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Abstract

The problem of discrete universal filtering, in which the components of a discrete signal emitted by an un-
known source and corrupted by a known DMC are to be causally estimated, is considered. A family of filters are
derived, and are shown to be universally asymptotically optimal in the sense of achieving the optimum filtering
performance when the clean signal is stationary, ergodic, and satisfies an additional mild positivity condition. Our
schemes are comprised of approximating the noisy signal using a hidden Markov process (HMP) via maximum-
likelihood (ML) estimation, followed by the use of the forward recursions for HMP state estimation. It is shown
that as the data length increases, and as the number of states in the HMP approximation increases, our family of
filters attain the performance of the optimal distribution-dependent filter.

Index Terms - Universal filtering, finite alphabet, hidden Markov process (HMP), stochastic setting, random-
ized scheme, forward-backward recursion state estimation, ML parameter estimation

1 Introduction

The problem of estimating a discrete-time, finite-alphabet source signal {Xt}t∈T from the entire observation of a

noisy signal {Zt}t∈T , which has been corrupted by a known discrete memoryless channel (DMC), has been thoroughly

studied recently in [21]. It has been shown that even though the source distribution is unknown, an algorithm called

DUDE can universally achieve the asymptotically optimal performance. This result has been extended in various

directions such as the case of channel uncertainty [9], the case where the channel has memory [22], the case of

non-discrete noisy signal components [6], and the case where the reconstruction is required to depend causally on

the noisy signal [18][19]. In this paper, we revisit the last case, taking a different approach from [18][19].

The case where we estimate Xt causally based on observation of the noisy signal Zt = (Z1, · · · , Zt), is referred to

as filtering. The filter can be either deterministic or randomized (a concept that will be explained in detail later). In

this paper, we will only focus on the stochastic setting, where we assume {Xt} is a stationary and ergodic stochastic

process. With the stochastic setting assumption, and under the same performance criterion of [21], i.e., minimizing

the expected normalized cumulative loss, knowledge of the conditional distribution of Xt given Zt at each time t is

required to achieve the optimal performance. Also, by the same argument as in [21, Section III], this conditional

distribution can be obtained by the conditional distribution of Zt given Zt−1 when the invertible DMC is known.

(We call a channel is invertible if its transition probability matrix is invertible.)

However, for the universal filtering setting, where the probability distribution of the source is unknown, the

conditional distribution of Zt given Zt−1 is also not known and need be learned from the observed noisy signal.

Therefore, if we can learn this conditional distribution accurately as the observation length increases, we can hope

to build the universal filtering scheme that achieves the asymptotically optimal performance from the estimated
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conditional distribution. To pursue this goal, [18][19] adopt the universal prediction[15] approach. That is, they first

get an estimate of the conditional distribution of Zt given Zt−1 by employing a universal predictor for the observed

noisy signal, and then by inverting the known DMC, obtain an estimate of the conditional distribution of Xt given

Zt.

Unlike the approach of [18][19], in this work, we turn our attention to the rich theory of hidden Markov process

(HMP) models to directly obtain a different kind of estimate of the conditional distribution of Xt given Zt, without

going through the channel inversion stage.

Generally, HMPs are defined as a family of stochastic processes that are outputs of a memoryless channel whose

inputs are finite state Markov chains. As can be seen in [7], these HMPmodels arise in many areas, such as information

theory, communications, statistics, learning, and speech recognition. Among these applications of HMPs, there are

many situations where the state of the underlying Markov chain need be estimated based on the observed hidden

Markov process. If the exact parameters of the HMP, namely, the state transition probability of the Markov chain

and the channel transition density, as well as the order of the Markov chain are known, then this problem can be

easily solved via well-known forward-backward recursions which were discovered by [4] and [2]. Especially, when we

are estimating the state based on the causal observation of the HMP, we only need the forward recursion formula.

In addition, much work has been done for the state estimation, where the order is known, but the parameters of

the HMP are unknown. In this case, the parameters are first estimated via maximum likelihood (ML) estimation

or the EM algorithm, then the state is estimated by using the estimated parameters in the recursion formula. A

detailed explanation of this approach and the property of the ML parameter estimation can be found in [2][3][12][8].

Furthermore, this was extended to the case where the order of the Markov chain is also not known, but the upper

bound on the order is known. In this case, the order estimation is first performed before the parameter and state

estimation, and the above process is repeated. The references for the order estimation are given in [11][13][20]. There

also has been work for the case where even the knowledge of the upper bound on the order of the Markov chain is

not required[8][23].

From these rich theories for the state, parameter, and order estimation of HMPs, we can see that it is possible to

build a universal filtering scheme if the source distribution is known to be a finite state Markov chain. That is, since

the channel is memoryless and fixed in our setting, if our source {Xt} is a finite state Markov chain, then obviously,

{Zt} is an HMP, and we can first estimate the order of the Markov chain, then estimate the parameter, and finally

perform forward recursion to learn the conditional distribution of Xt given Zt. From the consistency results of order

estimation and parameter estimation, this conditional distribution will be an accurate estimate of the true one, and

we can use it to build the universal filtering scheme.

Now, in our work, we extend this approach to the case where our source {Xt} is a general stationary and ergodic

process (with some benign conditions), which need not be a Markov source at all, and show that we can still build

a universal filtering scheme that achieves asymptotically optimal performance. The skeleton of our scheme is the

following: We first “model” our source as a finite state Markov chain with a certain order, or equivalently, model

the noisy observed signal {Zt} as an HMP in a certain class. Then, we estimate the parameters of the HMP that

“approximates” the noisy signal best in that class. We will show that from the consistency result about the ML

parameter estimation for the mismatched model [8], these estimated parameters will give an accurate estimation of

the conditional distribution of Xt given Zt, as the observation length increases and the HMP class gets richer. Then,

this result will guarantee that our universal filter using this conditional distribution will attain the asymptotically

optimal performance. In practice, this approach has been heuristically employed in many applications for nonlinear

filtering without theoretical justification. Therefore, this work shows the first theoretical proof on the justification
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of the HMP-based universal filtering scheme.

The remainder of the paper is organized as follows. Section 2 introduces some notation and preliminaries that

are needed for setting up the problem. In Section 3, the universal filtering problem is defined explicitly. In Section

4, our universal filtering scheme is devised, the main theorem is stated, and proved. Section 5 extends our approach

to the case where the channel has memory. Section 6 concludes the paper and lists some related future directions.

Detailed technical proofs that are needed in the course of proving our main results are given in the Appendix.

2 Notation and preliminaries

2-A General notation

We assume that the clean, noisy and reconstruction signal components take their values in the same finite M -ary

alphabet A = {0, · · · ,M − 1}. The simplex of M -dimensional column probability vectors will be denoted as M.

The DMC is known to the filter and is denoted by its transition probability matrix Π = {Π(i, j)}i,j∈A. Here,

Π(i, j) denotes the probability of channel output symbol j when the input is i. We assume Π(i, j) > 0 ∀i, j, and let

Πmin = mini,j Π(i, j). We assume this channel matrix is invertible and denote the inverse as Π−1. Let Π−1
i denote

the i-th column of Π−1. We also assume a given loss function (fidelity criterion) Λ : A2 → [0,∞), represented by

the loss matrix Λ = {Λ(i, j)}i,j∈A, where Λ(i, j) denotes the loss incurred when estimating the symbol i with the

symbol j. The maximum single-letter loss will be denoted by Λmax = maxi,j∈A Λ(i, j), and λj will denote the j-th

column of Λ.

As in [21], we define the extended Bayes response associated with the loss matrix Λ to any column vectorV ∈ R
M

as

B(V) = argmin
x̂∈A

λT
x̂V,

where argminx̂∈A denotes the minimizing argument, resolving ties by taking the letter in the alphabet with the

lowest index.

We let P denote the true joint probability law of the clean and noisy signal, and E(·) denote expectation with

respect to P . Also, every almost sure convergence is with respect to P . If we need to refer to the probability law

of clean or noisy signal induced by P , we denote PX and PZ , respectively. If P is written in a bold face, P, with

a subscript, it stands for a simplex vector in M for the corresponding distribution of the subscript. For example,

PXt|zt is a column M -vector whose i-th component is P (Xt = i|Zt = zt).

When we have some other probability law denoted as Q, and want to measure its difference from P , a natural

choice of such a measure is the relative entropy rate. First, denote the n-th order relative entropy between P and Q

as

Dn(P ||Q) =
∑

zn

P (zn) log
P (zn)

Q(zn)
= E

(

log
P (Zn)

Q(Zn)

)

.

Then, the relative entropy rate (also known as Kullback-Leibler divergence rate) is defined as

D(P‖Q) , lim
n→∞

1

n
Dn(P ||Q)

if the limit exists. When Q is a probability law in a certain class of HMPs, this limit always exists and the relative

entropy rate is well defined. A more detailed discussion about this limit will be given in Lemma 2. This relative

entropy rate will play a central role in analyzing our universal filtering scheme.
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2-B Hidden Markov Processes (HMPs)

2-B.1 Definition

As stated in the Introduction, the HMPs are generally defined as a family of stochastic processes that are outputs

of a memoryless channel whose inputs are finite state Markov chains. Throughout the paper, we will only consider

the case in which the alphabet of HMP, Z, and underlying Markov chain, X , are finite and equal, i.e., Z = X = A,

and the channel is DMC and invertible.

There are three parameters that determine the probability laws of HMP: π, the initial distribution of finite state

Markov chain; A, the probability transition matrix of finite state Markov chain, and B, the probability transition

matrix of DMC. The triplet {π,A,B} is referred to as the parameter of HMP. Let Θ be a set of all θ’s where

θ := {πθ, Aθ, Bθ}. For each θ, we can calculate the likelihood function

Qθ(z
n) = πθ

n
∏

t=1

(B̂θ,tAθ)1,

where B̂θ,t is M ×M diagonal matrix whose (j, j)-th entry is the (j, zt)-th entry of Bθ, and 1 is the M × 1 vector

with all entries equal to 1.

Now, let Θk ⊂ Θ be a set of θ’s, such that the order of underlying Markov chain of HMP is k. Furthermore, for

some δ > 0, define Θδ
k ⊂ Θk as the set of θ ∈ Θk satisfying:

• aij,θ ≥ δ, if the first k − 1 components of the k-tuple state j are equal to the last k − 1 components of k-tuple

state i

• aij,θ = 0, otherwise

• bij,θ = Π(i, j), for ∀i, j,

where aij,θ is (i, j)-th entry of Aθ, and bij,θ is (i, j)-th entry of Bθ. In particular, if θ ∈ Θδ
k then: 1) the stochastic

matrix Aθ is irreducible and aperiodic; thus, if the Markov chain is stationary, πθ is the stationary distribution of

the Markov chain, and is uniquely determined from Aθ, 2) Bθ = Π ∀θ, and, therefore, θ is completely specified by

Aθ. For notational brevity, we omit the subscript θ and denote the probability law Q ∈ Θδ
k, if Q = Qθ, and θ ∈ Θδ

k.

