
INFORMATION

A. An Achievable Rate Region for the General Discrete MelassyiCC

We first introduce three auxiliary random variablés U, andU, that are defined over arbitrary
finite setsl, U;, andis,, respectively. Denote b* the set of all joint probability distributions
p(-) that factor as

p(U07U17U2,$1,$2,y173}2) :p(uo)p(u1|U0)p(uz\uo)p($1\ubUo)p($2|U2,Uo)p(yl,y2|$1,$2)- (1)
Let R..(p) denote the set of all non-negative rate quintugl@s, Ri>, Ri1, Ro1, Ro2) such that

Ry < I(Xy; V1|UpUyUs), (2)
Ris + Ry < I(U1 Xq; Y41 |UpUsy), 3)
Ru + Ry < I(X1Up; Y1|UoUn), (4)
Ris + Ry + Ry < I(U1 X1 Usy; Ya|Up), (5)
Ry + Riy + Ry + Ry < I(UpgUir X1Us; Y1) (6)
Ryy < I(Xo; Ya|UgUsUy), (7)
Ro1 + Ry < I(Us Xy; Yo |UpUn ), (8)
Ry + Ry < I(XoUy; Ya|UpUsy), 9)
Ro1 + Roy + Rip < I(Us X,Uy; Ya |Up), (10)
Ry + Roy + Roy + Ry < I(UgUs XUy Ys), (11)

for some fixed joint probability distributiop(-) € P*. Note that each of the mutual information
terms is computed with respect to the given fixed joint distiion.

Theorem 1:Any element(Ry, Ris, Ri1, Ra1, Ro2) € R,(p) is achievable for the modified
ICC C,, for a fixed joint probability distributiorp(-) € P*.

Remark 3: The lengthy proof is relegated to the last subsection of $bistion. Theorerfill 1
lays a foundation for us to establish an achievable rateorefpr the general ICC. One can
interpret this achievable rate region as an intersectitwden the achievable rate regions of the
two associated MACC-like channels, i.e., inequalitl8s-(@) depict the achievable rate region
for one MACC-like channel, and inequalitids (1) 3(11) depie other.

Theorem 2:The rate regiork,, is achievable for the chann€},, with R,,, = Up(_)ep* Ron(p)-

Remark 4:Theorem[R is a direct extension of TheorEm 1, and the proofrasghtforward
and omitted. Note that the rate regi®), is convex, and therefore no convex hull operation or
time sharing is necessary. The proof of the convexity ismyivethe appendix.

Let us fix a joint distributiorp(-) € P*, and denote byR(p) the set of all the non-negative
rate triples(Ry, Ry, Rs) such thatR; = Ris + Ry; and Ry = Ry + R for some(Ry, Ria, R,
Ry, Ra2) € Ry(p).

Theorem 3:R is an achievable rate region for the chan@ehith R = |J,\cp- R(p).

Proof: It suffices to prove thaR(p) is an achievable rate region f@ for any fixed joint
probability distributionp(-) € P*, while the achievability of any rate triplgRy, R, Ry) € R(p)
follows immediately from Lemm@&l1 and Theordin 1. [
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Remark 5: The main idea, as mentioned before, is that we allow the caminformation (of
rate Ry) to be cooperatively transmitted by the two senders, on faphich we treat the private
information at each sender as two parts. One part (of Rateor R,;) of the private information
at each sender is crossly observable to the non-pairingvegcéut not the other part (of rate
Ry1 or Ryy). However, as discussed earlier, for each of the two recgitke crossly observed
information is not required to be decoded correctly. Thil iné elaborated more clearly in the
proof of Theorentl.

Remark 6:One can observe that the rate of the common informatinjs bounded by only
one inequality at each decoder. This is similar to the casdACC [19], [20], where the rate
of the common information is bounded by only one inequalgyell. This is due to the perfect
cooperation of the two senders in transmitting the commdormmation, and the simultaneous
decoding. Details will also be illustrated in the proof ofetinem(lL.

Remark 7:Our achievable rate region for the ICC is possibly a tight, @sewe will demon-
strate in Section IV that our region includes two well-knomsults as special cases. Moreover,
in Section V we will show that our achievable rate region rme¢ké outer bound for the capacity
region of a class of DICCs, which results in the exact capaeiion for this class of channels.

Remark 8:Note that the regiorRk is also convex, and one can readily prove it by following
procedures in the proof of the convexity &f,.

B. An Explicit Description of the Achievable Rate Region

In order to reveal the geometric shape of the regiorRoflepicted in Theorerfll 3, we derive
an explicit description of the region by applying Fourieptzkin eliminations [9], [15], [21].

Theorem 4:The rate regiorR is achievable for the chann€lwith R =, .. R(p), where
R(p) denotes the set of all rate triplé&, R;, R2) such that

Ry < I(UpU1 X1Us; 1),

Ry < I(UpgUz XUy Ys),

Ry < I(U1 X1; Y1|UoUs),

Ry < I(Uy X33 Ya|UgUn),

Ry + Ry < I(X1Ug; Y1|UpUs) + I(XoUy; Ya|UpUs);

Ry + Ry < I(U1 X1Uy; Y1 |Us) + 1(Xy; Ya|UgUrUs),
Ro+ Ry + Ry < I(UgUy X1Uy; Y1) + 1(Xo; Yo |UgUr Us);
Ry + Ry < I(X1; Y1|UpgUUs) + I(Uy XUy Ya|Uy),

Ry + Ry + Ry < I(Xy; Vi|UgUrUs) + 1(UgUx XUy Ya);
2Ry 4+ Ry < I(U1 X1Us; Y1|Up) + 1(Xy; V1| UgU Us) + 1

( (XoU1; Ya|UpUs),
Ro + 2Ry + Ry < I(UgUy X1Us; Y1) + I1(Xy; Y1 |UpgUr Us)

( (

) + )

+ TG0 Ya|Uslh):
X1Us; Y1|UoUn),
(XU ViU,

Ry + 2Ry < I{Us XoUs: Ya|Us) + 1(Xo; Ya|UpUrUs) + I
Ro+ Ry + 2Ry < I(UgUa XoUy; Ya) + 1(Xo; Yo |UgUy Uy

for some fixed joint distribution(-) € P*.
Remark 9: The close relation between the explicit Chong-Motani-Gagjon and the capacity
region of a class of deterministic ICs given in [11] was pethbut in [21]. Similarly, we will
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disclose that the explicit region for the ICC is also closedated to the capacity region of a
class of DICCs investigated in Section V.

