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Capacity Bounds for Sticky Channels
Michael Mitzenmacher, Member, IEEE

Abstract—The capacity of sticky channels, a subclass of insertion
channels where each symbol may be duplicated multiple times, is
considered. The primary result is to provide nearly tight numer-
ical upper and lower bounds for the independent and identically
distributed (i.i.d.) duplication channel.

Index Terms—Capacity bounds, duplication channels, insertion/
deletion channels, sticky channels.

I. INTRODUCTION

I N this paper, we consider the capacity of sticky channels, a
subclass of insertion channels where transmitted symbol is

independently duplicated a random number of times at the re-
ceiver, according to some fixed distribution on the positive in-
tegers. We focus on the binary case, although our approaches
generalize. As an example, when typing at a keyboard, if the
key is held too long, multiple copies of the pressed symbol can
appear even though only one copy of the symbol was intended.
We consider both lower and upper bounds on capacity, with our
primary result being numerical approaches that give nearly tight
numerical upper and lower bounds for the independent and iden-
tically distributed (i.i.d.) duplication channel, where each bit is
duplicated with probability .

A key feature of binary sticky channels that we take advantage
of is that contiguous blocks of zeroes (resp., ones) at the sender
correspond to blocks of zeroes (resp., ones) at the receiver. It is
this property that intuitively makes sticky channels easier than
more general insertion/deletion channels. As an example, sup-
pose that a channel duplicates every bit sent so that exactly two
copies arrive. In this case, the original transmission is trivial to
recover!

A primary motivation for studying sticky channels is to gain
more insight into insertion and deletion channels, which have
proven extremely challenging. (See, for example, [2], [4], [5],
[7].) General methods for computing the capacity of such chan-
nels remains an open problem, and codes for such channels thus
far appear rather weak. Sticky channels represent possibly the
simplest channel of this type. One might hope, in the future,
that capacity bounds or codes for more general insertion/dele-
tion channels could arise from a reduction involving sticky chan-
nels. Further, while it may be overly optimistic to hope that
studying sticky channels may provide a path toward better re-
sults for general insertion and deletion channels, having nearly
tight capacity bounds on a subclass of channels would be useful
for determining the quality of more general approaches.
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Sticky channels also appear natural in practice. Duplications
and deletions can occur over channels where there are timing
discrepancies in the clocks of the sender and receiver. In such
channels, it may be possible to speed up the receiver clock so
that all induced errors are symbol duplications instead of dele-
tions, at the risk of possibly introducing more errors.

We provide a numerical approach for computing lower
bounds for the capacity of sticky channels which appears
to give nearly tight results. We explicitly demonstrate our
approach by considering two channels: the elementary i.i.d.
duplication channel, where each bit is independently duplicated
with probability , and the geometric i.i.d. duplication channel,
where each bit is independently replaced with a geometrically
distributed number of copies. We also consider upper bounds,
which prove more complex, and hence, we consider only the
elementary i.i.d. duplication channel. Our results demonstrate
that our lower bounds are nearly tight for this channel.

II. A CAPACITY CORRESPONDENCE

We begin by demonstrating a general correspondence be-
tween the capacity of a binary sticky channel and the capacity
per unit cost of a derived channel with an alphabet corre-
sponding to the positive integers. This derived channel can be
used to calculate bounds for the sticky channel.

Consider a message sent over the sticky channel, yielding
a received sequence . Each maximal block of contiguous zeros
(or ones) in will give a maximal block of contiguous zeros
(or ones) in . If we restrict ourselves to codewords that begin
with a zero, we may view the sticky channel as having input
and output symbols that are integers, corresponding to length of
each maximal block. For the case of the sticky channel, hence-
forth denoted by SC, each bit is duplicated a number of times
given by some distribution over the integers; we call the du-
plication distribution. We may represent this channel by a ma-
trix , where is the probability that a block of contiguous
bits, all (resp., ), at the sender yields a block of length
contiguous bits, also all (resp., ), at the receiver. When doing
numerical calculations, it can be advantageous to assume that
is finite, which corresponds to assuming that blocks in the input
have a fixed maximum length and the duplication distribution
has a finite support; we return to this point below.