2-B.2 Maximum likelihood (ML) estimation

Generally, suppose a probability law Q is in a certain class Ω. Then, the n-th order maximum likelihood (ML)

estimator in Ω for the observed sequence zn, is defined as

Q̂[zn] = argmax
Q∈Ω

Q(zn),

resolving ties arbitrarily. Now, if Q ∈ Θδ
k, then there is an algorithm called expectation-maximization(EM) [4] that

iteratively updates the parameter estimates to maximize the likelihood. Thus, when Q is in the class of probability

laws of a HMP, the maximum likelihood estimate can be efficiently attained.1 We denote the ML estimator in Θδ
k

based on zn by

Q̂k,δ[z
n] = arg max

Q∈Θδ
k

Q(zn).

Obviously, when the n-tuple Zn is random, Q̂k,δ[Z
n] is also a random probability law that is a function of Zn.

1We neglect issues of convergence of the EM algorithm and assume that the ML estimation is performed perfectly.
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2-B.3 Consistency of ML estimator

When PZ ∈ Θδ
k, an ML estimator Q̂k,δ[Z

n] is said to be strongly consistent if

lim
n→∞

Q̂k,δ[Z
n] = PZ a.s.

The strong consistency of the ML estimator Q̂k,δ[Z
n] of the parameter of a finite-alphabet stationary ergodic HMP

was proved in [1]. For the case of a general stationary ergodic HMP, the strong consistency was proved in [12].

We also have a sense of strong consistency for the case where PZ is a general stationary and ergodic process. By

the similar argument as in [8, Theorem 2.2.1], we have the consistency in the sense that if the observed noisy signal

is not necessarily a HMP, and we still perform the ML estimation in Θδ
k, then we get

lim
n→∞

Q̂k,δ[Z
n] ∈ N a.s., (1)

where N , {Q ∈ Θδ
k : D(P‖Q) = minQ′∈Θδ

k
D(P‖Q′

)}.2 This second consistency result is the key result that we

will use in devising and analyzing our universal filtering scheme.

3 The universal filtering problem

As mentioned in the Introduction, we will assume a stochastic setting, that is, the underlying clean signal is an

output of some stationary and ergodic process whose probability law is PX . From PX and Π, we can get the true

joint probability law P and corresponding probability law of noisy observed signal, PZ . That is,

P (Xn = xn, Zn = zn) = PX(Xn = xn)

n
∏

t=1

Π(xi, zi), and

PZ(Z
n = zn) =

∑

xn

P (Xn = xn, Zn = zn).

A filter is a sequence of probability distributions X̂ = {X̂t}, where X̂t : At → M. The interpretation is that, upon

observing zt, the reconstruction for the underlying, unobserved xt is represented by the symbol x̂ with probability

X̂t(z
t)[x̂]. A filter is called deterministic if X̂t(z

t) is a unit vector in R
M for all t and zt, and randomized if X̂t(z

t)

can be a simplex vector in M other than a unit vector for some t and zt. The normalized cumulative loss of the

scheme X̂ on the individual pair (xn, zn) is defined by

L
X̂
(xn, zn) =

1

n

n
∑

t=1

ℓ(xt, X̂t(z
t)),

where ℓ(xt, X̂t(z
t)) =

∑

x̂∈X̂ Λ(xt, x̂)X̂t(z
t)[x̂]. Then, the goal of a filter is to minimize the expected normalized

cumulative loss E
(

L
X̂
(Xn, Zn)

)

.

The optimal performance of the n-th order filter is defined as

φn(PX ,Π) = min
X̂∈F

E
(

L
X̂
(Xn, Zn)

)

,

where F denotes the class of all filters. Sub-additivity arguments similar to those in [21] imply

lim
n→∞

φn(PX ,Π) = inf
n≥1

φn(PX ,Π) , Φ(PX ,Π).

2Just as in [8, Theorem 2.2.1], the notion of a.s. set convergence is used. For any subset E ∈ Θ, define Eǫ , {Q ∈ Θ : d(Q, E) < ǫ},

where d is the Euclidean distance. Then, limn→∞ Q̂[Zn] ∈ E a.s. if ∀ǫ > 0, ∃N(ǫ, ω) such that ∀n ≥ N(ǫ, ω), Q̂[Zn] ∈ Eǫ
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By definition, Φ(PX ,Π) is the (distribution-dependent) optimal asymptotic filtering performance attainable when

the clean signal is generated by the law PX and corrupted by Π. This Φ(PX ,Π) can be achieved by the optimal

filter X̂P = {X̂P,t} where

X̂P,t(z
t)[x̂] = Pr(B(PXt|zt) = x̂).

For brevity of notation, we denote X̂P (z
t) = X̂P,t(z

t). Note that this is a deterministic filter, i.e., for a given zt, the

filter is a unit vector in R
M for all t. We can easily see that this filter is optimal since it minimizes E(ℓ(Xt, X̂(Zt))

for all t, and thus, it minimizes E
(

L
X̂
(Xn, Zn)

)

for all n.

As can be seen, X̂P (z
t) needs the exact knowledge of PXt|zt , and thus, is dependent on the distribution of the

underlying clean signal. The universal filtering problem is to construct (possibly a sequence of) filter(s), X̂univ , that

is independent of the distribution of underlying clean signal, PX , and yet asymptotically achieving Φ(PX ,Π). We

describe our sequence of universal filters in the next section.

4 Universal filtering based on hidden Markov modeling

4-A Description of the filter

Before describing our sequence of universal filters, we make the following assumption on the source.

Assumption 1 There exists a sequence of positive reals {δk}, such that δk ↓ 0 as k → ∞, and PX satisfies

PX(X0|X−1
−k) ≥ δk a.s. ∀k ∈ N. (2)

For any probability law Q, we construct a randomized filer as follows: For ǫ > 0, denote L2 ǫ-ball in R
M as

Bǫ = {V ∈ R
M : ‖V‖2 ≤ ǫ}. Then, we define a filter for fixed ǫ as

X̂ǫ
Q,t(z

t)[x̂] = Pr(B(QXt|zt +U) = x̂), (3)

whereU ∈ R
M is a random vector, uniformly distributed in Bǫ. For brevity of notation, we denote X̂

ǫ
Q(z

t) = X̂ǫ
Q,t(z

t).

This filter is randomized since depending on Q and zt, X̂ǫ
Q(z

t) can be a probability simplex vector in M that is not

a unit vector. The reason we needed this randomization will be explained in proving Lemma 3.

To devise our filter, let’s first consider an increasing sequence of positive integers, {mi}i≥1, that satisfies following

conditions:

lim
i→∞

mi−1

mi
= 0, lim

i→∞
mi = ∞. (4)

Now, define

i(t) , max{i : mi ≤ t}.

Then, given that our source distribution satisfies (2), and for fixed k, define a random probability law

Qt
k ,Q̂k,δk [Z

mi(t) ] = arg max
Q∈Θ

δk
k

Q(Zmi(t)). (5)

That is, Qt
k is the ML estimator in Θδk

k based on Zmi(t) . As discussed in Section 2-B.1, we only need to estimate the

state transition probabilities of the underlying Markov chain to obtain this ML estimator, and this can be efficiently

done by the Expectation-Maximization (EM) algorithm. Once we get Qt
k, we can then calculate Qt

kXt|zt using the

forward-recursion formula which is described in detail in [4]. Note that we get this conditional distribution directly,

not by first estimating the output distribution, and then inverting the channel, as was done in [18][19][21].
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Finally, we take as our sequence of universal filtering schemes, indexed by k and ǫ,

X̂ǫ
univ,k = {X̂ǫ

Qt
k
,t}.

The following theorem states the main result of this paper.

Theorem 1 Let X∞ ∈ A∞ be a stationary, ergodic process emitted by the source PX which satisfies Assumption 1.

Let Z∞ ∈ A∞ be the output of the DMC, Π, whose input is X∞. Then:

(a) limǫ→0 limk→∞ lim supn→∞ L
X̂ǫ

univ,k
(Xn, Zn) ≤ Φ(PX ,Π) a.s.

(b) limǫ→0 limk→∞ lim supn→∞ E
(

L
X̂ǫ

univ,k
(Xn, Zn)

)

= Φ(PX ,Π)

4-B Intuition behind the scheme and proof sketch

The intuition behind our scheme parallels that of the universal compression and universal prediction problems in the

stochastic setting. In the n-th order problem of both cases [5][14], the excess expected codeword length per symbol

and the excess expected normalized cumulative loss incurred by using the wrong probability law Q in place of the

true probability law P could be upper bounded by the normalized n-th order relative entropy 1
nDn(P‖Q). Then,

to achieve the asymptotically optimum performance, the compressor and the predictor try to find and use some

data-dependent Q that makes 1
nDn(P‖Q) → 0 as n → ∞, that is, makes D(P‖Q) zero.

We follow the same intuition in our universal filtering problem. For fixed k and ǫ, our scheme, as can be seen

from (5), divides the noisy observed signal into sub-blocks of length (mi−mi−1). Since
mi−1

mi
tends to zero as i → ∞,

the length of each sub-block grows faster than exponential. Now, to filter each sub-block, it plugs the ML estimator

in Θδk
k obtained from the entire observation of noisy signal up to the previous sub-block. From (1), we know that

as the observation length n increases, this ML estimator will converge to the parameter that minimizes the relative

entropy rate between the true output probability law PZ . Then, to show that this scheme achieves the asymptotically

optimum performance, we bound the excess expected normalized cumulative loss with this relative entropy rate, and

show that the bound goes to zero as the HMP parameter set becomes richer, that is, k increases.

To be more specific, we briefly sketch the proof of our main theorem. Part (b) of Theorem 1 states that our scheme

is asymptotically optimal. We can easily see that this follows directly from Part (a) and Reverse Fatou’s Lemma.

Therefore, proving Part (a) is the key in proving the theorem. Part (a) states that in the limit, the normalized

cumulative loss of our scheme, for almost every realization, is less than or equal to the asymptotically optimum

performance.

To prove Part (a), we first fix k and ǫ, and get the following inequality

lim sup
n→∞

(

L
X̂ǫ

univ,k
(Xn, Zn)− φn(PX ,Π)

)

≤ F
(

lim sup
t→∞

D(PZ‖Qt
k), ǫ

)

a.s., (6)

where F (x, y) is some function such that F (x, y) → 0 as x ↓ 0, and then y ↓ 0.3 There are two keys in getting this

inequality. The first one is to show the concentration of L
X̂ǫ

univ,k
(Xn, Zn) to its expectation which will be shown in

Lemma 3 and Corollary 1. The second is to get the explicit upper bound function F (x, y) which will be based on

Lemma 4. Once establishing this inequality, we show that

lim
k→∞

lim sup
t→∞

D(PZ‖Qt
k) = 0 a.s., (7)

3Note that Qt

k
in D(PZ‖Qt

k
) is a function of Zmi(t) , and thus, is random. A more formal definition of relative entropy rate between

true and the random probability law like this case will be given after Lemma 4.
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from Lemma 5 and then send ǫ ↓ 0 to get Part (a). Keeping this proof sketch in mind, let us move on to the detailed

proof in the next section.

