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Throughput and Fairness Guarantees Through
Maximal Scheduling in Wireless Networks
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Abstract—The question of providing throughput guarantees
through distributed scheduling, which has remained an open
problem for some time, is addressed in this paper. It is shown
that a simple distributed scheduling strategy, maximal scheduling,
attains a guaranteed fraction of the maximum throughput region
in arbitrary wireless networks. The guaranteed fraction depends
on the “interference degree” of the network, which is the max-
imum number of transmitter–receiver pairs that interfere with
any given transmitter–receiver pair in the network and do not
interfere with each other. Depending on the nature of communi-
cation, the transmission powers and the propagation models, the
guaranteed fraction can be lower-bounded by the maximum link
degrees in the underlying topology, or even by constants that are
independent of the topology. The guarantees are tight in that they
cannot be improved any further with maximal scheduling. The
results can be generalized to end-to-end multihop sessions. Finally,
enhancements to maximal scheduling that can guarantee fairness
of rate allocation among different sessions, are discussed.

Index Terms—Fairness guarantees, maximal scheduling,
throughput guarantees, wireless networks.

I. INTRODUCTION

MAXIMIZING the network throughput by appropriately
scheduling sessions is a key design goal in wireless net-

works. Tassiulas et al. characterized the maximum attainable
throughput region and also provided a scheduling strategy that
attains this throughput region in any given wireless network
[21]. The policy, however, is centralized and can have expo-
nential complexity depending on the network topology consid-
ered. Later, Tassiulas [20] and Shah et al. [18] provided linear
complexity randomized scheduling schemes that attain the max-
imum achievable throughput region; both scheduling strategies,
however, require centralized control.
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Designing a distributed scheduling policy that attains the
throughput region in wireless networks has remained elusive.
Recently, Lin et al. [10] proved that a distributed maximal
matching scheduling strategy is guaranteed to attain at least
half of this region for the node-exclusive spectrum sharing
model. In the node-exclusive spectrum sharing model, only
scheduling constraint is that a node cannot communicate with
multiple nodes simultaneously. This specific interference
model holds only when every node has a unique frequency in
its two-hop neighborhood.

Different wireless networks have significantly different in-
terference constraints. Bluetooth networks satisfy the node-ex-
clusive spectrum sharing model. On the other hand, IEEE
802.11 networks have limited number of frequencies that may
not permit the allocation of unique frequencies in a two-hop
neighborhood. Furthermore, the interference regions of nodes
involved in transmissions may vary widely depending on the
signal propagation conditions, and may be different for dif-
ferent transmitter–receiver pairs. A basic question that remains
open is whether a distributed scheduling strategy can attain a
guaranteed fraction of the maximum achievable throughput
region for arbitrary interference models. Our investigation takes
a step forward in solving this open problem.

Our contribution is to characterize the maximum-throughput
region attained by a distributed scheduling strategy under arbi-
trary topologies and interference models. The simple scheduling
policy we consider, referred to as maximal scheduling, only en-
sures that if a transmitter has a packet to transmit to a receiver

, either or a transmitter–receiver pair that cannot simul-
taneously transmit with is scheduled for transmission;
the scheduling is otherwise arbitrary. Our investigation of this
maximal scheduling policy has been motivated by the following
observations. In the specific node-exclusive spectrum sharing
model, the maximal scheduling policy becomes the maximal
matching policy considered by Lin et al., and is therefore guar-
anteed to attain at least half of the maximum throughput region
[10]. Dai et al. [7] has also obtained a similar guarantee for the
maximal matching policy in input-queued switches where the
scheduling constraints are similar to that in the node-exclusive
spectrum sharing model. Last but not the least, the simplicity
and localized nature of maximal scheduling imply that it can be
readily implemented in a distributed manner with low overhead
and computation cost. Using the randomized distributed algo-
rithm described in [11], a maximal schedule can be computed
in communication rounds, where represents the
number of nodes in the network and a communication round
involves message exchanges by each node with its two-hop
neighbors. It is therefore interesting and important to examine
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whether maximal scheduling can provide any throughput guar-
antee under arbitrary interference models and topologies.

Towards this goal, we characterize the fraction of the max-
imum throughput region attained by maximal scheduling in
any given topology and interference model. Let be the
maximum interference degree in an arbitrary wireless network

, where the “interference degree” of any transmitter–receiver
pair is the maximum number of transmitter–receiver
pairs that interfere with but do not interfere with each
other. We prove that maximal scheduling is guaranteed to
attain at least of the maximum throughput region
in the given network . Also, there exists an arrival process
in the given network for which maximal scheduling will
attain at most of the maximum-throughput region.
Given a network, the maximum interference degree may be
computed using geometric or graph-theoretic techniques. These
results therefore allow us to obtain performance guarantees for
maximal scheduling for arbitrary node locations, propagation
conditions, interference models, and channel allocations.

We argue that the maximum throughput region attained by
maximal scheduling is significantly different for different inter-
ference models. We first consider a “bidirectional equal power”
interference model in which the network has a single frequency,
and all communications use the same power and involve bidi-
rectional message exchanges (e.g., RTS, CTS, data, ACK ex-
changes in IEEE 802.11). Using a combination of Lyapunov
theory and geometric packing, we prove that in this interference
model, maximal scheduling is guaranteed to attain at least th
of the maximum throughput region. This result therefore guar-
antees that as in the node-exclusive spectrum sharing model, a
distributed scheduling can attain a constant fraction of the max-
imum throughput region in this case as well. Furthermore, we
show that the guarantee cannot be improved any further in this
case as there exists topologies for which maximal scheduling
will attain at most th of the maximum throughput region.
We then consider a “unidirectional equal power” interference
model in which all communications involve unidirectional mes-
sage exchanges. The network still has a single frequency and
all communications use the same power. In this case, however,
the performance of maximal scheduling can become arbitrarily
bad. More precisely, given any constant , there exist topolo-
gies in which maximal scheduling will attain less than of
the maximum throughput region. On the other extreme, as dis-
cussed before, in the node-exclusive spectrum sharing model,
maximal scheduling is guaranteed to attain at least half of the
maximum throughput region [10]. We also demonstrate that in
this case there exist topologies in which maximal scheduling,
and hence maximal matching, will attain at most of the max-
imum throughput region.

The comparisons between the throughput region of maximal
scheduling and the maximum possible throughput region of
the network characterize the penalty due to the use of only
local information in the scheduling. The characterizations of
the throughput region of maximal scheduling discussed above
bound the performance of the network in terms of that of
the worst transmitter–receiver pair. The natural next question
to ask is whether it is possible to obtain better nonuniform
bounds by considering the constraints of individual sessions.

We prove that under maximal scheduling the performance of
each transmitter–receiver pair can be characterized by the in-
terference degrees of itself and its neighbors. Our results can be
nicely generalized to multihop sessions, where the performance
penalty for each session, due to the use of local information
based scheduling, depends only on the interference degree of
the links in its path and their neighbors. The result is somewhat
counterintuitive, as the overall performances of sessions may
depend on each other even when they are separated by several
hops. Furthermore, we show that the performance penalties
under maximal scheduling cannot be localized any further.
Specifically, the interference degrees of the links of a session
alone cannot determine its throughput guarantee.

Maximal scheduling is really a class of policies, and some
policies in this class could allocate bandwidth very unfairly. Re-
cently, Lin et al. [10] and Bui et al. [3] have shown that in the
node-exclusive spectrum sharing model, maximal scheduling
can be used for maximizing the network utility and congestion
control. We obtain global fairness guarantees in wireless net-
works with arbitrary interference models using maximal sched-
uling. First, using the characterizations of the throughput region
for maximal scheduling, we characterize the feasible set of ser-
vice rate allocations for maximal scheduling, and prove that a
combination of a token generation scheme together with max-
imal scheduling attains maxmin fairness in this feasible set. We
next show that the rate vector attained by the above combina-
tion is fairer than the overall maxmin fair rate vector times the
reciprocal of the maximum interference degree in the network.
The token generation scheme allows each session to estimate its
maxmin fair rate in a distributed manner. Sessions contend for
channel access in accordance with this estimate, and the con-
tention is resolved using maximal scheduling. The token gen-
eration and the contention resolution can be executed in par-
allel. The maxmin fair rates need not be computed explicitly,
and no knowledge of the statistics of the packet arrival process
is necessary for executing the algorithm. The computation need
not restart when the topology or the arrival rates change. The
scheme is therefore robust.

The paper is organized as follows. We describe the system
model and the maximal scheduling policy in Section II. We
then describe some specific communication and interference
models in Section III. We characterize the throughput regions
of maximal scheduling for arbitrary wireless networks in Sec-
tion IV, and for some representative interference models in Sec-
tion IV-B. In Section V, we generalize the analytical results
and the framework so as to provide different throughput guar-
antees for different sessions, stronger notions of stability, and
end-to-end performance guarantees. We describe how maximal
scheduling can be enhanced so as to guarantee fairness in Sec-
tion VI. We conclude in Section VII.