Consider the derived channel obtained by using block
lengths as symbols. We call this derived channel the sticky
block channel, or SBC. As an example, suppose that we have
the following input to the SC

When viewed as an input to the SBC, the corresponding input
would be written as

The mapping between SC and SBC outputs is similarly trivial.
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Notice that the SBC is memoryless. It is natural to assign the
symbol (integer) a cost in the SBC, since it corresponds to

bits in the SC. We claim that it is immediate that the capacity
of the SC, under the duplication distribution , is equal to the
capacity per unit cost of the SBC given by the matrix .

Although the correspondence is very natural, in order to point
out a few details, we formalize a proof, following the notation
of [8]. Let an code be one with block length, code-
words, a bound on the total cost of a codeword, and average
error probability at most . As in [8, Definition 2], a number

is an -achievable rate per unit cost if for every ,
there exists such that for , an code
can be found with . Further, is achievable
per unit cost if it is -achievable per unit cost for all ,
and the capacity per unit cost is the least upper bound over the
achievable .

Theorem 2.1: The capacity per unit cost of the SBC equals
the capacity of the SC.

Proof: First, we argue that any rate per unit cost achievable
by the SBC is achievable (up to differences) by the SC
channel. If the SBC has capacity per unit cost , then for every

, for sufficiently large there exists an code
with . Moreover, as shown in [8], we may
assume that is linear in . Such a code immediately maps
to a code for the SC, except that the cost per codeword in the
SBC, which corresponds to the length in the SC, can vary. If
we accepted variable-length codewords, we could conclude the
argument here; we instead aim for fixed-length codewords.

We restrict ourselves to the subset of codewords with
error probability at most ; by standard arguments, must
contain at least half the codewords. We can further restrict our-
selves to the subset of codewords from of a specific cost

with for which is largest. We then
have that (for sufficiently large and
sufficiently small). This gives us a code on the SC channel with
rate at least and error probability , from which one
direction of the claim follows.

Similarly, if the SC has capacity , we can use codes for
the SC to obtain codes for the SBC, with the rate of the SC
mapping to the rate per unit cost of the SBC. A similar problem
arises here in that the length of a block in bits for the SC
does not correspond to a fixed number of symbols in the SBC.
However, the number of symbols in the SBC is at most ; we can
consider all possible codeword lengths in the SBC, and choose
the length that gives the largest subset of codewords of that
length. As , this only affects the capacity per unit
cost of the SBC by terms, so we find that a capacity for
the SC gives a capacity per unit cost for the SBC.

We note that we can also apply the analyses of this paper,
including Theorem 2.1, to channels corresponding to finite ma-
trices that do not arise from a duplication distribution, but
instead simply satisfy the requirement that . For
example, suppose block lengths at the sender are at most bits,
and a sent block of length is received as a block of length

with probability for a constant and as a block
of length otherwise. That is, a block may obtain an extra bit
with probability proportional to the length of the block. Such

a channel can also be analyzed using the SC/SBC correspon-
dence. In this regard, our approach can also be used to handle
deletions, as long as we can guarantee that it is never the case
that all the bits of a block are deleted, so that the block structure
is preserved.

We emphasize that when considering the capacity per unit
cost of the SBC, we consider the limit as
grows; this is the standard definition, corresponding to the cost
for the sender. However, in the general setting we have described
we could also consider , which would corre-
spond to the (expected) cost for the receiver. For sticky channels
governed by a duplication distribution these values are equal,
but they need not be so in the more general block setting with
general finite matrices .