4-C Proof of the theorem

Before proving the theorem, we introduce several lemmas as building blocks. Lemma 1 and Lemma 2 below give some

general results for the HMPs that we are considering. Our lemmas are similar to [8, Lemma 2.3.4] and [8, Theorem

2.3.3]. The latter assumed that all the parameters are lower bounded by δ > 0, whereas in Θδ
k, some parameters can

be zero. We take this into account in proving Lemma 1 and Lemma 2. Lemma 3 shows the uniform concentration

property of the normalized cumulative loss on Θδ
k, which is an important property that we need to prove the main

theorem. Lemma 4 provides a key step to get the upper bound described in (6), and Lemma 5, which needs three

additional definitions, enables to show (7). After building up the lemmas, we give the proof of the main theorem,

which is merely an application of the lemmas.

Lemma 1 Suppose Q ∈ Θδ
k and fix δ > 0. Then, ∀ω, Q(Z0|Z−1

−t ) converges to a limit Q(Z0|Z−1
−∞) uniformly on Θδ

k.

Proof: To prove this lemma, we need three more lemmas in Appendix 1, which are variations on those found in

[1]. Let’s denote ft := Q(Z0|Z−1
−t ), and f0 = 0. Then, the sequence {ft} uniformly converges on Θδ

k, if following k

subsequences,

{fjk+l, j = 0, 1, 2, · · · , }, 0 ≤ l ≤ k − 1,

uniformly converge on Θδ
k, and have the same limit.

First, the uniform convergence of each subsequence {fjk+l} can be shown by showing the series
∑t

j=0(f(j+1)k+l−
fjk+l) converges absolutely. From Lemma 8 in Appendix 1, setting m = k,

t
∑

j=0

|f(j+1)k+l − fjk+l|

=
∑

x0

Q(Z0|x0)

t
∑

j=1

|Q(x0|Z−1
−(j+1)k−l)−Q(x0|Z−1

−jk−l)|

≤M

t
∑

j=1

(ρδ,k,k)
j+1.

Since ρδ,k,k < 1,M < ∞ and ρδ,k,k does not depend on Q, ω, and l, we conclude that all k subsequences converge

uniformly on Θδ
k.

Now, to show that the k subsequences have the same limit, construct another subsequence, {fj(k+1)+1, j =

0, 1, 2, · · · , }. Since this subsequence contains infinitely many terms from all k subsequences, if this subsequence

converges uniformly on Θδ
k, we can conclude that the k subsequences have the same limit. The derivation of the

uniform convergence of this subsequence is the same as that described above, but setting m = k + 1 in Lemma 8.

Therefore, the original sequence {ft} converges to its limit uniformly on Θδ
k. �

The remarkable fact of this lemma is that the convergence is not only uniform on Θδ
k, but also in ω. That is, the

convergence holds uniformly on every realization of z0−∞.

Lemma 2 For the distribution of the observed noisy process {Zt}, PZ , and every Q ∈ Θδ
k,

D(PZ‖Q) , lim
n→∞

1

n
Dn(PZ‖Q) = E

(

log
PZ(Z0|Z−1

−∞)

Q(Z0|Z−1
−∞)

)

.
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Moreover,

lim
n→∞

1

n
log

PZ(Z
n)

Q(Zn)
= D(PZ‖Q) a.s. uniformly on Θδ

k.

Proof: This lemma consists of three parts. The first part is to show the existence of the first limit in the

lemma so that the definition of D(PZ‖Q) is valid. The second part is to show that the value of the limit is indeed

E
(

log
PZ(Z0|Z

−1
−∞)

Q(Z0|Z
−1
−∞)

)

. Finally, the last part is to show the uniform convergence of normalized log-likelihood ratio to

the relative entropy rate. The first two parts and the pointwise convergence of the third part is a generalization of

the Shannon-McMillan-Breiman theorem. The proof of these parts is identical to those in [8, Theorem 2.3.3] even

for the case where some parameters in Θδ
k can be zero.

The uniform convergence in the third part of the lemma is crucial in that it enables to obtain the second

consistency result (1) as in [8, Theorem 2.2.1]. We take into account our parameter set, and repeat the argument of

[8, Lemma 2.4.1]. To show the uniform convergence, we need to show

lim
n→∞

1

n
logQ(Zn) = E

(

logQ(Z0|Z0
−∞)

)

a.s. uniformly on Θδ
k

Since the pointwise convergence can be shown and the parameter set Θδ
k is compact, it is enough to show that

1
n logQ(Zn) is an equicontinuous sequence by Ascoli’s Theorem. That is, we need to show for ∀ǫ > 0, ∃δ(ǫ) > 0 such

that

∀n,
∣

∣

∣

∣

1

n
logQ(Zn)− 1

n
logQ

′

(Zn)

∣

∣

∣

∣

≤ ǫ, if ‖Q−Q
′‖1 < δ(ǫ),

where ‖Q−Q
′‖1 ,

∑

i,j |aij − a
′

ij | is defined to be the L1 distance between the two parameters defining Q and Q
′

.

This equicontinuity can be proved by observing that a process {St = (Xt
t−(k−1), Zt)} is a Markov process, where

{St} has a state space S = Ak ×A. This is true since

Q(St+1|St) =Q(Xt+1, Zt+1|Xt, Zt)

=Q(Xt+1|Xt, Zt)Q(Zt+1|Xt+1, Zt)

=Q(Xt+1|Xt
t−(k−1))Π(Xt+1, Zt+1)

=Q(St+1|St).

Let {xk
1(i) : i = 1, · · · ,Mk} denote the set of all possible k-tuples of {Xt}, and let s = (xk

1(i), z), s̄ = (xk
1(j), z̄).

Then, the transition matrix T of {St} has elements tss̄ , Q(St+1 = s̄|St = s) = aijΠ(xk(j), z̄). Since all A that are

in Θδ
k are irreducible and aperiodic and Π(xk(j), z̄) > 0, ∀xk(j), z̄, T is also irreducible and aperiodic. Hence, T has

the unique stationary distribution τ . Although there are zeros in T , by the construction, any n-tuple sn has positive

probability. Since {St} is also stationary, we have

Q(Sn = sn) = τs1

n−1
∏

t=k

tstst+1 = τs1
∏

(s,s̄)

tnss̄
ss̄ ,

where

nss̄ ,

n−1
∑

t=k

1(St = s, St+1 = s̄).

9



For another probability law Q
′ ∈ Θδ

k, we have

| 1
n
logQ(Sn)− 1

n
logQ

′

(Sn)|

≤| 1
n
log τs1 −

1

n
log τ

′

s1 |+ | 1
n

∑

(s,s̄)

nss̄ log tss̄ −
1

n

∑

(s,s̄)

nss̄ log t
′

ss̄|

≤| log τs1 − log τ
′

s1 |+
∑

(s,s̄)

| log tss̄ − log t
′

ss̄| (8)

=| log τs1 − log τ
′

s1 |+
∑

(i,j)

| log aij − log a
′

ij | (9)

where (8) is from the fact that 1
n ≤ 1,nss̄

n ≤ 1, and (9) is from the fact that DMC, Π, is equal for Q and Q
′

. The

summations are over the pairs that have nonzero transition probabilities.

Since the function f(x) = log x is a uniformly continuous function for δ ≤ x < 1, and aij ≥ δ that occur in the

summation, we have for ǫ > 0,

∑

(i,j)

| log aij − log a
′

ij | <
ǫ

2
if ‖Q−Q

′‖1 < δ1(ǫ).

Also, we know that all the elements of the stationary distribution of T are bounded away from zero, since the largest

element of the stationary distribution of T is lower bounded by 1
Mk+1 , and any state can be reached by finite number

of steps whose transition probabilities are bounded away from zero. Therefore, for some C1 < ∞, we have,

| log τs1 − log τ
′

s1 | < C1|τs1 − τ
′

s1 |.

Then, from the result of the sensitivity of the stationary distribution of a Markov chain [10], for some C2 < ∞, we

have,

|τs1 − τ
′

s1| ≤ C2

∑

(s,s̄)

|tss̄ − t
′

ss̄| = C2

∑

(i,j)

|aij − a
′

ij |.

Hence, for ǫ > 0, we obtain,

| log τs1 − log τ
′

s1 | <
ǫ

2
if ‖Q−Q

′‖1 < δ2(ǫ).

Therefore, by letting δ(ǫ) = min(δ1(ǫ), δ2(ǫ)), we have
∣

∣

∣

∣

1

n
logQ(Sn)− 1

n
logQ

′

(Sn)

∣

∣

∣

∣

< ǫ if ‖Q−Q
′‖1 < δ(ǫ).

Let us now go back to the original process Z. From
∣

∣

∣

∣

1

n
logQ(Sn)− 1

n
logQ

′

(Sn)

∣

∣

∣

∣

< ǫ,

we have

Q
′

(Xn, Zn) < exp(nǫ)Q(Xn, Zn),

thus,

Q
′

(Zn) =
∑

xn

Q
′

(xn, Zn) < exp(nǫ)
∑

xn

Q(xn, Zn)

= exp(nǫ)Q(Zn)

where the summations are again over the sequences that have nonzero probabilities. By changing the role of Q, and

Q
′

, we get the result that 1
n logQ(Zn) is an equicontinuous sequence. Therefore, we have the uniform convergence

of the lemma. �
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Lemma 3 (Uniform Concentration) Suppose Q ∈ Θδ
k for some fixed δ > 0. Let X̂ǫ

Q be the randomized filter defined

in (3). Then,

lim
n→∞

(

L
X̂ǫ

Q
(Xn, Zn)− E

(

L
X̂ǫ

Q
(Xn, Zn)

))

= 0 a.s. uniformly on Θδ
k

Proof: This lemma shows the uniform concentration property of L
X̂ǫ

Q
(Xn, Zn). The randomization of the filter is

needed to deal with ties occur in deciding the Bayes response. A detailed proof of this lemma is given in Appendix

2.