C. The Proof of Theoreid 1

In this section, we will prove Theorefd 1 that is the core ofstpaper up to here. The
general idea is to apply the cascaded superposition erngadiich simultaneous decoding. As the
following lemma will be frequently used, we state it heredsefthe proof of Theorer 1.

Lemma 2 ( [22, Theorem 14.2.3]) et A™ denote the typical set for the probability distri-
bution p(s1, s9, s3), and let

P(S} =s51,8; =5,,8; =83) = Hp(su\83i)p(82i|53i)p(532‘)7 (12)
=1
then

P{(S},8}, 8}) € A} = g n(Sisiis o), (13)

Proof of Theoreni]1[Codebook Generation.] Let us fix a joint distributiorp(-) that factors
in the form of [1). We first generate"/ independent codewords, (i), i € {1,...,2"%0},
according to] ]\, p(uo;). At encoder 1, for each codewouns (i), generate2"2 independent
codewordau (7, 5), j € {1,...2"%2} according to[ [}, p(u1:|ue;). Subsequently, for each pair of
codewords(uy (i), u; (i, 7)), generate™1 independent codewords, (i, j, k), k € {1,...2n%1},
according to[ [}, p(x1;|ui;ue;). Similarly at encoder 2, for each codewaugl(i), generate2m#2:
independent codewords,(i,[), I € {1,..2""1} according to] ]!, p(us;|ue). Subsequently,
for each codeword paifug (i), us(i,1)), generate"?22 independent codewords, (i, 1, m), m &
{1,..2"22} according to[ [}, p(z2|uzue;). The entire codebook consisting of all the code-
wordsug(7), uy (4, §), x1(i, 7, k), ua(i, 1) andxy (4,1, m) with i € {1,..., 2"} 5 € {1,... 2"z},
ke {1, .. 2Mu} e {1, .. 2"} andm € {1, ..., 2"%2} is revealed to both receivers.

[Encoding & Transmission.] Suppose that the source message vector generated atdhe tw
senders igng, ni, l1, 2, ls) = (1, 4, k, [, m). Sender 1 transmits codewaxdl(s, j, k) with n chan-
nel uses, while sender 2 transmits codewss, [, m) with n channel uses. The transmissions
are assumed to be perfectly synchronized.

[Decoding.] Each of the receivers accumulates adength channel output sequencg,
(receiver 1) ory, (receiver 2). LetAE"A) denote the typical sets of the respective joint distri-
butions. Decoder 1 declares th@t j, k) is received, if(z, ], k) is the unique message vec-
tor such that(uy(i), w (4, J), x:1 (2, J, k), us(2, 1), y1) € A" for somel; otherwise, a decoding
error is declared. Similarly, decoder 2 looks for a uniquessage vectofs, [, ) such that
(uo(3),ua(, 1), x2(i, [, ), us (i, ), y2) € A™ for somey; otherwise, a decoding error is de-
clared.

[Analysis of the Probability of Decoding Error.] Because of the symmetry of the codebook
generation, the probability of error does not depend on Wwiniessage vector is encoded and
transmitted. Since the messages are uniformly generatadiwir respective ranges, the average
error probability over all the possible messages is equtlegrobability of error incurred when
any message vector is encoded and transmitted. We hencarmadiyze the probability of decod-
ing error for decoder 1 in details, since the same analysibeaarried out for decoder 2. Without
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loss of generality, we assume that a source message Vegtot;, 1, ns,lo)=(1,1,1,1,1) is
encoded and transmitted for the subsequent analysis. Weldfine the event

Eiji 2 {(Uo(i), U4, §), X1 (4, 4, k), Ua(i, 1), Y1) € A},

The possible error events can be grouped into two classdbeljodewords transmitted are
not jointly typical, i.e., E{,;, happens; 2) there exist soni€ j, k) # (1,1,1) such thatE;;
happensi(may not be 1). Thus the probability of decoding error at decddcan be expressed
as

Pe(,’{) = P(Ef U Ui je)£1,1,0) Eijit)- (14)
By applying the union bound, we can upper-bound (14) as
P <P(Efy) + P(Ui gm0 i)
<P(Eyy)+ Y P(Ean)+ Y P(Eau)+ Y _ P(Eyu)+ > P(Eyu)

i#1 i#1,1#£1 j#1 G£LI£L

+ZP(E1M)+ Z P(Erm) + Z P(Eijin) + Z P(Eiju)

k#1 k#1,1£1 i#1,j#1 i#1,j#1,1£1

+ > P(Ew)+ Y. PEw)+ Y. P(Eyn)
i#£1,k£1 i1, kA1 1£1 j#£1,k#1
+ Y. PE+ Y. PEx)+ Y, PEpw). (15)
£, k#£11#£1 i#£1,j#41 k%1 i#£1,j#£1,k#£1,1#41
Due to the asymptotic equipartition property (AEP) [2A(FEf,,;) in (IH) can be made
arbitrarily small as long as is sufficiently large. The rest of the fourteen probabiligynhs in
([@3) can be evaluated through one standard procedure, vididemonstrated as follows. To
evaluateP(E;;11), we apply Lemmdl2 by letting], = (Uy(:), Uy(4, 1), Xy(7, 1, 1), Us(s, 1)),
S, =Y, andS; = (), where() denotes the empty set. Note that the assumption of the lemma
on the joint distribution ofS’, S}, and S} is satisfied, and thus it follows that

