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Key Distillation and the Secret-Bit Fraction
Nick S. Jones† and Lluı́s Masanes‡

Abstract— We consider distillation of secret bits from partially
secret noisy correlationsPABE , shared between two honest par-
ties and an eavesdropper. The most studied distillation scenario
consists of joint operations on a large number of copies of the
distribution (PABE)

N , assisted with public communication. Here
we consider distillation with only one copy of the distribution,
and instead of rates, the ‘quality’ of the distilled secret bits is
optimized, where the ‘quality’ is quantified by the secret-bit frac-
tion of the result. The secret bit fraction of a binary distri bution
is the proportion which constitutes a secret bit between Alice
and Bob. With local operations and public communication the
maximal extractable secret-bit fraction from a distributi onPABE

is found, and is denoted byΛ[PABE ]. This quantity is shown to be
nonincreasing under local operations and public communication,
and nondecreasing under eavesdropper’s local operations:Λ is a
secrecy monotone. It is shown that ifΛ[PABE ] > 1/2 then PABE

is distillable, thus providing a sufficient condition for distillability.
A simple expression forΛ[PABE ] is found when the eavesdropper
is decoupled, and when the honest parties’ information is binary
and the local operations are reversible. Intriguingly, for general
distributions the (optimal) operation requires local degradation
of the data.

Index Terms— Cryptography, privacy amplification, quantum
information theory, secret-key agreement.

I. I NTRODUCTION

If two parties are to communicate with perfect secrecy over
an insecure channel, they must share a secret key at least as
long as the message to be transmitted [21], [1]. It is, however,
not always necessary for the two parties (Alice (A) and Bob
(B)) to meet up in order to obtain a shared secret key [22],
[6], [15]. It might be the case that, secret key aside, the three
parties (Alice, Bob and Eve (E) the eavesdropper) have access
to an information source which provides partially correlated
data to each of them. These correlations can be captured by a
tripartite probability distributionPABE . If Eve has access to
the same information as Alice and Bob, secure key generation
is impossible. However, there are many possible physical
scenarios in which this perfect correlation is not present;in
these cases this difference in knowledge can sometimes be
exploited to generate secret key.

Inspired by closely related work by Wyner, and Csiszár
and Körner [22], [6], Maurer [15] presented a protocol for
secret key agreement by public discussion which exploits
such imperfect knowledge. In his approach Alice and Bob
are given access to an insecure, authenticated, tamper-proof
channel and also receive sample data from a distribution
PABE . In an example, he considers the distribution generated
when a satellite broadcasts the same random bits to each
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party but Alice, Bob and Eve receive the information down
binary symmetric channels with bit errors of20%, 20% and
15% respectively. Even though Eve’s error is less than Alice
or Bob’s, Maurer provides a procedure, called advantage
distillation, which allows them to obtain shared random bits
about which Eve knows arbitrarily little. Maurer, with Wolf,
subsequently provided an if and only if distilability condition
for all distributions created by a combination of a satellite
producing random bits and local noise [16], [17].

Note that it is assumed that all parties know the distribution
PABE . The knowledge they lack is only about particular
samples from the distribution. We will also be making this
assumption throughout the following. This is not an innocent
postulate; though it is sensible to assume that Eve knows
PABE , one need not assume that Alice and Bob know anything
about Eve’s data. Advantage distillation requires that Alice and
Bob have a bound on Eve’s error rate. If the physical situation
prevents them bounding her errors, the parties might be better
off using quantum cryptography [8].

If Alice and Bob want to communicate secretly, they will
not always have a satellite available to help them generate their
secret key. The broad question addressed in this paper is then:
what physical situations can be used to generate secret key?
Or more precisely, which distributions,PABE , can be used to
generate secret key?

The approach in this paper is rather different from that
adopted in other work (though it is related to a constructionin
[9] and in [10] see Section III). In the usual scenario the distil-
lation procedure consists of joint operations on an arbitrarily
large number of copies of the distribution(PABE)

N , assisted
by communication over an insecure, but authenticated channel.
In this context, the secrecy properties of a distributionPABE

are typically assessed by the ‘secret key rate’. This is the
maximal rate at which Alice and Bob, receiving data according
to PABE , can generate a key about which Eve’s information is
arbitrarily close to zero. By contrast, we consider distillation
in the ‘single-copy’ scenario, and instead of rates the protocol
optimizes the ‘quality’ of the distilled secret bit, where the
‘quality’ is quantified by the secret-bit fraction of the result.
The secret bit fraction ofPABE is defined as the maximumτ
such that there exists a decomposition ofPABE of the form:
PABE = τSABQE + (1 − τ)HABE where τ ∈ [0, 1], QE

andHABE can be any probability distributions andSAB is a
shared bit.

Given a distributionPABE , the maximal ‘quality’ of the
secret bits that can be distilled from it is denoted by
Λ[PABE ], and called the ‘maximal extractable secret-bit frac-
tion’ (MESBF) of PABE .
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We defineΛ[PABE ] as follows. Suppose Alice, Bob and
Eve all receive one sample from the distributionPABE .
Consider the set of distributionsP ′

ABE that can be obtained
from PABE with some probability, when Alice and Bob
perform local operations and public communication (LOPC).
We allow the probability of obtaining any suchP ′

ABE to be
arbitrarily small as long as it is positive. We call this class
of transformations stochastic-LOPC (SLOPC). We also call
them filtrations or filtering operations. We consider SLOPC
transformations because, as mentioned above, we do not care
about the rates at which the distributionsP ′

ABE can be
obtained fromPABE . Instead, we want to know which of the
obtainable distributionsP ′

ABE most resembles a secret bit, and
we quantify this resemblance by the secret-bit fraction. We
denote the maximal secret-bit fraction that can be extracted
from PABE by Λ[PABE ].

If Alice and Bob share a perfectly correlated random bit
and Eve is uncorrelated from them,Λ[PABE ] will be ‘1’. If all
parties only have uncorrelated data as outputs thenΛ[PABE ] =
1/2. Note that the filtrations can sometimes fail. This failure
rate is not reflected in the size ofΛ[PABE ] since we only
consider the case where the filtration is successful. It follows
that distributions exist withΛ[PABE ] equal to ‘1’ but with
very low secret key rates.

One of the main results motivating our use of the MESBF is
to show that ifΛ[PABE ] >

1
2 thenPABE has a positive secret

key rate (in the asymptotic scenario). The value ofΛ[PABE ]
can thus be an indicator of whether a distribution has distillable
key: however it tells us nothing about the size of the secret
key rate. A necessary and sufficient condition for distributions
to have secret key is that there exists a positive integerN such
thatΛ[PN

ABE ] >
1
2 , wherePN

ABE representsN samples from
PABE [18].

A very similar quantity called the ‘singlet-fraction’ has been
introduced in entanglement theory in quantum mechanics, in
the context of entanglement distillation [13]. To our surprise
we were able to prove rather more about our classical quantity
that has been found for the quantum case. The connection
between entanglement theory and cryptography is not coin-
cidental and has been investigated at length (one of the best
introductions is [5]). In analogy to bound entanglement [12],
the existence of bound information has been conjectured [7],
[19]. Distributions that can yield no secret key and yet cannot
be created by LOPC show bound information. A distribution
will have bound information ifΛ[PN

ABE ] =
1
2 for all N and yet

the distribution cannot be generated by LOPC alone. Hence,
the study ofΛ may prove useful for proving the existence of
bound information.

