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Low Correlation Sequences over the QAM
Constellation

M. Anand,Student Member, IEEE, and P. Vijay Kumar,Fellow, IEEE

Abstract— This paper presents the first concerted look at low
correlation sequence families over QAM constellations of size
M

2 = 4m and their potential applicability as spreading sequences
in a CDMA setting. Five constructions are presented, and it is
shown how such sequence families have the ability to transport a
larger amount of data as well as enable variable-rate signalling
on the reverse link.

Canonical family CQ has period N , normalized maximum-
correlation parameter θmax bounded above by. a

√
N , where

a ranges from 1.8 in the 16-QAM case to 3.0 for large M . In a
CDMA setting, each user is enabled to transfer2m bits of data
per period of the spreading sequence which can be increased to
3m bits of data by halving the size of the sequence family. The
technique used to constructCQ is easily extended to produce
larger sequence families and an example is provided.

Selected family SQ has a lower value of θmax but permits
only (m + 1)-bit data modulation. The interleaved 16-QAM
sequence familyIQ hasθmax .

√
2
√
N and supports3-bit data

modulation.
The remaining two families are over a quadrature-PAM (Q-

PAM) subset of size2M of the M
2-QAM constellation. Family P

has a lower value ofθmax in comparison with Family SQ, while
still permitting (m+ 1)-bit data modulation. Interleaved family
IP , over the 8-ary Q-PAM constellation, permits 3-bit data
modulation and interestingly, achieves the Welch lower bound
on θmax.

Index Terms— QAM, Q-PAM, low-correlation sequences,
CDMA, variable-rate signalling, quaternary sequences, galois
rings.

I. I NTRODUCTION

In Direct-Sequence Code Division Multiple Access (DS-
CDMA) systems, low-correlation spreading sequences are
employed to separate the signals of different users. In this
paper, constructions of families of low-correlation spreading
sequences over theM2-QAM constellation,M = 2m, as well
as over a quadrature-PAM subconstellation of size2M are
presented.

The periodic correlation between two complex-valued se-
quences,{s(j, t)} and {s(k, t)}, at time shift τ is defined1
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1For the sake of brevity, we abbreviate and uses(j), s(k) throughout in
place ofs(j, t), s(k, t) whenever these terms appear in the subscript.

as

θs(j), s(k)(τ) =

N−1∑

t=0

s(j, t+ τ) s(k, t)

where0 ≤ τ ≤ (N − 1)

with (t+ τ) computed moduloN . This form of correlation is
also referred to as even-periodic correlation to differentiate it
from other forms of correlation between two sequences.

We define the maximum correlation parameter for a family
of sequences to be

θmax := max

{
∣
∣θs(j), s(k)(τ)

∣
∣

∣
∣
∣
∣

eitherj 6= k
or τ 6= 0

}

. (1)

The parameters commonly used to compare sequence families
are the size of the symbol alphabet, the periodN of each
sequence, the number of cyclically-distinct sequences in the
family and the value ofθmax.

A. Motivation

There are several reasons for being interested in low-
correlation sequences over the QAM and Q-PAM constella-
tions

• the increasing popularity of the QAM alphabet for sig-
nalling purposes

• the potential for modulating data at higher data rates
• the potential for variable-rate signalling on the reverse

link of a CDMA system
• the potential for larger Euclidean distance between the

signals corresponding to different data bits of the same
user, thus improving reliability of communication

• the larger symbol alphabet that makes the sequences
harder to predict from an intercepted fragment

• the potential for data modulation in ways that are not
transparent to a casual observer which makes it harder for
the casual observer to recover the data from an observed
fragment.

When considering high-order modulation, the first approach
that suggests itself is one of “multiplying” the QPSK spreading
sequence FamilyA sequence by symbols from theM2-QAM
constellation. This would, however, mean that the transmitted
energy per period of the spreading sequence would vary vastly
depending upon the particular QAM symbol being transmitted.
As a result, each user would experience a varying amount
of interference depending upon the particular combination
of symbols being transmitted by the other users. The QAM
symbols with low magnitude would be far more susceptible
to interference than those with larger magnitude. In contrast,
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in all of the designs presented here, every spreading sequence
has the same energy.

A second alternative one might consider would be to use
FamilyA and modulate the code sequence withM2-ary phase
modulation. This would however, lead to smaller Euclidean
distance between distinct data symbols of the same user and
also make the system more sensitive to phase offsets.

B. Prior Constructions in the Literature

In this paper, keeping in mind the widespread usage of
binary digits to represent data, we restrict our attention to
low-correlation sequence families whose symbol-alphabetis
a subset of the complex numbers having size that is a power
of 2.

We do not consider sequences over real-valued alphabet
such as the BPSK{±1} alphabet or the PAM alphabet since
apart from their inherent ability to provide increased spectral
efficiency, the corresponding complex counterparts of these
alphabets, namely QPSK and QAM, offer better correlation
performance in general. For instance, for family sizes that
are approximately equal to the sequence periodN , θmax

for the best known BPSK and QPSK sequence families is
approximately given by

√
2N and

√
N respectively [4], [5].

Table I provides a quick overview of some relevant prior
constructions:

• The quaternary sequence family, FamilyA [2], [4], [14],
has the same size as the family of Gold sequences [5],
but smaller value ofθmax.

• Quaternary families{S(p)}, p ≥ 1, [9] are larger families
with correspondingly larger values ofθmax and a member
of these families, namely FamilyS(2), appears in the W-
CDMA standard [18] as the short scrambling code.

• In [8], a Galois-ring analogue of the Weil-Carlitz-
Uchiyama (WCU) bound on exponential sums over finite
fields is derived and a general technique for constructing
low-correlation2m-PSK sequences is presented that is
based on this bound. In the table, the label WCU is
used to refer to sequence families constructed using this
technique.

• A 16-QAM CDMA family QB is constructed in [3]
by Boztaş. We became aware of this construction only
much after the initial writing of this paper, see [1]. As
is the case with the sequence families constructed here,
Family QB is built up of quaternary sequences drawn
from QPSK FamilyA and is described in greater detail
in Section II-E.

C. Notation and Nomenclature

Unless otherwise specified, the word sequence appearing in
this paper, will be a reference to a spreading sequence.

We interchangeably use the termsZ4 sequences (i.e., se-
quences over the integers(mod 4)), 4-phase sequences or
4-QAM sequences (sequences over{±1 ± ı}) to refer to
quaternary sequences in this paper.

The constellation-size parameterM will always be a power
of 2, and more specifically be given byM = 2m. With
the exception of the interleaved sequence families which

have double the period, the period of every sequence family
described here is of the formN = 2r − 1. We setq = 2r

keeping in mind that the finite field of size2r plays a major
part in the construction of sequences having this period.

In many of the constructions presented here, each user is
assigned a subset of spreading sequences to choose from. Thus
such a sequence FamilyX is more accurately described as a
collection of subsets of sequences. Despite this, to simplify
presentation, we will often refer to a selected sequence from
one of the subsets assigned to a user as either that user’s
spreading sequence or else as a sequence belonging to Family
X .

Definition 1: We shall say that a sequence over a symbol
alphabetK of size K and of periodN is approximately
balancedif the numberµj of times each symbolλj ∈ K
appears in one period of the sequence, satisfies a bound of the
type

∣
∣
∣
∣
µj −

N

K

∣
∣
∣
∣

≤ O(
√
N).

Definition 2: By thedata rateof a sequence family, we will
mean the maximum numberν of bits that can be modulated
onto each spreading sequence within the family, while leaving
the maximum correlation parameterθmax undisturbed. Thus
the sequence family would be capable of transferringν bits
per period of the spreading sequence.

D. Principal Results

TheM2-QAM constellation is the set

{a+ i b | −M + 1 ≤ a, b ≤ M − 1 , a, b odd}. (2)

WhenM = 2m, this constellation can alternately be described
as [10], [15]

{

√
2ı

(
m−1∑

k=0

2k ıak

) ∣
∣
∣
∣
∣
ak ∈ Z4

}

, (3)

where by
√
2ı we mean the element(1 + ı) =

√
2 exp( ı2π8 ).

The class of Q-PAM constellations considered in this paper
is the subset of theM2-QAM constellation of size2M =
2m+1 having representation
{
√
2ı

(

ıa0 +

m−1∑

k=1

2k (ı)a0+2ak

) ∣
∣
∣
∣
∣

a0 ∈ Z4,
ak ∈ Z2, k ≥ 1

}

.

(4)
These representations suggest that quaternary sequences be

used in the construction of low correlation sequences over
these constellations.

We present five sequence families which adopt this ap-
proach, three over the QAM constellation and two over a
quadrature-PAM (Q-PAM) subset of the QAM constellation.
All sequence families permit data modulation at a rate higher
than the2 bits per sequence period permitted by the use
of QPSK spreading sequences. Our initial efforts were di-
rected only at the QAM constellation until we inadvertently
discovered that correlation properties could be improved by
restricting the alphabet to the Q-PAM constellation, whilestill
retaining the higher data rate property.
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TABLE I

PARAMETERS OFSOME RELEVANT PRIOR CONSTRUCTIONS IN THEL ITERATURE

Family Constellation Period Family Size Data Rate Asymptotic Upper
Bound onθmax

A [2], [4], [14] 4-PSK N = 2r − 1 N + 2 2
√
N

S(1) [9] 4-PSK N = 2r − 1 ≥ (N + 1)2 2 2
√
N

S(2) [9] 4-PSK N = 2r − 1 ≥ (N + 1)3 2 4
√
N

S(p) [9] 4-PSK N = 2r − 1 ≥ (N + 1)p+1 2 2p
√
N

4-PSK N = 2r − 1 ≥ (N + 1)2 2 2
√
N

WCU Sequences [8] 8-PSK N = 2r − 1 ≥ (N + 1)3 3 3
√
N

8-PSK N = 2r − 1 ≥ (N + 1)4 3 4
√
N

8-PSK N = 2r − 1 ≥ (N + 1)5 3 5
√
N

8-PSK N = 2r − 1 ≥ (N + 1)6 3 6
√
N

QB [3] 16-QAM N = 2r − 1 (N + 1)/2 (not 1.8
√
N

discussed) (derived here)

TABLE II

PARAMETERS OF THEFAMILY CQM2 FOR VARIOUSM

Family M Constellation Family Size Data Rate Asymptotic Upper
Bound onθmax

CQ16 4 16-QAM (N + 1)/2 4 1.8
√
N

CQ64 8 64-QAM ⌊(N + 1)/3⌋ 6 2.33
√
N

CQ256 16 256-QAM (N + 1)/4 8 2.41
√
N

CQM2 M M2-QAM ⌊(N + 1)/m⌋ 2m 3
√
N

TABLE III

PARAMETERS OF THEFAMILY CQM2 WITH INCREASED DATA RATE

Family M Constellation Family Size Data Rate Asymptotic Upper
Bound onθmax

CQ16 4 16-QAM (N + 1)/4 6 1.8
√
N

CQ64 8 64-QAM ⌊(N + 1)/6⌋ 9 2.33
√
N

CQ256 16 256-QAM (N + 1)/8 12 2.41
√
N

CQM2 M M2-QAM ⌊(N + 1)/2m⌋ 3m 3
√
N

TABLE IV

PARAMETERS OF THEFAMILY SQM2 FOR VARIOUSM

Family M Constellation Family Size Data Rate Asymptotic Upper
Bound onθmax

SQ16 4 16-QAM (N + 1)/2 3 1.61
√
N

SQ64 8 64-QAM (N + 1)/4 4 2.10
√
N

SQ256 16 256-QAM ≥ (N + 1)/8 5 2.41
√
N

SQ1024 32 1024-QAM ≥ (N + 1)/8 6 2.58
√
N

SQM2 M M2-QAM ≥ (N + 1)/4m m + 1 2.76
√
N

TABLE V

PARAMETERS OF THEPARTICULAR 16-QAM SEQUENCE FAMILYIQ16 .