P(Eilll) S 2—TL(I(UOU1X1U2;Y1)—6E). (16)

Since the case witls;, = () seems not archetypal, we evaluate one more probability,term
P(Eyjk1). Again, we use Lemm&l 2 by letting;, = (Uy(1,7),X4(1,4,k)), S, = Y, and
S, = (Ugy(1), Uy(1,1)) to obtain

P(Eljkl) S 2—n(I(U1X1;Y1\U0U2)—65). (17)

By repeatedly applying Lemnid 2, we obtain upper-bounds efrémaining twelve probability
terms. Further, we employ these bounds to derive an upperebof the probability of decoding
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error at decoder 1 as
P(q) <€+2nR02—n(I(U0U1X1U2;Y1)—6e) _'_2n(R0+R21)2—n(I(UOU1X1U2;Y1)—66)

4 9nR129=n(I(U1X1:Y1[UoU2)=6¢) | on(Riz+Ra1)9=n(I(U1X1U2;Y1|Uo)~6c)

4 9nR19=n(I(X1:Y1|UoUrU2)~6€) | on(Ri1+Ra1)g—n(I(X1U2:Y1|UoU1)~6e)

+ 2n(Ro+R12)2 n(I(UpU1 X1U2;Y1)—6€) 2n(Ro+R12+R21)Q—n(I(UoUleUg;Yl)—Ge)
4 9n(Bot+Rix) 9—n(I(UoUr XaU2;¥1)—6€) 4 on(Ro+Ri1+Ra1)9—n(I(UoUr X1Us;Y1)—6e)
1 9n(Riz+R11)9=n(I(U1 X1:Y1|UoU2)~6¢) | gn(Riz+Ri1+Ra1)g—n(I(U1X1U2:Y1|Up)~6e)

+ 2n(Ro+Rl2+R11)2—”(1(UOU1X1U2;Y1)—66) + 2n(Ro+R12+Rll+R21)2 n(I(UgU1 X1U2;Y7)— (18)

It is now easy to check that when inequalities (B)—(6) hold aris sufficiently large, we have

P™ < 15e. (19)

€,

By symmetry, the decoding error probability becom‘é@ < 15¢ for decoder 2, when inequal-
ities (@)-[11) hold and: is sufficiently large. It follows thatnax{ P P(" } < 15¢, and thus

el
any rate quintupl€ Ry, Ri2, R11, Ro1, R22) € R, (p) is achievable for the mOdIerd ICC,, for
a fixed joint distributionp(-) € P*. [ |
Remark 10:In what follows, we list a few remarks on the encoding and dewp scheme

used in our derivation.

1) We term the above coding scheme “the cascaded supegomosidding”, because there are
three layers of code with the bottom omg(i) carrying the common information. The
second layer consists af; (i, 7) and us(i,[). This layer superimposes the part of each
sender’s private information, which is crossly observableéhe non-pairing receiver, on
the bottom layer; whilex, (i, j, k) andxs(i, [, m) form the top layer, and they are generated
by superimposing the part of private information which i¢ nmssly observable on top
of both the second layer and the bottom layer.

2) The encoding scheme is auxiliary random variable efftdiethe sense that it only requires
three auxiliary random variables instead Ve required if one follows [9] to apply the
simultaneous superposition coding scheme. It not onlytlyreamplifies the description
of the achievable rate region in terms of the number of inkiesmrequired, but also has
implications on practical code design or implementatiorthef system in the sense that
the number of different codes required is reduced.

3) For the decoding, the simultaneous joint typicality aetihnlayers of codes is examined. It
is the reason why we could have to use fourteen inequalitiesa@[I8), but we in fact only
use five inequalities (inequalitieBl (AY-(6)) instead. Dodhte cascaded superpositioning
and simultaneous decodingy is only bounded together with other rates Bl (6)[ad (11) for
each decoder. The advantage of the simultaneous decodargle successive decoding
is also demonstrated with an example of MACC in [23].

IV. SOME SPECIAL CASES OF THEICCs
A. Strong Interference Channel with Common Information

We demonstrate that the capacity region of the SICC givet8h¢an be obtained as a special
case of our achievable rate region for the general ICC.
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Let P, denote the set of all joint distributiongug, x1, z2, y1, y2) that factor a®(ug)p(x1|uo)
p(z2]uo)p(y1, yo|z1, z2). As defined in [18], an ICC is considered as a SICC if

I(X1; Y11 XoUy) < 1(Xy; Y| XoUy), (20)
I(Xo; Y| XqUp) < I(Xo; V1| X1Uyp), (21)

for all joint probability distributiong(-) € Ps. Let R4(p) denote the set of all non-negative rate
triples (Ro, Ry, Ry) such that

Ry < I(Xy; V1| XoUp), (22)
Ry < I(Xa; Y5 | X1Up), (23)
Ry + Ry < min{ I (X, Xo; Y1|Up), [(XoX1; Ya|Up) }, (24)
Ry + Ry + Ry < min{I (X, Xp; V1), [(X2Xy;Y5)}, (25)

for a fixed joint distributionp(-) € P.
Corollary 1 ( [18, Achievability of Theorem 1])Any rate triple(Ry, Ry, R2) € C; is achiev-
able for the SICC witlC, = Up(,)eps Rs(p).
Proof: It suffices to show thaR(p) is achievable for a fixed joint distribution(-) € P.
Referring to the region defined bid (A)=[11), we 8gt= X, and U, = X,, which makes both
Ry, and Ry, become zero; and we substituie, with R;, and Ry; with R,. Hence, inequalities