Also, while we have thus far discussed only binary alphabets,
we can extend these ideas to determine a similar correspondence
for nonbinary alphabets. Suppose that the alphabet for the sticky
channel consists of the integers in the range . A natural
corresponding representation for the sticky block channel has
each symbol consist of an ordered pair with the first field being
a block length and the second field being number in the range

representing the difference modulo between the
two corresponding symbols in the sticky channel. For example,
for a -ary channel, the SC input

would be represented as

Note that for the first symbol of the SBC we can adopt the con-
vention that the second field gives the first symbol from the SC;
this does not affect the capacity.

Here, the symbol for the SBC should have a cost of ,
since it corresponds to symbols in the SC. The capacity of the
SC under the duplication distribution again has an immediate
correspondence to the capacity per unit cost of the SBC.

III. LOWER BOUNDS

This correspondence gives us a means to find a lower bound
for the capacity of the SC; simply find a lower bound on the ca-
pacity per unit cost of the corresponding SBC. When the block
lengths in the SC have bounded finite length and the duplica-
tion distribution has finite support, then the corresponding ma-
trix is finite. In this case, capacity per unit cost given a ma-
trix can be computed numerically, using a variation of the
Blahut–Arimoto algorithm for calculating the capacity, under
the conditions that we are dealing with finite alphabets and pos-
itive symbol costs, as is the case here [6]. This approach does
not give an actual efficient coding scheme, but yields a distri-
bution of block lengths, from which the capacity per unit cost
can be derived. (This approach can also be efficiently applied
in the case of -ary alphabets, taking advantage of the sym-
metry among all SBC symbols corresponding to the same block
length.)

We emphasize that the only methods we are aware of for ef-
fectively computing the capacity per unit cost require finite al-
phabets for the derived SBC. As this approach uses a numerical
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algorithm, it does not give a closed-form expression for the ca-
pacity; finding such an expression remains an open question.

We can therefore find lower bounds for channels where has
finite support by enforcing a finite maximum block length. This
truncation necessarily causes the derived bound to be less than
the actual capacity, but the expectation is that, for most channels,
with reasonable maximum block lengths, the calculation will
yield quite good bounds. By taking increasing values for the
bound on lengths of blocks, we can obtain bounds closer and
closer to the true capacity. Our experiments demonstrate that
these bounds converge very quickly for the channels we study.

For the elementary i.i.d. duplication channel, where each bit
is duplicated with probability has finite support. For the
geometric i.i.d. duplication channel, where each sent bit yields
copies with probability , it does not. In this case, we
can treat as equivalent all received blocks above some threshold
length, effectively truncating the ouptut distribution beyond a
certain point. This truncation also still gives a lower bound on
the capacity per unit cost, as we are throwing away information
at the receiver. Increasing the threshold should improve the ac-
curacy of our bound.

IV. UPPER BOUNDS

While we can gain some insight into how tight our derived
lower bounds are by increasing the maximum input block length
and considering the corresponding change, such an approach
does not lead to a corresponding upper bound.

More formal upper bounds can be obtained using informa-
tion divergence. A similar approach was suggested for deletion
channels in [3]. In this setting, however, we are aiming for very
tight bounds, making the approach much more challenging. An
advantage we have here is that we have explicit approximations
to the optimal input distribution, arising from the distributions
we find via the lower bound techniques that can serve as a guide
in obtaining upper bounds.

We recall this approach in the setting of discrete memoryless
channels. For example, consider a channel with input
alphabet and output alphabet , governed by the distribution

, and consider any distribution on . Then we have
that the capacity of the channel is upper-bounded by

This upper bound approach generalizes to the setting of capacity
per unit cost [1]. Specifically, for a nonnegative cost function

and distribution , the capacity per unit cost has the
upper bound

While one could in fact use any distribution to obtain an upper
bound, for achieving tight bounds, we are naturally guided to use
the information we have about near-optimal input distributions
from our lower bound approach. We therefore look for distri-

butions derived from a suitable input distribution on .
Specifically, we have , and let

We then have the upper bound

As our lower bound computation naturally gives us a truncated
input distribution that is near capacity, for this distribution

should be close to the true capacity for in the
support of the input distribution. Truncated distributions are
unsuitable, however, because giving a zero probability to some
output symbol yields a trivial infinite upper bound. We must
therefore extend the truncated distribution by adding a suitable
tail, with the hope that such an addition will still yield an upper
bound close to the true capacity.