Let us now highlight the results in this paper. As well as
showing (a) thatΛ[PABE ] >

1
2 implies a positive secret key

rate we present four further results. (b) We show thatΛ[PABE ]
is a secrecy monotone under SLOPC by Alice and Bob and
under local operations by Eve. (c) We have a closed expression
for Λ[PABE ] for all distributions where Eve is uncoupled, that
is PABE = PABPE . In this case, the optimal filtration is also

obtained. (d) We findΛ[PABE ] for PABE where Alice and
Bob’s random variables only have two possible outcomes and
are restricted to using filtrations which can be stochastically
reversed. (e) We show that, for generalPABE , optimal filtering
operations can sometimes require Alice and Bob to degrade
their data (by partially locally randomizing). This last result
is surprising. One might expect that if Alice and Bob degrade
their information they will have a lower secret-bit fraction;
however this is to neglect the role of Eve who might lose,
comparatively, even more information. We provide an example
where local randomization improves the secret-bit fraction of
a distribution over that obtained when the data is reversibly
transformed.

A brief outline of the rest of this paper is now given. Section
II introduces the scenario considered, defines the notation, and
presents the first results including the proof thatΛ[PABE ] is a
secrecy monotone. Section III supplies a sufficient condition
for a distribution to be used to generate secret key. Section
IV describes reversible filtrations, operations which can be
successfully undone with a non-zero probability. The same
section findsΛ[PABE ] for distributions where Alice and Bob
can only have two outcomes and perform reversible filtrations.
Section V findsΛ[PAB] when Eve is decoupled from the
communicating parties. The last section of results, VI, shows
that in general, filtrations that yield the MESBF require the
cooperating parties to degrade their data. We conclude by
discussing open problems and investigating interpretations of
the quantityΛ[PABE ]. The appendices contain some of the
longer proofs; Appendix II is of independent interest as it
provides a useful general decomposition of filtrations.

II. D EFINITIONS AND BASIC RESULTS

In the following we define the scenario considered in this
paper. Alice and Bob are connected by an authenticated
tamper-proof channel. The channel is, however, insecure; a
third party, Eve, learns all communicated messages. Alice,Bob
and Eve each obtain a letter from alphabets of sizesdA, dB,
and dE respectively. These outputs come from a probability
distributionPABE . Here, and in what follows,A,B,E will
only appear as labels identifying the parties sampling fromthe
distribution (A,B,E are not random variables). The symbols
a, b, e will be treated as random variables with alphabets of
sizedA, dB, anddE respectively. The same symbolsa, b, e will
also be used to represent particular values of the random vari-
ables. Any particular entry of the vector of probabilitiesPABE

will thus be expressed asPABE(a, b, e). For convenience,
probabilities are allowed to be un-normalized, that is, theonly
constraint onPABE(a, b, e) is that all its entries are non-
negative. Alice and Bob are allowed to perform general local
operations, where by general it is meant that the operation need
not always be successful. Alice’s operations can be expressed
as a d′A × dA matrix of non-negative entries, denoted by
DA(a

′, a), wherea′ ∈ {0, ..., d′A − 1}, a ∈ {0, ..., dA − 1}
andDA(a

′, a) ≥ 0. With probabilityDA(a
′, a) the outputa is

written toa′. Even when normalised, the sum of the elements
in each column can be less than one; this expresses the fact
that the operation can fail. Bob’s operations are defined by a
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similar matrixJB. WhenDA andJB are applied toPABE ,
the components of the resulting distribution are denoted by
[DAJBPABE ](a, b, e). In the event that there is no output after
filtering, Alice and Bob communicate publicly and throw away
their data. We now provide specific definitions of the quantities
considered in the rest of the paper.

Definition 1 [Secret bit fraction of a binary distribution].
A distribution wheredA = dB = 2 and dE is arbitrary, is
called ‘binary’. The secret-bit fraction of the normalizedbinary
distribution PABE will be called λ[PABE ]. λ[PABE ] is the
maximumτ such that there exists a decomposition ofPABE

of the form:

PABE = τSABQE + (1− τ)HABE , (1)

where τ ∈ [0, 1]. QE and HABE can be any probability
distributions andSAB(a, b) =

1
2 δab is a shared bit. The result

proved in the following lemma will be used widely in this
paper.

Lemma 1.Given a binary distributionPABE (not necessar-
ily normalized) its secret-bit fraction is the following:

λ[PABE ] =
2
∑

e min[PABE(0, 0, e), PABE(1, 1, e)]
∑

abe PABE(a, b, e)
(2)

Proof: Notice thatλ[νP ] = λ[P ] for any ν > 0. Hence we
can assume thatP is normalized and forget the denominator.
Taking the optimal decomposition (1) and using the fact that
the components ofHABE are positive, one can write the
following componentwise inequalityPABE ≥ τSABQE . Here
we have treatedPABE andHABE as vectors andSABQE as
the tensor product of two vectors. LetQ′

E ≡ τQE (recall
∑

eQE(e) = 1). It follows thatPABE(a, b, e) ≥
1
2 δabQ

′
E(e).

If a 6= b the inequality is satisfied. Ifa = b, then both
PABE(0, 0, e) ≥ 1

2 Q′
E(e) and PABE(1, 1, e) ≥ 1

2 Q′
E(e)

must hold. It is clear that the maximumτ is achieved with
Q′

E = 2min[PABE(0, 0, e), PABE(1, 1, e)]. Substituting this
value ofQ′

E(e) into
∑

eQ
′
E(e) = τ completes the proof.�

Now, we want to generalize the notion of secret-bit frac-
tion for general distributions, not necessarily being binary.
For this we proceed as follows. Given a distributionPABE

(not necessarily binary), we consider all SLOPC protocols
whose result is a binary distribution. Among all these binary
distributions obtainable fromPABE by SLOPC we want to
find the one which maximizes the formula (2). Without loss
of generality, any SLOPC protocol can always be decomposed
in the following way. Alice performs the local operationD(0)

A

and makes public some of her information. One can think
that the outcome ofD(0)

A has two variables(a′, c1), where
a′ is kept secretly by Alice, andc1 is broadcasted. Later,
Bob, depending on the messagec1 performs a local operation
J

(c1)
B with outcome(b′, c2), and sends the messagec2. Later,

Alice, depending on the messagesc1c2 performs another local
operationD(c1c2)

A , and so on. If at the end of the protocol
none of Alice’s and Bob’s operations has failed, for each
string of messages̄c = (c1c2c3 · · · ), Alice has performed
a string of operationsD(0)

A D
(c1c2)
A D

(c1c2c3c4)
A · · · . We denote

the product of these matrices byDc̄
A, where the dependence

on the public messages is expressed throughc̄. Similarly, we
defineJ c̄

B for Bob. If the initial distribution isPABE , then the
final distribution isP ′

ABEC(a, b, e, c̄) = [Dc̄
AJ

c̄
BPABE ](a, b, e)

(here a and b are binary variables). Having settled all this
notation for protocols with communication, we are ready to
prove that communication is not necessary at all.

Lemma 2.In order to find the SLOPC protocol that max-
imizes λ, one need only consider protocols without public
communication.

Proof: Suppose that at the end of a general SLOPC protocol
the distribution obtained isP ′

ABEC(a, b, e, c̄), which we can
assume to be normalized. Because the random variablec̄ is
public, we have to consider it as part of Eve’s knowledge(e, c̄).
Using formula (2), the secret-bit fraction ofP ′

ABEC(a, b, e, c̄)
satisfies

λ[P ′
ABEC ] = 2

∑

e,c̄

min[P ′
ABEC(0, 0, e, c̄), P

′
ABEC(1, 1, e, c̄)]

=
∑

c̄

PC(c̄)λ[P
′
ABEC(·|c̄)]

≤ max
c̄
λ[P ′

ABEC(·|c̄)] , (3)

whereP ′
ABEC(·|c̄) denotes the probability distribution for

ABE conditioned on a particular string of messagesc̄. If
the maximum in (3) is attained for the valuec̄0, the protocol
without communication consisting of just the local operations
Dc̄0

A andJ c̄0
B , is not worse than the general one. �

Lemma 2 allows for a simple mathematical definition of the
principal quantity studied in this paper.