@)—({11) reduce to

Ry < I(X1;Y1|UpXy), (26)
Ry < I(Xo; Y1|UpXy), (27)
Ry + Ry < I(X1.X4;Y1|Uo), (28)
Ry + Ry + Ry < I(Up X1 X2; Y1); (29)
Ry < I(Xa; Y5|UpXy), (30)
Ry < I(X1;Y5|UpXs), (31)
Ry + Ry < I(X5X4;Y5|Ud), (32)
Ro+ Ry + Ry < I(Up X2X1;Y5). (33)

Since for the SICC inequalityfz{P0) must hold for the givemjodistribution, inequality [{26)
implies (31), and thus inequalitf{B1) can be excluded. Biryi inequality [ZF¥) can be excluded
as well. Due to the fact thdf,, (X;, Xy) andY;, t = 1,2, form a Markov chain/ (Uy X X»;Y7) =
I(X1X5;Yy) and I(Up X1 X5;Ys) = 1(X1Xs; Ys). Hence,R,(p) is an achievable rate region for
the SICC for a fixed joint distributiom(-) € P, andC; is achievable for the SICC. [

Remark 11:By letting U; = X; andU; = X5, we treat the private information at each sender
as a whole instead of two parts. This differs from what wastinaed earlier in Remark 5. Here
the full private information at each sender is allowed to bassly observed by the respective
non-pairing receivers due to the strong interference. &, fimequalities [[26)E(33) also define
one achievable rate region for the general ICC. Howeves dnly tight for the case of strong
interference, but not for the general case.
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B. Interference Channel without Common Information

We now consider the general IC (without common informatias)a special case of the ICC,
and demonstrate that our achievable rate region for the @Swsnes the Chong-Motani-Garg
region [15] as a special case. Note that the Chong-Motanj-@agion is one of the two best
achievable rate regions for the IC (without common infoiorgt and it has a much simpler
description of the region compared to the other.

Let @ denote a time sharing random variable defined over an anpitirate alphabet®, and
P, denote the set of all joint distributions that factor as

(g, ur, U2, T, T2, Y1, y2) =p(Q)p(u1]q)p(ualq)p(@1|ur, @)p(z2|us, Q)p(y1, yol1, 22).  (34)

Let R,(p) denote the set of all rate paif®;, R2) with Ry = Rys + Ry; and Ry = Ry + Rao
such that

Ry < I(Xy; V|01 ULQ), (35)
Ris + Ry < 1(Xq;Y1|U2Q), (36)
Ru + Ry < I(X1Ux;; Y1|U1Q), (37)
Ris + Ry + Ry < I(X4Us; Y1|Q): (38)
Roy < I1(Xy; Yo|UsULQ), (39)
Ry + Ry < 1(X5; Y5|ULQ), (40)
Ray + Rip < I(XoUy; Yo |U2Q), (41)
Ry + Ry + Ryp < I(XoUy;Y2|Q), (42)

for a fixed joint distributionp(-) € P,.
Corollary 2 ( [15, Theorem 3]):R, is an achievable rate region for the IC with

Ro = U RO(p>

p(-)GPo

Proof: It suffices to show thak,(p) is achievable for a fix joint distributiop(-) € P,.
We still work on the region defined byl(2)={11) with respectthie general ICC. Since there
is no common information, we séf, = (), and Ry = 0. Note that the existence @f, in fact
contributes to the convexity of the rate regi@®,, which one can observe from the proof of
the convexity ofR,, in the appendix. Whe/; is dropped, we need introduce the time sharing
random variable) to maintain the convexity. The rate region defined By (&)})-¢idw becomes

Ry < I(Xy; |01 ULQ), (43)
Ry + Ry < I(U1 X3 1|02Q), (44)
Ry + Ry < I(X4Us; Y| ULQ), (45)
Rz + Riy + Ryy < I(U1 X1Uy; Y1|Q); (46)
Roy < I1(Xy; Ya|UsULQ), (47)
Ro1 + Ry < I(Uy X Ya|ULQ), (48)
Roy + Rip < I(XoUy; Ya|URQ), (49)
Ry + Ry + Rip < I(Up XUy Y5 Q). (50)
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According to the joint probability distributiop(-) € P,, the random variable§’;, X; andY;
form a Markov chain conditioned ofi, and @, and thus/ (U, X1; Y1|U2Q) = I(Xy; Y1|U2Q)
in @4). Similar simplifications can be made dnl(4€)L]1(48) §d). Finally, the derived region
becomes the same as one described[Dy (BH)-(42). With Ldthme tpnclude thafR,(p) is
achievable for a fix joint distributiop(-) € P,, andR, is achievable for the IC (without common
information). [ |
Remark 12:As shown above, our achievable rate region for the ICC in thplicit form
subsumes the implicit Chong-Motani-Garg region as a speage. Alternatively, following the
same procedures as demonstrated in the above proof, we carowdhe explicit region given
in TheorenTH# to obtain the explicit Chong-Motani-Garg regjt5, Theorem 4] as well.

C. Asymmetric Interference Channel with Common Infornmatio

In this subsection, we investigate a class of the ICCs wheee af the two senders does
not have private information to transmit, and we term thesslof channels as the asymmetric
interference channel with common information (AICC). Wegent an achievable rate region
for the AICC as a byproduct of our result for the general ICC.