Lemma 4 (Continuity) Consider a single letter filtering setting. Suppoes Q is some other joint probability law of

X and Z. Define single letter filters X̂P (z) and X̂ǫ
Q(z) as

X̂P (z)[x̂] =Pr(B(PX|z) = x̂)

X̂ǫ
Q(z)[x̂] =Pr(B(QX|z +U) = x̂),

where U ∈ R
M is a uniform random vector in Bǫ as before. Then,

E
(

ℓ(X, X̂ǫ
Q(Z))

)

− E
(

ℓ(X, X̂P (Z))
)

≤ ΛmaxKΠ · ‖PZ −QZ‖1 + CΛ · ǫ,

where the expectations on the left hand side of the inequality are under P and KΠ =
∑M

i=1 ‖Π−1
i ‖2, and CΛ =

maxa,b∈A ‖λa − λb‖2.

This lemma states that the excess expected loss of a randomized filter optimized for a mismatched probability law

can be upper bounded by the L1 difference between the true and the mismatched probability laws of output symbol,

plus a small constant term which diminishes with the randomization probability. This is somewhat analogous to a

for the prediction which was derived in [14, (20)].

Proof of Lemma 4: Define X̂Q(z)[x̂] = Pr(B(QX|z) = x̂). Then,

E
(

ℓ(X, X̂ǫ
Q(Z))

)

− E
(

ℓ(X, X̂P (Z))
)

=
∑

x,z

P (x, z)
(

ℓ(x, X̂ǫ
Q(z))− ℓ(x, X̂P (z))

)

≤
∑

x,z

(

Q(x, z) + |P (x, z)−Q(x, z)|
)(

ℓ(x, X̂Q(z))− ℓ(x, X̂P (z)) + ℓ(x, X̂ǫ
Q(z))− ℓ(x, X̂Q(z))

)

≤
∑

x,z

|P (x, z)−Q(x, z)| ·
(

ℓ(x, X̂Q(z))− ℓ(x, X̂P (z))
)

(10)

+
∑

x,z

(

Q(x, z) + |P (x, z)−Q(x, z)|
)

·
(

ℓ(x, X̂ǫ
Q(z))− ℓ(x, X̂Q(z))

)

=
∑

x,z

|P (x, z)−Q(x, z)| ·
(

ℓ(x, X̂ǫ
Q(z))− ℓ(x, X̂P (z))

)

+
∑

x,z

Q(x, z)
(

ℓ(x, X̂ǫ
Q(z))− ℓ(x, X̂Q(z))

)

(11)

≤Λmax

∑

x,z

|P (x, z)−Q(x, z)|+
∑

x,z

Q(x, z)
(

ℓ(x, X̂ǫ
Q(z))− ℓ(x, X̂Q(z))

)

, (12)

11



where (10) is from the fact that
∑

x,z Q(x, z)(ℓ(x, X̂Q(z))− ℓ(x, X̂P (z))) ≤ 0 and (11) is from rearranging terms in

the summation. Now, let’s bound the first term in (12).

Λmax

∑

x,z

|P (x, z)−Q(x, z)|

=Λmax

∑

x

|P (x)−Q(x)|
(

∑

z

Π(x, z)
)

=Λmax

∑

x

|P (x)−Q(x)| (13)

=Λmax

∑

i

|(PZ −QZ)
TΠ−1

i |

≤Λmax

∑

i

‖Π−1
i ‖2 · ‖PZ −QZ‖2 (14)

≤ΛmaxKΠ · ‖PZ −QZ‖1, (15)

where (13) is from the fact that
∑

z Π(x, z) = 1, (14) is from Cauchy-Schwartz inequality, and (15) is from the fact

that L2-norm is less than or equal to L1-norm.

The second term in (12) becomes

∑

x,z

Q(x, z)
(

ℓ(x, X̂ǫ
Q(z))− ℓ(x, X̂Q(z))

)

=
∑

z

Q(z)
∑

x

Q(x|z)
∑

x̂

Λ(x, x̂) ·
(

X̂ǫ
Q(z)[x̂]− X̂Q(z)[x̂]

)

=
∑

z

Q(z)
∑

x̂

(

X̂ǫ
Q(z)[x̂]− X̂Q(z)[x̂]

)

∑

x

Λ(x, x̂)Q(x|z)

=
∑

z

Q(z)
∑

x̂

(

X̂ǫ
Q(z)[x̂]− X̂Q(z)[x̂]

)

· λT
x̂QX|z. (16)

It is easy to see that the inner summation in (16) is always nonnegative since by definition, X̂Q(z) assigns probability

1 to B(QX|z). Now, for a given Q, define

Umax =arg max
U∈Bǫ

(

λB(QX|z+U) − λB(QX|z)

)T

QX|z, (17)

resolving ties arbitrarily. Then, we have,

∑

x̂

(

X̂ǫ
Q(z)[x̂]− X̂Q(z)[x̂]

)

· λT
x̂QX|z

=
(

∑

x̂

(

X̂ǫ
Q(z)[x̂] · λx̂

)

− λB(Q(X|z))

)T

QX|z

≤
(

λB(Q(X|z)+Umax) − λB(Q(X|z))

)T

QX|z (18)

≤
(

λB(Q(X|z)) − λB(QX|z+Umax)

)T

Umax (19)

≤ max
a,b∈A

‖λa − λb‖2 · ‖Umax‖2 (20)

≤CΛ · ǫ,

where (18) follows from (17), (19) follows from the fact

λT
B(QX|z+Umax)

(QX|z +Umax) ≤ λT
B(QX|z)

(QX|z +Umax),
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and (20) follows from the Cauchy-Schwartz inequality. Note that depending on Q and z, (18) and (19) can be both

zero and hold with equality. Together with (15), the lemma is proved. �

Before moving on to Lemma 5, we need following three definitions. In Lemma 2, we have seen that for Q ∈ Θδ
k,

D(PZ‖Q) is well-defined. Now, let’s consider the case where Q ∈ Θδ
k is some function of the noisy observation Zn

(denoted as Q[Zn]). As mentioned in the footnote of Section 4-B, the notion of the relative entropy rate between PZ

and that random Q[Zn] is defined in Definition 2 using Definition 1. Definition 3 is also needed for the inequality in

Lemma 5.

Definition 1 Suppose Q[Zn] ∈ Θδ
k. If f is some function of (X∞, Z∞, Q[Zn]) such that the expectation

E
(

f(X∞, Z∞, Q[Zn])
)

=

∫

f(x∞, z∞, Q[zn])dP (x∞, z∞)

exists. Then, define the notation Ê(·) as following:

Ê
(

f(X∞, Z∞, Q[Zn])
)

,

∫

f(x∞, z∞, Q[Zn])dP (x∞, z∞)

That is, in Ê
(

f(X∞, Z∞, Q[Zn])
)

, the Lebesgue integration with respect to the randomness of Q[Zn] is excluded.

Definition 2 Suppose Q[Zn] ∈ Θδ
k. Then, the relative entropy rate between PZ and Q[Zn] is defined as,4

D(PZ‖Q[Zn]) , Ê
(

log
PZ(Z0|Z−1

−∞)

Q[Zn](Z0|Z−1
−∞)

)

.

Definition 3 Define the k-th order Markov approximation of PX for n ≥ k as

P
(k)
X (Xn) , PX(Xk)

n
∏

i=k+1

PX(Xi|X i−1
i−k).

Furthermore, denote PZ and P
(k)
Z as the probability law of the output of DMC, Π, when the probability law of input

is PX and P
(k)
X , respectively.5

Now, we give following lemma that upper bounds the relative entropy rate between PZ and the ML estimator.

Lemma 5 For the given sequence {δk} defined in Section 4-A and for fixed k, we have

lim
n→∞

D(PZ‖Q̂k,δk [Z
n]) ≤ D(PX‖P (k)

X ) a.s.

Proof: Recall that Q̂k,δk [Z
n] is an ML estimator in Θδk

k based on the observation Zn. From (1), we know that

lim
n→∞

D(PZ‖Q̂k,δk [Z
n]) = min

Q∈Θ
δk
k

D(PZ‖Q) a.s.

Also, (2) and Definition 3 assures that P
(k)
Z ∈ Θδk

k . Therefore, we have

lim
n→∞

D(PZ‖Q̂k,δk [Z
n]) ≤ D(PZ‖P (k)

Z ) a.s.

4Note that D(PZ‖Q[Zn]) is a function of Zn, and still is a random variable.
5Here, P

(k)
Z

is not the k-th order Markov approximation of PZ , but is the distribution of the channel output whose input is P
(k)
X

, the
k-th order Markov approximation of the original input distribution PX .
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This is the link where we needed Assumption 1. Now, let’s denote P (k) as the joint probability law of (Xn, Zn) when

the probability law of input process is P
(k)
X . Then, by the chain rule of relative entropy [5, (2.67)], we have

E
(

log
P (Xn, Zn)

P (k)(Xn, Zn)

)

=Dn(PX‖P (k)
X ) + E

(

log
P (Zn|Xn)

P (k)(Zn|Xn)

)

=Dn(PZ‖P (k)
Z ) + E

(

log
P (Xn|Zn)

P (k)(Xn|Zn)

)

Since the DMC is fixed, we have E
(

log P (Zn|Xn)
P (k)(Zn|Xn)

)

= 0. Moreover, by the nonnegativity of relative entropy,

E
(

log P (Xn|Zn)
P (k)(Xn|Zn)

)

≥ 0. Therefore, we getDn(PZ‖P (k)
Z ) ≤ Dn(PX‖P (k)

X ). SinceD(PX‖P (k)
X ) = limn→∞

1
nDn(PX‖P (k)

X )

always exists by ergodicity, we have

D(PZ‖P (k)
Z ) ≤ D(PX‖P (k)

X ),

and the lemma is proved. �

Proof of Theorem 1 We are now finally in a position to prove our main theorem. As mentioned in Section 4-B,

we first fix k and ǫ, and try to get the inequality in the form of (6) to prove Part (a). To refresh, (6) is given again

here.

lim sup
n→∞

(

L
X̂ǫ

univ,k
(Xn, Zn)− φn(PX ,Π)

)

≤ F
(

lim sup
t→∞

D(PZ‖Qt
k), ǫ

)

a.s.

From the definition of L
X̂ǫ

univ,k
(Xn, Zn),

L
X̂ǫ

univ,k
(Xn, Zn) =

1

n

n
∑

t=1

ℓ(Xt, X̂
ǫ
Qt

k
(Zt)),

where from (5), we know that Qt
k is a function of Zmi(t). Since ℓ(Xt, X̂

ǫ
Qt

k

(Zt)) is a function of (Xt, Z
t, Q[Zmi(t)]),

we can define a quantity Ê(ℓ(Xt, X̂
ǫ
Qt

k

(Zt))) from Definition 1. From this, we also define

Ê
(

L
X̂ǫ

univ,k
(Xn, Zn)

)

=
1

n

n
∑

t=1

Ê
(

ℓ(Xt, X̂
ǫ
Qt

k
(Zt))

)

.

Now, we have following Corollary 1 from Lemma 3, whose proof is given in Appendix 3. This corollary is a key step

in proving the main theorem, since it provides a crucial link that enables to get the inequality in (6).