Family M Constellation Period Family Size Data Rate Asymptotic Upper
Bound onθmax

IQ16 4 16-QAM N = 2(2r − 1) (N + 2)/4 3
√
2
√
N

All the sequence families constructed here also permit
variable-rate signalling. By this we mean that users can adjust

their data rate by switching to a spreading sequence over a
constellation of the same type, but of smaller or larger size.
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TABLE VI

PARAMETERS OF THEFAMILY P2M FOR VARIOUSM

Family M Constellation Family Size Data Rate Asymptotic Upper
Bound onθmax

P8 4 8-ary Q-PAM (N + 1)/2 3 1.34
√
N

P16 8 16-ary Q-PAM (N + 1)/4 4 1.72
√
N

P32 16 32-ary Q-PAM ≥ (N + 1)/7 and≤ (N + 1)/5 5 1.96
√
N

P64 32 64-ary Q-PAM ≥ (N + 1)/10 and≤ (N + 1)/6 6 2.09
√
N

P2M M 2M -ary Q-PAM ≥ (N + 1)/(m2) m+ 1
√
5
√
N

TABLE VII

PARAMETERS OF THEWELCH-BOUND-ACHIEVING 8-ARY Q-PAM SEQUENCE FAMILYIP8 .

Family M Constellation Period Family Size Data Rate Asymptotic Upper
on θmax

IP8 4 8-ary Q-PAM N = 2(2r − 1) (N + 2)/4 3
√
N

Interestingly, as we show, even in the presence of variable-rate
signalling, the amount of interference experienced by a user
remains essentially unchanged.

In all the constructions, the size of the sequence family is
of the order of N

log2(M) whereM is the square root of the size
of the QAM constellation in the case of a QAM family, and
one-half the size of the Q-PAM constellation in the case of a
family over the Q-PAM signalling alphabet.

1) Family CQM2 : This may be regarded as the canonical
QAM sequence family construction. In this family, each se-
quence{s(t)} is of the form

s(t) =
√
2ı

m−1∑

k=0

2kıuk(t+τk) (5)

where the sequences{uk(t)} are drawn from FamilyA. The
phasesτk are used to ensure that the sequence is approximately
balanced over its symbol alphabet.

Family CQM2 has periodN = 2r − 1 and normalized
maximum-correlation parameterθmax bounded above by.
a
√
N , wherea ranges from1.8 in the16-QAM case to3.0 for

largeM . The data rate in a CDMA setting is2m. This number
can however, be increased to3m bits of data by halving the
size of the sequence family and assigning double the number
of quaternary sequences to each user. Note that in comparison,
if one were to attempt to increase data rate with a QPSK
sequence family by assigning multiple sequences to each user,
then to increase the data rate bym, one would have to assign
2m sequences to each user, thereby reducing the size of the
family by a factor of2m.

Parameters of FamilyCQM2 are presented in Table II. The
corresponding parameters for the case when the data rate is
increased to3m are presented in Table III.

The construction used to constructCQM2 is easily extended
to produce larger sequence families and an example is pro-
vided in Section III-E.

2) Family SQM2 : This family which we call, the “se-
lected” family, has a lower value ofθmax but permits only
(m + 1)-bit data modulation. The sequences in this family

also can be described by equation (5). The lower value of
θmax is made possible here by a judicious selection of the
component quaternary sequences{uk(t)}m−1

k=0 . Parameters of
this construction are presented in Table IV.

3) Family IQ16: The 16-QAM sequence FamilyIQ16

has the best correlation properties, having the lowest bound
θmax .

√
2
√
N amongst all the16-QAM sequence families

constructed in this paper. The family has data rate3 and is
constructed using sequence interleaving. Relevant parameters
of the family are listed in Table V.

The remaining two families are over the Q-PAM constella-
tion of size2M .

4) Family P2M : This family has a lower value ofθmax

in comparison with selected QAM FamilySQM2 , while still
maintaining a data rate of(m+1). Lower correlation values are
obtained by setting allτk = 0 in (5) followed by adopting the
sequence selection used to construct FamilySQM2 . Setting
τk = 0 results in a sequence over a Q-PAM constellation (see
Table VI for parameters of this sequence family).

5) Family IP8: This construction combines features of
constructions described above, namely, allτk = 0, judicious
sequence selection and sequence interleaving. It achievesa
data rate of3 and quite remarkably, achieves the Welch lower
bound onθmax (see Table VII for parameters).

E. Outline of the Paper

Section II provides background material relating to the
QAM constellation, to Galois rings, to quaternary Family
A and 16-QAM Family QB. Sections III, IV discuss the
canonical and selected QAM sequence familiesCQM2 and
SQM2 respectively.

In Section V, constructions for16-QAM sequences are dis-
cussed. FamilySQ16, is shown to have correlation properties
that improve upon those of FamilyQB. A second sequence
family, Family IQ16, introduced in this section and obtained
using sequence interleaving, is shown to do even better.

Section VI deals with Q-PAM families, the general con-
struction of FamilyP2M as well as the specific8-ary Q-PAM
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constructionIP8 that achieves the Welch bound with equality.
Most proofs have been moved to the Appendix for the sake
of clarity.

II. BACKGROUND

A. TheM2-QAM and2M -ary Q-PAM Constellations

The equivalence between the two representations of theM2-
QAM constellations contained in (2) and (3) follows from
noting that an odd number,x, in the range[−M + 1,M − 1]
can be uniquely expressed as

x =
m−1∑

k=0

2k(−1)xk , xk ∈ F2

and the relation

(−1)xi+xj + ı(−1)xj =
√
2ı ıxi+2xj , xi, xj ∈ F2.

As noted in Section I-D, the representation in (3) suggests
that a sequence overM2-QAM can be constructed using a
collection of sequences overZ4, of sizem, and we adopt this
approach in the paper. We shall also construct sequences over
the Q-PAM constellation described by (4).

The 16-QAM constellation [3], [10], [12]

{√
2ı (ıa0 + 2 ıa1) | a0, a1 ∈ Z4

}

is shown in Fig. 1. It is easy to check that the average energy
of the constellation is10.

1− 3 ı 3− 3 ı

−1 + 3 ı−3 + 3 ı

−3 + ı

−3− ı −1− ı

−3− 3 ı −1− 3 ı

1− ı 3− ı

−1 + ı 1 + ı 3 + ı

1 + 3 ı 3 + 3 ı

Fig. 1. 16-QAM Constellation

The8-ary Q-PAM constellation is a subset of the16-QAM
constellation given by

{√
2ı
(
ıa0 + 2 ıa0+2a1

)
| a0 ∈ Z4 , a1 ∈ Z2

}

,

(see Fig. 2) and has the same average energy.

3− 3 ı

−3 + 3 ı

−1− ı

−3− 3 ı

1− ı

−1 + ı 1 + ı

3 + 3 ı

Fig. 2. 8-ary Q-PAM Constellation

B. Galois Rings

Let Zn denote the ring of integers modulon. In this paper
our primary interest is in the ringZ4 = {0, 1, 2, 3}.

Galois rings [11] are Galois extensions of the prime ring
Zpn . R , GR(4, r) will denote a Galois extension ofZ4 of
degreer. R is a commutative ring with identity and contains
a unique maximal idealM = 2R generated by the element
2. Such rings are called local rings. The quotientR/M is
isomorphic toFq, the finite field withq = 2r elements.

As a multiplicative group, the setR∗ of units ofR has the
following structure:

R∗ ∼= Z2r−1 × F2 × F2 . . .× F2
︸ ︷︷ ︸

r times

.

Let ξ be a generator for the multiplicative cyclic subgroup
isomorphic toZ2r−1 contained withinR∗. LetT denote the set
T = {0, 1, ξ, . . . , ξ2r−2}. T is called the set of Teichmueller
representatives (ofFq in R). It can be shown that every
elementz ∈ R can uniquely be expressed as

z = a+ 2b, a, b ∈ T .

This is often referred to as the “2-adic expansion” ofz.
Modulo-2 reduction ofz is denoted byz. It can be shown
thatα = ξ is a primitive element inFq.

To every elementa ∈ Fq there exists a unique elementâ in
T such that̂a = a. The element̂a is called the “lift” of a in
R.

Remark 1:To simplify notation, in the sequel, we will often
use the same notation to refer to both the finite field element
as well as its lift belonging to the associated Teichmuler set
T .

The Frobenius automorphismσ : R → R is given by

σ(z) = a2 + 2b2

and the trace map fromR to Z4 is defined as

T (z) =

r−1∑

k=0

σk(z) =

r−1∑

k=0

(a2
k

+ 2b2
k

).
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Let tr : Fq → F2 denote the binary trace function. More
details of Galois rings can be found in [6], [8], [11], [13].

C. Modifications to the Maximum Correlation Parameter

We make two changes to the maximum correlation pa-
rameter. The first change recognizes that when a user is
assigned multiple spreading sequences, a bank of correlators
is used at the receiver end and the autocorrelation between
two such sequences at zero shift does not interfere with the
self-synchronization capability of the family. Accordingly, the
maximum non-trivial correlation magnitude of a sequence
family is given the modified definition:

θmax := max







∣
∣θs(j), s(k)(τ)

∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

eithers(j, t), s(k, t)
have been assigned
to distinct users or
τ 6= 0







.

(6)
The second change arises from energy considerations. To

make a fair comparison between QAM and PSK families, it
is required that the correlation magnitude be normalized to
take into account the larger energy of the QAM and Q-PAM
sequence families. We will useθmax to denote the maximum
correlation magnitude if the sequences have been normalized
to have energyN , and this will be used as the basis for
comparison across signal constellations.

D. Family A
FamilyA is an asymptotically optimal family of quaternary

sequences (i.e., overZ4) discovered independently by Solé
[14] and Boztaş, Hammons and Kumar [2], [4]. A detailed
description of their correlation properties appears in [4].

Let {γj}2
r

j=1 denote2r distinct elements inT , i.e., we have
the alternate expressionT = {γ1, γ2, . . . , γ2r}. There are2r+
1 cyclically distinct sequences in FamilyA, each of period
N = 2r − 1. The following representation for sequences in
Family A is used in this paper:

sj(t) = T ([1 + 2 γj]ξ
t), 1 ≤ j ≤ 2r,

s2r+1(t) = 2T (ξt). (7)

The maximum non-trivial correlation magnitude for Family
A has the upper bound

θmax ≤ 1 +
√
N + 1. (8)

More details of the correlation properties of FamilyA can be
found in Appendix I. Various desirable properties such as near
optimality with respect to correlation, mathematical tractability
and ease of generation, make FamilyA a prime candidate for
use as a building block in constructing sequences over the
M2-QAM constellation.

Remark 2: In the present paper, we do not make use of the
presence of the “binary” sequence{s2r+1(t)} as our sequence
constructions require each quaternary sequence employed to
take on all possible values overZ4. For this reason, we will
treat FamilyA as if it were a family composed ofq = 2r

cyclically-distinct sequences. A similar comment appliesin
Section III-E where we make use of quaternary sequence
Family S(1).