Without loss of generality, we assume that sender 1 only imsdmmon message, to send
to receiver 1, while sender 2 needs transmit both the comnessagev, and the private message
wy to receiver 2. Figd3 depicts an AICC, which we denote@y Following the definitions
and channel models given in Section Il, we can easily obtaioreesponding modified channel
as shown in Figll4 foC,, and we denote it byC". Note that the capacity region & is a
set of all achievable rate triplésy, R21, R22), Whereas the capacity region ©f, is a set of all
achievable rate pair§R, Rs).

Channel
Encoders Decoders
X1(wo) Y1 Wy

fl - > 01

A
Wo

P

Y A
Wa Xz(wo, wz) Yo (UJO, UJQ)
— f2 > > 2 —

Fig. 3. The asymmetric interference channel with commoaorinftion.

Let P, denote the set of all joint distributions

p(ml,u2,x2,y1,y2) = p(xl,U2,x2)p(y1,y2|x1,x2), (51)
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Channel
Encoders Decoders
x1(n0) yi o

fl > > J1 I

A
no

P

Y P
(7l2,l2) x2(n0,n2,l2) Yo (no,n2,l2)
E—— f2 S > g2 — e

Fig. 4. The modified asymmetric interference channel witmicmn information.

and letR(p) denote the set of all rate triplég?y, R2;, R22) such that

Ry + Ry < 1(X4Uy; Y1), (52)
Rys < I(Xs; Ya|Us X1), (53)
Ro1 + Roo < I(Xo; Y| X7), (54)
Ry + Ro1 + Rop < I(X;1 X5 Ys), (55)

for some fixed joint distribution(-) € P,..

Corollary 3: R;* is an achievable rate region for the modified chan@gl with R" =
Up(.)epa Ra'(p)-

Remark 13:By settingR;» = 0 and R;; = 0, and substituting botl/, and U; with X, one
can easily obtain Corollafd 3 from Theordih 2.

By applying Fourier-Motzkin elimination orli (b2J=(65) witR; = Rs; + Ry, We obtain an
explicit achievable rate region for the AICC as follows.

Theorem 5:R, = Up(,)epa R.(p) is an achievable rate region f@,, whereR,(p) is the set
of all rate pairs(Ry, R») such that

Ry < I(X Uz Y1),
Ry < I(Xy; Ya|Xy),
Ry + Ry < min{I(X,X5;Y2), (X Us; Y1) + 1(Xo; Y| Uy X1) b,

for some fixed joint distribution(-) € P,.

Remark 14:1) Alternatively, one can obtain Theordth 5 from Theolgm 4 dtying R, = 0
and substituting/, andU; with X;. 2) The coding strategy for this channel remains generhdy t
same as the one for the general ICC: both senders first ne@erate to transmit the common
information; while sender 2 treats the private informatem two parts with one part crossly
observable to receiver 1 but not the other part. 3) Althougrd is only one auxiliary random
variable involved, the converse remains extremely diffitoilestablish.
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V. THE CAPACITY REGION OFA CLASS OF DETERMINISTIC INTERFERENCECHANNELS
WITH COMMON INFORMATION

In this section, we investigate a class of discrete memssyIdCCs as depicted in Figl. 5. The
main characteristics of the channel remain the same as tifose ICC, i.e., source messages
(wo, w1, ws), channel input and output alphabets and ), ¢t = 1,2, encoding functions f{(+)
and f»(-)) and decoding functiongy{(-) and g»(-)), existence of codes and achievable rates are
defined the same as those for the general ICC. The distinbiégsron the channel transition,
which is governed by the following deterministic functions

Y1 = 01(Xy1, V), (57)
Yy = 03(X2, V1), (58)

whereV; and V; represent the interference signals causedXhyand X, at the corresponding
receivers. Furthermore, we assume that there exist two mererministic functions), =
hi(Y1, X1) andV; = hy(Ys, X5). We denote this class of DICCs Ify;.

Encoders Decoders
w1 X1 (w07 w1) Y1 (1@07 ZZ11)
— f S > 01 ———
A Vo 01
ko >
Wo
Vi
kq >
Y A
Wo 02 | Y2 (woﬂUz)
— fy S = 02 |
Xz(wo7w2)

Fig. 5. The class of deterministic interference channetf wommon information.

Note that the channel defined above is similar to the one figaed in [11], but there is a
slight difference. In [11], it is required that? (Y;|X;) = H(V,) and H(Y3|X,) = H(V;) for
all product distributions ofX; X,. It has also been pointed out in [11] that this requirement is
equivalent to requiring the existence 6of = h(Y;, X;) andV; = hy(Ys, X5). Nevertheless, we
require the latter rather than the former, and in fact thenaris not satisfied in our case. We
will demonstrate that’, = h (Y7, X1) andV; = hy (Y5, X,) are the actual governing conditions
for this class of DICCs.

Let P, denote the set of all joint distributiong-) that factor as

p(U07 L1, $2) = p(Uo)p($1|Uo)p($2|Uo)7 (59)
whereuy is the realization of an auxiliary random variablg defined over an arbitrary finite set

March 22, 2021 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY (SUBMITTED) 16

Vo. Let R4(p) denote the set of all rate triplész, R, R») such that

Ry < H(Y1), (60)
Ry < H(Y), (61)
Ry < HY1|[VoVa), (62)
Ry < H(Y|VoV4), (63)
Ry + Ry < HY1[VoWi) + H (Ya|VoVa); (64)
R+ Ry < H(Y1[Vo) + H(Y2[VoV1Va), (65)
Ry + Ri+ Ry < H(Y1) + H(Y2[VoV1Va); (66)
Ry + Ry < H(Y1[VoViVa) + H(Y2| W), (67)
Ro+ Ry + Ry < HY1[VoV1iVa) + H(Y2); (68)
2Ry + Ry < HA[Vo) + H(YA[VoViVa) + H(Y2|VoVa), (69)
Ro+ 2R + Ry < H(Y1) + H(Y1[VoViV2) + H(Y:2[VoVa); (70)
Ry + 2Ry < H(Y2|Vo) + H(Y2[VoViVa) + H(Y1|[VoVh), (71)
Ry + Ry + 2Ry < H(Y2) + H(Y2|VoViV2) + H(Y1[VoV1), (72)

for some fixed joint distribution(-) € P,.
Theorem 6:The capacity region o€, is the closure ot J, ., Ra(p).