II. SYSTEM MODEL

We consider scheduling at the multiple-access channel
(MAC) layer in a wireless network. We assume that time is
slotted. The topology in a wireless network can be modeled as
a directed graph , where and , respectively,
denote the sets of nodes and links. A link exists from a node
to another node if and only if can receive ’s signals. The
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Fig. 1. Panel (a) shows a directed graph with V = fM1; . . . ;M10g. The arrows between the nodes indicate the directed links. There are seven sessions:
T1; . . . ; T7. Nodes M2;M5;M3;M6;M1;M8; and M10 are the transmitters of sessions T1; T2; T3; T4; T5; T6; and T7, respectively. Node M2 has
three neighbors: M1;M5;M6. Nodes M1 and M2 have degree 5; hence, the degrees of edges (M1;M2) and (M2;M1) are 10. Here, � = 10. Both the
out-degree of M1 and in-degree of M2 are 3. Thus, the directed degree of (M1;M2) is 6. Here, � = 6. Sessions T5 and T6 interfere with each other, as
M4 has a single transceiver. Panels (b) and (c) show the interference graphs for the network shown in (a) under bidirectional and unidirectional communication
models, respectively. As panels (b) and (c) show, the interference sets of T6 are fT1; T5g and fT5g under the bidirectional and unidirectional communication
models, respectively. (a) Network N , (b), (c)

link set depends on the transmission power levels of nodes
and the propagation conditions in different directions.

We now introduce terminologies that we use throughout the
paper. Some of these are well known in graph theory; we men-
tion these for completeness.

Definition 1: A node is a neighbor of a node if there
exists a link from to , i.e., .

The degree of a node is the number of links in originating
from or ending at . The degree of a link is defined
as the sum of the degrees of and . The maximum link degree
in , is the maximum degree of any link in .

The out-degree of a node is the number of links in origi-
nating from . The in-degree of a node is the number of links
in ending at . The directed degree of a link is
defined as the sum of the out-degree of and in-degree of .
The maximum directed link degree in , is the maximum
directed degree of any link in .

At the MAC layer, each session traverses only one link. In
the following discussion, therefore, we only consider single-hop
sessions (generalization of our results to multi-hop sessions is
discussed in Section V-C). We allow multiple sessions to tra-
verse the same link. If a session traverses link then
and are ’s transmitter and receiver, respectively. Without loss
of generality, we assume that every node in is either the trans-
mitter or the receiver of at least one session. If this assumption
does not hold, we can consider to be a subgraph obtained from
the original topology by removing the nodes that are not the end
points of sessions.

Definition 2: A session interferes with session if cannot
successfully transmit a packet when is transmitting.

In Section III, we will describe broad classes of communi-
cation and interference models and how to obtain the pairwise
interference relations in each case.

A wireless network can be described by the topology
, the -tuple specifications of the sessions and the pair-

wise interference relations between them. We consider a net-
work with sessions.

Definition 3: The interference set of a session , is the set
of sessions such that either interferes with or interferes
with .

Note that if , then .

Definition 4: The interference graph of a
network is an undirected graph in which the vertex set
corresponds to the set of sessions in and there is an edge
between two vertices and if .

We elucidate these definitions through examples in Fig. 1.
We now describe the arrival process. We assume that at most

packets arrive for any session in any slot. Let
be the number of packets that session generates in interval

. We assume that any packet arriving in a
slot arrives at the beginning of the slot, and may be transmitted
in the slot. The arrival process satisfies a
strong law of large numbers (SLLN). Thus, there exist nonneg-
ative real numbers such that with probability
(w.p.)

(1)

The condition (1) on the arrival processes is mild. Several
arrival processes including all jointly stationary and ergodic
arrival processes satisfy (1). For simplicity, we will sometimes
consider special cases of the above general model (Sec-
tions V-B, V-C, VI), and explicitly state whenever we do so.

Definition 5: The arrival rate of session is
. The arrival rate vector is an -dimensional vector

whose components are the arrival rates.

Definition 6: A scheduling policy is an algorithm that decides
in each slot the subset of sessions that would transmit packets.

Clearly, a subset of sessions can transmit packets simulta-
neously in a slot if no two sessions in interfere with each other
and every session in has a packet to transmit. We assume that
all the packets have the same length and one packet can be trans-
mitted in a single slot. Thus, if a session is scheduled in a slot,
it transmits a packet in the slot.



CHAPORKAR et al.: THROUGHPUT AND FAIRNESS GUARANTEES THROUGH MAXIMAL SCHEDULING IN WIRELESS NETWORKS 575

Let be the number of packets that session transmits in
interval . Clearly, the transmissions depend
on the scheduling policy.

Definition 7: The network is said to be stable if w.p.

(2)

Thus, a network is stable if the arrival and departures rates are
equal for each session.

Definition 8: The throughput region of a scheduling policy is
the set of arrival rate vectors such that the network is stable
under the policy for any arrival process that satisfies (1) and has
arrival rate vector .

Definition 9: An arrival rate vector is said to be feasible if
it is in the throughput region of some scheduling policy.

Definition 10: The maximum throughput region is the set
of feasible arrival rate vectors. Note, that depends on the net-
work .

Example 1: Consider the network shown in Fig. 3(a). Con-
sider a scheduling policy , that serves session
in slot , where “ ” is the modulo operator. Under , each
session can transmit at the rate of at most .
Thus, the throughput region of , is characterized as fol-
lows:

In this case, since the only scheduling constraint is that ses-
sion 1 cannot be scheduled simultaneously with any of the ses-
sions , the maximum throughput region is given by

Therefore, in this example, scheduling policy achieves only
a small fraction of the maximum throughput region.

We now describe the “maximal scheduling” policy we con-
sider. This policy schedules a subset of sessions such that i)
every session in has a packet to transmit, ii) no session in
interferes with any other session in , iii) if a session has a
packet to transmit, then either or a session in , is included in

. Clearly, many subsets of sessions satisfy the above criteria in
each slot, e.g., in Fig. 1(b), satisfy the
above criteria in any slot in which all sessions have packets to
transmit. Maximal scheduling can select any such subset. If each
session knows its interference set, maximal scheduling can be
implemented in a distributed manner using standard algorithms
[13]. In most cases of practical interest, sessions can determine
their interference sets using local message exchange.

III. INTERFERENCE MODELS

The pairwise interference relations between the sessions de-
pend on topology and the nature of communication.
The topology is determined by the transmission powers, prop-
agation conditions, and node locations. Communication can ei-
ther be bidirectional or unidirectional. In the former, when a ses-
sion is scheduled, both the transmitter and the receiver transmit

sequentially. For example, the transmitter may transmit data
and control messages while the receiver may transmit control
messages. Such bidirectional communications occur in IEEE
802.11. Thus, there must be links in both directions between
a session’s transmitter and receiver. In unidirectional commu-
nication, when a session is scheduled, it transmits packets from
only the transmitter to the receiver. For example, unidirectional
communication occurs in IEEE 802.11 when control messages
are disabled (e.g., in broadcast mode).

We assume that each node has a single transceiver. Thus,
a node can be involved in at most one transmission. In other
words, sessions that have a node in common interfere with each
other. We initially assume that all transmissions use the same
frequency. Thus, node cannot receive any packet successfully
if more than one of its neighbors are transmitting simultane-
ously (we do not assume capture). Thus, a transmission on link

is successful in a slot if and only if no neighbor of
other than transmits in the slot. For example, in Fig. 1(a),

transmission along is successful if and do
not transmit. For bidirectional communication, when a session

is scheduled, transmissions proceed along both
and . For unidirectional communication, when a session

is scheduled, transmissions proceed only along .
The above constraints provide the interference relations for both
the bidirectional and unidirectional communication models.

In the bidirectional communication model, a session inter-
feres with session if and have a common endpoint, or one
endpoint (transmitter or receiver) of is a neighbor of an end
point of . For example, in Fig. 1(a), interfere with

. This is also clearly evident from Fig. 1(b). In the unidirec-
tional communication model, session interferes with session
if and have a common endpoint, or ’s receiver is a neighbor
of ’s transmitter. For example, in Fig. 1(a), only interferes
with . Observe that the interference relations may be asym-
metric, i.e., may interfere with but may not interfere with
. For example, under the bidirectional communication model,

in Fig. 1(a), interferes with but does not interfere
with .

We now describe several important special cases. First, as-
sume that the propagation conditions are identical in all direc-
tions. Each node transmits at a fixed power level which can be
different for different nodes. The power level of a node de-
termines its transmission range, and all nodes within ’s trans-
mission range receive ’s signal. Thus, the link set has the
following structure: a link exists from to if and only if the
distance between and is less than or equal to ’s transmis-
sion range. In the bidirectional communication model, session
interferes with session if one endpoint of is within the trans-
mission range of an endpoint of . In the unidirectional commu-
nication model, session interferes with session if ’s receiver
is within the transmission range of ’s transmitter.