E. The16-QAM Sequence Family Constructed by Boztaş

In [3], Boztaş considers the family of sequences

QB = {αui(t) + βvi(t) | 1 ≤ i ≤ 2r − 2 }
whereα, β are positive real numbers. The sequences{ui(t)}
are defined as follows. We adopt the notation introduced in
Section II-B relating to a Galois ringR = GR(4, r) of size
4r. Let the elementsδi, γi be any selection satisfying

{δ1, δ2, · · · , δ2r−1−1}
⋃

{γ1, γ2, · · · , γ2r−1−1}

=
{

(1− ξ), (1− ξ2), · · · , (1− ξ2
r−2)

}

whereξ is, as in Section II-B, a generator for the multiplicative
cyclic subgroup isomorphic toZ2r−1 contained withinR∗.
Then the sequences{ui(t)}, {vi(t)} are defined by

ui(t) = ıT (δiξ
t)

vi(t) = ıT (γiξ
t).

The resulting sequence familyQB has in general, a constel-
lation of size16. Although not explicitly pointed out in [3],
by settingα = 1 andβ = 2, one recovers a rotated version of
the 16-QAM constellation:

{a+ i b | −3 ≤ a, b ≤ 3 , a, b odd}.
In Table I, we have listed parameters of the familyQB

obtained by selectingα =
√
2ı, β = 2α. While some

discussion of the correlation properties of this sequence family
is presented in [3], the value ofθmax for Family QB listed in
Table I is derived from the results of the present paper.

III. C ANONICAL FAMILIES OF SEQUENCES OVER

M2-QAM CONSTELLATION

The equivalent expression for the QAM constellation given
in (3) suggests that a family of low correlation sequences can
be constructed using, as building blocks, elements of Family
A as follows:

sp(t) =

m−1∑

k=0

2kıT (ap,kξ
t) ,

where the coefficients{ap,k} are drawn fromGR(4, r). When
one considers the crosscorrelation between two sequences
{sp(t)} and {sq(t)} having the above form, one quickly
realizes that in order to keep correlation values small, no two
sequences{ıT (ap,kξ

t)}, {ıT (aq,lξ
t)} should be cyclic shifts of

one another. This requirement can equivalently be expressed
in the form

ap,kξ
τ 6= aq,l

for any value of the cyclic shift parameterτ , whenever either
p 6= q (signifying different users) or wheneverk 6= l, 0 ≤
k, l ≤ m− 1.

Let us impose the second requirement on the QAM se-
quence family that every sequence in the family should be
approximately balanced as defined in I-C. This requires that
the number of solutions to the simultaneous equations:

T (ap,kx) = νk , k = 0, 1, . . . , (m− 1)
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be approximately equal for allm-tuples ν =
(ν0, ν1, . . . , νm−1) in Z

m
4 asx varies over all ofT .

Lemma 3.1:The sequence

sp(t) =

m−1∑

k=0

2kıT (ap,kξ
t)

is approximately balanced over the4m-QAM alphabet if the
coefficientsap,k are linearly independent overZ4, i.e.,

m−1∑

k=0

ωkap,k 6= 0

for any choice{ωk ∈ Z4}m−1
k=0 of coefficients, where at least

one of theωk’s is non-zero.

Proof: Please see Appendix II.

From the above discussion we arrive at the twin conditions

ap,kξ
τ 6= aq,l (9)

whenever eitherp 6= q or k 6= l and
m−1∑

k=0

ωkap,k 6= 0 (10)

for any non-zero coefficient set{ωk}m−1
k=0 ; which we will

respectively term as thecyclic distinctnessand linear inde-
pendenceconditions to be satisfied by the coefficients{ap,k}.

One means of constructing coefficient sets{ap,k} satisfying
the twin conditions in (9) and (10) is described below.

Let {τ0 = 0, τ1, τ2, . . . , τm−1} be integers0 ≤ τi ≤ 2r −
2, such that{ατ0 = 1, ατ1 , ατ2 , . . . , ατm−1} form a linearly
independent set. Let the elements of the TeichmullerT set be
divided into disjoint (ordered) subsets, each of sizem, of the
form g = (g0, g1, . . . , gm−1). Let G refer to the collection of
all suchg’s. Note that

| G | =
⌊ q

m

⌋

=

⌊
N + 1

m

⌋

.

Set

ag,k = (1 + 2gk)ξ
τk .

It is straightforward to verify that the coefficientsag,k satisfy
the cyclic distinctness requirement. To see that the linear
independence requirement is also met, note that

∑

k

ωkag,k = 0

implies
∑

k

ωkξ
τk = 0 (mod 2)

which is not possible by the choice of{τk} unless all the
ωk ∈ {0, 2}. But this possibility can also be dismissed using
a similar argument.

This leads to the construction of a family ofM2-QAM
sequences which we shall term thecanonicalconstruction and
denote by FamilyCQM2 .

Let κ = (κ0, κ1, . . . , κm−1) ∈ Z4×F
m−1
2 . A mathematical

expression for FamilyCQM2 is provided below.

CQM2 =
{{

s(g, κ, t)
∣
∣ κ ∈ Z

m
4

}∣
∣ g ∈ G

}
.

(11)

Each user is thus assigned the set

{s(g, κ, t) | κ ∈ Z
m
4 }

of sequences with theκ-th sequence given by

s(g, κ, t) =
√
2ı

(
m−1∑

k=0

2k ıuk(t)ıκk

)

where

uk(t) = T ([1 + 2gk]ξ
t+τk),

k = 0, 2, . . . ,m− 1. (12)

The main properties of FamilyCQM2 are summarized in
the following theorem:

Theorem 3.2:Let m ≥ 2 be a positive integer and let
CQM2 be the family of sequences over theM2-QAM con-
stellation defined in (11). Then,

1) All sequences inCQM2 have periodN = 2r − 1.
2) For large values ofN , the energy of the sequences in

the family is given by

E ≈ 2

3
(M2 − 1)N,

(which is what one would expect if the average energy
of a symbol across the constellation were equal to
the average symbol energy across one period of the
sequence).

3) The maximum correlation parameter of the family can
be bounded as

θmax . 2 (2m − 1)
2 √

N + 1.

For large values ofM andN , the normalized maximum
correlation parameter of the family can be bounded as

θmax . 3
√
N.

4) Family CQM2 can support⌊(N +1)/m⌋ distinct users.
5) Each user can transmit2m bits of information per

sequence period.
6) The normalized minimum squared Euclidean distance

between all sequences assigned to a user is given by

d
2

min ≈ 6

M2 − 1
N.

7) The sequences in FamilyCQM2 are approximately bal-
anced.

Proof: Property (1) follows from the periodicity prop-
erties of FamilyA sequences. Properties (2) and (3) follow
from the correlation properties of FamilyA sequences and the
derivation may be found in Appendices III and IV respectively.
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In order to prove property (4), we note that each user
is assignedm cyclically distinct sequences from FamilyA,
namely the sequence set

{T ([1 + 2gk]ξ
t+τk}m−1

k=0 .

Since there areq possible choices forgk in T , it follows that
the maximum number of users that can be supported is given
by ⌊2r/m⌋ = ⌊(N + 1)/m⌋. Property (5) follows from the
definition of the sequences. The symbols{κk}m−1

k=0 are them
information-bearing symbols. Property (6) is concerned with
the Euclidean-distance of the sequences assigned to a user and
is proved in Appendix V. Property (7) follows from our earlier
arguments.

Remark 3:An examination of the proof of Property (2) will
reveal that the result is valid for anyM2-QAM, (M2 = 4m),
sequence{s(t)}, given by an expression of the form:

s(t) =
√
2ı

m−1∑

k=0

2kıuk(t)

where the component quaternary sequences{uk(t)}, are dis-
tinct elements of FamilyA.

A. Variable-Rate Signalling

The asynchronous nature of the reverse link (mobile to
base station) in a CDMA system makes it difficult to ac-
commodate users having differing data-rate requirements i.e.,
users who wish to communicate a different number of bits
of data per sequence period. It precludes, for example, the
use of orthogonal-variable-spreading-factor (OVSF) channel-
ization (Walsh) codes that are part of the WCDMA standard.

One of the advantages of the structure of the sequences in
Family CQM2 (and others presented here) is that it is possible
to place an upper bound on the crosscorrelation of sequences
over QAM constellations of different size, thereby enabling
variable-rate signalling on the reverse link.

Enabling variable-rate signalling in the case of Family
CQM2 is fairly straightforward as we shall see. One first
partitions the entire finite field into subsets, and the subsets
will typically be of different sizes. The elements in each
subset are then ordered in some arbitrary fashion, and if
{gk}m−1

k=0 ⊆ Fq is the ordered subset, then this subset is
associated with the4m-QAM sequence

√
2ı

m−1∑

k=0

2kıT ([1+2gk]ξ
t+τk ).

Thus every partition of the elements of the Teichmuller set
corresponds to an assignment of variable rates to the users,
with the number of users equal to the number of subsets in
the partition. It follows that we can supportni, i = 1, 2, · · · , p
users with constellations of size4mi iff

p
∑

k=1

nimi ≤ | T | = q.

If two users have been assigned tuples enabling them to
transmit sequences from FamiliesCQM2

1
and CQM2

2
, with

M1 > M2, then the user assigned sequences from Family
CQM2

2
will experience a marginally increased amount of

interference from the user assigned sequences from Family
CQM2

1
. The reverse is true in the case of the interference

experienced by the user having the larger constellation. This is
based on the bounds on normalized crosscorrelation2 derived
in Appendix VI. The marginal change is by a factor of

√

(M1 − 1)(M2 + 1)

(M1 + 1)(M2 − 1)
.

It is this essentially-unchanged level of interference that en-
ables variable-rate signalling.

B. Euclidean Distance Comparison withM2-PSK Constella-
tion

Each sequence belonging to FamilyCQM2 can be mod-
ulated by logM2 = 2m data bits. An alternative means of
transporting2m data bits per period of spreading sequence,
is to use a QPSK code sequence family and then useM2-ary
phase data modulation which corresponds to multiplicationof
the code sequence by a complex symbol drawn from the set

{

exp

(

ı
2 π a

M2

)

, a ∈ ZM2

}

.

We compare the two schemes in terms of the minimum
Euclidean distance between the same code sequence when
modulated by two different2m-tuples of data. In the case
of M2-ary PSK modulation, the minimum squared Euclidean
distance between two distinct modulations of a sequence over
M2-PSK can be shown to be given by

2

(

1− cos

(
2 π

M2

))

N,

whereN is the period of the code sequence. For largeM the
right hand side can be approximated by

2

(

1− cos

(
2 π

M2

))

N ≈ 2

(

1−
(

1− ( 2π
M2 )

2

2!

))

)N

=
4π2

M4
N.

In comparison, the normalized minimum squared Euclidean
distance between two sequences assigned to a user in Family
CQM2 is given by

6

(M2 − 1)
N,

and it is clear from this that FamilyCQM2 has significantly
larger separation between different data sets which makes for
increased reliability.

2The reader can readily verify that normalized crosscorrelation is the right
measure to employ here.
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C. Further Increasing the Data Rate

In the present construction, FamilyCQM2 is a family of
⌊N+1

m
⌋ sequences in which each user can transmit2m bits of

data. The sequence{s(g, κ, t)} of each user is built up ofm
quaternary sequences{uk(t)}m−1

k=0 drawn from FamilyA and
is of the form

s(g, κ, t) =

m−1∑

k=0

2kıuk(t)+κk

where
uk(t) = T ([1 + 2gk]ξ

t+τk).