This approach poses nontrivial challenges in this setting. Be-
cause we must bound the maximum of over all sym-
bols in the input alphabet, we may have to choose the tail based
on the ability to analyze it for growing toward infinity, rather
than its actual performance, weakening the bound. At the same
time, there is generally a “bump” in caused by the
transition between the original distribution and the added tail;
one must try to make this transition between distributions as
smooth as possible so as to minimize the increase in the upper
bound due to this bump. Because of this, it appears difficult to
achieve tight bounds generally. We have successfully used geo-
metric distributions for a tail for the input for the elementary
i.i.d. duplication channel, as we now describe.

Suppose that for the elementary i.i.d. duplication channel we
start with an input distribution , such as the distribution
derived from the lower bound calculation, and augment it with
a geometric tail. That is, we take the derived distribution
and replace it with given by

if

if

for some constants and . Suitable values of
and can be searched for numerically. We now consider the
behavior of for . First, note that for

, letting , we have

We simplify this expression by using the connection to the Fi-
bonacci polynomials. Recall the Fibonacci polynomial
satisfies for the identity
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and further that

Then simple algebraic manipulation yields

Hence, simplifying for , we have

For convenience, we leave in this form, and note the key
point, which is that for some constants and ;
specifically, we may take

If depended on a single exponential term in , instead of
the sum of two, this approximation would be an equality, and
our work would be much simpler; however, in practice, we can
simply note that for suitably large , we have that

for an appropriately small choice of which can be determined
numerically. We therefore find

A straightforward calculation shows that .
We therefore have that converges to .
Moreover, is increasing in , since it corresponds
to a binomial random variable with trials. Therefore, for large
enough , so that

we find as

Using these facts, we can determine upper bounds numerically
with this approach.

This approach should be useful for other sticky channels, such
as the geometric i.i.d. duplication channel, but there are both

theoretical and numerical challenges. First, studying the asymp-
totics of becomes harder, since techni-
cally for all values of the output distribution depends
on values of with , for which . We
could avoid this in analyzing the elementary i.i.d. duplication
channel once . Second, it is not clear geometric tail dis-
tributions are suitable; one may have to massage the transition
for the distribution around the value more carefully.
Simplifying and generalizing this upper bound argument for ad-
ditional sticky channels therefore remains an open question.

V. NUMERICAL CAPACITY CALCULATIONS

We perform calculations for lower bounds on the capacity
of the elementary i.i.d. duplication channel and the geometric
i.i.d. duplication channel based on Section III. We also consider
upper bounds for the elementary i.i.d. duplication channel as
described in Section IV.

Before beginning, for comparison purposes it is worth noting
that the i.i.d. duplication channel has a simple, zero-error coding
scheme that works for any duplication probability . Using the
correspondence with the SBC, we lay out symbols as blocks; by
using alternating blocks of 1 bit or 3 bits, we guarantee no con-
fusion in decoding even if duplications occur. We can use a 1-bit
block to represent a and a 3-bit block to represent a . Using a
random input distribution, this already yields a capacity per unit
cost for the SBC (and hence a capacity for the sticky channel)
of ; the optimal input distribution increases the capacity to
nearly . More generally, one could handle any finite or
countably infinite alphabet without confusion by using blocks
of length as needed. The optimal distribu-
tion in this case yields a capacity lower bound of nearly .
These schemes provides a nice baseline when considering our
results. Of course, this approach does not work for more general
channels such as the geometric i.i.d. duplication channel.