Corollary 1 For fixed k and ǫ, we have

lim
n→∞

(

L
X̂ǫ

univ,k
(Xn, Zn)− Ê

(

L
X̂ǫ

univ,k
(Xn, Zn)

))

= 0 a.s.

From Corollary 1, we have following equality

lim sup
n→∞

(

L
X̂ǫ

univ,k
(Xn, Zn)− φn(PX ,Π)

)

= lim sup
n→∞

(

Ê
(

L
X̂ǫ

univ,k
(Xn, Zn)

)

− φn(PX ,Π)
)

a.s.

Therefore , to get the inequality of the form of (6), we can equivalently show

lim sup
n→∞

(

Ê
(

L
X̂ǫ

univ,k
(Xn, Zn)

)

− φn(PX ,Π)
)

≤ F
(

lim sup
t→∞

D(PZ‖Qt
k), ǫ

)

.
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Now, let’s consider following chain of inequalities:

Ê
(

L
X̂ǫ

univ,k
(Xn, Zn)

)

− φn(PX ,Π)

=
1

n

n
∑

t=1

(

Ê
(

ℓ(Xt, X̂
ǫ
Qt

k
(Zt))

)

− Ê
(

ℓ(Xt, X̂P (Z
t))
))

a.s.

=
1

n

n
∑

t=1

Ê
(

Ê
(

ℓ(Xt, X̂
ǫ
Qt

k
(Zt, Z

t−1))|Zt−1
)

− Ê
(

ℓ(Xt, X̂P (Zt, Z
t−1))|Zt−1

))

a.s.

≤KΠΛmax

n

n
∑

t=1

Ê‖PZt|Zt−1 −Qt
kZt|Zt−1‖1 + CΛ · ǫ a.s. (21)

≤
√
2 ln 2KΠΛmax

n

n
∑

t=1

Ê

√

Ê
(

log
P (Zt|Zt−1)

Qt
k(Zt|Zt−1)

∣

∣

∣
Zt−1

)

+ CΛ · ǫ a.s. (22)

≤
√
2 ln 2KΠΛmax

√

√

√

√

1

n

n
∑

t=1

Ê
(

log
P (Zt|Zt−1)

Qt
k(Zt|Zt−1)

)

+ CΛ · ǫ. a.s. (23)

(21) is obtained from Lemma 4, since Π does not vary with t, and given Zt−1, estimating Xt based on Zt is equivalent

to the single letter setting as in Lemma 4 with the corresponding conditional distribution. Also, (22) is from Pinsker’s

inequality, and (23) is from Jensen’s inequality. By taking lim sup on both sides, we have

lim sup
n→∞

(

Ê
(

L
X̂ǫ

univ,k
(Xn, Zn)

)

− φn(PX ,Π)
)

≤
√
2 ln 2KΠΛmax

√

√

√

√lim sup
n→∞

1

n

n
∑

t=1

Ê
(

log
P (Zt|Zt−1)

Qt
k(Zt|Zt−1)

)

+ CΛ · ǫ a.s.

since the square root function is a continuous function. For the expression inside the square root of the right-hand

side of the inequality,

lim sup
n→∞

1

n

n
∑

t=1

Ê
(

log
P (Zt|Zt−1)

Qt
k(Zt|Zt−1)

)

= lim sup
t→∞

Ê
(

log
P (Zt|Zt−1)

Qt
k(Zt|Zt−1)

)

a.s. (24)

= lim sup
t→∞

Ê
(

log
P (Z0|Z−1

−∞)

Qt
k(Z0|Z−1

−∞)

)

a.s. (25)

= lim sup
t→∞

D(PZ‖Qt
k) a.s. (26)

where (24) is from Cesáro’s mean convergence theorem; (25) is from the fact that P (Z0|Z−1
−t ) → P (Z0|Z−1

−∞) almost

surely by martingale convergence theorem, and Qt
k(Zt|Zt−1) → Qt

k(Z0|Z−1
−∞) almost surely by Lemma 1, and (26) is

from Definition 2. Therefore,

lim sup
n→∞

(

Ê
(

L
X̂ǫ

univ,k
(Xn, Zn)

)

− φn(PX ,Π)
)

lim sup
n→∞

(

L
X̂ǫ

univ,k
(Xn, Zn)− φn(PX ,Π)

)

≤2
√
2 ln 2KΠΛmax

√

lim sup
t→∞

D(PZ‖Qt
k) + CΛ · ǫ a.s. (27)
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which finally is in the form of (6). Now, we need to check if the right-hand side of (27) goes to zero if we let k → ∞
and ǫ ↓ 0. To see this, consider following further upper bounds.

lim sup
t→∞

D(PZ‖Qt
k)

= lim sup
t→∞

D(PZ‖Q̂k,δk [Z
t]) (28)

≤D(PX‖PXk
), (29)

where (28) is from the fact that mi(t) → ∞ as t → ∞, and (29) is from Lemma 5. The inequality (29) holds for

every k, and by Shannon-McMillan-Breiman Theorem, we know D(PX‖PXk
) → 0 as k → ∞. Therefore,

lim
k→∞

lim sup
t→∞

D(PZ‖Qt
k) = 0,

and thus,

lim
k→∞

lim sup
n→∞

(

L
X̂ǫ

univ,k
(Xn, Zn)− φn(PX ,Π)

)

≤ CΛ · ǫ a.s.

Finally, sending ǫ to zero, Part (a) of the theorem is proved. Part (b) follows directly from (a), and Reverse Fatou’s

Lemma. That is,

lim
k→∞

lim sup
n→∞

(

E
(

L
X̂ǫ

univ,k
(Xn, Zn)

)

− φn(PX ,Π)
)

= lim
k→∞

lim sup
n→∞

E
(

L
X̂ǫ

univ,k
(Xn, Zn)− φn(PX ,Π)

)

≤ lim
k→∞

E

(

lim sup
n→∞

(

L
X̂ǫ

univ,k
(Xn, Zn)− φn(PX ,Π)

)

)

≤CΛ · ǫ

Note that the expectation here is with respect to the randomness of probability law within the paranthesis, too. By

sending ǫ to zero, Part (b) is proved. �

5 Extension: Universal filtering for channel with memory

Now, let’s extend our result to the case where channel has memory. With the identical assumption on {Xt}, now
suppose {Zt} is expressed as

Zt = Xt ⊕Nt (30)

where ⊕ denotes modulo-M addition, and {Nt} is an A-valued noise process which is not necessarily memoryless.

We assume we have a complete knowledge of the probability law of {Nt}. Specifically, let’s consider the case where

{Nt} is FS-HMP, that is, it is an output of an invertible memoryless channel Γ = {Γ(i, j)}i,j∈A whose input is

irreducible, aperiodic ℓ-th order Markov chain, {St}, which is independent of {Xt}. Let Γmin = mini,j∈A{Γ(i, j)},
and suppose Γmin > 0. For simplicity, assume that the alphabet size of {St} is also A.

In this model, the channel between Xt and Zt at time t is an M -ary symmetric channel, which is specified by the

St-th row of Γ. Let’s define an M ×M matrix Πt whose (xt, zt)-th element is

Πt(xt, zt) =PNt
(zt ⊖ xt)

=Pr(Zt = zt|Xt = xt)

=
∑

st

Pr(Zt = zt|Xt = xt, St = st)Pr(St = st),
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where ⊖ denotes modulo-M subtraction. Now, let’s make following assumptions on the noise process.

• {Nt} is stationary, i.e., Πt is identical for ∀t

• Πt is invertible

• ∃α such that Pr(St|St−1
t−ℓ ) ≥ α > 0, for ∀St

t−ℓ(ω)

As stated in [22, 2-A], the first and the second assumptions are rather benign. Especially, for the second assumption,

it can be shown that under benign conditions on the parametrization, almost all parameter values except for those

in a set of Lebesgue measure zero, give rise to a process satisfying this assumption. Also, since this only corresponds

to the case when k = 0 in [22, Assumption 1], it is a much weaker assumption. The third assumption is a similar

positivity assumption as Assumption 1, which enables our universal filtering scheme.

Under these assumptions on the noise process, we can extend our scheme to do the universal filtering for this

channel. First, we can convert this channel to the equivalent memoryless channel, Ξ = {ξ((i, j), h)}i,j,h∈A , where

the input process is {(Xt, St)} and the output is {Zt}. Here, Ξ is M2 × M matrix, and the channel transition

probability is

ξ((i, j), h) = Γ(j, h⊖ i) ∀i, j, k.

To do the filtering, we apply our scheme to this equivalent memoryless channel. For fixed k ≥ ℓ, as in Section 2-B.1,

define a parameter set of HMPs, Θk, whose Markov chain has Mk+ℓ states, and the memoryless channel is Ξ. The

k-th order conditional probability of our new input process is

Pr(Xt, St|Xt−1
t−k , S

t−1
t−k)

=Pr(Xt|Xt−1
t−k) · Pr(St|St−1

t−ℓ )

≥δk · α. (31)

where (31) is from Assumption 1 and the third condition on the noise process. Let γk = δk · α. Then, we can

model {Zt} in Θγk

k , or equivalently, model (Xt, St) as k-th order Markov chain, and obtain Qt
k, the ML estimator in

Θγk

k based on Zmi(t) . By forward recursion, we can get Qt
k(Xt, St|Zt), and by summing over St’s we can calculate

Qt
kXt|Zt . Then, finally we define our sequence of universal filtering schemes as,

X̂ǫ
univ,k = {X̂ǫ

Qt
k
,t},

exactly the same as we proposed in Section 4-A.

The analysis of this scheme is identical to the one given in the proof of the main theorem. (21), which is the only

place where the invertibility of the Π is used, can also be obtained in this case due to the second assumption of the

noise process. Thus, we again get

lim sup
n→∞

(

L
X̂ǫ

univ,k
(Xn, Zn)− φn(PX ,Π)

)

≤2
√
2 ln 2KΠΛmax

√

lim sup
t→∞

D(PZ‖Qt
k) + CΛ · ǫ a.s.

Since

lim sup
t→∞

D(PZ‖Qt
k) = lim sup

t→∞
D(PZ‖Q̂k,γk

[Zt]) ≤ D(PX‖PXk
)

by the same argument as Lemma 5, we have the same result as Theorem 1. Thus, we can successfully extend our

scheme to the case where the channel noise is FS-HMP with some mild assumptions.
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6 Conclusion and future work

In this paper, we proved that, for the known, invertible DMC, a family of filters based on HMPs is universally

asymptotically optimal for any general stationary and ergodic {Xt} satisfying some mild positivity condition. That

is, we showed that our sequence of schemes indexed by k and ǫ achieves the best asymptotically optimal performance

regardless of clean source distribution. We could also extend this scheme to the case where channel has memory,

especially where the channel noise process is FS-HMP. The future direction of the work would be to ascertain the

relationship between k and n, such that we can devise a single scheme that grows k with some rate related to

n. Attempting to loosen the positivity assumption that we made in our main theorem and extending our discrete

universal filtering schemes to discrete universal denoising schemes are additional future directions of our research.
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Appendix 1

Here, we revise three lemmas from [1] regarding probability law of HMP. These are needed to prove Lemma 1. For

the following three lemmas, fix k and δ, and suppose Q ∈ Θδ
k. Also, fix some m ∈ N, such that m ≥ k. Proofs are

similar to [1, Appendix]. Note that {Xt} is still our clean signal and {Zt} is the noisy observed signal (not necessarily

a HMP).