Suppose, we were to assign additionalm sequences
{vk(t)}m−1

k=0 from FamilyA to each user where

vk(t) = T ([1 + 2hk]ξ
t+τk).

This would, on the one hand, reduce the family size by
a factor of 2 to ⌊N+1

2m ⌋. On the other hand, this would
enable each user to transmit an additionalm bits of data per
period of the code sequence. The user could simply select
between the pair{uk(t)} and{vk(t)} for thek-th component
sequence. There is no penalty to be paid in terms of increased
correlations since, as can easily be verified, the maximum
normalized correlation magnitude bound remains unchanged.
Decorrelation at the receiver end can be accomplished with the
aid of 2m decorrelators in place of them previously needed.

Note that this feature is peculiar to the structure of the
signalling set used here. If one were to attempt something
similar in conjunction with a QPSK sequence family, then in
order to send an additionalm data bits, one would have to
assign each user an additional2m − 1 code sequences and
employ2m − 1 additional de-correlators at the receiver!

D. Compatibility with Quaternary Sequence Families

Being built up of quaternary sequences gives FamilyCQM2

the added advantage of being compatible with QPSK Families
S(p) in the sense that the value of maximum correlation
magnitude is increased only slightly if one enlarges Family
CQM2 to include quaternary sequences drawn fromS(p) \A.
We omit the details.

E. Larger Canonical Families over the QAM Alphabet

The canonical sequence familyCQM2 described in Theo-
rem 3.2 was based on the use of FamilyA as the source for
the component quaternary sequences{uk(t)} (see (12)). The
construction extends easily to the case when the component
sequences are drawn from any low-correlation quaternary fam-
ily. In particular, one could construct larger, low-correlation
M2-QAM families from the large collection of low-correlation
WCU quaternary sequence families (see Table I). We illustrate
by considering the case when FamilyA is replaced by quater-
nary sequence familyS(1) and leave the details in the other
cases to the reader. We will use the notationCQM2(S(1)) to
describe this sequence family. Under this notation,CQM2 is
shorthand for FamilyCQM2(A).

Family S(1) containsq2 cyclically distinct sequence fami-
lies. LetP = ⌊ q2

m
⌋ and let a subset of FamilyS(1) of sizePm

be selected. Only this subset will be used in the construction.
Then it can be shown that this collection ofPm cyclically-
distinct sequences can be placed into an array of sizeP ×m
in which the(p, k)-th element is of the form

T ([1 + 2gp,k]ξ
t+τk + 2hp,kξ

3t).

Let κ = (κ0, κ1, . . . , κm−1) ∈ Z
m
4 . The signal of thep-th

user,1 ≤ p ≤ P , is then given by

s(p, κ, t) =
√
2ı

(
m−1∑

k=0

2kıuk(t)ıκk

)

where

uk(t) = T ([1 + 2gp,k]ξ
t+τk + 2hp,kξ

3t).

Then, FamilyCQM2(S(1)) is the collection of sequences

CQM2(S(1)) = {{s(p, κ, t) | κ ∈ Z
m
4 } | 1 ≤ p ≤ P} . (13)

The main properties of FamilyCQM2 (S(1)) are summa-
rized in the following theorem:

Theorem 3.3:Let m ≥ 2 be a positive integer and let
CQM2(S(1)) be the family of sequences over theM2-QAM
constellation defined in (13). Then,

1) All sequences inCQM2(S(1)) have periodN = 2r− 1.
2) For large values ofN , the energy of the sequences in

the family is given by

E ≈ 2

3
(M2 − 1)N.

3) The maximum correlation parameter of the family can
be bounded as

θmax . 4 (2m − 1)
2 √

N + 1.

For large values ofM andN , the normalized maximum
correlation parameter of the family can be bounded as

θmax . 6
√
N.

4) Family CQM2(S(1)) can support⌊(q2)/m⌋ distinct
users.

5) Each user can transmit2m bits of information per
sequence period.

6) The normalized minimum squared Euclidean distance
between all sequences assigned to a user is given by

d
2

min ≈ 6

M2 − 1
N.

Proof: The proof is along the same lines as used to prove
the properties of FamilyCQM2 . The principal difference is that
θmax(S(1)) ≤ 2

√
N + 1 in place ofθmax(A) ≤

√
N + 1, see

[8], [9].

IV. A “S ELECTED” CONSTRUCTION OFSEQUENCESOVER

M2-QAM

We now introduce a second family, FamilySQM2 , of
sequences over theM2-QAM constellation having a lower
value of normalized correlation parameterθmax, and twice
the squared-Euclidean distance between different data modula-
tions of the same spreading sequence. As against this, Family
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SQM2 permits users to transmit only(m+1) bits of data per
sequence period in place of the2m bits allowed by Family
CQM2 .

Lower correlation values are achieved by judicious selection
of the component quaternary sequences constituting a QAM-
sequence.

A. Definition of FamilySQM2

Let {δ0 = 0, δ1, δ2, . . . , δm−1} be elements fromFq such
that tr(δk) = 1, ∀ k ≥ 1. Set

H = {δ0, δ1 · · · , δm−1}.

Let G = {gk} be the largest subset ofFq having the property
that

gk + δp 6= gl + δq , gk, gl ∈ G , δp, δq ∈ H , (14)

unlessgk = gl andδp = δq. Then the corresponding Gilbert-
Varshamov and Hamming bounds on the size ofG are given
by

2r

1 +
(
m−1
1

)
+
(
m−1
2

) ≤ | G | ≤ 2r

1 +
(
m−1
1

) . (15)

1) A Subspace-Based Construction for theH andG: Given
constellation parameterm, let 2l denote the smallest power of
2 greater than(m− 1), i.e., l is defined by

2l−1 < (m− 1) ≤ 2l. (16)

For reasons that will shortly become clear, we will refer to
the integerl as thesubspace-size exponent(sse) associated
with the constellation parameter(c-p) m. Thus l will lie in
the range0 ≤ l ≤ (r − 1). Let µ denote the function that,
given c-pm in the range1 ≤ m ≤ 2r−1 + 1, mapsm to the
corresponding ssel given above, i.e.,

µ(m) = l.

Treating Fq as a vector space overF2 of dimensionr,
let Wr−1 denote the subspace ofFq of dimension(r − 1)
corresponding to the elements of trace= 0. Let Wl denote a
subspace ofWr−1 having dimensionl. Let ζ be an element
in Fq having trace1 and letVl denote the subspace

Vl = Wl ∪ {Wl + ζ}

of size2l+1. Noting that every element in the cosetWl+ ζ of
Wl has trace1, we select as the elements{δk}m−1

k=1 to be used
in the construction of FamilySQM2 , an arbitrary collection
of (m− 1) ≤ 2l elements selected from the setWl + ζ.

Next, we partitionWr−1 into the2r−l−1 cosetsWl + g of
Wl. With each coset, we associate a distinct user. To this user,
we assign the coefficient set

{g, g + δ1, g + δ2, . . . , g + δl}.

The coefficients{g+δk}m−1
k=1 belong to the cosetWl+(g+ζ)

of Wl. Thus in general, each user is assignedm coefficients,
with one coefficientg, belonging to the cosetWl + g of Wl

lying in Wr−1 and the remaining drawn from the cosetWl +

g + ζ of Wl. SinceVl = Wl ∪ (Wl + ζ), all m coefficients
taken together belong to the cosetVl + g of Vl. Note that

Vl + g = Vl + g
′

implies

{Wl + g} ∪ {Wl + ζ + g} = {Wl + g
′} ∪ {Wl + ζ + g

′}.

But this is impossible sinceg, g
′

belong to different cosets of
Wl and g, g

′

have trace zero, whereas,tr(ζ) = 1. It follows
that the coefficient sets of distinct users belong to different
cosets ofVl and are hence distinct.

Thus, the basic sequence{s(g, 0, t)} assigned to userg will
take on the form

s(g, 0, t) =
√
2ı

m−1∑

k=0

2m−1−kıT ([1+2(g+δk)]ξ
t+τk ) ,

with both δ0 andτ0 equal to0.
Let G be the set of all such coset representatives ofWl

in Wr−1. Since each user is associated to a unique coset
representative, the number of users is given by

| G | = 2r−l−1.

When combined with (16), we obtain

2r

4(m− 1)
< | G |≤ 2r

2(m− 1)
.

Thus the size ofG is at most a factor of4 smaller than the
best possible suggested by the Hamming bound, see (15).

Let {τ1, τ2, . . . , τm−1} be a set of non-zero, distinct time-
shifts with {1, ατ1 , ατ2 , . . . , ατm−1} being a linearly indepen-
dent set. Letκ = (κ0, κ1, . . . , κm−1) ∈ Z4 × F

m−1
2 . Family

SQM2 is then defined as follows:

SQM2 =
{{

s(g, κ, t)
∣
∣ κ ∈ Z4 × F

m−1
2

}∣
∣ g ∈ G

}

(17)

so that each user is identified by an element ofG. Each user
is assigned the collection

{
s(g, κ, t) | κ ∈ Z4 × F

m−1
2

}

of sequences with theκ-th sequence given by

s(g, κ, t) =
√
2ı

(
m−1∑

k=1

2m−k−1 ıuk(t)(−1)κk +

2m−1 ıu0(t)
)

ıκ0 (18)

where

u0(t) = T ([1 + 2g]ξt)

uk(t) = T ([1 + 2(g + δk)]ξ
t+τk),

k = 1, 2, . . . ,m− 1.

We will refer to the elementg as theground coefficient. Note
that given the ground coefficient and the set{δ1, · · · , δm−1},
the set of coefficients used by a user are uniquely determined.
The elements{δk} will turn out to provide a selection of the
component sequences that leads to lower correlation values.
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Within the subset of sequences assigned to a particular user,
the sequences corresponding toκ = 0 will be termedbasic
sequences. Basic sequences have a simpler representation
and correlations involving basic sequences turn out to be
representative of the general case.

Theorem 4.1:Sequences in FamilySQM2 satisfy the fol-
lowing properties:

1) All sequences in the family have periodN = 2r − 1.
2) For largeN , the energy of any sequence in the family

is given by

E ≈ 2

3
(M2 − 1)N.

3) The correlation parameterθmax has the upper bound:

θmax .

√

61

18
M2

√
N + 1.

For largeM andN , the normalized maximum correla-
tion parameter of the family satisfies the bound

θmax . 2.76
√
N.

4) The family can support

2r

4(m− 1)
< | G | ≤ 2r

2(m− 1)

distinct users. (Note from (15) that this can potentially
be improved by a different construction of the setG).

5) Each user can transmit(m+1) bits of data per sequence
period.

6) The normalized minimum squared Euclidean distance
between all sequences assigned to a user is given by

d
2

min ≈ 12

M2 − 1
N.

7) The numberN of times an element from theM2-QAM
constellation occurs in sequences of large period can be
bounded as:

∣
∣
∣
∣
N− N + 1

M2

∣
∣
∣
∣
≤ M2 − 1

M2

√
N + 1 ,

i.e., the sequences in FamilySQM2 are approximately
balanced.

Proof: Property (1) follows from the periodicity of the
sequences in FamilyA. The proof of Property (2) is identical
to the proof concerning the energy of sequences in Family
CQM2 (see Remark 3).