Definition 2 [The MESBF of a distribution].The MESBF
of PABE is

Λ[PABE ] = sup
DAJB

λ[DAJBPABE ] . (4)

The fact that a supremum, rather than a maximum, is
considered in this definition, follows from the requirement
that SLOPC transformations must succeed with probability
strictly larger than zero. In some cases, the optimal SLOPC
transformation does not exist. But one can apply a transforma-
tion giving a secret-bit fraction as close as one wishes toΛ.
(A very similar phenomenon appears for the ‘singlet fraction’
of quantum states [13] and is called quasi-distillability.) For
any distribution,PABE , we know thatΛ[PABE ] ∈ [ 12 , 1]. The
lower bound of 12 can always be obtained if Alice and Bob
throw away any data they have and simply toss unbiased coins.
An important fact aboutΛ is that it is a secrecy monotone.

Theorem 1.The quantityΛ[PABE ] has the following prop-
erties:

• Λ[PABE ] is nonincreasing when the honest parties per-
form local operations and public communication. Even if
these operations can fail with some probability (SLOPC).

• Λ[PABE ] is nondecreasing when Eve performs local
operations.
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Proof: The proof of the first statement comes from the
definition of Λ, in terms of an optimization over all possible
SLOPC protocols. The second statement can be shown by
applying an arbitrary operationYE to Eve’s data, and see how
λ changes.YE must not be a filtration, because Eve cannot
make the honest parties reject their data.

λ [YEPABE ] = 2
∑

e′

min[
∑

e

YE(e
′, e)PABE(0, 0, e),

∑

e

YE(e
′, e)PABE(1, 1, e)]

≥ 2
∑

e′,e

YE(e
′, e)min [PABE(0, 0, e), PABE(1, 1, e)]

= 2
∑

e

min [PABE(0, 0, e), PABE(1, 1, e)] . (5)

Where the inequality comes from the concavity of themin
function.�

III. A SUFFICIENT CONDITION FOR DISTILLABLE SECRECY

In this section we provide a sufficient condition for a
distributionPABE to allow a strictly positive secret key rate
between Alice and Bob. Performing collective operations on
sufficient samples from a distribution satisfying this condition,
and by communicating over their insecure channel, Alice and
Bob can always obtain secret key.

Theorem 2.If Λ[PABE ] >
1
2 then PABE has distillable

secret key.

If filtrations DA and JB can be found such that
λ[DAJBPABE ] >

1
2 thenPABE has distillable key. The proof

of this theorem is found in Appendix I. There, we describe a
protocol with which one can always distill a secret key, if the
condition of the theorem is satisfied.

On completion of this paper we were made aware of
the work of Holenstein [10], [11]. His work defines two
parameters(ǫ, δ) associated with each probability distribution
PABE and provides a necessary and sufficient condition for
the distribution to have distillable key in terms of these two
parameters. Given a binary distributionPABE such that

PA(0) = PB(0) = PA(1) = PB(1) =
1

2
(6)

PAB(0, 0) = PAB(1, 1) ≥
1 + ǫ

2
(7)

there exists an eventE which impliesA = B such that

PABE(E|A = B) ≥ δ (8)

I(A : E|E) = 0 (9)

With these definitions we can get the lower bound

λ[PABE ] ≥ PABE(A = B, E) ≥
1 + ǫ

2
δ (10)

Hence, the distillability condition in terms ofΛ follows from
Holenstein’s condition in terms of these two parameters. How-
ever, it is insightful to have the distillability conditionin terms
of a single quantity, which is an operationally meaningful

secrecy monotone. We should note thatΛ[PABE ] is defined
through anoptimization over filtrations unlike Holenstein’s
two parameters.

IV. MESBF BY REVERSIBLE OPERATIONS

In this section we introduce a distinction between operations
that degrade the data, and operations that do not. We say
that an operationD degrades the data, if once it has been
applied to the data there is no probability that the original
data can be recovered. Then, operations that do not degrade
the data are calledreversible. Mathematically, the operation
corresponding to the matrixD is reversible if its inverse
D−1 has nonnegative entries. Notice that the fact that the
inverse exists, does not mean that the transformation can be
undone with probability one; since rates of distillation are
of no concern in the scenario considered in this paper, the
probabilistic nature of the reversibility is irrelevant.

Of course classical information can always be copied, and
thus, recovered whatever transformation is applied to it. But,
if within a particular operation data is copied, this has to be
represented in the matrix corresponding to this operation.It is
clear that this kind of operation is always reversible.

Definition 3 [Reversible stochastic transformations].A
stochastic transformationD is reversible if its inverseD−1 has
non-negative entries. This implies that if a given distribution
P is processed withD, we can still recoverP (with some
probability of success) by applyingD−1.

As an instance, let us consider transformations on the set of
two-outcome probability distributions. The inverses of2 × 2
matrices can be obtained through the following formula

[

w x
y z

]−1

=
1

wz − xy

[

z −x
−y w

]

. (11)

It is easy to see that2 × 2 operations are reversible if, and
only if, they are diagonal or anti-diagonal. This fact will be
used later.

Definition 4 [Equivalent distributions under reversible oper-
ations]. Two probability distributions are called ‘equivalent’ if
there exists a reversible operation which takes one probability
distribution to the other and viceversa. These equivalence
classes have the following useful property.

Lemma 3.Within an equivalence class all distributions have
the same MESBF.

Proof: Suppose that two equivalent distributions,PABE and
P ′
ABE , have different MESBF:Λ[PABE ] < Λ[P ′

ABE ] without
loss of generality. This gives a contradiction, because in the
protocol that optimizesΛ[PABE ], one can always perform a
first step consisting of going fromPABE to P ′

ABE . �

In the following we find the MESBF for binary distributions
when Alice and Bob are restricted to performing reversible
operations on their data. For a distributionPABE we call this
quantityΛR[PABE ].
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Definition 5. The MESBF with reversible operationsRA

andVB is

ΛR[PABE ] = sup
RAVB

λ[RAVBPABE ]. (12)

Theorem 3.Given a binary distributionPABE the maximum
value ofλ, after reversible filtrations, is as follows:

ΛR[PABE ] = max
{

zmaxe′∈Q[
2
∑

emin[P (0, 0, e), φe′P (1, 1, e)]

P (0, 0) + φe′P (1, 1) + 2
√

φe′P (0, 1)P (1, 0)
],

zmaxe′′∈ S[
2
∑

e min[P (0, 1, e), ψe′′P (1, 0, e)]

P (0, 1) + ψe′′P (1, 0) + 2
√

ψe′′P (0, 0)P (1, 1)
]
}

,

(13)

where we have suppressed the indices ‘A,B,E’ on the right
hand side so thatP = PABE . The formula is further
compressed by writingP (a, b) ≡

∑

e P (a, b, e). We define
φe′ ≡

P (0,0,e′)
P (1,1,e′) andψe′′ ≡

P (0,1,e′′)
P (1,0,e′′) . The setQ is the set of

all e where bothP (0, 0, e) 6= 0 andP (1, 1, e) 6= 0. The setS
is the set of alle where bothP (1, 0, e) 6= 0 andP (0, 1, e) 6= 0.
The operation zmaxe′∈Q is constructed in the following way.
It returns the maximum value of its argument ase′ is varied
over the setQ. If Q is empty then the operation is defined
as returning ‘0’. The operation zmaxe′′∈S is defined similarly
with regard to the setS.