Let us further assume that all nodes transmit at the same
power. Thus, all nodes have the same transmission range
which is determined by the transmission power. Now, the link
set has the following structure: a link exists from to if
and only if the distance between and is less than . Now, in
the bidirectional communication model, a session interferes
with session if one endpoint of is within distance from
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an end point of (bidirectional equal power model). In the
unidirectional interference model, a session interferes with
session if ’s receiver is within distance from ’s transmitter
(unidirectional equal power model). Refer to Fig. 3(a) and (b)
for examples of both cases. Note that now the interference re-
lation is symmetric in the bidirectional communication model,
i.e., if node interferes with node , then node also interferes
with node . However, interference relationships could still be
asymmetric in the unidirectional communication model.

We also consider a scenario where the network has a large
number of frequencies such that every node has a unique fre-
quency in its two-hop neighborhood. Now, for both bidirectional
and unidirectional communications, only the sessions that have
a common endpoint interfere. This model arises in Bluetooth
communications, and is commonly referred to as the node-ex-
clusive spectrum sharing model (Fig. 4).

We observe that the pairwise interference relations are signif-
icantly different in each of the cases discussed above. There is,
however, one important similarity. If session interferes with
another session the distance between the transmitters of and

is at most three hops. Thus, a session can use local message ex-
change to determine its interference set. Hence, maximal sched-
uling can be implemented in distributed manner in each of these
cases. But, given the significant difference between the inter-
ference relations, it is not clear how similar the performance
of maximal scheduling will be in these different cases. In the
next section, we first characterize the performance of maximal
scheduling in arbitrary networks, and subsequently characterize
the throughput regions in each of the above cases using the gen-
eral results.

IV. PERFORMANCE GUARANTEES OF MAXIMAL SCHEDULING

We first design a framework for characterizing the throughput
region of maximal scheduling for an arbitrary wire-
less network (Section IV-A), and subsequently characterize
the throughput regions in several special cases of interest
(Section IV-B). Finally, using simulations, we evaluate the
throughput regions under specific arrival patterns and some
representative networks (Section IV-C).

A. Arbitrary Networks and Interference Models

We first introduce a new definition.

Definition 11: The interference degree of a session is i)
the maximum number of sessions in its interference set that
can simultaneously transmit, if is nonempty and ii) if is
empty.

The interference degrees depend on the links traversed by the
sessions and the topology as well as the node lo-
cations, propagation conditions, and interference models. For
example, in Fig. 1(b), , and the
largest set of sessions in that can simultaneously transmit
is . Thus, the interference degree of is .

Definition 12: The interference degree of a network ,
, is the maximum interference degree of sessions in the

network.

In Fig. 1(b) and (c), the interference degrees of the network
are and , respectively. Session has these interference de-
grees in both cases.

We next show that for an arbitrary wireless network and in-
terference model the throughput region of maximal scheduling

can be tightly characterized in terms of .

Theorem 1: In any wireless network , if in ,
in .

Before providing a formal proof of Theorem 1, we describe
the intuition behind it. From (2), under some scheduling policy,
the packet arrival rate for each session equals ’s depar-
ture rate. Thus, for each session , the sum of its arrival rate and
the arrival rates of the sessions in its interference set must
equal the sum of the corresponding departure rates. Clearly, for
each at most sessions in can simultaneously
transmit packets in any slot. Thus, the sum of the departure rates
of sessions in , and hence the sum of the corresponding
arrival rates, is at most . Thus, when the arrival rate vector
is instead of , the sum of the arrival rates of sessions
in is at most . Let the arrival rate vector be ,
and let maximal scheduling be used. For any session , maximal
scheduling always serves one packet from in any slot in
which has a packet to transmit. Thus, whenever has a packet
to transmit, the sum of the departure rates for these sessions is

, which is greater than or equal to the sum of the arrival rates
of these sessions. Now, since the departure rate of any session
cannot exceed its arrival rate, for all the sum of the departure
rates from the sessions in equals the sum of the corre-
sponding arrival rates. It follows that the departure rate of each
session equals ’s arrival rate. Thus, the system is stable. Hence

. The proof of Theorem 1 is provided next.

Proof: We prove Theorem 1 using the Lemmas 1 and 2,
stated below.

Lemma 1: Let . Then, for all
sessions .

Proof: We assume that there exists a session such that

(3)

and show that .
Consider an arbitrary scheduling policy . Under

for every as at
most nodes among can be scheduled concur-
rently . Thus

from (3)

for some
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Fig. 2. Part (a) shows a network N with bidirectional communication model and seven sessions: (T1;M ;R ); . . . ; (T7;M ;R ). Session T1 interferes
with all the remaining sessions, and none of the remaining sessions interferes with each other. Thus, K(N ) = 6. The degree of (M ;R ) is 10, which is
also equal to � . Thus, K(N ) = � � 4 = max(� � 4; 1). Part (b) shows a network N with unidirectional communication model and four sessions:
(T1;M ;R ); . . . ; (T4;M ;R ). Sessions T2; T3; and T4 interfere with T1, but not with each other. Thus, K(N ) = 3. The directed degree of (M ;R )
is 5, which is also equal to � . Thus, K(N ) = � � 2 = max(� � 2; 1). In both graphs, arrows indicate directed links between the nodes. (a) Network
N , (b) Network N .

Thus, if exists, then its value is less than .
Therefore, the network is not stable under . Alternatively, if
the limit does not exist, then also the network is not stable under

. Thus, . The result follows.

Lemma 2: Let

if

Then .

The Proof of Lemma 2 is rather long, and is therefore pro-
vided in Appendix I.A.

Theorem 1 follows from Lemmas 1 and 2.

Next we prove a result which shows that the characterization
of provided by Theorem 1 is tight.

Theorem 2: Consider an arbitrary wireless network and a
constant such that . There exists an arrival rate
vector such that in , but in .

Proof: Consider an arbitrary network with inter-
ference degree . By Definition 11, there exists an

such that the interference degree of session is .
Consider sessions such that they are
pairwise noninterfering. Now, consider the following arrival
rate vector : if , and

if , and otherwise.
Thus, effectively the network consists only of sessions and

. Note that since
for every . Now, consider a scheduling
policy that schedules w.p. and sessions

concurrently in the remaining slots. Clearly, the
network is stable under . Thus, .

Now, consider the arrival rate vector and the following
arrival pattern. A packet corresponding to session arrives in
slots if , where “ ” is the modulo
operator. In every slot, a packet corresponding to session ar-
rives w.p. . Clearly, the arrivals are in accordance with

. Let maximal scheduling schedule only when none of the
sessions in have a packet to transmit. Note that under max-
imal scheduling and the described arrival pattern, is sched-
uled in slot such that , and thus

is never scheduled. Since is not stable. Thus,
.

We now obtain tight bounds for for arbitrary bidi-
rectional and unidirectional communications models, in terms
of the maximum link degrees and in the underlying
topology . These bounds and the resulting characterizations of

hold even when transmission powers differ across nodes,
and propagation conditions in different directions are different.

Lemma 3: In a wireless network with bidirectional
communication and underlying topology ,

. Moreover, there exists a wireless
network with bidirectional communication and underlying
topology , such that .

Proof: Consider a network that has bidirectional com-
munication and underlying topology . Select a ses-
sion from to . Since we are considering bidirectional com-
munication, and . Note that at most one
session along every link from and , and every link to and

can be scheduled concurrently in the interference region of
without interfering with each other. Let denote the degree
of link . Now, ’s interference degree satisfies the
following inequality:

(4)

Now, Fig. 2(a) shows an example of a network that achieves
the equality in (4).

Lemma 4: In a wireless network with unidirectional com-
munication and underlying topology ,

. Moreover, there exists a wireless network
with unidirectional communication and underlying topology

, such that .
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Fig. 3. Part (a) shows a network with interference constraints given by the bidirectional equal power model and transmission range d. There are nine sessions:
1; . . . ; 9. Session i has transmitter M and receiver R . The interference area of session 1 is the union of circles C and C . Here, � = 70 deg, and � = 61
deg. Distance between i) M and R is d for every i = 1; . . . ; 8, ii) M and R is � > 0, where � is a small positive number, iii) M and M is d for every
i = 2; . . . ; 9, ii) M and M is greater than d for every j; k 2 f2; . . . ; 9g; j 6= k and iv) M and R is �. Thus, session 1 interferes with all the other eight
sessions, but none of the other sessions interfere with each other. Part (b) shows a network with interference constraints given by the unidirectional equal power
model and transmission range d. There are 12 sessions: 1; . . . ; 12. Session i has transmitter M and receiver R . The distance between M and R , and R and
M is d for every i. Thus, session 1 interferes will all the other 11 sessions, but none of the other sessions interfere with each other. We refer to sessions 2; . . . ; 12
as noninterfering sessions. Here, � is �=6. Note that 2�=��1 noninterfering sessions can be accommodated. Thus, for any givenZ; Z+1 noninterfering sessions
can be accommodated by choosing � = 2�=(Z + 2).