Proof: 1) Achievability: It suffices to show thalR,(p) is achievable for the channél,
for a fixed joint distributionp(-) € P,. As the joint distributionp(-) € P, does not involvel;
andV;, it appears incurring difficulty for us to apply the cascadaeg@erposition coding strategy
developed for the general ICC to this channel, due to the tdckuxiliary random variables.
Nevertheless, because the interfereniceand V; are determined by the channel inpufs and
X,, we can extend the joint distribution in the form I§59) toeorontainingV; andV; as

p(vo, T1, T2, v1,v2) = p(vo)p(w1|ve)p(w2|ve)d (v — Kk1(21))d(ve — k1(22)), (73)

whered(-) is the Kronecker Delta function. Sincé, and X, are conditionally independent given
Vo, the interference®; andV; also become conditionally independent givién Therefore, the
extended joint distributio{T3) can be factored as

p(Um X1, o, U1, U2) = p(Uo)p(Ul|U0)p(02|vo)p($1|vl7 Uo)p($2|v27 U0)7

and the achievability of the regioR,(p) follows readily from Theorenl4.
2) Converse: It suffices to show that for angnf, 27 onfz Py code with P, — 0, the
rate triple (R, Ry, Ry) must satisfy[(60)£{42) for some joint distributi@iwg)p(z1|ve)p(z2|vo).
Consider a(2" 2" 272 p P.) code with P, — 0. Note thatP, — 0 implies P/, — 0
and P, — 0. Applying Fano-inequality [22] on decoder 1, we obtain

H(Wo, Wi|Y}") < n(Ro + Ri) Py + h(Pl) £ neyy, (74)
whereh(-) is the binary entropy function, and,, — 0 as P}, — 0. It easily follows that

H(W1|YYL, W()) S H(WQ, W1|1/1n) S NEp. (75)
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By symmetry, we can also get
H(WQD@”, W()) S H(WQ, WQD@”) S Né€oy . (76)
We now expand the entropy terf(Y,", V5'|Wy, W;) as

H(YP, VI Wo, W) L HY? VP IXT, We, Wh)

b
O H (VP |XT, Wo, Wh) + HYP VS, XT, Wo, Wh)

S H(YPXT, W, Wh) + H(VRY?, XT, Wo, W),

where (a) follows from the fact thaX] = f;(W,, W;) is a deterministic function ofi;, and

W, for a given(2nfio onf onk2 Py code; both (b) and (c) are based on the chain rule. Since
Y, is a deterministic function ofX; and V,, H(Y*|V5', X7, Wy, W) = 0. Similarly, due to

Vo = hi(Y1, X1), we haveH (V3| Y, X7, Wy, W;) = 0. Hence, we obtain the following equality

H(‘/Zn|Xln7 W07 Wl) = H(}/'1N|XIL’ W07 W1)7
which can be further simplified as follows
H(V3 Wo, W) HY W, W),
b
H(V3' W) 2 H(Y]' [Wo, Wh), (77)

where (a) again follows from the deterministic relationviees¢n X7 and (W,, W), and (b)
follows from the conditional independence betwéghandW; given ;. Analogously, we can
obtain

HVWo) = H(Y5 [WoWa). (78)

One more pair of crucial inequalities are to be shown befoeepvoceed to the main part of
the converse. This pair are listed as follows

T(Wy YT W) < T(Wys YV V), (79)
T(Wa; Y3 {Wo) < T(Wo; Yo' V' V"W). (80)
Inequality [/®) can be derived as follows:
T(Wy Y (Wo) = H(Wi[Wo) — H(WL[Y"Wo)

(a)
< H(WL|V3'Wo) — H(WA|Y"VS" W)

(b)
< HWA|Vi'Wo) — H(WA YT V'V W)
= [(Wy; Y"V" V" W),

where (a) follows from the facts that (1W,|W,) = H(W,|V5*W,) which is due to the condi-
tional independence betweéi; and V;* given W, and “conditioning reduces entropy”, i.e.,
H(Wy|Y]'VW,) < H(Wq|Y]"W,); and (b) follows from “conditioning reduces entropy” as
well. Similarly, we can obtain{80).

Now we prove each of inequalitids {6)(72) withl(7 )3 (Gajstly, inequalities[{60) and{61)
are obvious.
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For (&2), we have
an = H(Wl) = H(W1|WO)

< (W WV

= I(W; Y"[WoVy') + H(WA [Y"WoVy")

(b)

< H(Y'WoVy') — H(Y' [WoWi V') + nery

D H YR WV + new

<> H(Yui|VaiWo) + nern, (81)
i=1
where (a) follows from the fact thdt’; and V' are conditionally independent givé,; (b)
follows from H (W, |Y]"WoVy) < H(Wh|Y"Wy) < ney,; (€) follows from H (Y |[W W, V") =
H(YT XV WeWy) = 0.
Analogously, for [6B) we have

nRy < Z H (Y2 |V1;Wh) + neg,. (82)

=1
With respect to[{@4), we have
n(Ry + Rs)
= H(Wy)+ H(W>)
= H(Wh|[Wo) + H (W2 W)
= I(Wy; Y'|Wo) + H(Wh[Y"Wo) + T(Wa; Y5 [Wo) + H(Wa|Y3' W)