Corollary 1. In the case where Eve is decoupled,PABE =
PABPE , this reduces to:

ΛR[PAB ] =



























0 if P (0, 0)P (1, 1) = P (0, 1)P (1, 0) = 0

max
[ (

1 +
√

P (0,1)P (1,0)
P (0,0)P (1,1)

)−1

,
(

1 +
√

P (0,0)P (1,1)
P (0,1)P (1,0)

)−1 ]

otherwise



























(14)

Note that both Theorem 3 and Corollary 1 have lower
bounds of zero. This is in contrast toΛ[PABE ] ∈ [1/2, 1]
where the lower bound can always be obtained if Alice
and Bob both perform the irreversible operation of throwing
away all data and tossing unbiased coins. Since irreversible
operations are excluded in the definition ofΛR[PABE ] it takes
a lower bound of zero.

Proof of Theorem 3.Let us consider the supremum (12) with
the constraint thatDA,JB are of the formRA = diag(α, β)
andVB = diag(γ, δ) whereα, β, γ, δ > 0.

ΛR[P ] = sup
RAVB

2
P

e
min[αγP (0, 0, e), βδP (1, 1, e)]

αγP (0, 0) + βγP (1, 0) + αδP (0, 1) + βδP (1, 1)

= sup
rq

2
P

e
min[P (0, 0, e), rP (1, 1, e)]

P (0, 0) + qP (1, 0) + r
q
P (0, 1) + rP (1, 1)

(15)

whereq ≡ β
α

andr ≡ βδ
αγ

. We now label the outputs of Eve

so thatP (0,0,i)
P (1,1,i) ≤

P (0,0,i+1)
P (1,1,i+1) for all i ∈ {0, .., dE−1} (if there

is ani such thatP (0, 0, i) = P (1, 1, i) = 0 this should be left
out of the ordering; ifP (0, 0) = P (1, 1) = 0 then one can

readily check thatλ[RAVBPAB ] = 0). We will now consider
the functionλ[RAVBPAB] for different ranges ofr.

1) For r ∈ [P (0,0,g)
P (1,1,g) ,

P (0,0,g+1)
P (1,1,g+1) ), g ∈ {0, .., dE − 2}, Eq.

(15) can be written as:

2
∑g

e=0 P (0, 0, e) + 2r
∑dE−1

e=g+1 P (1, 1, e)]

P (0, 0) + qP (1, 0) + r
q
P (0, 1) + rP (1, 1)

. (16)

2) When r ∈ [0, P (0,0,0)
P (1,1,0) ) the numerator of Eq. (15)

becomes2r P (1, 1).
3) Whenr ∈ [P (0,0,dE−1)

P (1,1,dE−1) ,∞) the numerator of Eq. (15)
becomes2 P (0, 0).

For each range1. − 3. by differentiating with respect tor,
holdingq constant, one can deduce that the maxima are always
at one of the limits of the specified range ofr. More precisely,
the global maximum of the function in Eq. (15) occurs when
r = P (0,0,e′)

P (1,1,e′) = φe′ for a particulare′ ∈ {0, ..., dE − 1}. The
r = 0 andr = ∞ limits correspond to minima.

Restricting the function to the pointsr = φe′ one can
differentiate with respect toq. Using this one finds that the

maxima occur whenq =
√

φe′
P (0,1)
P (1,0) . Substituting this into

Eq. (15) one obtains the first term in the ‘max’ in Eq. (13).
The ‘zmaxe′∈Q’ indicates that we vary over alle′ ∈ Q. Since
we know that ther = 0 and r = ∞ limits correspond to
minima,Q is constructed to exclude these situations from the
allowed values ofe′.

We have found the optimal value ofλ[RAVBP ] given that
RA andVB are diagonal. This is not yetΛR[P ] since there
are other possible reversible filtrationsRA andVB.

In this binary case filtering operations are2 × 2 matrices.
As noted above such filtrations are reversible only if they are
diagonal or anti-diagonal matrices. Some thought shows that,
by considering the caseRA anti-diagonal andVB diagonal,
we will have looked at all distinct reversible operations.

The case whereRA = antidiag(α, β) andVB = diag(γ, δ)
can be treated using the tools used in the case where both
matrices were diagonal. One obtains as a result the other term
in the ‘max’ in Eq. (13). Again, the ‘zmaxe′∈S’ indicates that
we vary over alle′ ∈ S. �

By definitionΛR[P ] ≤ Λ[P ] holds in general. A reasonable
question to pose is, for which distributionsP is the inequality
saturated such thatΛR[P ] = Λ[P ]? In such cases, locally
degrading the data would not help. In the next section a class
of such distributions is given.

V. THE MESBF FROM PRIVATE CORRELATIONS

In this section we consider the MESBF when Alice and
Bob can have alphabets of any size but they are uncorrelated
with the eavesdropper. Though its proof is nontrivial, the result
contained in Theorem 4 is intuitive. The optimal protocol is
to filter only two outcomes. The result shows that, except
for unusual distributions described below, filtering operations
which introduce local randomness serve no advantage. This is
in contrast with the result of the next section where we find a
role for local randomization. In addition we find that filtering
operations which take several outcomes to just one (eg. ‘4’ →
‘0’ and ‘5’ → ‘0’) cannot help.
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Theorem 4.For distributionsPAB where Eve is decoupled,
the MESBF is the following:

Λ[PAB ] = max
a0,b0,a1,b1



















1
2 if P (a0, b0)P (a1, b1) =
P (a0, b1)P (a1, b0) = 0

1

1+
q

P(a0 ,b1)P (a1,b0)

P(a0 ,b0)P (a1,b1)

otherwise



















(17)
Where, in the maximizationa0, a1 ∈ {0, 1, ..., dA − 1} and

b0, b1 ∈ {0, 1, ..., dB − 1}.

The proof of this Theorem is long and is contained
in Appendix III. In the situationP (a0, b0)P (a1, b1) =
P (a0, b1)P (a1, b0) = 0 local randomness is useful. Throwing
away all data and using local, unbiased, coin tosses can always
obtain a secret-bit fraction of12 .

Corollary 2. For N copies of the distributionPAB (repre-
sented asPN

AB) where Eve is decoupled the MESBF is:

Λ[PN
AB] = max

a0,b0,a1,b1



















1
2 if P (a0, b0)P (a1, b1) =
P (a0, b1)P (a1, b0) = 0

1

1+
(

P (a0,b1)P (a1,b0)

P (a0,b0)P (a1,b1)

)N/2 otherwise



















(18)

Proof: We first note that the expression forΛ[PAB] in
Theorem 3 depends monotonically on the quantityω =
P (a0,b1)P (a1,b0)
P (a0,b0)P (a1,b1)

. When the expression is at a maximum,ω is
at a minimum. It isω that we will consider in the following.
We say that a single copy of a distribution will have output
alphabets of sizesdA and dB . For N copies ofPAB (the
distributionPN

AB) ω becomes:

ω =
PN (a0, b1)P

N (a1, b0)
PN (a0, b0)PN (a1, b1)

, (19)

where a and b can be viewed asN component vectors
with each entrya(i) and b(i) chosen from alphabets of sizes
dA and dB respectively. Thus, by definitionPN (a0, b1) =

P (1)(a
(1)
0 , b

(1)
1 )P (2)(a

(2)
0 , b

(2)
1 )...P (N)(a

(N)
0 , b

(N)
1 ). Where

P (i) = P is the original single copy distribution; the
superindex(i) appears for counting purposes.

Performing a similar decomposition for the other three terms
in Eq. (19) and with some rearranging one obtains:

ω =
[P (1)(a

(1)
0 , b

(1)
1 )P (1)(a

(1)
1 , b

(1)
0 )

P (1)(a
(1)
0 , b

(1)
0 )P (1)(a

(1)
1 , b

(1)
1 )

]

×
[P (2)(a

(2)
0 , b

(2)
1 )P (2)(a

(2)
1 , b

(2)
0 )

P (2)(a
(2)
0 , b

(2)
0 )P (2)(a

(2)
1 , b

(2)
1 )

]

× ...