The proof for the first part of Lemma 4 is similar to that for
the first part of Lemma 4. Now, Fig. 2(b) shows a network where

.

B. Specific Interference Models

We characterize for some representative interference
models. These characterizations together with Theorems 1 and
2 characterize the throughput regions of maximal scheduling for
these models.

Lemma 5:
1) For the bidirectional equal power model, for

any network , and there exists a network such that
.

2) For the unidirectional equal power model, given any con-
stant , there exists a network such that .

3) For the node-exclusive spectrum sharing model,
for any network , and there exists a network such

that .

We prove that for the bidirectional equal power
model in Appendix I.B. We present the intuition behind the re-
sult here. From the interference constraints, for any , at least
one endpoint of each session in must be within a distance
(transmission radius) from either ’s transmitter or ’s receiver.
Also, the distance between ’s transmitter and receiver is at most

. Thus, at least one endpoint of each session in must be in the
union of two circles of radius and centered around ’s trans-
mitter and receiver respectively (Fig. 3(a)). We refer to the area
in this union as ’s interference area. We prove using geometric

arguments that at most eight points can be present in this in-
terference area such that the distance between any two points
exceeds . Clearly, if sessions and need to simultaneously
transmit packets, the distance between an endpoint of and an
endpoint of must exceed . The result follows. It is worth
noting that several results on packing of unit disk graphs in the
existing literature show that must be upper-bounded by
a constant in the bidirectional equal power model. In particular,
extending results in [9] with arguments used in the proof of
Lemma 1 of [1] show that cannot exceed 12. Further-
more, results in [12] imply that must be upper-bounded
by . Note that the existing results are closely related to the
packing of unit disks within a circular region. The interference
region of a session is formed by the union of two disks and may
not therefore be circular; upper bounding it by a circular region
and using existing results (as done in [1]) leads to a loose bound
in this case. We therefore use structural properties of the area
formed by the union of two closely located disks to obtain a
better upper bound on , namely , which turns out to be
tight.

We next prove the rest of Lemma 5.

Proof: Consider the bidirectional equal power model.
We prove that in Appendix I.B. Fig. 3(a) shows
a network with bidirectional equal power model such that

.
Consider the unidirectional equal power model and any con-

stant . In the network of Fig. 3(b), for ,
under unidirectional equal power model.

Consider the node-exclusive spectrum sharing model, and a
session . Any session in must traverse either or
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Fig. 4. This figure shows a network with four nodes M1; . . . ;M4 and three
sessions T1; T2; and T3. Under node-exclusive spectrum sharing model, T1
interferes with both T2; T3, but T2 and T3 do not interfere with each other.

. Thus, if , then at most two of any three sessions in
must traverse the same node, and hence must interfere. Thus,

. Fig. 4 shows an example of a network under
node-exclusive spectrum sharing model with . The
lemma follows.

We now describe the significance of the above results. For
the bidirectional equal power model, it follows from part 1) of
Lemma 5 and Theorems 1, 2 that a) if , and
b) for any constant , there exists a network and an
arrival rate vector , such that in , but in

. Thus, is th of the maximum throughput region in
this case.

For the unidirectional equal power model, it follows from part
2) of Lemma 5 and Theorem 2, that for any positive constant

, there exists a network , an arrival rate vector , such that
in , but in . Thus, maximal scheduling

cannot attain any constant fraction (however small) of the max-
imum throughput region.

Next note that for the node-exclusive spectrum sharing
model, maximal scheduling is the same as maximal matching.
Lin et al. [10] have proved that maximal matching attains at
least the maximum throughput region in this model. This
result also follows from part 3) of Lemma 5 and Theorem 1.
In addition, part 3) of Lemma 5 and Theorem 2 show that this
characterization is tight. Specifically, for the node-exclusive
spectrum sharing model, for any positive constant such that

, there exists a network and an arrival rate vector , such
that in , but in . It is worth noting here
that in the context of input-queued switches, Chuang et al. [6]
have proved a result that is related to (although significantly
different from) part 3) of Lemma 5. More precisely, the authors
in [6] show that for an input-queued switch, a speedup
of is necessary to emulate an output-queued switch with
first-in first-out (FIFO) scheduling discipline.

Thus, the performance guarantees for maximal scheduling
will critically depend on the interference relations, and slight
changes in interference conditions can significantly alter the
guarantees.

C. Numerical Results

We showed that the lower bound for the throughput region
of maximal scheduling presented in Theorem 1 is tight (The-
orem 2) by considering specific topologies, specific traffic
patterns, and specific scheduling policies within the class of
maximal scheduling policies. Using representative simulation
results, we now demonstrate that the performance attained by
maximal scheduling with respect to the throughput-optimal
policy is usually significantly better than this bound, particu-
larly in the presence of randomness in the packet arrival process
and the scheduling policy.

We consider two network topologies. The first network ,
shown in Fig. 3(a), has nine single-hop sessions
and bidirectional equal power model; the interference graph of
this network is shown in Fig. 5(a). The second one is a
network with eight single-hop sessions, , whose
interference graph is shown in Fig. 5(b).

The packet arrival process is Bernoulli; the packet arrival
rate at all sessions is the same, and equal to . Therefore, the
throughput region is characterized by a single parameter ,
which corresponds to the maximum value of that can be sup-
ported in the network by any scheduling policy. The maximum
attainable throughput per session, , in networks and
can be computed as and , respectively. The max-
imum throughput attained by a scheduling algorithm is mea-
sured as , the maximum value of per-session arrival rate
that leads to bounded delays (and finite queue lengths) under

; is calculated through simulations. Table I shows
for three different maximal scheduling algorithms, which are
described next.

Greedy MS: In this algorithm, the sessions are picked for
scheduling greedily according to a predetermined order, skip-
ping over sessions that are not backlogged or interfere with a
session that has already been chosen. For network , the ses-
sions are chosen according to the sequence , fol-
lowed by , i.e., the scheduling policy gives preference to links
that correspond to the peripheral nodes in the interference graph,
over the link that corresponds to the central node. Note that this
is the same scheduling policy that achieved the lower bound of

on the throughput guarantee attained in network topology
. For network , the sessions are chosen according to the

sequence .
Randomized MS: Here, sessions are chosen at random, ig-

noring sessions that are not backlogged or interfere with a ses-
sion that has already been chosen.

Distributed MS: In this case, we use the randomized dis-
tributed maximal schedule construction algorithm described
in [11]. This algorithm constructs a maximal schedule in

communication rounds.
The results demonstrate that the throughput ratio attained by

the maximal scheduling algorithms with respect to the optimum
is significantly better than under randomized traffic
patterns and scheduling policies. For example, the distributed
MS algorithm attains a throughput ratio of and , re-
spectively, for the two networks and , whereas the corre-
sponding bounds are and , respec-
tively. Tight performance characterization of maximal sched-
uling under randomness in traffic patterns and schedules is a
difficult question, and remains open for future research.

V. GENERALIZATIONS OF THROUGHPUT GUARANTEES

In this section, we generalize our analytical results in several
ways. First, note that the characterizations of obtained
so far demonstrate that maximal scheduling does not attain
the maximum throughput region of a network. This is clearly
expected as maximal scheduling uses only local information
and the maximum throughput region has so far only been
obtained by centralized scheduling policies [21], [20]. The
contribution of these results is to characterize the penalty
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Fig. 5. Interference graphs of networks used in the simulations. (a) Interference graph of N . (b) Interference graph of N .

TABLE I
PERFORMANCE RATIOS OF VARIOUS MAXIMAL SCHEDULING ALGORITHMS

WITH RESPECT TO THE OPTIMUM (OBTAINED THROUGH SIMULATIONS)

due to the use of such limited information, and provide tight
“uniform” bounds on the penalty in the arbitrary networks.
The bounds are “uniform” because they uniformly apply to
all sessions. In Section V-A, we generalize Theorems 1 and 2
to obtain better throughput guarantees for specific sessions by
allowing different bounds for different sessions (Lemma 6).

We have so far considered the notion of stability which guar-
antees that the arrival rates of sessions equal their respective
departure rates. This does not however provide guarantees on
the expected queue lengths of the sessions. In Section V-B, we
characterize the performance of maximal scheduling under a
stronger notion of stability which guarantees that the expected
queue lengths of all sessions are finite (Lemma 8).