Property (3) is proved in detail in Appendix VII.
Properties (4) and (5) follow directly from the definition of

the sequence family.
Property (6) can be proved using techniques similar to

those in Appendix V; as it turns out, the minimum Euclidean
distance is associated with data sets(κ, κ

′

) where

κm−1 = κ
′

m−1 + 2,

κk = κ
′

k, k = 0, 1, . . . , (m− 2).

The proof of Property (7) concerning symbol balance is
identical to the proof in the case of FamilyCQM2 .

B. Variable-Rate Signalling on the Reverse Link Using Family
SQM2

In this section, we show how Families{SQM2} can also be
used to provide variable-rate signalling on a CDMA reverse
link. We retain the notation of Section IV-A.

We begin by constructing a chain of subspaces

W0 ⊆ W1 ⊆ · · · ⊆ Wr−1

in which each subspaceWk contains only elements of trace
0. Let the elementsρk be such that

Wk+1 = Wk ∪ {Wk + ρk},
i.e., ρk is a coset representative of the coset ofWk in Wk+1

other thanWk itself.
For eachk, 0 ≤ k ≤ (r − 1), the set

Vk = Wk ∪ (Wk + ζ)

is also a subspace ofFq. Each element in the cosetWk + ζ
has trace equal to1. Let {δ1, δ2, . . . , δ2r−1} be an ordering of
the elements inWr−1+ζ, obtained by imposing the condition
that the elements of the cosetWk + ζ precede the elements of
Wl + ζ if k < l.

A user is permitted to pick a c-pm in the range,1 ≤ m ≤
2r−1 + 1, and this choice will permit him to communicate
(m+ 1) bits per period of the spreading sequence.

Let there beNl users wishing to communicate using c-pm
satisfying

µ(m) = l,

i.e., associated to ssel. Our construction below will require
that the inequality

r−1∑

l=0

Nl2
l+1 ≤ 2r (19)

hold and we will assume that this is the case. Let

l1 > l2 > · · · > lK

be an ordering of subspace-size exponents. The goal here is
to provide each user with a ground coefficientg which will
enable him to construct his particular QAM sequence.

We begin with the c-ps associated to largest ssel1. We begin
by partitioningWr−1 into disjoint cosets of the subspaceWl1

and assign a coset ofWl1 to each of these users. Each such
coset is of the formg +Wl1 and the user then constructs the
user’s QAM sequence using ground coefficientg. The set of
all coefficients assigned to the user, namely the set

{g, g + δ1, · · · , g + δm−1}
then belongs to the coset ofVl1+1 given by

Vl1+1 + g = {g +Wl1} ∪ {(g + ζ) +Wl1}.
Having in this way made an assignment of coefficients to the
users with largest c-p, we next move on to the users with
next largest c-p. Suppose thatl2 = l1 − 1. In this case, we
can partition one of the unused cosets ofWl1 , sayh +Wl1 ,
according to

Wl1 + h = {Wl2 + h} ∪ {Wl2 + ρl2 + h}.
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We can then assign eitherh or h+ρl2 as the ground coefficient
for the user with ssel2. If l2 = l1 − 2, then we continue the
process by further partitioning each cosetWl1−1+h, Wl1−1+
h + ζ of Wl1−1 into two cosets ofWl1−2 and assigning a
coset ofWl1−2 to that user etc. This process can clearly be
continued to satisfy all users provided that the inequalityin
(19) is satisfied.

We illustrate with the help of an example for the caser = 4.

Example 1:Let q = 16 so thatr = 4. Let the primitive
elementα ∈ F16 satisfyα4 + α+ 1 = 0. It is known that the
elementα3 has trace1, so we make the selectionζ = α3. Let
W3,W3 + ζ denote the subsets ofF16 having trace0 and 1
respectively. Then it can be verified that

W3 = {0, 1, α, α2, α4, α5, α8, α10}
W3 + ζ = {α3, α6, α7, α9, α11, α12, α13, α14}.

Let the values

N0 = N1 = N2 = 1

satisfying (19) be given. The largest value ofl such thatNl 6=
0 is l1 = 2. We also havel2 = 1, l3 = 0. We begin by
considering the sequence of subspaces

W0 ⊆ W1 ⊆ W2.

We choose

W0 = {0}
W1 = W0 ∪ {W0 + α} = {0, α}
W2 = W1 ∪ {W1 + α2} = {0, α, α2, α5}.

Thusρ0 = α andρ1 = α2. This leads to

(δ1, δ2, δ3, δ4) = (α3, α9, α6, α11).

Since l1 = 2, we begin by considering cosets ofW2 in
Wr−1 = W3. It can be verified that

W2 ∪ {W2 + 1} = W3.

We first select the coset{W2 +1} (either coset could have
been chosen at this step). The corresponding ground coefficient
equals1 and this is assigned to the user with sse= l1 = 2.
Since there is only one user with sse equal to2, we move on
to consider the user with sse= l2 = 1. Our next step is to
partition the remaining coset ofW2, namely, in this case,W2

itself. Sinceρ1 = α2, we can partitionW2 into

W2 = W1 ∪ {W1 + α2}.

Again faced with a choice, we choose to assign cosetW1+
α2 to the user with ssel2 = 1, corresponding to choice ofα2

as the ground coefficient. This leaves us with the cosetW1 .
There is one remaining user with sse= l0 = 1. Sinceρ0 = α,
we have the partitioning

W1 = W0 ∪ {W0 + α}.

Again we choose to assign cosetW0 + α to the last
remaining user, whose ground coefficient thus is set equal to
α.

Thus the signals of the3 users are given by

s(1, 0, t) =
√
2ı
(

ıT ([1+2α12]xξτ4 ) + 2ıT ([1+2α13]xξτ3 )+

+4ıT ([1+2α7]xξτ2) + 8ıT ([1+2α14]xξτ1 )

+16ıT ([1+2]x)
)

,

s(α2, 0, t) =
√
2ı
(

ıT ([1+2α11]xξτ2 ) + 2ıT ([1+2α6]xξτ1)+

+4ıT ([1+2α2]x)
)

,

s(α, 0, t) =
√
2ı
(

ıT ([1+2α9]xξτ1 ) + 2ıT ([1+2α]x)
)

,

wherex = ξt and (τ1, τ2, τ3, τ4) = (1, 2, 3, 4).
Figure 3 graphically depicts the assignment of ground

coefficients. In the tree, the root node corresponds to the
subspaceWr−1 = W3 in the example. Each node in the tree
corresponds to a cosetWl + g of some subspaceWl of W3.
The nodes one level down from the root node corresponds to
the two cosets ofW2 (one of them of course isW2 itself).
The nodes two levels down from the root node correspond to
cosets ofW1. The leaf nodes correspond to cosetsW0 + g
of W0 = {0} in W3. Each user is assigned a distinct node
in the tree. The ground coefficient assigned to the particular
user can be chosen to be any coset representative of the coset
associated to that node. Given that a node is assigned to a
user, no descendant of that node can be assigned to any other
user. The coefficients assigned to the user are of the form

{g, g + δ1, · · · , g + δm−1}.

The tree only depicts howg is to be selected. Giveng, the
remaining coefficients are obtained by adding elementsδk to
g. The elements{δk} are themselves drawn from the coset
W3 + ζ of W3. This coset is not depicted in the tree.

In this example, the reader will have noticed that there are
16− 10 = 6 unused sequences remaining in FamilyA. These
may be added to the existing list of sequences as users wishing
to use a4-QAM constellation:

s(0, 0, t) =
√
2ı
(

ıT (x)
)

s(α3, 0, t) =
√
2ı
(

ıT ([1+2α3]x)
)

s(α4, 0, t) =
√
2ı
(

ıT ([1+2α4]x)
)

s(α5, 0, t) =
√
2ı
(

ıT ([1+2α5]x)
)

s(α8, 0, t) =
√
2ı
(

ıT ([1+2α8]x)
)

s(α10, 0, t) =
√
2ı
(

ıT ([1+2α10]x)
)

.

V. A N INTERLEAVED CONSTRUCTION FOR16-QAM

SettingM = 4 in the SQM2 construction yields Family
SQ16. The associated normalized maximum correlation pa-
rameterθmax for this family is upper bounded by1.61

√
N

which is lower than the upper bound onθmax of 1.8
√
N for

sequence familyQB. In the next subsection, we interleave
sequences to construct a16-QAM sequence family whose
upper bound onθmax is further lowered to

√
2N .
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Cosets of

Fig. 3. Variable-Rate Signalling with Three Users

A. FamilyIQ16

Let δ1 be an element ofFq with tr(δ1) = 1 and H the
additive subgroup{0, δ1}. LetG be the set obtained by picking
one coset representative from each of the coset representatives
of H in Fq. ThusG is of size

| G | =
q

2
.

Let τ1 be such that{1, ατ1} is a linearly independent set over
F2.

Family IQ16 is then defined as the collection of sequences:

IQ16 = {{s(g, κ, t) | κ ∈ Z4 × F2} | g ∈ G} (20)

with the κ-th sequence assigned to theg-th user sequence
given by (21). Sequences{u0(t)}, {u1(t)} are given by

u0(t) = T ([1 + 2g]ξt)

u1(t) = T ([1 + 2(g + δ1)]ξ
t+τ1).

The theorem below identifies the principal properties of
Family IQ16.

Theorem 5.1:Let IQ16 be the family of sequences over
16-QAM constellation defined in (20). Then,

1) All sequences inIQ16 have periodN = 2(2r − 1).
2) For large values ofN , the energy of the sequences in

the family is given by

E ≈ 10N.

3) For large values ofN , the normalized maximum corre-
lation parameter of the family can be bounded as

θmax .
√
2
√
N.

4) Family IQ16 can support(N + 2)/4 distinct users.
5) Each user can transmit3 bits of data per sequence

period.

6) The normalized minimum squared Euclidean distance
between all sequences assigned to a user is given by

d
2

min ≈ 2N.

7) The sequences in FamilyIQ16 are approximately bal-
anced.

Proof: A proof of the Property (3) can be found in
Appendix VIII. The remaining properties can be established
in essentially the same manner as was done in the case of
Family SQM2 .

VI. FAMILIES OF SEQUENCES OVERQ-PAM
CONSTELLATION

So far all our constructions have been for sequences over
theM2-QAM constellation. In this section, we shall show that
by restricting the symbol alphabet to a size2M subset of the
QAM constellation, the maximum correlation magnitude can
be further lowered. This subset of theM2-QAM constellation
is given by (4) and for obvious reasons, will be referred to as
the quadrature-PAM or Q-PAM constellation.

We first present a general technique for constructing families
P2M of sequences over the Q-PAM constellation. Subse-
quently, we shall use a different interleaving technique to
construct a familyIP8 of sequences over the specific8-ary
Q-PAM constellation. Remarkably, this latter sequence family
achieves the Welch bound [16] on maximum magnitude of
correlation with equality. To our knowledge, this family isthe
only-known non-trivial optimal family of sequences over a
non-PSK symbol alphabet, i.e., over an alphabet not comprised
of roots of unity.

A. FamilyP2M

Let δ1, δ2, . . . , δm−1 be trace1 elements ofFq having the
property that{1, δ1, δ2, . . . , δm−1} is a linearly independent
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s(g, κ, t) =

{ √
2ı
(
ıu1(t)(−1)κ1 + 2 ıu0(t)

)
ıκ0 , t even√

2ı ı
(
ıu0(t) − 2 ıu1(t)(−1)κ1

)
ıκ0 , t odd.