×
[P (N)(a

(N)
0 , b

(N)
1 )P (N)(a

(N)
1 , b

(N)
0 )

P (N)(a
(N)
0 , b

(N)
0 )P (N)(a

(N)
1 , b

(N)
1 )

]

. (20)

The maximum value ofλ corresponds to the situation where
ω is a minimum. We note that each square-bracketed term in
Eq. (20) is labeled by the superindex(i) and depends on a
different set of outcomesa(i)0 , a

(i)
1 , b

(i)
0 , b

(i)
1 . One can thus min-

imize each square bracketed term in Eq. (20) independently.
Since all of the probability distributions labeled(i) are the

same, one knows that the optimal choice ofa
(1)
0 , a

(1)
1 , b

(1)
0 , b

(1)
1

for term (1) will also be the optimum for all terms. Eq. (20)

thus becomesω =
[

P (1)(a
(1)
0 ,b

(1)
1 )P (1)(a

(1)
1 ,b

(1)
0 )

P (1)(a
(1)
0 ,b

(1)
0 )P (1)(a

(1)
1 ,b

(1)
1 )

]N

. Dropping

the label(1) one obtains Corollary 2.�
From Corollary 2 one sees that asN increasesΛ[PN

AB]
converges exponentially to 1 ifPAB has distillable secrecy.

VI. T HE MESBF FOR GENERAL CORRELATIONS

We have no formula for the MESBF for general distributions
PABE . In the following section we investigate this case and
identify a distribution,PABE , where irreversible operations
obtain a higher secret-bit fraction than the value obtainedby
reversible ones alone.

Theorem 3 shows that local randomization has virtually
no role in the protocols that maximize the secret-bit fraction
when Eve is decoupled. One might therefore hope that, on
introducing Eve, local randomization remains unnecessary. At
first glance, local randomization in one-shot protocols seems
to serve no role in maximizing the secret-bit fraction. If Alice
and Bob locally degrade their data one might argue that their
secret-bit fraction would inevitably fall. This is incorrect; in
the following we provide an example in which, if Alice and
Bob both locally degrade their data, the value of their secret-
bit fraction is higher than if they perform only reversible
operations. In general, reversible operations are not optimal
filtrations. As soon as Eve is introduced, there is thus a
larger role for local randomness in maximizing the secret-
bit fraction of a distribution. A motivation for this resultis
the following: though Alice and Bob do indeed become less
correlated as a result of local randomization, Eve becomes
evenless correlated than them. Note that local randomization
certainly does have established uses in obtaining good secret
key rates in the multi-copy case [6]; where local randomization
by oneparty can improve the rate.

We will now provide an example where, if Alice and
Bob randomize locally, they can improve their secret-bit
fraction over the value obtained by optimal reversible filtra-
tions. Before giving the example we introduce the following
notation. Since distributions on three variables do not lend
themselves to easy graphical representation, we letPABE =
∑

abe PABE(a, b, e)dabe where the orthonormal vectorsdabe

∀ a, b, e consist of the standard basis. (the vectors each
represent deterministic probability distributions on thevari-
ables, where only the outcomesa, b, e can occur). Consider
the distribution:

PABE =
1

24

[

(6d000 + 6d110) + (5d011 + 5d101 +2d111)
]

.

(21)
Note that in the first round bracketed term Eve has ‘0’ and

in the second ‘1’. Applying formula (13) to this distribution,
one obtainsΛR[PABE ] =

1
2 . Actually, if Alice and Bob do

nothing, they already haveλ[PABE ] =
1
2 (by Eq. (2)). If both

parties perform the filtration

DA = JB =

[

1 ǫ
0 1

]

(22)
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with ǫ ≈ 0.01, the transformed distribution,P ′
ABE , has

λ[P ′
ABE ] >

1
2 . In this case the MESBF is not obtained by

reversible operations. Here the randomization can be viewed
as having the effect that it creates a secret bit between Alice
and Bob when Eve has the outcome ‘1’. That more general
irreversible filtrations are required to obtain the highestsecret-
bit fraction means that the analytical task of findingΛ[PABE ]
is difficult in general. FindingΛ[PABE ] numerically for a
given distribution,PABE , is also difficult as the function to
be optimized is not concave.

VII. C ONCLUSION

In this section we review the results obtained, outline
open questions and provide alternative interpretations ofthe
MESBF.

In this paper we have functionally defined a new measure
Λ[PABE ] called the MESBF ofPABE and we showed that
it is a secrecy monotone. We showed that ifΛ[PABE ] >

1
2

then the distribution can be used to distill secret key. We
gave a comprehensive characterization ofΛ[PAB] when Eve
is decoupled and also in the case of reversible operations on
binary distributions. Using the results for reversible operations
we were able to show that there exist distributions for which
the optimal filtration requires local degradation of data. An
open problem is to show thatΛ[PABE ] > 1

2 is not a
necessary condition for distillability; if it were necessary then
the MESBF would be a very useful tool for the investigation
of bound information [9], [19].

In this paperΛ[PABE ] has been treated as a measure to
give us yes/no information about whetherPABE can be used
to distill secret key. It can, however be viewed in two other
ways:

• There is a restricted communication scenario in which
filtrations of PABE which maximize the secret-bit frac-
tion are exactly what the co-operating players would like
to do in order to make their communication as secret as
possible: if the parties attempt a form of (a) ‘running’ key
generation given (b) unlimited streams of source data but
(c) finite memories.
(a) By ‘running’ we mean that as soon as a successful
filtration has occurred the random bits are used for en-
cryption purposes; they are not stored up and then subject
to information reconciliation and privacy amplification
[6], [3], [14]. This is, of course, a substantial constraint.
(b) If there is plenty of source data, the fact that heavy
filtration might be required to maximize the secret-bit
fraction is not a problem.
(c) Their memories must be finite since we consider
optimal single shot operations.
In this applied context, the role of local randomization is
surprising; if Alice and Bob degrade their data they can
nonetheless improve the secrecy of their communication.

• Advantage distillation is a standard first step for obtaining
secret key from samples from a general distribution
PABE . The single shot filtrations that are described here
can be viewed as a generalization of advantage distilla-
tion. A filtration that maximizes the secret-bit fraction of
a distribution can be viewed as an optimal distillation

step (in the scenario where the supply of data is not
limiting). Note that though the approach acts on only
one copy of a distribution this single copy can be viewed
as many copies of a lower dimensional distribution. The
fact that introducing local randomness can be helpful in
maximizing the secret-bit fraction raises the intriguing
possibility that degrading data serves a role in generalized
advantage distillation. In the example given, both Alice
and Bob symmetrically add noise. This is distinct from
the case considered in [6] where only one party adds
noise. A future area of research would be to attempt to
identify a distribution whereoptimal filtrations require
both parties to degrade their data.
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APPENDIX I
PROOF OFTHEOREM 2

In this section we provide a proof of Theorem 2. To do
so, we explicitly describe the distillation protocol with which
one can distill secret key from all distributions satisfying the
condition of the theorem. This protocol might not be efficient,
but it is enough for our purposes.

Protocol. The first part of the protocol is similar to advan-
tage distillation, a procedure introduced in [15]. Alice and
Bob takeN samples from their distributions, respectively,
(a1, a2, ..., aN ) and(b1, b2, ..., bN). They perform the follow-
ing stochastic transformation on their strings:

01010101 · · · −→ 0 (23)

10101010 · · · −→ 1 (24)

other −→ reject (25)

If both succeed they each keep their final (N th) bit, denoted
a′ andb′. They repeat this procedure many times, obtaining a
long string of pairs(a′, b′). The reason for alternating 0’s and
1’s in the above sequences is because, even in the case where
Alice and Bob’s marginal is biased, the sequences (23) and
(24) are equiprobable.