Y Wo) — H(Y [WoWh) + H(Yy' |[Wo) — H(Y5' [WoWa) + n(er, + €2,)

(

(Y"[Wo) — H(VS'|[Wo) + H(Y3'|[Wo) — H (V" [Wo) + n(ern + €n)

(YVI|Wo) = H(V'|Wo) + H(Y3 V' |[Wo) — H(V3'[Wo) + nlern + €2n)

(YT [V"Wo) + H(Y5' V3" Wo) + n(ern + €2,)

<Y HYu[VWo) + Y H(Yay|VaiWo) + nlern + €2,), (83)

i=1 i=1

where (a) follows from inequalitie§ (I¥5) and176); (b) folle from equalities{Ad7) and{¥8).
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Regarding to[(@5), we have
n(Rl + RQ) = H(W1|W()) + H(W2|W())

S
N

T(Wy Y W) + T(Wa; Y3 [Wo) + nern + €2,)

()

INS INE

T(Wi Y [Wo) + T(Wa; Y3 VI V' W) + nlern + €2,)

T(Ws Y [Wo) + T(Wo; V' [V Wo) + T(Woa; Y [V VE'Wo) + nlern + €2n)
< H(Y{"'|[Wo) — H(Y{" [WoWh) + H (V3 |Vi"Wo) — H (V5 V" We V)

+ H (Y3 |[V'V3'Wo) — H(YS V'V WalWo) + n(ern + €2n)

9 BV Wo) + HYPVEVEWo) + nern + e2n)

S Z H(YiJW@) + Z H(}/22|‘/IZ‘/2ZWO> + n(Gln + €2n>7 (84)
=1 i=1
where (a) follows from inequalitie§(IY'5) and76); (b) fall® from inequality [ZB); (c) follows
from the facts that 17 (Y"|WoWy) = H(V3'|V"Wy), 2) H(V3|V]"W2.W,) = 0 due to thatV)
is determined byX3 which is again determined b{iVy, W,), and 3) H (Y3 |[V*" V' WoW,) =
H (Y3 XFVIV3Wa W) = 0.
Similarly, we have

n(Ry+ Ry) <Y H(Yai|Wo) + Y H(Yii|ViiVaiWo) + n(ern + ean), (85)

i=1 =1

which corresponds td(67).
For (€8), we obtain

’n,(RQ + R1 + Rg)
= H(WoWy) + H(Wa| W)

S]
N

I(W()Wl; YV{L) + ](WQ; YéﬂWo) + n(eln + Egn)

(®)

INS INE

T(WoWy; YY) + T(Wa; YV VI Wo) + n(er, + €a,)

T(WoWi Y7') + T(Wo; Vy' [VI"Wo) + T(Wa; Yo' V' V5"Wo) + n(€rn + €20)
< H(YY") = H(Y |WoWh) + H (V3! |[Vi"Wo) — H (V' [V* W2 W)

+ H(Y3'|V"V3'Wo) — H(YS' VIV WaWo) + n(ern + €n)

S HYP) + HYPVIVEWo) + nlen + €2n)

<Y HYu) + Y H(YalViVaiWo) + n(ern + ean), (86)
=1 =1
where (a), (b) and (c) follow from the same arguments [fof .(8¢te that the proof for[{86)
and the one forl{84) only differ in the first few steps, and tbst follows from the same set of

arguments and procedures.
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Instead of expressing( Ry + R, + Ry) asH (W W,)+ H(Ws| W), we setn(Ry+ Ry + Ry) =
H(Wy|Wh)+ H(W,Ws). Following the similar steps used in derivirig86), we caadily obtain

n(Ry + Ry + Ry) < Z H(Yy) + Z H(Y1:|V1;VaiWo) + nl€ern + €2n), (87)

i=1 =1
which corresponds td_(68).
Now for (€9), we can get

n(2R1 + Rg)
= H(Wh|[Wy) + H(W1|Wo) + H(W2[Wo)

—

a

< T(Wy Y Wo) + LW Y|\ Wo) + I(Wa: Y Wo) + n(2e1, + €an)

b
S I(Wl; )/1”|W()) + I(Wl; Y1”V1"|V2”Wo) + I(Wg; Y'2n|Wo) + n(2€1n + Egn)
I

(W Y{' [Wo) + T(Was VM [VE"Wo) + T(Wa; Y [VI" V3" W)

+ I(Wa; Y5' W) + n(2€1, + €20)

= HOP W) — HO Wl + H(VIVEW,) — HVVEWoI)
+ H(Y" V'V Wo) — H(Y' V'V WoWh) + H (Y3 |[Wo)

— H(Y WoWs) + n(2e€1, + €25)

N

—
=

C

H(Y"Wo) — H(Y{" [WoWh) + H(YT' V'V W) + H(Y3' |[Wo) + n(2e1, + €2,)
D

<
_=

Wo) — H(VIWo) + HYPVEVEW) + H(Y2|Wo) + n(2e1m + e20)
H(Y{"[Wo) — H(V5' |Wo) + H(Y'|VI'VE"Wo) + H(Yy' V! [Wo) + n(2€1, + €2,)
H(Y"|Wo) + H(Y' V'V Wo) + H(Yy [V Wo) + n(2€1, + €on)

I
3

IN

H(Y1,|Wo) + ZH (Vi |V VaiWo) + ZH (Yai|VaiWVo) + n(2€1n + €2),  (88)

=1 =1 i=1

where (a) follows from inequalitied(I’'5) anB176); (b) fall® from inequality [ZP); (c) fol-
lows from the facts thatd (V*|V3*W,) = H(V*|Wy) = H(YS|WoWs), H(V]'VEWW,) =