Finally, in Section V-C, we relax the assumption that each
sessions traverses only one hop, and provide throughput guar-
antees for maximal scheduling when sessions traverse arbitrary
number of hops (Lemmas 9 and 10).

Proofs of all the results in this section are presented in the
Appendix.

A. Nonuniform Bounds

In Theorems 1 and 2, the uniform bound of is ob-
tained by considering the worst session, and it is possible that
for most sessions the penalty is less. We now prove that it is
possible to obtain better nonuniform bounds by considering the
constraints of individual sessions. Let denote the inter-
ference degree of any session in network (Definition 11).
We show that the performance of each session can be charac-
terized by its two-hop interference degree, , which is the
maximum of the interference degrees in its neighborhood (i.e.,

), but not by its interference de-
gree alone.

Lemma 6: If , then

Thus, due to the use of local information based scheduling,
the performance of each session decreases by a factor of

; the penalty for each session therefore depends only
on its two-hop neighborhood. Note that in many networks

may be significantly less than for most sessions
(Fig. 6(a)). The following result shows that a similar character-
ization in terms of the single-hop neighborhood does not hold
in general.

Lemma 7: There exists a wireless network and an arrival
rate vector such that in , but

B. Stronger Notion of Stability

In this subsection, we consider a stronger notion of stability,
queue length stability, which guarantees that the expected
queue lengths of sessions are finite in stable systems. We pro-
vide guarantees on the stability region of maximal scheduling
under this notion and under some stronger assumptions on
the arrival process. We first mention the additional assump-
tions on the arrival process and formally define the notion of
queue-length-stability.

Let denote the number of arrivals of session in slot .
We assume that the arrival process consti-
tute an irreducible, aperiodic Markov chain with a finite number
of states. We refer to this assumption as the jointly Markovian
assumption. Note that such an arrival process satisfies (1). Let
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Fig. 6. In both graphs, all sessions and session links are unidirectional, and the arrows show the direction of data transfer. The circles indicate the interference
regions of session-links U0; U1; . . . ; UL (a) and AB and HI (b). In (a), the network consists of single-hop sessions only. Session U0 interferes with sessions
T0; . . . ; TJ; whereas session Ui interferes with session U(i � 1), for i = 1; 2; . . . ; L. Thus, K (N ) = 1 for i 2 fT0; . . . ; TJ; ULg;K (N ) = 2 for
i 2 fU1; . . . ; U(L � 1)g;K (N ) = J + 2; � (N ) = J + 2 for i 2 fT0; . . . ; TJ; U0; U1g, and � (N ) = 2 for i 2 U2; . . . ; UL;K(N ) = (J + 2).
If J and L are large, but L� J , then K ;� ’s for most sessions are substantially smaller than K(N ). In (b), session T1 consists of two session links, AB and
BC , whereas sessions T2; T3; T4 are single-hop sessions. Session link AB interferes with session links DE (session T2) and FG (session T3) and session
link HI (session T4) interferes with session link BC . Now, S = fBC;DE; FGg; S = fAB;HIg; S = S = fABg; S = fBCg. Thus,
token-buckets at nodesA;B;D;F;H consist of token-queues corresponding to session links fAB;BC;DE; FGg;fAB;BC;HIg; fAB;DEg; fAB;FGg,
and fBC;HIg. Thus, token-buckets associated with session linkAB(BC) are at nodesA;B;D;F (A;B;H); these are denoted buckets 1; . . . ; 4 ofAB(1; 2; 3
of BC). The token generation for AB at bucket 4 depends on that for AB at bucket 3 and BC at bucket 1 of BC .

be the number of packets waiting for transmission at the
source of session at the beginning of slot .

Definition 13: The network is said to be queue-length-stable
if there exists nonnegative real numbers such
that w.p.

(5)

The queue-length-stability region of a scheduling policy is
the set of arrival rate vectors such that the network is stable
under the policy for any arrival process that satisfies the jointly
Markovian assumption and has arrival rate vector . The
maximum queue-length-stability region is the union of the
queue-length-stability region of all scheduling policies.

Note that if a network is queue-length-stable it is also stable,
but the converse is not true. Thus, queue-length-stability is a
stronger notion of stability.

We now obtain a lower-bound1 on the queue-length-stability
region of maximal scheduling .

Lemma 8: Consider a jointly Markovian arrival process
with the arrival rate vector such that

, where
Then, .

C. Multihop Sessions

We now obtain performance guarantees for maximal sched-
uling when sessions traverse an arbitrary number of links. We
first mention the differences from the model in Section II. The
network has end-to-end sessions, and the route of each ses-
sion is assumed fixed. We allow multiple sessions to traverse the
same link(s). Each session can be viewed as a collection of sev-
eral hop-by-hop connections, one for each link it traverses; each

1We presented this result at the ITA workshop [5]. Wu et al. [25] also obtained
this result independently, and presented it at the same workshop.

of these hop-by-hop connections is called a session-link of the
session considered. Each session-link is of the form ,
where is an identifier for the session, and represent the
transmitter and the receiver, respectively, of the corresponding
session-link. Session-links of different sessions can be asso-
ciated with the same physical link, and are distinguished by
their session-identifiers (for simplicity of notation, in examples
where only one session-link traverses each link we denote the
session-links only by the sources and destinations of the associ-
ated links). We assume that there are a total of session-links
in the network (over all sessions), and these are indexed by

. For any session , let denote the set of its ses-
sion-links. Let denote the session of session-link , i.e.,

.
The notions of interference, interference-set, and inter-

ference-degrees are now defined for session-links instead of
sessions. Specifically, a session-link interferes with ses-
sion-link if cannot successfully transmit a packet when is
transmitting. The interference set of session-link denotes
the set of session-links such that either interferes with

or interferes with (Fig. 6(b)). The interference degree
of a session-link in network is i) the maximum
number of session-links in its interference set that can
simultaneously transmit, if is nonempty, and ii) , if
is empty. The two-hop interference degree of session-link ,
is defined as . The two-hop
interference degree of session denotes the maximum
two-hop interference degree of all session-links of session ,
i.e., . The interference degree of
a network is the maximum interference degree of
session-links in the network.

The packet arrival and departure processes now need to be de-
fined for session-links. Let denote the number of arrivals
for session-link in the time interval . The
arrival process at the first session-link of any session consists
only of exogenous packets, and satisfies the SLLN as described
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in (1). Thus, if denotes session-link corresponding to the first
link for session , then there exists nonnegative real numbers

such that w.p.

(6)

Now, denotes the number of packets that session-link
transmits in interval . Note that if

and are consecutive session-links of a session, then
. Now, let be the session-link corre-

sponding to the last hop of session . If for some constant the
limit w.p. , then is denoted as the
departure rate of session .

Definition 14: The network is said to be stable if there exists
a departure rate vector such that w.p. , for
each session

(7)

Thus, again a network is stable if the arrival and departures rates
are equal for each session. Now, using the above definition for
stability, the maximum throughput region , and the throughput
region for maximal scheduling, can be defined as in Sec-
tion II. Note that maximal scheduling can be described similarly
to that in Section II; the only difference is that session-links must
now be used instead of sessions in the description.

We now provide lower bounds on , under an enhance-
ment of maximal scheduling that has been proposed by Wu et
al. [23], [24]. Under this enhancement, every session-link that
does not originate from the source of the session has a regulator
that in each slot generates a token with a probability that equals
the arrival rate of the session. Every such session-link also main-
tains two types of queues, a waiting queue and a release queue.
Packets arriving at such a session-link are initially stored in its
waiting queue. Whenever the regulator generates a new token,
if the waiting queue is nonempty, a packet is transferred from
the waiting queue to the release queue. A session-link that orig-
inates from the source of the session maintains only the re-
lease queue, and all exogenous packets waiting for transmission
are stored there. Maximal scheduling only considers the release
queues of session-links for service and contention resolution.
We refer to this enhancement as regulator enhancement.

Lemma 9: If , then

in under regulator enhancement.

Since , Lemma 9 also implies
that if , then in under regulator
enhancement.

The use of regulators requires that the arrival rate for each
session must be known at each session-link. We now investigate
whether performance guarantees can be provided for maximal
scheduling without using regulators. We consider a special case
of the general arrival process described in (6). We refer to this
special case as exponentially convergent arrival processes. We

assume that there exists a constant such that the empir-
ical average of the exogenous arrivals in the system in slots
converges to at a rate faster than . Mathematically, there
exists such that for every and

(8)

Again, a large class of arrival processes, e.g., periodic, inde-
pendent and identically distributed (i.i.d.), and positive recur-
rent Markovian arrival processes with finite state space, satisfy
the preceding assumption. We show that, without any enhance-
ments,2 for exponentially convergent arrival processes, maximal
scheduling attains the following weaker notion of stability. We
define a random variable as follows. If session-link has
a packet to transmit at time , then is the length of its re-
maining busy period, otherwise .