The second step of the protocol consists of taking long
strings of pairs(a′, b′) and performing information reconcil-
iation and privacy amplification, as described by Csiszár and
Körner in [6]. This second step yields a secret key if, and only
if,

H(a′|b′) < H(a′|e) , (26)

whereH(x|y) is the Shannon entropy of the random variable
x conditioned ony [6], and e represents all the information
that Eve has at the end of the first step.

Theorem 2.If Λ[PABE ] >
1
2 then PABE has distillable

secret key.

Proof: As in Section VI, we represent a distribution as
PABE =

∑

abe PABE(a, b, e)dabe, where dabe ∀ a, b, e

are orthonormal vectors from the standard basis. Consider the
distribution

PABE = µ

(

1

2
d000 +

1

2
d110

)

+ (1 − µ)
(

η00 d001

+ η11 d112 + η01 d013 + η10 d104

)

, (27)

whereµ ∈ (1/2, 1],
∑

ab ηab = 1 andηab ≥ 0. Note that, by
degrading Eve’s data, all distributionsPABE with the same
secret-bit fractionµ and the same marginal for Alice and Bob
(characterized byµ andηab) can be obtained from (27). This
means that if the distribution (27) has distillable secret key,
then any distributionP ′ with λ[P ′] = µ will have distillable
secret key.

In the distribution (27), with probability1 − µ Eve knows
Alice and Bob’s bits perfectly, and with probabilityµ she only
knows that they are perfectly correlated. The probability that
Alice and Bob have a different outcome isǫ = (1− µ)(η01 +
η10) ≤ (1 − µ) < 1/2. In the following we consider the first
step of the protocol described above. In it, the honest parties
accept their data if they have the string (23) or (24). Lett
be the probability that Alice obtains the string (23); this is
the same as the probability that she obtains (24). The chance
that Alice and Bob accept the same string is2t(1− ǫ)N , and
the chance that they accept opposite strings is2tǫN . Notice
that these are the only two possibilities that pass the filter,
hence, the probability that both parties accept is2t(ǫN +(1−
ǫ)N ). The probability that Alice and Bob have different strings
conditioned on the fact that they accept isǫN/(ǫN+(1−ǫ)N ).
In other words, Bob’s uncertainty about Alice’s data is

H(a′|b′) = h

(

ǫN

ǫN + (1− ǫ)N

)

≈
ǫN

ǫN + (1− ǫ)N
N log2

(

1− ǫ

ǫ

)

, (28)

whereh(r) is the Shannon entropy of the distribution(r, 1−r),
and the approximation holds whenN is large. Eve’s proba-
bility of knowing nothing, conditioned on the fact that Alice
and Bob have publicly accepted a round of the procedure, is
µN/(ǫN+(1−ǫ)N ). Hence, her uncertainty about Alice’s data
is

H(a′|e) = h

(

µN

ǫN + (1− ǫ)N

)

. (29)

The condition for the functioning of the second step of
the distillation protocol is that Bob’s uncertaintyH(a′|b′) is
strictly smaller than Eve’s uncertaintyH(a′|e). Due to the fact
thatǫ ≤ 1−µ < µ there exists a sufficiently largeN for which
H(a′|b′) < H(a′|e) holds.�

APPENDIX II
DECOMPOSITION OF GENERAL OPERATIONS

In this section we see how a general operation can be
decomposed into a product of more elementary operations.
This decomposition will be used in the proof of Theorem
4. We will use the notation from Section VI. A matrixM
can be written as

∑

ij Mij did
†
j where did

†
j is an outer

product between the orthonormal vectorsdi and dj from the
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standard basis. Note that here the vectorsdi correspond to
a deterministic distribution for just one party (say Alice)and
thus only one subindex is used.

The most general filtering operation with inputc ∈
{1, ..., d}, and a bit as output, is

D =

d−1
∑

c=0

(

D0c d0 +D1c d1

)

d
†
c, (30)

with coefficientsD0c,D1c ≥ 0, andD0c + D1c ≤ 1 for all
c ∈ {1, ..., d}. For each inputc, we specify the bias of its
corresponding output with the following function:

ωc =

{

0 if D0c ≥ D1c

1 if D0c < D1c

}

. (31)

For each inputc, we quantify how mixed its corresponding
output is with the following quantity:

µc =

{

0 if D0c = D1c = 0

1−
Dwcc

D0c+D1c
otherwise

}

. (32)

The largerµc is, the more mixed the output (when we input
c). Now, we relabel the input in the following way. First, we
order the values ofc ∈ {1, ..., d} with decreasing mixing, that
is, µc ≥ µc+1 for c = 0 . . . d− 1. Second, we shift the value
of the input by adding 2:c → c+ 2. Let us denote a generic
mixing matrix by:

M(µ) = (1− µ)(d0d
†
0 + d1d

†
1) + µ(d0d

†
1 + d1d

†
0),

with µ ∈ [0, 1/2]. (33)

It is clear that we can write Eq. (30) as

D =
d+1
∑

c=2

(D0c +D1c)M(µc)dωcd
†
c, (34)

where the argument ofM(µc) is the mixing of in-
put c, Eq. (32). Consider a(d + 2)-dimensional linear
space with basis vectors{d0, d1, . . . dd, dd+1}. The vectors
{d2, . . . dd, dd+1} correspond to the input, and, the vectors
{d0, d1} correspond to the output. The matrix (34) can be
viewed as a square matrix in this(d + 2)-dimensional space,
with all the non-zero elements contained in a2×d sub-matrix.

In this larger space we define the square matrices

L =

d+1
∑

c′=2

(D0c′ +D1c′) dc′ d
†
c′ (35)

Gc = I + dωcd
†
c (36)

Wc = (1− νc)(d0d
†
0 + d1d

†
1)

+νc(d0d
†
1 + d1d

†
0) + I{2,...,d+1} (37)

for c = 2, ..., d + 1. The numbersνc lie within the range
[0, 1/2]. If a matrix has the subindex{c1, c2, . . .}, it is un-
derstood that it only has support on the subspace spanned by
{dc1 , dc2 , . . .}. For example,I is the identity matrix on the
whole space, whilstI{0,1} = d0 d

†
0+ d1 d

†
1. One can readily

check the following identity:

I{0,1} Wd+1 Gd+1 · · ·W2 G2 I{2,...,d+1} (38)

= Wd+1 dωd+1
d
†
d+1 + [Wd+1Wd]dωd

d
†
d

+ · · ·+ [Wd+1Wd · · ·W2]dω2d
†
2

We have not yet specified the parametersνc. If we setνd+1 =
µd+1, then

Wd+1 dωd+1
d
†
d+1 =M(µd+1)dωd+1

d
†
d+1.

By construction, we know thatµd ≥ µd+1. Hence, because the
matricesM(µ) commute, we can assign toνd the value such
that Wd+1Wd dωd

d
†
d = M(µd)dωd

d
†
d. In the same fashion,

we can obtain the values for all the parameters{ν2, . . . νd+1}
such that[Wd+1Wd · · ·Wc]dωcd

†
c = M(µc)dωcd

†
c, for c =

2, ..., d + 1. Finally, we can write the full decomposition of
Eq. (34):

D = I{0,1} Wd+1 Gd+1 · · ·W2 G2 L (39)

In the next section it will prove useful to have a decomposi-
tion of M(µ). It is clearer to use conventional matrix notation
here.