(21)

set overF2. Set δ0 = 0. Let G = {ga} be the largest subset
of Fq having the property that

ga + δk 6= gb + δl, ga, gb ∈ G, 0 ≤ k, l ≤ (m− 1),

unlessga = gb and δk = δl. As before, the corresponding
Gilbert-Varshamov and Hamming bounds on the size ofG
are given by

2r

1 +
(
m−1
1

)
+
(
m−1
2

) ≤ | G | ≤ 2r

1 +
(
m−1
1

) . (22)

Family P2M is defined as follows:

P2M =
{{

s(g, κ, t)
∣
∣κ ∈ Z4 × F

m−1
2

}∣
∣ g ∈ G

}
.

(23)

Each user is thus assigned the set
{
s(g, κ, t) | κ ∈ Z4 × F

m−1
2

}

of sequences with the(κ)-th sequence given by

s(g, κ, t) =
√
2ı

(
m−1∑

k=1

2m−k−1 ıuk(t)(−1)κk +

2m−1 ıu0(t)
)

ıκ0

where

u0(t) = T ([1 + 2g]ξt)

uk(t) = T ([1 + 2(g + δk)]ξ
t),

k = 1, 2, . . . ,m− 1.

Note that in relation to the definition of the sequence
Family SQM2 , the time-shift parametersτk are absent in the
present construction. It is the absence of the termsξτk as
we inadvertently discovered, that causes the sequence symbol
alphabet to lie in the Q-PAM subconstellation. Nevertheless, as
we see below, FamilyP2m has essentially the same properties
as does FamilySQM2 while enjoying the added advantage of a
lower value of maximum correlation magnitude. The principal
properties of FamilyP2M are summarized in the following
theorem:

Theorem 6.1:Let m ≥ 2 be a positive integer and letP2M

be the family of sequences over2M -ary Q-PAM constellation
defined in (23). Then,

1) All sequences inP2M have periodN = 2r − 1.
2) For large values ofN , the energy of the sequences in

the family is given by

E ≈ 2

3
(M2 − 1)N.

3) The maximum correlation parameter of the family can
be bounded as

θmax .

√

20

9
M2

√
N + 1.

For large values ofM andN , the normalized maximum
correlation parameter of the family can be bounded as

θmax .
√
5
√
N.

4) Family P2M can support|G| distinct users where|G|
lies in the range given in (22).

5) Each user can transmitm+ 1 bits of data per sequence
period.

6) The normalized minimum squared Euclidean distance
between all sequences assigned to a user is given by

d
2

min ≈ 12

M2 − 1
N.

7) The sequences in FamilyP2M are approximately bal-
anced.

Proof: The above properties of FamilyP2M can be
established using the same techniques used to prove properties
of FamiliesCQM2 andSQM2 , and are hence omitted.

The only difference in the correlation computations for
FamiliesP2M andSQM2 is that, in this case,θ

uk,u
′

0

(τ) is also
at right angles withθ

u0,u
′

k

(τ). This is in addition toθ
u0,u

′

0

(τ)

being in right angles withθ
uk,u

′

k

(τ) (see Appendix VII).

1) Variable-Rate Signalling with FamilyP2M : In Sec-
tion IV-B, we described in detail a technique to allow different
users to transmit at variable rates by choosing sequences
from various members of Families{SQM2} corresponding
to constellations of different sizes. Similar techniques can be
used to permit variable-rate signalling on the reverse link
of a CDMA system in which users are permitted to choose
spreading sequences from FamiliesP2M for different values of
parameterM . One obvious difference from the previous case
is the linear independence of the set{1, δ1, . . . , δm−1}. A key
ingredient of the sequence assignment in the variable-ratesig-
nalling scheme involving FamilySQM2 was the identification,
for every collectionH of elementsH = {δ1, δ2, · · · δm−1}, of
the smallest subspaceVl+1 containingH . In the case of Family
SQM2 , this subspace was of dimensionl+1 wherel = µ(m).
In the present case, the linear independence of the{δj} forces
l + 1 = (m− 1) and the choice

Vl+1 = 〈δ1, δ2, · · · , δm−1〉 .
Given the subspacesVl+1 the assignment proceeds as earlier.
We omit the details.

B. FamilyIP8

There are not many families of sequences that (asymp-
totically) meet the Welch lower bound [16] on sequence
correlation, see [7]. To the authors’ knowledge, those that
do achieve the Welch bound with equality, are over a signal
constellation associated toM -ary phase-shift keying for some
M ≥ 2. The asymptotically optimal family of sequences
constructed in this section, FamilyIP8, is, however, over the
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s(g, κ, t) =

{ √
2ı
(
ıu1(t)(−1)κ1 + 2 ıu0(t)

)
ıκ0 , t even√

2ı ı
(
ıu0(t) − 2 ıu1(t)(−1)κ1

)
ıκ0 , t odd

(24)

TABLE VIII

SIMULATION RESULTS FOR VARIOUS SEQUENCE FAMILIES.

Family Constellation Period Family Size Data θmax
θmax
√

N
d2
min

d
2
min

N

(N) Rate
IQ16 16-QAM 30 8 3 100 1.82 600 2
SQ16 16-QAM 15 8 3 82.38 2.04 120 0.75
IP8 8-ary Q-PAM 30 8 3 72.11 1.31 600 2
P8 8-ary Q-PAM 15 8 3 66.48 1.81 120 0.79

CQ16 16-QAM 15 8 4 84.21 2.1 60 0.34

8-ary Q-PAM alphabet (see Fig. 2) and is constructed using
sequence interleaving.

Let δ1 be a trace1 element ofFq such that{1, δ1} is a
linearly independent set overF2. Let H = {0, δ1} denote
the additive subgroup generated byδ and letG be the set of
coset representatives ofH in Fq.

Family IP8 is defined as follows:

IP8 = {{s(g, κ, t) | κ ∈ Z4 × F2} | g ∈ G} (25)

with theκ-th sequence given by (24) and with

u0(t) = T ([1 + 2g)]ξt)

u1(t) = T ([1 + 2(g + δ1)]ξ
t).

As would be evident from the definition of the sequence
family, we have interleaved two sequences over the8-ary Q-
PAM alphabet to generate a single sequence over the same
alphabet.

Most of the properties of FamilyIP8 like period of the se-
quences, family size, data rate, Euclidean distance, and balance
are exactly the same as that of FamilyIQ16 (see Section V-A).
The main difference between the two families is that in case of
Family IP8, for large values ofN , the normalized maximum
correlation parameter achieves the Welch bound, i.e., can be
bounded as

θmax .
√
N ,

and this is established in Appendix IX. For sake of brevity,
we omit the proofs of the other properties.

VII. S IMULATION RESULTS

We have simulated one member of each of the various
sequence families that we have constructed in this paper. The
results of the simulation are available in Table VIII. The
underlying finite field that is used to construct all the families
is the same:F16. We have chosen the minimal polynomial
X4+X+1 to constructF16. The construction of the families
mirrors their definition in the paper. Since we have chosen
sequences of short period, the results are not completely
indicative of the asymptotic behavior of the families.

APPENDIX I
CLOSED-FORM EXPRESSION FORFAMILY A CORRELATION

A useful closed-form expression for the pairwise-correlation
between a pair of sequences drawn from FamilyA is given
below.

Lemma 1.1: [17] Let a + 2b ∈ R with a, b ∈ T , a 6= 0.
Define

Γ(a+ 2b) :=
∑

x∈T
ıT ([a+2b]x).

Then

Γ(1) =

{ √
2r ǫr, r is odd

−
√
2r ǫr, r is even

(26)

where

ǫ =
1 + ı√

2
.

Further,

Γ(a+ 2b) = Γ(1) ı−T ( b
a
). (27)

Proof: A proof of (27) can be found in [17] and is
presented below for the sake of completeness.

Γ(a+ 2b) =
∑

x∈T
ıT ([a+2b]x)

=
∑

x∈T
ıT ([1+2 b

a
]ax)

=
∑

x∈T
ıT ([1+2 b

a
]x)

= Γ(1 + 2γ), whereγ =
b

a
∈ T . (28)

The third equation is obtained by replacingx by ax. Now, if x
andγ are two elements inT , then(x+γ+2

√
xγ) also belongs

to T . If x runs over all elements ofT , then(x+ γ + 2
√
xγ)
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also runs over all elements ofT . Therefore

Γ(1) =
∑

x∈T
ıT (x)

=
∑

x∈T
ıT (x+γ+2

√
xγ)

=
∑

x∈T
ıT (x+2

√
xγ)ıT (γ)

=
∑

x∈T
ıT (x+2xγ)ıT (γ)

=
∑

x∈T
ıT ([1+2γ]x)ıT (γ)

= Γ(1 + 2γ)ıT (γ). (29)

Proof of the lemma is completed by comparing the two
expressions in (28) and (29).

We refer the reader to [17] for the algebraic-geometric proof
of (26).

The following lemma summarizes the correlation properties
of sequences from FamilyA.

Lemma 1.2:Consider two sequences from FamilyA de-
fined as

s(a, t) = ıT ([1+2a]ξt) and

s(b, t) = ıT ([1+2b]ξt), a, b ∈ T .

Then

θs(a),s(b)(τ) =







2r − 1, a = b, τ = 0
−1, a 6= b, τ = 0

−1 + Γ(1)ı−T (z), τ 6= 0

where

z = a+
a+ b

y
+

1√
y
+ 2µ(a, b, y)

with
y = ξτ + 1 + 2

√

ξτ

andµ some function ofa, b, y.
Proof: Setx = ξτ . The proof follows from an application

of Lemma 1.1, cf. [4], [17], and noting that

[1 + 2a]x− [1 + 2b]

= (x− 1) + 2(ax+ b)

= x+ 1 + 2
√
x+ 2[ax+ b+ 1 +

√
x]

= y + 2[a(y + 1) + b+ 1 +
√
y + 1]

= y + 2[ay + a+ b+
√
y] ,

where we have set

y , x+ 1 + 2
√
x.

Thus the “γ” in Lemma 1.1, is given by

a+
a+ b

y
+

1√
y
+ 2µ(a, b, y).

APPENDIX II
BALANCE OF SEQUENCES OVERM2-QAM

(Proof of Lemma 3.1).

Let N(ν) be the number of times the element
∑m−1

k=0 2kıνk

from theM2-QAM constellation occurs in one period of the
sequence{sp(t)}, whereν = (ν0, ν1, . . . , νm−1). We have

N(ν) = |{x ∈ T | T (ap,kx) = νk, k = 0, 1, . . . ,m− 1}|
We rewrite the expression forN(ν) with the aid of exponential
sums to get

N(ν)

=
1

4m

∑

x∈T

∑

ω∈Z
m
4

ı
Pm−1

k=0
(T (ap,kx)−νk)ωk ,

=
1

M2

∑

ω∈Z
m
4

ı−
Pm−1

k=0
νkωk ·

∑

x∈T
ıT ([

Pm−1

k=0
ωkap,k]x)

=
q

M2
+

1

M2

∑

ω∈Z
m
4
, ω 6=0

ı−
Pm−1

k=0
νkωk ·

(
∑

x∈T
ıT([

Pm−1

k=0
ωkap,k]x)

)

. (30)

By the linear independence of the coefficientsap,k,
∑m−1

k=0 ωkap,k does not equal0 for any choice ofω and, hence,
the magnitude of

(
∑

x∈T
ıT([

Pm−1

k=0
ωkap,k]x)

)

is bounded from above by
√
q =

√
N + 1 (see Appendix I).