Lemma 10: Consider exponentially convergent arrival pro-
cesses. Let the arrival rate vector be such that

where . Then under maximal scheduling, the
packet queue of every session-link will almost surely become
empty infinitely often. Furthermore, for every session-link and
time .

The above result implies that almost surely

Thus, if the arrival rate vector satisfies the condition in
Lemma 10, and for each session-link, the limits of the departure
and the arrival rates exist almost surely, then almost surely

, and the system is
stable under maximal scheduling. But, there is no guarantee
that these limits exist. Thus, this is a weaker notion of stability
than that in Definition 14. Whether the stronger notion of
stability holds in this case or not remains an open question.

VI. MAXMIN FAIRNESS UNDER MAXIMAL SCHEDULING

We have so far characterized the throughput region for max-
imal scheduling under different system assumptions. We
now describe the issues involved when the arrival rate vector is
not in . Then maximal scheduling cannot serve all sessions
at their arrival rates, and therefore it is necessary to fairly allo-
cate the service rates or departure rates of sessions. We describe
how to enhance maximal scheduling so as to ensure maxmin fair
allocation of rates in the feasible set for maximal scheduling. We
also prove that the rate vector attained by this enhancement dif-
fers from the maxmin fair rate vector in the overall network fea-
sible set, by a factor that is at most the reciprocal of the network
interference degree. We first consider networks with single-hop
sessions (Section VI-A) and subsequently networks with mul-
tihop sessions (Section VI-B). In both cases, we will consider a

2Each session-link therefore has only one queue for storing the packets
waiting for transmission.
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special case of the general arrival model presented in (1). Specif-
ically, we will consider the bounded-burstiness arrival model
where a) 3 and there exists a burstiness
vector such that

(9)

A. Single-Hop Sessions

We assume that every session spans one link. Thus, the frame-
work presented in Section II applies. We introduce our fairness
notions and additional assumptions in Section VI-A.1, and sub-
sequently describe the enhancement used for attaining maxmin
fairness and the performance guarantees in Section VI-A.2.

1) Fairness Notion and Terminologies: We first present a
characterization of the feasible set under maximal scheduling.
The result follows easily from the use of proof techniques of
Lemma 2 and Theorem 2; the proof is therefore omitted for
brevity.

Lemma 11:

if (10)

The preceding lemma motivates the following definition.

Definition 15: The feasible set of departure rate
vectors under maximal scheduling is the set of vectors

that satisfy the following conditions:

(interference constraints)

(11)

(12)

The “interference constraints” (11) capture the interference re-
lations and are analogous to constraints (10) for the stability re-
gion. Note that the constraints are omitted since they
hold by our assumption. The constraints (12) follow since the
departure rates cannot exceed the arrival rates.

Note that . When , the departure rate
vector satisfies for each and hence both (11) and (12)
hold. When , depending on the maximal scheduling
policy used, the departure rate vector can be any element of

, and hence can be unfair for some sessions. For example,
if maximal scheduling provides absolute priority to a session
and , then and the departure rates of sessions
in are . This motivates our goal of ensuring fairness using
maximal scheduling.

3This assumption requires that the arrival rate for each active session is pos-
itive. Note that if a session i is not active we do not need to consider it at all.
Thus, we assume that there are N active sessions denoted 1; . . . ; N . In this sec-
tion, a session will always refer to an active session, though for brevity we omit
the adjective “active.”

We now define the notion of maxmin fairness that we seek to
attain.

Definition 16: For any -dimensional vector , let de-
note a nondecreasing ordering of the components of . There-
fore, if and ,
then is a permutation of , sat-
isfying . A departure rate vector is said
to be maxmin fair if , and for any other departure rate
vector , the first nonzero component in
is positive.

Intuitively, a departure rate vector is maxmin fair if it is not
possible to increase any of its components without decreasing
any other component of equal or lesser value [2]. Note that

as . Finally, if , then .
Next, we present a condition that is both necessary and suf-

ficient for any departure rate vector to be maxmin fair. We first
introduce the notion of a bottleneck constraint.

Definition 17: For any departure rate vector , an interfer-
ence constraint is a bottleneck constraint for a session if a)
is involved in the constraint, b) for all other sessions

whose sessions are associated with the constraint, and c) the
inequality in the constraint is an equality.

Lemma 12: A departure rate vector is maxmin
fair if and only if the following holds: for every session either

, or the session has a bottleneck constraint.
We omit the proof for the above lemma as the proof is sim-

ilar to that for the well-known bottleneck condition for maxmin
fairness in wireline networks [2].

Finally, although for notational simplicity we refer to as
the maxmin fair departure rate vector, it is maxmin fair only in
the feasible set of maximal scheduling . The feasible set
for the network is the union of the feasible sets of all poli-
cies, and may be a strict superset of . Thus, the maxmin
fair departure rate vector in the network , which we refer
to as the globally maxmin fair departure rate vector, is the rate
vector which is maxmin fair in . We now describe the relation
between and . We first describe the notion of “relative fair-
ness” introduced in [16]. A departure rate vector is fairer than
another departure rate vector if the first nonzero component in

is positive. Note that by this definition a departure
rate vector is maxmin fair in any feasible set if it is fairer than
any other departure rate vector in the same feasible set. Now,
since . Thus, from the definition
of is either fairer than or .

2) Maxmin Fair Rate Allocation Algorithm: We propose a
modular approach for attaining maxmin fairness using maximal
scheduling. A Token Generation module estimates the maxmin
fair bandwidth share of each session in each node in the ses-
sion’s path, and generates tokens in accordance with the es-
timates. A Packet Release module releases packets for trans-
mission in accordance with the number of tokens generated.
A Packet Scheduling module schedules the transmission of the
released packets so as to attain the estimates. Note that all the
modules operate in parallel. We first describe each module, next
explain the intuition behind their design, and finally, present the
performance guarantees.
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Fig. 7. Pseudocode of the fair departure rate allocation algorithm when each session traverses one hop.

a) Description of the modules: We first describe the token
generation process. The source node for each active session
maintains a token-bucket for (Fig. 6(b)). The token-bucket
consists of a token-queue for each session in . Each
token-bucket generates tokens for all token-queues in it. For ex-
ample, in Fig. 6(b), the token-bucket at node generates to-
kens for token-queues and . A session is
thus associated with (i.e., has token-queues at)
token-buckets, one for each of the sessions it interferes with, and
itself (Fig. 6(b)). Let us denote these token-buckets as ,
and let token-bucket 1 be that at the session’s source. For ex-
ample, in Fig. 6(b), for . Each token-bucket
samples all sessions in the bucket in a round-robin order. Let

be the number of tokens generated for session at bucket
in the interval . Let token-bucket asso-

ciated with be sampled in slot . Then, generates a token for
session in slot if and only if

Thus, session receives a token at bucket unless the number
of tokens in the token-queue for at bucket substantially ex-
ceeds those at the adjacent buckets; this prohibitive difference is
the window parameter . For example, in Fig. 6(b), let
and assume when bucket 2 of samples the token-queue of

has 4, 6, 5 tokens in buckets 1, 2, 3, respectively; then
bucket 2 generates a token for in this slot. However, if
had 4, 9, 5 tokens in buckets 1, 2, 3, respectively, at that time,
it would not have received a token. If no token is generated for
session in bucket in slot , the next session in the bucket is
sampled in that slot. Note that token-bucket 1 and have only
one adjacent token-bucket for session ; thus, tokens are gener-
ated for session in these buckets in a manner similar to that
described above, but by comparing with the number of tokens
of session in only one adjacent token-bucket. Furthermore, if

(i.e., is at ’s source), generates a token to in slot
if and only if the number of packets generated for at ’s source
in exceeds . Tokens are never removed from the
token-queues in the buckets.

We now describe the packet release process. Whenever the
source node of a session generates a new token for at ’s
token-bucket at the source, a new packet for is released.

Finally we describe the packet scheduling policy. Only the
sessions that have released packets waiting for transmission
contend for scheduling, and are scheduled as per maximal
scheduling. When these sessions are scheduled, they transmit
only released packets.

Fig. 7 summarizes the modules.
b) Intuition behind the design: The design of the token

generation process ensures that each token-queue receives to-
kens at a rate that equals the maxmin fair departure rate of the
corresponding session (in the next paragraph we describe why
this is the case). Whenever a new token is generated for a ses-
sion at the token-bucket for at ’s source, ’s source releases
a new packet for transmission. Thus, the packet release rates
are maxmin fair and hence belong to . Only the released
packets are eligible for transmission. Thus, maximal scheduling
transmits the released packets at the rates at which they are re-
leased. Hence, the rate allocations are maxmin fair.