Lemma 6 We have

Q(Xt+m = j|Xt = i, Z∞
−∞) ≥ µδ,k,m,

where µδ,m,k = (1 + M−1
(δ·Πmin)m+k )

−1 is independent of Q,Z∞
−∞, i, j.

Proof:

Q(Xt+m = j|Xt = i, Z∞
−∞)

Q(Xt+m = j′ |Xt = i, Z∞
−∞)

=
Q(Xt+m = j, Z∞

−∞|Xt = i)

Q(Xt+m = j′ , Z∞
−∞|Xt = i)

=
Q(Xt+m = j, Z∞

t+m+k+1|Xt = i)

Q(Xt+m = j′ , Z∞
t+m+k+1|Xt = i)

· Q(Zt+m+k
t+1 |Xt = i,Xt+m = j)

Q(Zt+m+k
t+1 |Xt = i,Xt+m = j′)

(32)

Now, let’s bound the terms in (32). First,

Q(Xt+m = j, Z∞
t+m+k+1|Xt = i)

Q(Xt+m = j′ , Z∞
t+m+k+1|Xt = i)

=

∑

j0
Q(Xt+m+k = j0, Xt+m = j, Z∞

t+m+k+1|Xt = i)
∑

j0
Q(Xt+m+k = j0, Xt+m = j′ , Z∞

t+m+k+1|Xt = i)

=

∑

j0
amija

k
jj0

Q(Z∞
t+m+k+1|Xt+m+k = j0)

∑

j0
am
ij′

ak
j′ j0

Q(Z∞
t+m+k+1|Xt+m+k = j0)

.
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Note that amij ≥ δm and akjj0 ≥ δk, ∀i, j, j0 from the assumption of Θδ
k. Let Q(Z∞

t+m+k+1|Xt+m+k = j0) = αj0 . Then,

the last expression is

amij
am
ij′

∑

j0
akjj0αj0

∑

j0
ak
j′ j0

αj0

. (33)

Since
∑

j0
akjj0αj0

∑

j0
ak
j′ j0

αj0

=

∑

j0
αj0a

k
j′ j0

ak
jj0

ak

j
′
j0

∑

j0
αj0a

k
j′ j0

≤ max
j0

( akjj0
ak
j′ j0

)

,

we have

(33) ≤
amij
am
ij′

max
j0

( akjj0
ak
j′ j0

)

≤ max
i,j,j′ ,j0

( amija
k
jj0

am
ij′

ak
j′ j0

)

≤ 1

δm+k
. (34)

Now let’s look at the second term in (32). That is,

Q(Zt+m+k
t+1 |Xt = i,Xt+m = j)

Q(Zt+m+k
t+1 |Xt = i,Xt+m = j′)

=

∑

xT
Q(Zt+m+k

t+1 |Xt = i,Xt+m = j,XT = xT ) ·Q(XT = xT |Xt = i,Xt+m = j)
∑

xT
Q(Zt+m+k

t+1 |Xt = i,Xt+m = j′ , XT = xT ) ·Q(XT = xT |Xt = i,Xt+m = j′)

≤ 1

(Πmin)m+k
(35)

where T = {t+ 1, · · · , t+m+ k}\{t, t+m}. Thus, from (34) and (35),

(32) ≤ 1

(δ ·Πmin)m+k
.

Let now ρj , Q(Xt+m = j|Xt = i, Z∞
−∞), then 1 = ρj +

∑

j′ 6=j ρj′ ≤ ρj + (M − 1)
ρj

(δ·Πmin)m+k , and thus, ρj ≥
(1 + M−1

(δ·Πmin)m+k )
−1, which proves the lemma.

Lemma 7 Consider following two arbitrarily given sets.

Ct ∈ X∞
t ,

{

xT : T ⊆ Z≥t ∪ {∞}
}

and

D ∈ Z∞
−∞ ,

{

zT : T ⊆ Z ∪ {∞,−∞}
}

.

For d ∈ N, define

M+
d , max

i
Q(Ct|Xt−dm = i,D),

M−
d , min

i
Q(Ct|Xt−dm = i,D).

Then,

M+
d −M−

d ≤ (ρδ,k,m)d−1

where ρδ,k,m = 1− 2µδ,k,m.

Proof: From the argument of Lemma 6, it is easy to see that

Q(Xt+m = j|Xt = i,D) ≥ µδ,k,m,
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independent of D, too. Now, define

γi(d) , Q(Ct|Xt−dm = i,D)

βij(d) , Q(Xt−dm = j|Xt−(d+1)m = i,D)

i+(d) , argmax
i

Q(Ct|Xt−(d+1)m = i,D)

i−(d) , argmin
i

Q(Ct|Xt−dm = i,D).

Since δ,k and m are fixed, let’s simply denote µ = µδ,k,m. Also, let’s omit d and the parenthesis for above four

quantities to simplify notation. Then,

M+
d+1 =Q(Ct|Xt−(d+1)m = i+, D) =

∑

j

γjβi+j

=µM−
d + (βi+i− − µ)M−

d +
∑

j 6=i−

γjβi+j (36)

≤µM−
d + (βi+i− − µ)M+

d +
∑

j 6=i−

βi+jM
+
d

=µM−
d + (1 − µ)M+

d (37)

where (36) is possible from Lemma 6, since βij ≥ µ for ∀i, j.
By the similar argument, we get

M−
d+1 ≥µM+

d + (1− µ)M−
d (38)

By subtracting (38) from (37), we get

M+
d+1 −M−

d+1 ≤ (1− 2µ)(M+
d −M−

d ) ≤ · · · ≤ (1 − 2µ)d

and, thus proves the lemma. Note that since µ = µδ,k,m < 1
2 , and thus, 0 < ρδ,k,m < 1. Also, the result does not

depend on Q.

Lemma 8

|Q(Ct|Zp
t−dm−l)−Q(Ct|Zp

t−(d+1)m−l)| ≤ (ρδ,k,m)d+1

for ∀p, ∀d ≥ 1, and 0 ≤ l ≤ m− 1.

Proof:

Q(Ct|Zp
t−(d+1)m−l)

=
∑

j

Q(Ct|Zp
t−(d+1)m−l, Xt−(d+2)m = j)Q(Xt−(d+2)m = j|Zp

t−(d+1)m−l)

and therefore,

M−
d+2 ≤ Q(Ct|Zp

t−(d+1)m−l) ≤ M+
d+2

On the other hand,

Q(Ct|Zp
t−dm−l)

=
∑

zt−dm−l−1
t−(d+1)m−l

Q(Ct|Zp
t−(d+1)m−l)Q(Zt−dm−l−1

t−(d+1)m−l = zt−dm−l−1
t−(d+1)m−l|Z

p
t−dm−l)
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and thus,

M−
d+2 ≤ Q(Ct|Zp

t−dm−l) ≤ M+
d+2

Therefore, from Lemma 7, we have

|Q(Ct|Zp
t−dm−l)−Q(Ct|Zp

t−(d+1)m−l)| ≤ M+
d+2 −M−

d+2 ≤ (ρδ,k,m)d+1

Note that the result does not depend on either Q or l.

Appendix 2

Before proving Lemma 3 we need following lemma first. Part (b),(c), and (d) are crucial for Lemma 3, and Part (a)

enables Part(b). Part (a) is the reason why we need a randomization of the filter.

Lemma 9 Suppose Q ∈ Θδ
k and fix δ > 0.

(a) We have

‖X̂ǫ
Q(z

0
−t1)− X̂ǫ

Q(z
0
−t2)‖1 ≤ M2 · ‖QX0|z0

−t1
−QX0|z0

−t2
‖1,

where t1, t2 > 0 are arbitrary integers. That is, for any integer t > 0 and any individual sequence z0−t, X̂
ǫ
Q(z

0
−t)

is a Lipschitz continuous function in QX0|z0
−t
.

(b) ℓ(X0, X̂
ǫ
Q(Z

0
−t)) → ℓ(X0, X̂

ǫ
Q(Z

0
−∞)) a.s. uniformly on Θδ

k

(c) For ∀Q ∈ Θδ
k, and ∀ω, ∃ 0 < γ < 1, β > 0, such that |Q(X0|Z0

−t)−Q(X0|Z0
−∞)| < βγt.

(d) For fixed t,η > 0, ∃ some finite set Fk(t, η) ⊂ Θδ
k, such that

max
Q∈Θδ

k

min
Q′∈Fk(t,η)

max
x0,z0

−t

|Q(x0|z0−t)−Q′(x0|z0−t)| ≤ η

Proof:

(a) For given simplex vector Q, fixed x̂, and Bǫ defined as in Section 4-A, we define followings.

• Sx̂(Q) , {W ∈ Bǫ : B(Q+W) = x̂}

• DP (x̂) ,
{

cTy = 0 : y ∈ R
M , c = λx̂ − λa, ∀a ∈ A\{x̂}

}

• dist(Q, cTy = 0) , The shortest L2 distance from a simplex vector Q to the plane cTy = 0

That is, Sx̂(Q) is a set of vectors in ǫ-ball, Bǫ, that makes the Bayes response B(Q + W) equal to x̂. Also,

DP (x̂) is a set of decision planes that separate the decision region for the reconstruction alphabet x̂ and other

alphabets. Then, for some fixed t, by definition,

X̂ǫ
Q(z

0
−t)[x̂] =

Vol(Sx̂(QX0|z0
−t
))

Vol(Bǫ)
,

where Vol(·) is a volume of a set. Since Vol(Bǫ) is a constant, for any t1 and t2, we have

|X̂ǫ
Q(z

0
−t1)[x̂]− X̂ǫ

Q(z
0
−t2)[x̂]| =

|Vol(Sx̂(QX0|z0
−t1

))−Vol(Sx̂(QX0|z0
−t2

))|
Vol(Bǫ)

. (39)

21



For the numerater, as a crude bound, we get

|Vol(Sx̂(QX0|z0
−t1

))−Vol(Sx̂(QX0|z0
−t2

))|

≤Vol(BM−1
ǫ ) ·

∑

cTy=0∈DP (x̂)

∣

∣

∣
dist(QX0|z0

−t1
, cTy = 0)− dist(QX0|z0

−t2
, cTy = 0)

∣

∣

∣
, (40)

where BM−1
ǫ = {U ∈ R

M−1 : ‖U‖2 ≤ ǫ}. Since

dist(Q, cTy = 0) =
|cTQ|
‖c‖2

,

we have

dist(QX0|z0
−t1

, cTy = 0)− dist(QX0|z0
−t2

, cTy = 0)

=
|cTQX0|z0

−t1
| − |cTQX0|z0

−t2
|

‖c‖2

≤

∣

∣

∣
cT (QX0|z0

−t1
−QX0|z0

−t2
)
∣

∣

∣

‖c‖2
(41)

≤‖QX0|z0
−t1

−QX0|z0
−t2

‖2 (42)

≤‖QX0|z0
−t1

−QX0|z0
−t2

‖1 (43)

where (41) is from the triangular inequality, (42) is from Cauchy-Schwartz inequality, and (43) is from the fact

that L2-norm is less than or equal to L1-norm. Therefore, (40) becomes

|Vol(Sx̂(QX0|z0
−t1

)−Vol(Sx̂(QX0|z0
−t2

)| ≤ M · Vol(BM−1
ǫ ) · ‖QX0|z0

−t1
−QX0|z0

−t2
‖1,

and thus, (39) becomes

|X̂ǫ
Q(z

0
−t1)[x̂]− X̂ǫ

Q(z
0
−t2)[x̂]| ≤M · Vol(B

M−1
ǫ )

Vol(Bǫ)
· ‖Q(X0|z0−t1)−Q(X0|z0−t2)‖1.