H (V| X2VeWeWy) = 0 and H(YPVEVEWWL) = H(Y?|VEXPVEW W) = 0; (d) follows

from H (V3 |Wy) = H(Y]"|W,W,). Following similar procedures, we can easily obtain

n(Ry+2Ry) < H(YaulWo) + > H(Yasl VisVaiWo) + > H (Yis| Vi W)

i=1 =1 =1
+ n(eln + 2€2n)7 (89)
n(Ro+ 2Ry + Ro) <> H(Yi)+ Y HY1[ViVaiWo) + > H (Yai|Vai W)

=1 =1 =1

+ n(2€1n + Egn), and (90)
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n(Ro+ Ry +2Ry) < H(Ya)) + Y H(Yai|ViiVaiWo) + > H (Y1, Vii W)
i=1 =1 i=1
+ n(ern + 2€ea,), (91)

which correspond td{T1)[{(F0) and{72) respectively.

Note that we have derived a number of inequalities (§1)—¢@igh, together with[{d0) and
@1), upper bound the rate triplé?,, R:, R2) of the given code for the DICC channel. We now
adopt the technique which was used to prove the converseeafapacity region of the MACC
in [19] and [20]. Definel, = W,, or equivalentlyVy, = Wy, i.e., Vy or V4, is an auxiliary
random variable uniformly distributed over the common ragssset, = {1, ..., My}. Since
X; and X, are conditionally independent givaiiy, i.e., p(x1;, z2;|wo) = p(x1;|we)p(xei|wy),
we can write

p(xlh $2z’\UOi) = p($1z|U0i)p($2z|U0i)-

Note that due to the introduction df), the region inherits the convexity from the achievable
rate region for the general ICC. We can now conclude that as oo and P, — 0, the rate
of the given codeg Ry, R, R,) is bounded by[{80)E(¥2) for some choice of joint distribatio
p(vo)p(z1|vo)p(x2|vy). This completes the proof of the converse and the theorem. u
Remark 15:1) As mentioned earlier, our assumption of this class of rd@testic channel
is slightly different from the one given in [11]. We directhgquire the existence of functions
Vo = hi(Y1,X1) and Vi = he(Ys, X5) such that we have the two equalitiés(V)'|[1W,) =
H(Y"|WoWy) and H(V]*|Wy) = H(Y;'|WyW5). As demonstrated in the above proof, the two
inequalities are crucial, without which we are not able ttaleksh the converse. Moreover,
the two equalities in fact reduce to the assumptions madd.ihip the absence of common
information. Therefore, we can claim that the existenc&of h; (Y1, X;) andV; = hy (Y3, X5)
is the more general condition for this class of determiaistierference channels. 2) The capacity
region of the class of DICCs derived above generalizes tleegoren in [11].

VI. CONCLUSIONS

In this paper, we have investigated the general discreteangess interference channel with
common information, and obtained an achievable rate refporthe channel by applying a
random coding scheme consisting of the generalized sueeessperposition encoding and
simultaneous decoding. The achievable rate region is fdande potentially tight, as it not
only generalizes some important existing results for therfarence channel with or without
common information, i.e., the capacity region of the stramgrference channel with common
information and the Chong-Motani-Garg region (one of the twest achievable rate regions
for the interference channel without common informatiorg ahown as special cases of our
achievable rate region; but also is shown to be the exactidgpagion for a class of deterministic
interference channels with common information. Nevedbg] it remains a challenge to establish
a converse to our achievable rate region for the generalalesmmemoryless interference channel
with common information.

APPENDIX
PROOF OFCONVEXITY R,,

Let (Rg, Riy, Riy, Ry, Ryy) and (RE, RYy, RYy, R, R3,) be two arbitrary rate quintuples
belonging toR,,. It suffices to show that for given any € [0,1], we have(aR{+ (1 —
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a)RS, aRjy + (1 — a)Riy, aR}y + (1 — a)RY, Ry, + (1 — a)R3), aRyy + (1 — a)R3,) € R
Note that the rate regioR,, is the union of region®,,(p) over allp(-) € P*. Thus, there must
exist two sets of auxiliary random variables}, U, U3) and (UZ, U, U3) such that their joint

distributionsp; (-) and p,(-) factor as
pl(u(l)v Ui» U; T1, T, Y1, Ya) = p(ué)p(u}|ué)p(u§|ué)p(x1|u}, U(l))p(932|ué> ué)p(yl, Yo| 1, T2),

pZ(u(z)v U%» uS, L1, T2, Y1, Yo) = p(ug)p(uf|u3)p(u§|u§)p(x1|u%, U(Z))p(932|ug> ug)p(yl, Yo|x1, T2).

Let 7" be the independent random variable, taking the valweith probability o and 2 with
probability 1 — «. We define a new set of auxiliary random variablé$, Uy, U;) such that
Uy = (UL, T), Uy = Ul andU, = U], and then their joint distributiops(-) can factor

Ps(uo, Uy, U2, T1, 932>y1>y2) ZP(UO)P(Ul|Uo)p(u2|uo)p($1|ul>UO)P(932|U27 Uo)p(yh yz|$1>$2)-

Sinceps(-) € P*, we haveR,,(p3) C R,,. It is easy to show thata R} + (1 — a)R2, a R}, +
(1— )R, aRy + (1 —a)R2,,aR} + (1 —a)R%,, aR, + (1 — a)R3,) € R,.(p3) by following
the steps used to prove the convexity of the capacity regiorthie MACC in the Appendix
A of [20]. Therefore, we conclude that R} + (1 — a)R2, aRj, + (1 — @) R%,, aR{; + (1 —
Q)R3, aRy + (1 — a)R3, aR) + (1 — @)R3,) € Ryu(ps) € R, Which proves the convexity
of R,,.
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