M(µ) =

[

1− µ µ
µ 1− µ

]

=

[

1− µ 0
0 1− µ

] [

1 µ
1−µ

µ
1−µ

1

]

(40)

this can be further decomposed by noting that:
[

1 µ
1−µ

µ
1−µ

1

]

=

[

1 0
µ

1−µ
1

] [

1 0
0 1− ( µ

1−µ
)2

]

×

[

1 µ
1−µ

0 1

]

. (41)

We will also use the fact that:
[

1 µ
1−µ

0 1

]

=

[

0 1
1 0

] [

1 0
µ

1−µ
1

] [

0 1
1 0

]

. (42)

The operationsWc can thus be expanded as:

Wc =

[

1− νc 0
0 1− νc

] [

1 0
νc

1−νc
1

]

×

[

1 0
0 1− ( νc

1−νc
)2

] [

0 1
1 0

]

×

[

1 0
νc

1−νc
1

] [

0 1
1 0

]

{0,1}

+ I{2,...,d+1} (43)

Since this decomposition ofWc will be used repeatedly in
the following proof we will need to express it more compactly
as:

Wc = K(1)
c TcK

(2)
c K(3)TcK

(3) (44)

where

K(1)
c =

[

1− νc 0
0 1− νc

]

{0,1}

+ I{2,...,d+1} (45)

K(2)
c =

[

1 0
0 1− ( νc

1−νc
)2

]

{0,1}

+ I{2,...,d+1} (46)

K(3) =

[

0 1
1 0

]

+ I{2,...,d+1} (47)

Tc =

[

1 0
νc

1−νc
1

]

+ I{2,...,d+1} (48)
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APPENDIX III
PROOF OF THEOREM 4

In this section we prove Theorem 4. The decomposition
provided in the previous section will be used extensively. We
first define more useful quantities, then derive some useful
consequences and finally provide the proof.

A. Definitions

In the previous section we showed that filtrationsD, repre-
sented by2×d matrices, can be expressed as(d+2)×(d+2)
matrices. These were then decomposed into products of square
matrices as in Eq. (39). Analogously, we will expressPAB in
this larger space. We construct the(d + 2) × (d + 2) matrix
P̄AB from PAB as follows:

P̄AB(a, b) =







0, if either a or b ∈ {0, 1}

PAB(a− 2, b− 2), otherwise







(49)

for a ∈ {0, ..., dA + 1} andb ∈ {0, ..., dB + 1}.
We now define a function on general probability distri-

butions, PAB , which have a ∈ {0, ..., dA + 1} andb ∈
{0, ..., dB + 1}. These general distributions need not satisfy
the promise in Eq. (49) thatPAB(a, b) = 0 if either a or b ∈
{0, 1}.

Definition 6. [The functionϑ[PAB ]]. Consider a probability
distribution with entriesPAB(a, b), wherea ∈ {0, 1, ..., dA +
1} and b ∈ {0, 1, ..., dB + 1}. Let us define the following
quantity:

ϑ[PAB ] = max
a0,b0,a1,b1



















1
2 if P (a0, b0)P (a1, b1) =
P (a0, b1)P (a1, b0) = 0

1

1+
q

P (a0,b1)P (a1,b0)

P (a0,b0)P (a1,b1)

otherwise



















,

(50)
where, in the maximizationa0, a1 ∈ {0, 1, ..., dA + 1} and
b0, b1 ∈ {0, 1, ..., dB + 1}.

We remark that if the distributionPAB were not normalized,
its value ofϑ will be unchanged.ϑ is thus well defined on
un-normalized or filtered distributions.

We will also define a modified form ofD:

D̄ = D + I{2,...,d+1}. (51)

GivenDA andJB we can findD̄A andJ̄B as above. As noted
above we can also form̄PAB for a ∈ {0, ..., dA +1} andb ∈
{0, ..., dB + 1} from the distributionPAB using Eq. (49). We
now note that:

1) (D̄AJ̄BP̄AB)(a, b) = (DAJBPAB)(a, b) for a, b ∈
{0, 1}

2) (D̄AJ̄BP̄AB)(a, b) = P̄AB(a, b) = PAB(a − 2, b − 2)
for a ∈ {2, ..., dA + 1} andb ∈ {2, ..., dB + 1}.

3) (D̄AJ̄BP̄AB)(a, b) = 0 otherwise.

Here, an expression of the form(D̄AJ̄BP̄AB)(a, b), identifies
the entry(a, b) of the un-normalized matrix yielded by the
filtrations D̄AJ̄B on P̄AB.

B. Preparatory remarks and lemmas

In this subsection we will prove a few basic results using
the objects defined in the previous subsection. These will then
be applied in the next subsection to prove Theorem 4.

We will now show that:

ΛR[DAJBPAB] = ϑ[D̄A J̄B P̄AB], (52)

whereD̄A is formed fromDA as in Eq. (51) andJ̄B similarly.
The distributionP̄AB is formed fromPAB as in Eq. (49).
Eq. (52) follows from the fact that̄DA J̄B P̄AB contains the
entries ofDA JB PAB (as noted in point1. of the preceding
subsection) and the fact that Eq. (50) is the same function
as Eq. (14) if the optimal values ofa0, a1, b0, b1 are0 and1
(Eq. (14) returns the value ofΛR[PAB] if PAB is a binary
distribution).

The following three lemmas will be used in the proof of
Theorem 4.

Lemma 4.When either permutation matrices or diago-
nal matrices with entries in the range(0, 1] operate on
PAB, RAVBPAB, they leaveϑ[PAB] unaltered. Herea ∈
{0, 1, ..., dA + 1} and b ∈ {0, 1, ..., dB + 1} and PAB is a
general distribution on these outcomes.

Proof: This can be checked by looking at the structure of the
functionϑ noting that: (a) since the maximization condition in
ϑ varies over alla0, b0, a1, b1 permutations onPAB have no

effect (b) the quantity
√

P (a0,b1)P (a1,b0)
P (a0,b0)P (a1,b1)

is unaltered by the
operations defined by diagonal matrices.�

We will introduce the following definition which will be
used in Lemma 5.

T (r) ≡

[

1 0
r 1

]

+I{2,...,d+1} = (d0d
†
0+d1d

†
1))+r d1d

†
0+I{2,...,d+1},

(53)

for r > 0. Though we call this a ‘filtration’, note that
T00 + T10 ≥ 1. This relaxed definition of a filtration will not
prove problematic (one can always normalize such filtrations
if necessary). Note that from Eq. (48)Tc = T ( νc

1−νc
).

Lemma 5.Filtering operationsTAIB on PAB cannot in-
creaseϑ[PAB ].

Proof: We first note, as in the Proof to Corollary 2, that
ϑ[PAB] is a variation overω = P (a0,b1)P (a1,b0)

P (a0,b0)P (a1,b1)
for all a0, a1 ∈

{0, 1, ..., dA + 1} and b0, b1 ∈ {0, 1, ..., dB + 1} and it picks
out the minimumω. Whenϑ[PAB] is at a maximum,ω is at
a minimum. It isω that we will consider in the following.

For a given distribution,PAB , ω takes a minimum for a
particular set of values(a0 = ao

0 , a1 = ao
1 , b0 = bo0 , b1 = bo1 ).

Two cases can occur with regards to(ao
0 , a

o
1 , b

o
0 , b

o
1 ):

1) ao
0 = 0 and, orao

1 = 0
2) ao

0 6= 0 andao
1 6= 0

Suppose, in Case 1.,ao
0 = 0. After the filteringTAIB, ω

becomes:

ω(r) =

(

P (0, bo1 ) + rP (1, bo1 )
)

P (ao
1 , b

o
0 )

(

P (0, bo0 ) + rP (1, bo0 )
)

P (ao
1 , b

o
1 )

(54)

Since we know that the particular set of values(ao
0 =

0, ao
1 , b

o
0 , b

o
1 ) are such as to minimizeω, we know thatω(r =
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0) ≤ ω(r = ∞). It follows, noting howω(r) depends onr,
that ω(r = 0) ≤ ω(r). In this caseTAIB on PAB does not
decreaseω.