We now explain why the token generation rate for each ses-
sion at each token-bucket associated with the session equals the
session’s maxmin fair rate. For this explanation, we assume that

for each ; all performance guarantees however hold
for arbitrary . Since for each , constraints (11) sub-
sume constraints (12). Note that each token-bucket corresponds
to constraint (11) for some . Since the goal is
to allocate maxmin fair rates, each constraint should try to allo-
cate equal rates to all sessions in the constraint. This motivates
the round-robin sampling of the sessions at each token-bucket.
Again, all constraints involving a session must offer the same
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rate to the session. This is attained by relating the token gener-
ation process for a given session at a given token-bucket to that
at the adjacent token-buckets for the same session. The number
of tokens for a session at two adjacent buckets associated with
the session diffesr by at most at any time and the differ-
ence is at most for that at any two buckets associated with
the session. Thus, the rates of token generation for a session are
nearly the same at any two buckets associated with the session.

Since for each , every session has a bottleneck con-
straint under the maxmin fair rate allocation. Now, the maxmin
fair rate of a session is determined by the bandwidth offered by
the bottleneck constraint which offers the least bandwidth to the
session. The bucket corresponding to the bottleneck constraint
of a session is denoted as the bottleneck bucket for the session.
By the discussion in the previous paragraph, a session’s token
generation rate at any token-bucket equals that at its bottleneck
bucket, which turns out to be the session’s maxmin fair rate.
The fairness guarantees follow. Note that if a session has a low
maxmin fair rate, then its bottleneck constraint offers it a low
rate, and it does not receive tokens several times it is sampled at
other buckets; other sessions with less severe constraints receive
these tokens.

c) Performance guarantees: The following lemma is in-
strumental in obtaining the fairness guarantees, and can be mo-
tivated by the intuition behind the design of the token generation
process.

Lemma 13: Consider token-bucket of session . For the
bounded-burstiness arrival model and arbitrary , there exists
constants , such that if , then for any interval

The token generation scheme here is based on the same de-
sign principle as that for an existing centralized fair bandwidth
allocation algorithm [17], [22]. However, the constraints charac-
terizing the feasibility set for maximal scheduling are different
from those characterizing the feasibility set in [17], [22]. We
relate the given network and the token generation scheme
here to a new network where the feasibility constraints and
the token generation scheme are the same as those in [17], and
prove the above lemma using a result obtained in [17].

Proof: We first obtain a fictitious network from .
Each token-bucket in constitutes a node in , and there
exists a link between any two nodes in . Each session in
corresponds to a (potentially) multihop session in . Now,

in traverses nodes that correspond to its token-buckets
in , and the source node for in is the node that

corresponds to its bucket 1. Let a packet arrive at the source node
of session in whenever a packet arrives for in . Let a
rate allocation for sessions be feasible in if and only if a) the
sum of the rates allocated to sessions traversing a node is upper-
bounded by and b) the rate for each session is upper-bounded
by its arrival rate. Note that the feasible set of rate allocations in

is the same as . Thus, is the maxmin fair allocation
in (note that the definition of maxmin fair allocation applies
for any set of vectors with nonnegative real components).

We now describe a token generation process for . Each
node samples all sessions traversing it in a round-robin order.
Let node sample session in slot . If is not a source node
for a session, it generates a token for session in slot if and
only if the number of tokens for at exceeds that at the nodes
adjacent to in the path of by at most . If is the source
node of generates a token to in slot if and only if the
above condition holds and the number of packets that arrived
for in exceeds the number of tokens of at . Lemma 2
in [17, p. 9 ] proves the following property for the above token
generation scheme in any network in which a rate allocation for
sessions is feasible if and only if a) the sum of the rates allocated
to sessions traversing a node is upper-bounded by and b) the
rate for each session is upper-bounded by its arrival rate. For the
bounded-burstiness arrival model and arbitrary , there exists
constants , such that if , then for any interval

, the number of tokens generated for any session at any
node in the network in the interval differs from the session’s
maxmin fair rate by at most .

The result follows from the above lemma and the observation
that a token is generated for at in at time if and only
if session receives a token at its corresponding token-bucket at
time .

Packets that contend for scheduling and are transmitted by
maximal scheduling arrive as per the release process. Since a
new packet is released every time a new packet is generated, the
above lemma implies that the release rate vector is maxmin fair
and is therefore in . Maximal scheduling therefore provides
departure rates equal to the packet release rates. Thus, as the
following result states, a combination of token generation and
maximal scheduling attains the maxmin fair departure rates for
every session.

Theorem 3: For the bounded-burstiness arrival model and ar-
bitrary there exists a constant , such that when

Proof: Let be the number of packets of session
that have been released at its source node in . Note that a
packet is released for session at its source if and only if a new
token is generated for session at the bucket at its source. Thus,

where is the bucket at ’s source. Now,
from Lemma 13, there exists constants , such that when

. Thus, the packet release
rate vector is . Since only the released packets are
available for scheduling and the release rate vector is in ,
the departure rate vector exists and equals the release rate vector.
The result follows.

B. Multihop Sessions

We next allow sessions to traverse multiple hops. Thus, the
framework in Section V-C applies. The feasible set of de-
parture rate vectors can be described by (12)
and

(13)
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Fig. 8. Pseudocode of the fair departure rate allocation algorithm when sessions traverse multiple hops.

Using the above description for , the maxmin fair departure
rate vector can now be defined as in Section VI-A.

Definition 18: For any departure rate vector , an interference
constraint is a bottleneck constraint for a session if a) a session-
link of is involved in the constraint, b) for
all other session-links whose sessions are associated with the
constraint, and c) the inequality in the constraint is an equality.

Again, with the above definition for a bottleneck constraint,
Lemma 12 provides a necessary and sufficient condition for a
departure rate vector to be maxmin fair.

We now describe the modifications required in the algorithm
presented in Fig. 7 for attaining maxmin fairness in this general
case. We first describe the modifications in the token generation
procedure. Now, session-links, rather than sessions, are associ-
ated with token-buckets, and the source of each session-link
maintains the bucket consisting of session-links in .
Again, token-buckets sample session-links rather than sessions.
The token generation process for a session-link is similar to
that for a single-hop session. The main difference is that the
token generation process for a session-link at the first (last)
token-bucket of must also depend on the number of tokens
generated at the last (first) token-bucket for the previous (next)
session-link of the same session (Fig. 6(b)). We now describe
the packet scheduling policy. The source of each session-link
maintains two packets queues: a waiting packet queue, and a
released packet queue. On arrival, a packet is queued at the

waiting packet queue. A packet is forwarded from the waiting
queue to the released queue when a new token is generated at the
token-bucket for the session-link at the session-link’s source.
Only session-links with nonempty released queues contend for
scheduling. The rest of the scheduling remains the same as that
for the case of single-hop sessions. Refer to Fig. 8 for a pseu-
docode.

Both Lemma 13 and Theorem 3 hold; the term “session”
must now be replaced with “session-link” in the statement of
Lemma 13.

We now make a few concluding remarks on our maxmin fair
packet scheduling algorithm. Note that the token-buckets as-
sociated with a session-link need to know the number of to-
kens generated for at other token-buckets associated with .
Also note that a token-bucket associated with is either at ’s
source or at ’s source, where . Thus, a token-bucket
at the source of a session-link need only know the number
of tokens generated at a token-bucket at the source of a ses-
sion-link if and only if both and interfere with each other or
with a common session-link. Since only session-links in close
proximity interfere with each other in a wireless network, the
token generation process requires communication among nodes
in proximity as well. Finally, the analytical guarantees hold even
when nodes know the number of tokens generated at other nodes
after some delay, as long as the delay is upper-bounded by a
constant.
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VII. DISCUSSION AND CONCLUSION

In this paper, we have addressed the long-standing open ques-
tion of attaining throughput guarantees with distributed sched-
uling in wireless networks. We have studied the performance
of a simple distributed scheduling policy, maximal scheduling,
which had earlier been investigated in context of node-exclu-
sive spectrum sharing model and input-queued switches. We
have obtained tight performance guarantees for maximal sched-
uling under arbitrary interference models and topologies, and
have characterized the throughput region attained by maximal
scheduling in terms of the interference degree of the network.
The characterizations demonstrate that the performance bounds
depend heavily on the nature of communication and interference
models. We prove that maximal scheduling is guaranteed to at-
tain a constant fraction of the maximum throughput region for
certain communication and interference models, while it is also
guaranteed to not attain a constant fraction in the worst case for
some other models. Our results can be generalized to networks
with multicast communication, arbitrary number of frequencies,
and end-to-end sessions. Finally, we enhance maximal sched-
uling to guarantee fairness of rate allocation.

The class of maximal scheduling policies is quite broad,
and our performance bounds apply to all policies in this class.
However, it remains to be seen whether certain policies in this
class can attain better performance bounds, while still being
amenable to low-complexity distributed implementation. Sim-
ilar questions remain open for distributed scheduling policies
outside this class as well. Recently, Sharma et al. [19] have
lower-bounded the complexity of policies that attain the max-
imum stability region, or approximate the maximum stability
region within constant factor, in arbitrary topologies. These
results may help answer some of the above open questions.