≤M · ‖QX0|z0
−t1

−QX0|z0
−t2

‖1.

Therefore, we have

‖X̂ǫ
Q(z

0
−t1)− X̂ǫ

Q(z
0
−t2)‖1 ≤ M2 · ‖QX0|z0

−t1
−QX0|z0

−t2
‖1,

and Part (a) is proved.

(b) By the exact same argument as in proving Lemma 1, we can easily know that Q(X0|Z0
−t) → Q(X0|Z0

−∞) for

∀ω, uniformly in ∀Q ∈ Θδk
k . Since we have

∣

∣

∣
ℓ(X0, X̂

ǫ
Q(Z

0
−t))− ℓ(X0, X̂

ǫ
Q(Z

0
−∞))

∣

∣

∣

=
∣

∣

∣

∑

x̂

Λ(X0, x̂)
(

X̂ǫ
Q(Z

0
−t)[x̂]− X̂ǫ

Q(Z
0
−∞)[x̂]

)∣

∣

∣

≤Λmax‖X̂ǫ
Q(Z

0
−t)− X̂ǫ

Q(Z
0
−∞)‖1

≤ΛmaxM
2 · ‖Q(X0|Z0

−t)−Q(X0|Z0
−∞)‖1,

we get the uniform convergence.
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(c) Again, let’s follow the argument in the proof of Lemma 1. Suppose t = jk + l, where j = ⌊t/k⌋, and l = t

mod k. Then,

|Q(X0|Z0
−t)−Q(X0|Z0

−∞)|
=|Q(X0|Z0

−jk−l)−Q(X0|Z0
−∞)|

≤
∞
∑

i=j

|Q(X0|Z0
−ik−l)−Q(X0|Z0

−(i+1)k−l)|

≤
∞
∑

i=j

ρi+1 (44)

=
ρj+1

1− ρ
=

ρ

1− ρ
ρ⌊t/k⌋ =

ρ1−
l
k

1− ρ
(ρ1/k)t (45)

≤ 1

1− ρ
(ρ1/k)t (46)

where ρ = ρδ,k,k as defined in Lemma 7, and (44) follows from Lemma 8. By letting β = 1
1−ρ , and γ = ρ1/k,

we have proved Part (c).

(d) We know that for the individual sequence pair (x0, z
0
−t),

Q(x0|z0−t) =

∑

x−1
−t

Q(x0
−t, z

0
−t)

Q(z0−t)

=

∑

x−1
−t

Q(x0
−t, z

0
−t)

∑

x0
−t

Q(x0
−t, z

0
−t)

=

∑

x−1
−t

Q(x0
−t)Q(z0−t|x0

−t)
∑

x0
−t

Q(x0
−t)Q(z0−t|x0

−t)

=

∑

x−1
−t

(

Q(x0
−t)
∏0

i=−t Π(xi, zi)
)

∑

x0
−t

(

Q(x0
−t)
∏0

i=−t Π(xi, zi)
) .

For Q ∈ Θδ
k, Π is fixed and we can think of

∏0
i=−t Π(xi, zi) as a constant for the individual sequence pair

(x0
−t, z

0
−t). Since

Q(x0
−t) = Q(xk−1−t

−t )

0
∏

j=k−t

axj−1
j−k

xj

j−k+1
,

Q(x0|z0−t) is the ratio of two finite order polynomials of {aij}, and as Θδ
k is closed and bounded, Q(x0|z0−t) is

a uniformly continuous function of {aij}. Therefore, for given η, ∃ǫ(η) such that ‖Q−Q
′‖1 < ǫ(η) implies

max
x0,z0

−t

|Q(x0|z0−t)−Q′(x0|z0−t)| ≤ η,

since there are only finite number of possible (x0, z
0
−t) pairs. Also, since Θδ

k is compact, we can always find a

finite set, Fk(t, η) that for any Q ∈ Θδ
k, there exists at least one Q′ ∈ Fk(t, η), that satisfies ‖Q−Q

′‖1 < ǫ(η).

Therefore, Part (d) is proved.
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Proof of Lemma 3: To prove Lemma 3, first consider following limit.

lim
n→∞

E
(

L
X̂ǫ

Q
(Xn, Zn)

)

= lim
n→∞

1

n

n
∑

t=1

E
(

ℓ(Xt, X̂
ǫ
Q(Z

t))
)

= lim
t→∞

E
(

ℓ(Xt, X̂
ǫ
Q(Z

t))
)

(47)

= lim
t→∞

E
(

ℓ(X0, X̂
ǫ
Q(Z

0
−(t−1)))

)

(48)

=E
(

ℓ(X0, X̂
ǫ
Q(Z

0
−∞))

)

uniformly on Θδ
k, (49)

where (47) is from Cesáro’s mean convergence theorem, (48) is from stationarity, and (49) is from Lemma 9(b) and

bounded convergence theorem. Thus, to complete the proof, we need to show that

lim
n→∞

L
X̂ǫ

Q
(Xn, Zn) = E

(

ℓ(X0, X̂
ǫ
Q(Z

0
−∞))

)

a.s. uniformly on Θδ
k (50)

Now, let’s show the pointwise convergence in (50) without the uniformity by using ergodic theorem. For given Q,

define

gt,Q(X,Z) , ℓ(X0, X̂
ǫ
Q(Z

0
−(t−1)))

gQ(X,Z) , ℓ(X0, X̂
ǫ
Q(Z

0
−∞))

and denote by T the shift operator. Then, what we should prove becomes

lim
n→∞

1

n

n
∑

t=1

gt,Q(T
t(X,Z)) = E

(

gQ(X,Z)
)

a.s.

while the ergodic theorem gives

lim
n→∞

1

n

n
∑

t=1

gQ(T
t(X,Z)) = E

(

gQ(X,Z)
)

a.s.

Observe that

∣

∣

∣

1

n

n
∑

t=1

gt,Q(T
t(X,Z))− 1

n

n
∑

t=1

gQ(T
t(X,Z))

∣

∣

∣

≤ 1

n

n
∑

t=1

∣

∣

∣
gt,Q(T

t(X,Z))− gQ(T
t(X,Z))

∣

∣

∣

=
1

n

n
∑

t=1

∣

∣

∣
ℓ(Xt, X̂

ǫ
Q(Z

t
1))− ℓ(Xt, X̂

ǫ
Q(Z

t
−∞))

∣

∣

∣
.

Since Lemma 9(c) holds for ∀ω, we can think that the lemma holds for all individual sequence pair (x0, z
0
−∞).

Thus, it holds for all individual pair (xt, z
t
−∞), too, and we can conclude that Q(Xt|Zt

1) → Q(Xt|Zt
−∞) for ∀ω as

t → ∞. Hence, by exactly the same argument as Lemma 9(a) and Lemma 9(b), we conclude that ℓ(Xt, X̂
ǫ
Q(Z

t
1)) →

ℓ(Xt, X̂
ǫ
Q(Z

t
−∞)) almost surely as t → ∞. Now, by Cesáro’s mean convergence theorem , we obtain

1

n

n
∑

t=1

∣

∣

∣
ℓ(Xt, X̂

ǫ
Q(Z

t
1))− ℓ(Xt, X̂

ǫ
Q(Z

t
−∞))

∣

∣

∣
→ 0 a.s.
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Therefore, we get

L
X̂ǫ

Q
(Xn, Zn) → E

(

ℓ(X0, X̂
ǫ
Q(Z

0
−∞))

)

a.s.

Note that up to this point we cannot guarantee the uniformity of the convergence, since the ergodic theorem

only gives the individual convergence for each Q. To show the uniformity of the convergence in (50), first define the

following quantity for some fixed integer t ∈ [1, n− 1],

L
X̂ǫ

Q,t
(Xn, Zn) =

1

n

(

t
∑

i=1

ℓ(Xi, X̂
ǫ
Q(Z

i)) +

n
∑

i=t+1

ℓ(Xi, X̂
ǫ
Q(Z

i
i−t))

)

.

From Lemma 9(d), for any Q ∈ Θδ
k and fixed t, η > 0, we can pick some Q′ ∈ Fk(t, η) such that ‖Q −Q

′‖1 < ǫ(η),

and thus,

max
x0,z0

−t

|Q(x0|z0−t)−Q′(x0|z0−t)| ≤ η.

By adding and subtracting some common terms involving such Q
′

, and from the triangle inequality, we have,

∣

∣

∣
L
X̂ǫ

Q
(Xn, Zn)− E

(

ℓ(X0, X̂
ǫ
Q(Z

0
−∞))

)∣

∣

∣

≤
∣

∣

∣
L
X̂ǫ

Q
(Xn, Zn)− L

X̂ǫ
Q,t

(Xn, Zn)
∣

∣

∣
+
∣

∣

∣
L
X̂ǫ

Q,t
(Xn, Zn)− L

X̂ǫ
Q′,t

(Xn, Zn)
∣

∣

∣
+
∣

∣

∣
L
X̂ǫ

Q′,t

(Xn, Zn)− L
X̂ǫ

Q′
(Xn, Zn)

∣

∣

∣

+
∣

∣

∣
L
X̂ǫ

Q′
(Xn, Zn)− E

(

ℓ(X0, X̂
ǫ
Q′(Z0

−∞))
)∣

∣

∣
+
∣

∣

∣
E
(

ℓ(X0, X̂
ǫ
Q′(Z0

−∞))
)

− E
(

ℓ(X0, X̂
ǫ
Q(Z

0
−∞))

)∣

∣

∣
(51)

Now, the goal becomes to show that the terms in the righthand side of the inequality converges to zero independent

of Q as n, t, and η varies. First, we will bound each term, and send n → ∞.