Also, for the i.i.d. duplication channel, the capacity is trivially
when or , and in these cases the optimal input

distributions are uniform, corresponding to block lengths that
are geometrically distributed with mean two.

A. Lower Bounds

For the elementary i.i.d. duplication channel, we present
results of capacity lower bound calculations where the input
stream is limited to maximal blocks of 8 and 16 bits in Fig. 1;
these curves are labeled by “Opt.” (The maximal blocks in the
received streams are naturally limited to 16 and 32 bits, re-
spectively.) As can be seen, the difference is small enough that
the two curves are almost indistinguishable in the figure, and
further increases in the maximal block length yield similarly
small gain. For example, calculations of capacity with maximal
blocks of 20 bits in the input rounded to four decimal places
agree with the result from 16 bits, except where the rounding
leads to a difference in the fourth decimal place. This provides
evidence for our conjecture that the calculations yield results
quite close to the actual capacity. The capacity lower bound is
minimized at around , where it is approximately .

A further interesting behavior is worth noting. For the ele-
mentary i.i.d. duplication channel, for values of near and

, the optimal input distribution remains close to geometrically
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Fig. 1. Capacity lower bounds for the elementary i.i.d. duplication channel based on numerically calculated optimal input distributions and random (truncated)
input distributions for maximal block lengths of 8 and 16 bits.

TABLE I
COMPUTED OPTIMAL DISTRIBUTIONS, TO FOUR DECIMAL PLACES, FOR THE ELEMENTARY I.I.D DUPLICATION CHANNEL

distributed with mean , as they would be if each bit were inde-
pendent and uniform. The distribution drifts from this at inter-
mediate values of ; some examples (for blocks up to 8 bits)
are shown in Table I. The distributions are nearly geometric
at and ; the deviation from the geometric is
stronger but still slight for intermediate values such as .

Indeed, the capacity achieved by geometric distributions is
not too much less than for our computed optimal curves, as
shown in Fig. 1; these curves are labeled by “Rand.” (We cal-
culate the capacity with the probability that a block of maximal
length being instead of .) This fact may prove
useful for designing computationally efficient coding schemes
that perform close to capacity in practice, by having them
use random input distributions instead of specially tailored
distributions.

The geometric i.i.d. duplication channel naturally exhibits
more complicated behaviors. For our calculations, we require
bounds on the maximal block length in the received sequence.
Because of this, we limited our calculations for this channel
to . At , a received block will be, on av-
erage, slightly more than twice as long as the corresponding
input block; we allow received blocks to be as long as five times
the maximal length of a maximal input block. Longer received
blocks are treated as truncated at this length, and the matrix
is computed accordingly.

In Fig. 2, we present results of capacity calculations where
the input stream is limited to maximal blocks of 8 and 16 bits.
Again, the difference between using maximal blocks of 8 and
16 bits is quite small. For this channel the capacity falls to as

goes to .
We also again present results for random codebooks. They

perform nearly as well as the optimal calculated truncated distri-

butions for small values of , but as grows larger, the difference
appears to increase steadily. Indeed, in contrast to the elemen-
tary i.i.d. duplication channel, we find that as increases, the
optimal calculated distribution differs significantly and increas-
ingly from a geometric distribution; the numerically computed
optimal distributions appear to become more focused on a small
and well-spread set of values. Some examples for blocks up to
8 bits are shown in Table II. This perhaps explains the challenge
in applying our upper bound techniques to this channel; a more
complicated tail distribution may be required.

In summary, our results suggest that our calculated lower
bounds are extremely close to the true capacity, as increasing
the maximum input and output block lengths leads to only very
small differences in the final answers. Also, codes with code-
words chosen uniformly at random (even with blocks of limited
run lengths) would appear to perform close to capacity for the
elementary i.i.d. duplication channel, and for the geometric i.i.d.
duplication channel with small .