With this, we get the bound
∣
∣
∣N(ν) − q

M2

∣
∣
∣ ≤ M2 − 1

M2

√
N + 1,

thus proving approximate balance.

APPENDIX III
ENERGY OFSEQUENCES INCANONICAL FAMILY CQM2

(Proof of Property (2) in Theorem 3.2)

Consider two sequences in FamilyCQM2 , {s(g, κ, t)} and
{s(g′

, κ
′

, t)}, given by

s(g, κ, t) =
√
2ı

m−1∑

k=0

2kıuk(t)ıκk (31)

s(g
′

, κ
′

, t) =
√
2ı

m−1∑

l=0

2lıu
′

l(t)ıκ
′

l . (32)

The correlation between the two sequences is given by

θs(g,κ),s(g′,κ′)(τ) =

2

m−1∑

k=0

m−1∑

l=0

2k+lıuk(t+τ)−u
′

l(t)ıκk−κ
′

l .
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Thus, energy of a sequence{s(g, κ, t)} is given by

E(s(g, κ))
= θs(g,κ),s(g,κ)(0)

= 2
∑

t

∑

k

∑

l

2k+lıuk(t)−ul(t)ıκk−κl

= 2

m−1∑

k=0

4k N + 2
∑

k,l,k 6=l

2k+lθuk,ul
(0)ıκk−κl .

It follows from this that
∣
∣
∣
∣
E(s(g, κ))− 2

(M2 − 1)

3
N

∣
∣
∣
∣

≤ 2




∑

k,l

2k+l −
∑

k=l

2k




√
N + 1

= 2

(

(2m − 1)2 − 4m − 1

3

)√
N + 1

= 2

(
2

3
4m − 2m+1 +

4

3

}√
N + 1.

Thus, for largeN , the energy is approximately given by

E(s(g, κ)) ≈ 2
(M2 − 1)

3
N.

APPENDIX IV
CORRELATION OFSEQUENCES INCANONICAL FAMILY

CQM2

(Proof of Property (3) in Theorem 3.2)
The correlation between two sequences,{s(g, κ, t)} and

{s(g′

, κ
′

, t)} (see (31) and (32)), from FamilyCQM2 is given
by

θs(g,κ),s(g′,κ′)(τ) =

2
∑

t

∑

k

∑

l

2k+lıuk(t+τ)−u
′

l(t)ıκk−κ
′

l .

Thus,
∣
∣
∣θs(g,κ),s(g′

,κ
′)(τ)

∣
∣
∣

≤ 2
∑

k

∑

l

2k+l
∣
∣
∣θuk,u

′

l
(τ)
∣
∣
∣

≤ 2
∑

k,l

2k+l(1 +
√
N + 1)

. 2(2m − 1)2
√
N + 1

= 2(M − 1)2
√
N + 1.

Normalizing with the energy of the concerned sequences,
we obtain

θmax .
2(M − 1)2

2(M2 − 1)/3

√
N + 1

.
3(M − 1)2

(M2 − 1)

√
N + 1

. 3
√
N

for largeN andM .

APPENDIX V
M INIMUM -SQUARED EUCLIDEAN DISTANCE FOR

CANONICAL FAMILY CQM2

(Proof of Property (6) in Theorem 3.2)
We are interested in computing the minimum squared Eu-

clidean distance between all the sequences assigned to the
same user. Consider the two sequences assigned to a user:
{s(g, κ, t)} and{s(g, κ′

, t)}.
Let L be the set of all indicesk such that

κk 6= κ
′

k.

Then

d2E(s(g, κ, t), s(g, κ
′

, t))

= 2
∑

t

∣
∣
∣
∣
∣

∑

k∈L

2kıuk(t)(ıκk − ıκ
′

k)

∣
∣
∣
∣
∣

2

= 2
∑

t

∑

k,l∈L

2k+lıuk(t)−ul(t) ·

(ıκk − ıκ
′

k)(ı−κl − ı−κ
′

l )

= 2
∑

t

∑

k∈L

4k
∣
∣
∣ıκk − ıκ

′

k

∣
∣
∣

2

+

2
∑

t

∑

k,l∈L,k 6=l

2k+lıuk(t)−ul(t) ·

(ıκk − ıκ
′

k)(ı−κl − ı−κ
′

l )

≥ 2N
∑

k∈L

4k | ıκk − ıκ
′

k |2 −

2
√
N + 1

∑

k,l∈L,k 6=l

2k+l(ıκk − ıκ
′

k)(ıκl − ıκ
′

l )

For largeN , this bound is minimized when

κk = κ
′

k 1 ≤ k ≤ (m− 1)

κ0 = κ
′

0 + 1 ,

leading to
d 2
min = 4N.

Upon normalization with the energy of the sequences, we
obtain

d
2

min ≈ 4N
2(M2−1)

3

=
6N

M2 − 1
.

APPENDIX VI
BOUNDING THE CORRELATION UNDERVARIABLE RATE

SIGNALLING FOR FAMILIES {CQM2}
Let the sequences assigned to two users from Families

CQM2
1

andCQM2
2

be given by

s(g, κ, t) =
√
2ı

m1−1∑

k=0

2k ıuk(t)ıκk

s(g
′

, κ
′

, t) =
√
2ı

m2−1∑

l=0

2l ıu
′

l(t)ıκ
′

l .
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We assume, without loss of generality, thatm1 > m2. Then

θs(g,κ),s(g′
,κ

′)(τ) = 2

m1−1∑

k=0

m2−1∑

l=0

2k+lθuk,u
′

l

(τ)ıκk−κ
′

l .

Each θ
uk,u

′

l

(τ) corresponds to correlation of a pair of se-
quences from FamilyA and has magnitude bounded by
(1 +

√
N + 1). Therefore, the magnitude ofθs(g,κ),s(g′

,κ
′)(τ)

can be bounded as
∣
∣
∣θs(g,κ),s(g′

,κ
′ )(τ)

∣
∣
∣ . 2(2m1 − 1)(2m2 − 1)

√
N + 1

= 2(M1 − 1)(M2 − 1)
√
N + 1.

The sequences{s(g, κ, t)}, {s(g′

, κ
′

, t)} have energy2(M
2
1−1)
3

and 2(M2
2−1)
3 respectively. Upon normalization, we obtain the

bound on normalized correlation

θs(g,κ),s(g′
,κ

′ )(τ) .
2(M1 − 1)(M2 − 1)

2
3

√

(M2
1 − 1)(M2

2 − 1)

√
N + 1

=
3
√

(M1 − 1)(M2 − 1)
√

(M1 + 1)(M2 + 1)

√
N + 1.

The normalized non-trivial autocorrelation functions are
bounded respectively by

θs(g,κ),s(g,κ)(τ) .
3(M1 − 1)2

(M2
1 − 1)

√
N + 1

=
3(M1 − 1)

(M1 + 1)

√
N + 1,

for sequences over QAM constellations of sizeM2
1 , and

θs(g′
,κ

′ ),s(g′
,κ

′)(τ) .
3(M2 − 1)

(M2 + 1)

√
N + 1,

for sequences over QAM constellations of sizeM2
2 . It follows

that the normalized maximum correlation magnitudeθmax

experienced by the user with a smaller constellation is given
by

θmax .
3
√

(M1 − 1)(M2 − 1)
√

(M1 + 1)(M2 + 1)

√
N + 1

whereas the value ofθmax experienced by the user with larger
constellation size remains unchanged at

θmax .
3(M1 − 1)

(M1 + 1)

√
N + 1.

APPENDIX VII
CORRELATION OFSEQUENCES INFAMILY SQM2

(Proof of Property (3) in Theorem 4.1)
We establish properties for the basic sequences and leave

the straightforward extension of the results to the generalcase
to the reader.

For a fixedM , let {s(g, 0, t)} and{s(g′

, 0, t)} be two basic
sequences from FamilySQM2 where

s(g, 0, t) =
√
2ı

m−1∑

k=0

2m−k−1 ıuk(t) (33)

s(g
′

, 0, t) =
√
2ı

m−1∑

l=0

2m−l−1 ıu
′

l(t). (34)

with

u0(t) = T ([1 + 2g]ξt)

uk(t) = T ([1 + 2(g + δk)]ξ
t+τk) (35)

k = 1, 2, . . . ,m− 1

u
′

0(t) = T ([1 + 2g
′

]ξt)

u
′

k(t) = T ([1 + 2(g
′

+ δk)]ξ
t+τk) (36)

k = 1, 2, . . . ,m− 1.

The correlation between the two sequences,{s(g, 0, t)} and
{s(g′

, 0, t)}, is given by

θs(g,0), s(g′
,0)(τ)

=

N−1∑

t=0

(
√
2ı

m−1∑

k=0

2m−k−1 ıuk(t+τ)

)

·



√
2ı

m−1∑

l=0

2m−l−1 ıu
′

l
(t)





= 2

m−1∑

k, l=0

22m−k−l−2

(
N−1∑

t=0

ıuk(t+τ)−u
′

l(t)

)

= 2

m−1∑

k, l=0

22m−k−l−2θ
uk, u

′

l

(τ). (37)

The correlation properties of sequences in FamilySQM2

are handled in two separate cases.
1) Zero time shift(τ = 0): Only the caseg 6= g′ is of

interest here. Then,

θs(g,0),s(g′
,0)(0) = 2

m−1∑

k, l=0

22m−k−l−2θ
uk, u

′

l

(0).

For the casek = l we have:

θuk, u
′

k
(0)

=
∑

t

ıT ([1+2(gk+δk)]ξ
t+τk )−T ([1+2(g

′

k+δk)]ξ
t+τk )

=
∑

t

ı2T ([gk−g
′

k]ξ
t+τk )

= −1 (see Appendix I).

For the casek 6= l, we have the bound
∣
∣
∣θuk, u

′

l

(0)
∣
∣
∣ ≤ (1 +

√
N + 1).

This leads to
∣
∣
∣θs(g),s(g′ )(0)

∣
∣
∣

≤ 2(2m − 1)2 + 2

(
2

3
4m − 2m+1 +

4

3

) √
N + 1

. 2

(
2

3
4m − 2m+1 +

4

3

) √
N. (38)
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2) Non-zero time shift(τ 6= 0): Here we need to consider,
in addition, the case wheng = g′.

We rewrite the expression forθs(g,0), s(g′
,0)(τ) from (37) to

get

θs(g,0), s(g′
,0)(τ)

= 2





m−1∑

k,l=0,k 6=l

(

22(m−1)−k−lθ
uk, u

′

l

(τ)
)

+

m−1∑

k=0

22(m−k−1)θ
uk, u

′

k

(τ)

]

. (39)

Using Lemma 1.2 in Appendix I, we can rewrite the expres-
sions forθuk, u

′

k
(τ) as:

θ
uk, u

′

k

(τ) = −1 + Γ(1)ı−T (zk) , k = 0, 1, . . . ,m− 1

where

z0 = g +
g + g

′

y
+

1√
y
+ 2µ(g, g

′

, y),

zk = (g + δk) +
(g + g

′

)

y
+

1√
y
+ 2µ(g + δk, g

′

+ δk, y)

= z0 + δk + 2µ
′

(g + δk, g
′

+ δk, y).

The elementy is a function of the time shiftτ .