Though applyingTAIB can only raise theω corresponding
to the outputs(ao

0 , a
o
1 , b

o
0 , b

o
1 ), it might be the case that this

operation might lower theω value of other output sets. In fact,
the argument provided above is generic. It can be used to show
that TAIB filtrations cannot yield anω value lower than the
minimum before the filtration.

It follows thatϑ[PAB ] ≥ ϑ[TAIBPAB].
Similar arguments can be used whenao

1 = 0 or indeed
ao
0 = ao

1 = 0.
Case 2 is simpler. The transformationTAI leaves

(a0, a1, b0, b1), and the correspondingω, unaltered (recall
that ω is still valid for unnormalized distributions). In this
caseϑ[PAB ] = ϑ[TAIBPAB ]. Though other entries of the
distributionPAB will be changed by the filtration, arguments
with the same flavor as those used for Case 1. show that these
changes leaveϑ[PAB] unaltered.�

It follows by symmetry that identical statements hold for
filtrations of the formIATB.

We will now make a definition which will be used in the
following Lemma.

G′ = I + r d0d
†
c. (55)

Note thatG′ is very close toGc as defined in Eq. (36).
Lemma 6.Filtering operations of the formG′

AIB on PAB

cannot increaseϑ[PAB ].
Proof: This proof is very similar to the proof for the

preceding Lemma. We consider the quantityω again. There
will be an optimal set of outputs(ao

0 , a
o
1 , b

o
0 , b

o
1 ) for which

ω takes a minimum. This time the two cases that need to be
considered are:

1) ao
0 = c and, orao

1 = c
2) ao

0 6= c andao
1 6= c

In Case 1. ifao
0 = c. After the filteringG′

AIB , ω becomes:

ω(r) =

(

P (c, bo1 ) + rP (0, bo1 )
)

P (ao
1 , b

o
0 )

(

P (c, bo0 ) + rP (0, bo0 )
)

P (ao
1 , b

o
1 )

(56)

Now, as in Lemma 4, one uses the fact thatω(r = 0) ≤
ω(r = ∞) to show thatω(r = 0) ≤ ω(r). The rest of this
proof follows along the same lines as the proof for Lemma 5.
�

C. Proof of Theorem 4

In this section we will prove thatΛ[PAB] = ϑ[PAB].
It is straightforward to see that, for allDA and JB,
λ[DAJBPAB] ≤ ΛR[DAJBPAB ]. From the last section we
note thatΛR[DAJBPAB] = ϑ[D̄A J̄B P̄AB]. In this section
we prove thatϑ[D̄A J̄B P̄AB] ≤ ϑ[P̄AB] = ϑ[PAB ]. It follows
that λ[DAJBPAB] ≤ ϑ[PAB] for all DA andJB, which im-
plies thatΛ[PAB] ≤ ϑ[PAB]. On the other hand, the function
ϑ[PAB ] is the secret bit fraction obtained with a particular
(reversible) processing ofPAB, thereforeϑ[PAB ] ≤ Λ[PAB].
The previous two inequalities implyΛ[PAB] = ϑ[PAB ], which
is the statement of Theorem 4.

The approach uses the decomposition found in Section
II combined with the preceding lemmas to show that all
filtrations will either lower ϑ[P̄AB] or leave it the same.
FiltrationsD̄AJ̄B will be expressed as products of operations

Q
(a)
A IB Q

(b)
A IB Q

(c)
A IB...Q

(M)
A IBIAD̄B .

We then show that

ϑ[Q
(a)
A IB Q

(b)
A IB Q

(c)
A IB...Q

(M)
A IBIAJ̄BP̄AB]

≤ ϑ[Q
(b)
A IB Q

(c)
A IB...Q

(M)
A IBIAJ̄BP̄AB]

≤ ϑ[Q
(c)
A IB...Q

(M)
A IBIAJ̄BP̄AB] ≤ ... ≤ ϑ[IAJ̄BP̄AB ].

Similar arguments can then be used to showϑ[IAJ̄BP̄AB] ≤
ϑ[IAIBP̄AB]

Proof: The following shows thatϑ[D̄A J̄B P̄AB ] ≤ ϑ[P̄AB].
Consider the filtration operationsDA, JB. Each D̄ can be
decomposed according to Eq. (39). We note, using Eq. (39)
to expandD̄A, that:

D̄AJ̄BP̄AB = WdA+1AIB GdA+1AIB WdAAIB

· · · G2AIB LAIB IAJ̄BPAB (57)

Each of theWc can be decomposed further using Eq. (44).
Eqs. (58-61) are successive re-writings of Eq. (57) which will
prove useful.

D̄AJ̄BP̄AB = WdA+1AIB GdA+1AIBP
′

AB (58)

= WdA+1AIBP
′′
AB

= K
(1)
d+1A

IBTd+1AIBK
(2)
d+1A

IB

×K(3)
AIBTd+1AIBK

(3)
AIBP

′′
AB (59)

= K
(1)
d+1A

IBTd+1AIBP
′′′
AB (60)

= K
(1)
d+1A

IBP
′′′′
AB (61)

where P
′

AB = WdAAIB · · · G2AIB LAIB IAJ̄BP̄AB,
P ′′
AB = GdA+1AIBP

′

AB , P ′′′
AB = K

(2)
d+1A

IBK
(3)

AIB
Td+1AIBK

(3)
AIBP

′′
AB and finallyP ′′′′

AB = Td+1AIBP
′′′
AB .

The operationK(1)
d+1A

is reversible. It follows, using Lemma

4 and Eq. (61), thatϑ[D̄AJ̄BP̄AB] = ϑ[K
(1)
d+1A

IBP
′′′′
AB] =

ϑ[P ′′′′
AB].

We know thatϑ[P ′′′′
AB] = ϑ[Td+1AIBP

′′′
AB] (sinceP ′′′′

AB =
Td+1AIBP

′′′
AB). Now, by using Lemma 5, it follows that

ϑ[Td+1AIBP
′′′
AB] ≤ ϑ[P ′′′

AB]. It follows thatϑ[D̄AJ̄BP̄AB] =
ϑ[P ′′′′

AB] = ϑ[Td+1AIBP
′′′
AB] ≤ ϑ[P ′′′

AB ].

Using Lemmas 4 and 5, and noting thatK(2)
d+1A

and K(3)
A are reversible, we obtainϑ[D̄AJ̄BP̄AB ] =

ϑ[WdA+1AIB P
′′

AB ] ≤ ϑ[P ′′′
AB] ≤ ϑ[P ′′

AB].

From Lemma 6 and the similarity ofGc to G′ we find
that ϑ[P ′′

AB ] = ϑ[GdA+1AIBP
′

AB] ≤ ϑ[P
′

AB ]. It follows that
ϑ[D̄AJ̄BP̄AB ] ≤ ϑ[P

′

AB].

If we look at the form ofP
′

AB we find that the same decom-
position can be performed on the operationsWdAAIBGdAAIB.
It is straightforward to use the above arguments to show that
ϑ[P ′

AB] = ϑ[WdAAIBGdAAIBP
y
AB] ≤ ϑ[P y

AB].
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By repeated use of the above arguments and a study of Eq.
(57) one finds thatϑ[D̄AJ̄BP̄AB] ≤ ϑ[LAIB IAJ̄BP̄AB].
SinceLA is reversible, by Lemma 4,ϑ[LAIB IAJ̄BP̄AB] =
ϑ[IAD̄BP̄AB].

Exactly the same arguments can be used to show that
ϑ[IAJBP̄AB] ≤ ϑ[P̄AB]. It follows that ϑ[D̄AJ̄BP̄AB ] ≤
ϑ[P̄AB ]. �

Noting the definition of the functionϑ and P̄AB Eq. (17)
follows.