B. Upper Bounds

We present numerically derived upper bounds for the elemen-
tary i.i.d. duplication channel. In all cases below, we began with
a distribution based on our lower bound calculation, with input
blocks limited to 30 bits. In all cases, we began by augmenting it
with a geometric tail from block length . We attempted
to stay with values of and for which the asymptotic values of

were conservatively far from the derived upper bound.
While further optimization of parameter choices might improve
things slightly, we found very good results with these choices.

We present results in Table III. For ease of presentation, we
have rounded our derived lower bounds down in the fourth dec-
imal place, and the derived upper bounds up in the fourth dec-



MITZENMACHER: CAPACITY BOUNDS FOR STICKY CHANNELS 77

Fig. 2. Capacity lower bounds for the geometric i.i.d. duplication channel based on numerically calculated optimal input distributions and random (truncated)
input distributions for maximal block lengths of 8 and 16 bits.

TABLE II
COMPUTED OPTIMAL DISTRIBUTIONS, TO FOUR DECIMAL PLACES, FOR THE GEOMETRIC I.I.D DUPLICATION CHANNEL

TABLE III
COMPARING UPPER AND LOWER BOUNDS FOR THE ELEMENTARY I.I.D. DUPLICATION CHANNEL

imal place. In some cases, the results were actually the same to
four decimal places. We emphasize that our point here is not
the numbers themselves, which could be improved with further
calculation, but that for this and possibly other sticky channels,
quite tight bounds are possible with these techniques. Table III
demonstrates that the derived lower bounds are quite close to
the derived upper bounds across the range of values of .

VI. CONCLUSION

We have given numerical methods for calculating bounds on
the capacity of sticky channels, explicitly showing quite tight
bounds in the case of the elementary i.i.d. duplication channel.
These capacity results should allow this channel to serve as a
test case for future work on more general methods for capacity
bounds for insertion–deletion channels. Similarly, these results
should serve as a goalpost for efficient codes, either for these
specific channels or more general insertion–deletion channels.
Many open questions remain, include generalizing or simpli-
fying our upper bound approach, finding closed-form expres-

sions for capacity bounds for sticky channels, and providing ef-
ficient coding techniques for sticky channels.

REFERENCES

[1] K. A. S. Abdel-Ghaffar, “Capacity per unit cost of a discrete memory-
less channel,” IEE Electron. Lett., vol. 29, pp. 142–144, 1993.

[2] S. Diggavi and M. Grossglauser, “Information transmission over a
finite buffer channels,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp.
1226–1237, Mar. 2006.

[3] S. Diggavi, M. Mitzenmacher, and H. Pfister, “Capacity upper bounds
for deletion channels,” in Proc. IEEE Int. Symp. Information Theory,
Nice, France, Jun. 2007, pp. 1716–1720.

[4] E. Drinea and M. Mitzenmacher, “On lower bounds for the capacity
of deletion channels,” IEEE Trans. Inf. Theory, vol. 52, no. 10, pp.
4648–4657, Oct. 2007.

[5] E. Drinea and M. Mitzenmacher, “Improved lower bounds for the ca-
pacity of i.i.d. deletion and duplication channels,” IEEE Trans. Inf.
Theory, vol. 53, no. 8, pp. 2693–2714, Aug. 2007.

[6] M. Jimbo and K. Kunisawa, “An Iteration Method for Calculating the
Relative Capacity,” Inf. Contr., vol. 43, pp. 216–233, 1979.

[7] M. Mitzenmacher and E. Drinea, “A simple lower bound for the ca-
pacity of the deletion channel,” IEEE Trans. Inf. Theory, vol. 52, no.
10, pp. 4657–4660, Oct. 2006.

[8] S. Verdú, “On channel capacity per unit cost,” IEEE Trans. Inf. Theory,
vol. 36, no. 5, pp. 1019–1030, Sep. 1990.