Substituting the expressions forθ
uk, u

′

k

(τ) in (39), we get

θs(g,0), s(g′
,0)(τ)

= 2





m−1∑

k,l=0,k 6=l

(

22(m−1)−k−lθuk, u
′

l

(τ)
)

+

m−1∑

k=1

22(m−k−1) (−1+

Γ(1)ı−T (z0+δk+2µ
′

(g+δk,g
′

+δk,y))
)

+

22m−2
(

−1 + Γ(1)ı−T (z0)
))

= 2





m−1∑

k,l=0,k 6=l

(

22(m−1)−k−lθ
uk, u

′

l

(τ)
)

+

m−1∑

k=1

22(m−k−1) (−1+

Γ(1)ı−T (z0)ı−T (δk)(−1)tr(µ
′

(g+δk,g
′

+δk,y))
)

+

22m−2
(

−1 + Γ(1)ı−T (z0)
))

.

We know that
∣
∣
∣θuk, u

′

l

(τ)
∣
∣
∣ can be bounded as(1+ |Γ(1)|) =

(1 +
√
N + 1). Also, tr(δk) = 1. It follows that

|θs(g,0), s(g′
,0)(τ)|

≤

∣
∣
∣
∣
∣
∣

2(2m − 1)2 + 2 Γ(1)





m−1∑

k,l=0,k 6=l

22(m−1)−k−l+

m−2∑

k=0

22k(ı) + 22m−2(1)

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
2(2m − 1)2 + 2Γ(1)

(

4m−1 +
2

3
4m − 2m+1+

4

3
+

4m−1 − 1

3
ı

)∣
∣
∣
∣

.

(
61

18
16m − 44

3
8m +

230

9
4m − 64

3
2m +

68

9

) 1
2 √

N.

(40)

To determineθmax (and henceθmax as well), for Family
SQM2 , it turns out to be enough to restrict attention to
correlations amongst basic sequences. With the aid of Property
(2) dealing with the energy of sequences of FamilySQM2

and the correlation bounds in (38) and (40), we arrive at the
following upper bounds onθmax andθmax for largeM,N :

θmax .

√
122

6
M2

√
N

and

θmax .

√
122

4

√
N.

APPENDIX VIII
CORRELATION OFSEQUENCES INFAMILY IQ16

(Proof of Property (3) of Theorem 5.1)
As in the case of FamilySQ16, we define basic sequences

in Family IQ16 as sequences corresponding to assigning
κ0 = κ1 = 0 in (21). We analyze the correlation between two
basic sequences from FamilyIQ16 and it is straightforward
to extend the results to the case of modulated sequences.

Let {s(g1, 0, t)} and {s(g2, 0, t)} be two basic sequences
belonging to FamilyIQ16, i.e.,

s(g1, 0, t) =

{ √
2ı
(
ıu1(t) + 2 ıu0(t)

)
, t even√

2ı ı
(
ıu0(t) − 2 ıu1(t)

)
, t odd

(41)

s(g2, 0, t) =

{ √
2ı
(
ıv1(t) + 2 ıv0(t)

)
, t even√

2ı ı
(
ıv0(t) − 2 ıv1(t)

)
, t odd

(42)

where

u0(t) = T ([1 + 2 g1]ξ
t)

u1(t) = T ([1 + 2 (g1 + δ1)]ξ
t+τ1)

v0(t) = T ([1 + 2 g2]ξ
t) and

v1(t) = T ([1 + 2 (g2 + δ1)]ξ
t+τ1).

Lemma 8.1:Let {s(g1, 0, t)} and {s(g2, 0, t)} be two se-
quences defined in (41) and (42). Then

θs(g1),s(g2)(τ) .
√
2
√
N , 0 ≤ τ < N.
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Proof: The expression for the correlation between the two
Q-PAM sequences will take on one of two forms depending
on if τ = 0 (mod 2) or if τ = 1 (mod 2).

Let us suppose thatτ = 0 (mod 2). In that case, the
correlation between the two sequences can be written as:

θs(g1),s(g2)(τ)

=

N−1∑

t=0

s(g1, 0, t+ τ) s(g2, 0, t)

= 2
∑

t even

(

ıu1(t+τ) + 2 ıu0(t+τ)
)(

ı−v1(t) + 2 ı−v0(t)
)

+

2
∑

t odd

(

ıu0(t+τ) − 2 ıu1(t+τ)
)(

ı−v0(t) − 2 ı−v1(t)
)

= 2 ( θu1, v1(τ) + 2 θu0, v1(τ) + 2 θu1, v0(τ)+

4 θu0, v0(τ)) + 2 ( θu0, v0(τ) − 2 θu0, v1(τ)−
2 θu1, v0(τ) + 4 θu1, v1(τ))

= 10 (θu0, v0(τ) + θu1, v1(τ))

Using the results from Appendix VII, we can see that
θu0, v0(τ) and θu1, v1(τ) are at right angles to each other.
We can bound the magnitude ofθs(g1),s(g2)(τ) in the above
expression as

∣
∣θs(g1),s(g2)(τ)

∣
∣ ≤ |10 + 10 Γ(1)(1 + ı)|

. 10
√
2
√

N/2

. 10
√
N. (43)

Now, if τ = 1 (mod 2), we get

θs(g1),s(g2)(τ)

=
N−1∑

t=0

s(g1, 0, t+ τ) s(g2, 0, t)

= 2 ı
∑

t even

(

ıu0(t+τ) − 2 ıu1(t+τ)
)(

ı−v1(t) + 2 ı−v0(t)
)

−

2 ı
∑

t odd

(

ıu1(t+τ) + 2 ıu0(t+τ)
)(

ı−v0(t) − 2 ı−v1(t)
)

= 2 ı ( θu0, v1(τ) − 2 θu1, v1(τ) + 2 θu0, v0(τ)−
4 θu1, v0(τ)) − 2 ı ( θu1, v0(τ) − 2 θu1, v1(τ) +

2 θu0, v0(τ) − 4 θu0, v1(τ))

= 10 ı (θu0, v1(τ)− θu1, v0(τ)) . (44)

The two correlations appearing in the above expression, viz.
θu0, v1(τ) andθu1, v0(τ) are not aligned with respect to each
other. In the worst case, both of them will contribute(1+Γ(1))
to the final correlation expression. With that, we can bound
the magnitude ofθs(g1),s(g2)(τ) in the above expression as

∣
∣θs(g1),s(g2)(τ)

∣
∣ ≤ |10 Γ(1)(1 + 1)|

. 20
√

N/2

. 10
√
2
√
N. (45)

With the bounds in (43) and (45), and by normalizing with
the energy of the sequences, we get the statement of the
Lemma.

APPENDIX IX
CORRELATION OFSEQUENCES INFAMILY IP8

As with other sequence families and for the same reasons,
we analyze the correlation between two basic sequences in
Family IP8 corresponding to the assignmentκ0 = κ1 = 0 in
(24).

Let {s(g, 0, t)} and {s(g′

, 0, t)} be two basic sequences
belonging to FamilyIP8, i.e.,

s(g, 0, t) =

{ √
2ı
(
ıu1(t) + 2 ıu0(t)

)
, t even√

2ı ı
(
ıu0(t) − 2 ıu1(t)

)
, t odd

(46)

s(g
′

, 0, t) =







√
2ı
(

ıu
′

1(t) + 2 ıu
′

0(t)
)

, t even
√
2ı ı
(

ıu
′

0(t) − 2 ıu
′

1(t)
)

, t odd
(47)

where

u0(t) = T ([1 + 2 g]ξt)

u1(t) = T ([1 + 2 (g + δ1)]ξ
t)

u
′

0(t) = T ([1 + 2 g
′

]ξt) and

u
′

1(t) = T ([1 + 2 (g
′

+ δ1)]ξ
t).

The expression for the correlation between the two Q-PAM
sequences will take on one of two forms depending on ifτ =
0 (mod 2) or if τ = 1 (mod 2).

Let us suppose thatτ = 0 (mod 2). In that case, the
correlation between the two sequences can be written as (see
Appendix VIII for details):

θs(g),s(g′ )(τ) = 10
(

θ
u0, u

′

0

(τ) + θ
u1, u

′

1

(τ)
)

.

Using the results from Appendix VII, we can see that
θ
u0, u

′

0

(τ) and θ
u1, u

′

1

(τ) are at right angles to each other.
We can bound the magnitude ofθs(g),s(g′ )(τ) in the above
expression as

∣
∣
∣θs(g),s(g′ )(τ)

∣
∣
∣ ≤ |10 + 10 Γ(1)(1 + ı)|

. 10
√
2
√

N/2

. 10
√
N. (48)

Now, if τ = 1 (mod 2), we get (see Appendix VIII for
details)

θs(g),s(g′ )(τ) = 10 ı
(

θu0, u
′

1

(τ) − θu1, u
′

0

(τ)
)

. (49)

From the results in Appendix I, the two correlations appearing
in the above expression, viz.θ

u0, u
′

1

(τ) andθ
u1, u

′

0

(τ) can be
rewritten as

θu0, u
′

1

(τ) = −1 + Γ(1)ı−T (z0)

θ
u1, u

′

0

(τ) = −1 + Γ(1)ı−T (z1) ,

where

z0 = g +
g + g

′

+ δ1
y

+
1√
y
+ 2µ(g, g

′

+ δ1, y)

z1 = g + δ1 +
g + δ1 + g

′

y
+

1√
y
+ 2µ(g + δ1, g

′

, y)

= z0 + δ1 + 2µ
′

(g + δ1, g
′

, y).
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Since tr(δ1) = 1, we can see that the two correlation terms
appearing in (49) are at right angles and we can bound the
magnitude ofθs(g),s(g′ )(τ) as

∣
∣
∣θs(g),s(g′ )(τ)

∣
∣
∣ ≤ |10 + 10 Γ(1)(1 + ı)|

. 10
√
2
√

N/2

. 10
√
N. (50)

With the bounds in (48) and (50), and by normalizing with
the energy of the sequences, we can boundθmax andθmax for
Family IP8 as:

θmax . 10
√
N

θmax .
√
N.
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[3] S. Boztaş, “CDMA over QAM and other Arbitrary Energy Constella-
tions,” Proc. IEEE International Conf. on Comm. Systems, vol. 2, pp.
21.7.1-21.7.5, Singapore, 1996.
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P. Solé, “TheZ4-linearity of Kerdock, Preparata, Goethals, and related
codes,” IEEE Trans. Inform. Theory, vol. 40, no. 2, pp. 301–319, Mar.
1994.

[7] T. Helleseth and P.V. Kumar, “Sequences with low correlation,” in
Handbook of Coding Theory, V.S. Pless and W.C. Huffman, Eds.
Amsterdam, The Netherlands: Elsevier, 1998.

[8] P.V. Kumar, T. Helleseth, and A.R. Calderbank, “An upperbound for
Weil exponential sums over Galois rings and applications,”IEEE Trans.
Inform. Theory, vol. 41, no. 2, pp. 456–468, Mar. 1995.

[9] P.V. Kumar, T. Helleseth, A.R. Calderbank, and A.R. Hammons Jr.,
“Large families of quaternary sequences with low correlation,” IEEE
Trans. Inform. Theory, vol. 42, no. 2, pp. 579–592, Mar. 1996.

[10] H. F. Lu and P. V. Kumar, “A Unified Construction of Space-Time
Codes With Optimal Rate-Diversity Tradeoff,”IEEE Trans. Inform.
Theory, vol. 51, no. 5, pp. 1709–1730, May 2005.

[11] B.R. MacDonald,Finite Rings with Identity. New York: Marcel Dekker,
1974.
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