(1)

∣

∣

∣
L
X̂ǫ

Q
(Xn, Zn)− L

X̂ǫ
Q,t

(Xn, Zn)
∣

∣

∣

≤ 1

n

n
∑

i=t+1

∣

∣

∣
ℓ(Xi, X̂

ǫ
Q(Z

i))− ℓ(Xi, X̂
ǫ
Q(Z

i
i−t))

∣

∣

∣

≤Λmax ·
1

n

n
∑

i=t+1

‖X̂ǫ
Q(Z

i)− X̂ǫ
Q(Z

i
i−t)‖1

≤ΛmaxM
2 · 1

n

n
∑

i=t+1

‖QX0|Z0
−i

−QX0|Z0
−t
‖1 (52)

≤ΛmaxM
3 · 1

n

n
∑

i=t+1

(βγt + βγi) (53)

→ΛmaxM
3βγt a.s. uniformly on Θδ

k (54)

where (52) is from stationarity and Lemma 9(a), (53) is from Lemma 9(c), and (54) is from the Cesáro’s mean

convergence theorem. Since (53) does not depend on Q, the limit is uniform on Θδ
k.
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(2)

∣

∣

∣
L
X̂ǫ

Q,t
(Xn, Zn)− L

X̂ǫ
Q′,t

(Xn, Zn)
∣

∣

∣

≤ 1

n

n
∑

i=t+1

|ℓ(Xi, X̂
ǫ
Q(Z

i
i−t)) − ℓ(Xi, X̂

ǫ
Q′(Zi

i−t))|+
t

n
· Λmax

≤Λmax ·
1

n

n
∑

i=t+1

‖X̂ǫ
Q(Z

i
i−t)− X̂ǫ

Q′(Zi
i−t)‖1 +

t

n
· Λmax

≤ΛmaxM
2 · 1

n

n
∑

i=t+1

‖QXi|Zi
i−t

−Q′
Xi|Zi

i−t
‖1 +

t

n
· Λmax (55)

≤ΛmaxM
3n− t

n
· η + t

n
· Λmax (56)

→ΛmaxM
3η a.s. uniformly on Θδ

k

where (55) is from Lemma 9(a), and (56) is from Lemma 9(d). Since (56) does not depend on Q, the limit is

also uniform on Θδ
k.

(3)

∣

∣

∣
L
X̂ǫ

Q′,t

(Xn, Zn)− L
X̂ǫ

Q′
(Xn, Zn)

∣

∣

∣
→ ΛmaxM

3βγt a.s.

by following the same argument as (1). Since Fk(t, η) is finite, this convergence is uniform on Fk(t, η).

(4)

∣

∣

∣
L
X̂ǫ

Q′
(Xn, Zn)− E

(

ℓ(X0, X̂
ǫ
Q′(Z0

−∞))
)
∣

∣

∣
→ 0 a.s.

from the proof of pointwise convergence above. As in (3), this convergence is also uniform on Fk(t, η).

(5)

∣

∣

∣
E
(

ℓ(X0, X̂
ǫ
Q′(Z0

−∞))
)

− E
(

ℓ(X0, X̂
ǫ
Q(Z

0
−∞))

)
∣

∣

∣

≤
∣

∣

∣
E
(

ℓ(X0, X̂
ǫ
Q′(Z0

−∞))
)

− E
(

ℓ(X0, X̂
ǫ
Q′(Z0

−t))
)∣

∣

∣
+
∣

∣

∣
E
(

ℓ(X0, X̂
ǫ
Q′(Z0

−t))
)

− E[ℓ(X0, X̂
ǫ
Q(Z

0
−t))

)∣

∣

∣

+
∣

∣

∣
E
(

ℓ(X0, X̂
ǫ
Q(Z

0
−t))

)

− E
(

ℓ(X0, X̂
ǫ
Q(Z

0
−∞))

)
∣

∣

∣

≤
∑

x0,z0
−∞

P (x0, z
0
−∞)

∣

∣

∣
ℓ(x0, X̂

ǫ
Q′(z0−∞))− ℓ(x0, X̂

ǫ
Q′(z0−t))

∣

∣

∣
+
∑

x0,z0
−t

P (x0, z
0
−t)
∣

∣

∣
ℓ(x0, X̂

ǫ
Q′(z0−t))− ℓ(x0, X̂

ǫ
Q(z

0
−t))

∣

∣

∣

+
∑

x0,z0
−∞

P (x0, z
0
−∞)

∣

∣

∣
ℓ(x0, X̂

ǫ
Q(z

0
−∞))− ℓ(x0, X̂

ǫ
Q(z

0
−t))

∣

∣

∣

≤ΛmaxM
3
(

2βγt + η
)

,

by similar argument as in (1) and (2).

Therefore, by taking limit supremum on both side of (51), we get

lim sup
n→∞

∣

∣

∣
L
X̂ǫ

Q
(Xn, Zn)− E

(

ℓ(X0, X̂
ǫ
Q(Z

0
−∞))

)∣

∣

∣

≤ΛmaxM
3
(

4βγt + 2η
)

a.s. uniformly on Θδ
k.
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Since t and η are arbitrary, by sending t → ∞ and η ↓ 0, we have

lim sup
n→∞

∣

∣

∣
L
X̂ǫ

Q
(Xn, Zn)− E

(

ℓ(X0, X̂
ǫ
Q(Z

0
−∞))

)
∣

∣

∣
≤ 0 a.s. uniformly on Θδ

k.

Therefore, the lemma is proved. �

Appendix 3

Here, we prove Corollary 1.

Proof of Corollary 1: First note the subtle point that Corollary 1 does not directly follow from Lemma 3. Since the

probability law Qt
k that we are using to filter each block is changing every block, whereas the uniform convergence

in Lemma 3 is for the fixed Q ∈ Θδk
k for all t, it is not enough to guarantee the Corollary. However, since Qt

k remains

the same within each block, we can still use the result of Lemma 3 if the block length gets long enough. Keeping

this in mind, let’s take a more careful look at each block. In the proof, for the brevity of notation, let’s denote

ℓt(Q) , ℓ(Xt, X̂
ǫ
Q(Z

t)),

since we are always dealing with the randomized filter, and there is no possibility of confusion. Now, fix any δ > 0.

Then, from (4),

∃I, such that
mI−1

mI
<

δ

8ℓmax
,

and from Lemma 3,

∃N, such that max
Q∈Θ

δk
K

∣

∣

∣
L
X̂ǫ

Q
(Xn, Zn)− EL

X̂ǫ
Q
(Xn, Zn)

∣

∣

∣
< δ/4.

Recalling the definition i(t) , max{i : mi ≤ t}, we let I0 = max(I, i(N) + 1). Then, for any n ≥ mI0 , and

mi(n) ≤ n < mi(n)+1,

∣

∣

∣
L
X̂ǫ

univ,k
(Xn, Zn)− ÊL

X̂ǫ
univ,k

(Xn, Zn)
∣

∣

∣
(57)

≤ 1

n

∣

∣

∣

∣

∣

mi(n)−1
∑

t=1

(

ℓt(Q
t
k)− Ê(ℓt(Q

t
k))
)

∣

∣

∣

∣

∣

+
1

n

∣

∣

∣

∣

∣

∣

mi(n)
∑

t=mi(n)−1+1

(

ℓt(Q̂[Zmi(n)−1 ])− Ê(ℓt(Q̂[Zmi(n)−1 ]))
)

∣

∣

∣

∣

∣

∣

(58)

+
1

n

∣

∣

∣

∣

∣

∣

n
∑

t=mi(n)+1

(

ℓt(Q̂[Zmi(n) ])− Ê(ℓt(Q̂[Zmi(n) ]))
)

∣

∣

∣

∣

∣

∣

. (59)

Note that in the second and third term, Qt
k is fixed to Q̂[Zmi(n)−1 ] and Q̂[Zmi(n) ] from the definition of our filter.

Now, we can bound each term. For the first term, since n ≥ mi(n) ≥ mI , we know that
mi(n)−1

n ≤ mi(n)−1

mi(n)
< δ

8ℓmax
.

Therefore,

1

n

∣

∣

∣

∣

∣

mi(n)−1
∑

t=1

(

ℓt(Q
t
k)− Ê(ℓt(Q

t
k))
)

∣

∣

∣

∣

∣

≤ δ

8ℓmax
· ℓmax =

δ

8
.
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For the second term, since n ≥ mi(n) ≥ N ,

1

n

∣

∣

∣

∣

∣

∣

mi(n)
∑

t=mi(n)−1+1

(

ℓt(Q̂[Zmi(n)−1 ])− Ê(ℓt(Q̂[Zmi(n)−1 ]))
)

∣

∣

∣

∣

∣

∣

(60)

≤mi(n)

n

1

mi(n)

∣

∣

∣

∣

∣

mi(n)
∑

t=1

(

ℓt(Q̂[Zmi(n)−1 ])− Ê(ℓt(Q̂[Zmi(n)−1 ]))
)

∣

∣

∣

∣

∣

+
1

n

∣

∣

∣

∣

∣

mi(n)−1
∑

t=1

(

ℓt(Q̂[Zmi(n)−1 ])− Ê(ℓt(Q̂[Zmi(n)−1 ]))
)

∣

∣

∣

∣

∣

(61)

≤ δ

4
+

δ

8ℓmax
· ℓmax =

3δ

8
(62)

Finally, for the last term,

1

n

∣

∣

∣

∣

∣

∣

n
∑

t=mi(n)+1

(

ℓt(Q̂[Zmi(n) ])− Ê(ℓt(Q̂[Zmi(n) ]))
)

∣

∣

∣

∣

∣

∣

(63)

≤ 1

n

∣

∣

∣

∣

∣

n
∑

t=1

(

ℓt(Q̂[Zmi(n) ])− Ê(ℓt(Q̂[Zmi(n) ]))
)

∣

∣

∣

∣

∣

+
1

n

∣

∣

∣

∣

∣

mi(n)
∑

t=1

(

ℓt(Q̂[Zmi(n) ])− Ê(ℓt(Q̂[Zmi(n) ]))
)

∣

∣

∣

∣

∣

(64)

≤ δ

4
+

δ

4
=

δ

2
. (65)

Therefore, for any n ≥ mI0 , and mi(n) ≤ n ≤ mi(n)+1, we have

∣

∣

∣
L
X̂ǫ

univ,k
(Xn, Zn)− ÊL

X̂ǫ
univ,k

(Xn, Zn)
∣

∣

∣
< δ,

and since δ was arbitrary, we have the corollary. �
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