APPENDIX I
PROOFS OF ANALYTICAL RESULTS IN SECTION IV

(LEMMAS 2 AND 5)

A. Proof of Lemma 2

Recall that denotes the queue length of session in the
beginning of the th slot. Then, for any scheduling policy

and (14)

We first define fluid limits. The definitions are similar to those
used by Dai et al. [7].

1) Definition of Fluid Limits: We denote by and the set
of nonnegative integers and reals, respectively. For a random
process , we denote its value at time along a sample
path by .

Note that the domain of the functions and
is . Now, we define these functions for arbitrary by
using a piecewise linear interpolation. The piecewise linear in-
terpolation of a function is defined as follows. For

Note that defined as above is a continuous function.

Consider any scheduling policy. From any sender , at most
one packet can be served in a slot. Also, the maximum number
of packets arriving in a slot at is bounded by . Thus, for
every and

(15)

(16)

(17)

Now, let us define a family of functions for any given function
as follows:

for every

It follows from (15), (16), and (17), that for every

(18)

(19)

(20)

Thus, all the above functions are Lipschitz continuous, and
hence uniformly continuous on any compact interval. Clearly,
the above functions are also bounded on any compact interval.
Fix a compact interval . Now, consider any sequence
such that as . Then, by Arzela–Ascoli theorem
[14], there exists a subsequence and continuous functions

and such that for every

(21)

(22)

(23)

We now define fluid limits.

Definition 19: Any is called a fluid limit for
if there exists such that all the relations (21) to (23) are
satisfied.

Now, we state some important properties of the fluid limits
which we use to prove Lemma 2.

Lemma 14: Every fluid limit satisfies, with prob-
ability (w.p.) for every session and .

Lemma 15: Any fluid limit for satisfies the
following equality for every and w.p. :

(24)

Lemma 16: Let for every . Also, let
if . Then, under

maximal scheduling, every fluid limit satisfies for
every w.p. 1 for every .

The proofs of Lemmas 14–16 are provided later, after the
proof Lemma 2. We now prove Lemma 2.

Proof: First, we show that w.p. for
every . Then, the result follows by choosing .
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Under maximal scheduling, if and
for every for which , then

w.p. for every and (Lemma 16). Thus,
by Lemma 15, w.p. for every . Since

is a fluid limit, there exists a subsequence such that
and w.p.

(Section I-A.1). Thus, w.p. . Now,
we argue that w.p. .

Suppose, w.p. . Then, there
exists a subsequence such that and

w.p. for some . Now, note
that

(from (14))

Now, by taking limit as on both sides of the above
equation we obtain

w.p. (from Lemma 14)

(since )

Since, is also a fluid limit under maximal scheduling,
the above equation contradicts Lemma 16. Thus

w.p.

Now, for every as the number of depar-
tures from can at most be equal to the arrivals for till time .
Thus, clearly

w.p.

This shows that

w.p.

Now, select , and consider subsequence such that
. Here, for every

w.p.

w.p.

We now prove the supporting lemmas used to prove Lem-
ma 2.

2) Proof of Lemma 14:
Proof: Since is a fluid limit, by Definition 19, there

exists a sequence such that and

w.p. (since satisfy SLLN)

The result follows.

3) Proof of Lemma 15:
Proof: Since and are fluid limits,

there exists a sequence such that and they
are obtained as a uniform limits of functions
and , respectively. Now, from (14) it follows that for
every and

The result follows from Lemma 14 after taking the limit
on both sides of the above equality.

4) Proof of Lemma 16:
Proof: We prove the required by contradiction. Let

for every and . Then, there exists a session
and such that

(25)

for every (26)

(27)

We justify (25) to (27) by constructing that satisfy (25)
to (27). Let . Since

for some and some is well defined. From
the definition of there exists an such that

. From the continuity of for all , the
definition of and since for all for
all and . From the continuity of for all there
exists an such that (s.t.)
for all . Let .
Let be the first time at which . Now,

since for all and all and
for all . Let

. Clearly, . Let . From Lemma 15, since
. Since is the fluid limit of

and at all , . Thus, , which
is a contradiction. Thus, , and hence, .
Clearly, as for every . Since is a
continuous function, there exists such that

for every (28)

Now, since is a fluid limit, by Definition 19, there
exists a sequence such that and

for every and in an interval
. Thus, we can draw two conclusions. First, for suffi-

ciently large for every . Thus,
. This implies that for every

for every (29)

The second conclusion is that for every sufficiently large ,
there exists such that

(30)
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Relation (30) follows from (25), (26), , and the definition
of fluid limits. Select large enough such that (29) holds. For
all such

(from (14))

(31)

Since maximal scheduling is used and (29) holds, at least one
packet from some session in departs in every slot. Thus

Now, from (31)

w.p. (from Lemma 14)

(32)

Note that (32) contradicts (30). Thus, the result follows.

B. Proof of Lemma 5

We prove that in any network under the bidi-
rectional equal power model. We consider an arbitrary session

and show that , the maximum number of ses-
sions that interfere with but do not interfere with each other,
must satisfy . The result follows.

We assume that the nodes are deployed on a two-dimensional
Euclidean plane. Let the distance between the transmitting node

and receiving node be , where is the transmission
range of any node.

Without loss of generality let us assume that the line joining
and is aligned along the -axis. Let and repre-

sent disks of radius around and , respectively. Then the
interference area of session is .

In the following, a node is said to be the transceiver node of a
session if it is either the transmitting node or the receiving node
of that session; thus, each session has two transceiver nodes.
Note that if a session interferes with , at least one of its trans-
ceiver nodes must lie in . Now for each of the sessions
that interfere with but do not interfere with each other, choose
any one transceiver node of that session that lies in ;

let denote the set of the transceiver nodes thus chosen. We
will show by showing .

We first argue that , which follows almost immedi-
ately from Lemma 3.1 of [12]. The following observation and
lemma follows from Lemma 3.1 (and its proof) in [12].

Observation 1: Let . If
, and none of them coincide with ,

then the line segment joining and subtends an angle
greater than at .

Lemma 17: The number of nodes in that lie in
can be no greater than .

Note that is contained in four sectors. Therefore,
at most four nodes in can lie in (follows from
Observation 1). Since at most five nodes in can lie in
(Lemma 17), it follows that .

Now we proceed to tighten this upper bound by showing
; the proof of this fact is rather tedious, and is described

next. Towards this end, let us assume, for the sake of contradic-
tion, that .

Corollary 1: If , then the number of nodes in that
lie in , , and are 4, 1, and 4,
respectively.

Proof: Let and , respectively, denote the nodes
in that lie in , and . Then,

. Without loss of generality, assume .
We first argue that . Note that if , then

, implying , which is impossible since
is contained in four sectors. This implies that .

Now we argue that . Let us assume, for the sake of
contradiction, that . Then, . Thus,

. Therefore, , which is impossible
(from Lemma 17). Therefore, . Since (as shown
previously), we have .

Therefore, . Since (each of
and are contained in four sectors), we

must have .

From Corollary 1, we see that if , then
and must each contain four nodes in . For the
sake of contradiction, let us assume that this is true. Note
that none of these eight nodes can lie at the centers of the
two disks, i.e., at or . Also, exactly one of these eight
points must lie in each of the sectors of and

. Let and , respectively, denote
the nodes in that lie in sectors
and . Let and , respectively, denote the
nodes in that lie in sectors and

. Join with , and with
(refer to Fig. 9). Now, construct the octagon by joining

and .
Note that the length of each side of this octagon must be greater
than . Let line segment intersect line segments
and (possibly extended) at points and , respectively.
Let line segment intersect line segments and
(possibly extended) at points and , respectively.

Note that the angle subtended at by
(which is a collection of the line segments

), is equal to . Similarly, the angle subtended at
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Fig. 9. Diagram used in proof of Lemma 5.

by (which is a collection of the line segments
), is equal to . In the following, we show

however that the angle subtended at by
plus the angle subtended at by must be
greater than , thus arriving at a contradiction.

We will show that the angle subtended by at
plus the angle subtended by at is greater than .
Without loss of generality, assume that has a higher -coor-
dinate than (recall that is aligned along the -axis). As
shown in Fig. 9, choose such that is a parallel-
ogram. Join with and . Note,

.
We consider the following two cases separately: i) lies

within parallelogram , and ii) lies outside paral-
lelogram . Let us consider case i) first (Fig. 9 shows
this case). In this case, we claim that . To see
this, choose such that is a parallelogram. Join

with and . Note that . Note that
must lie “below” , since it is easy to see that there is no

point in sector that is “above” and whose distance
from is greater than .

Note that (by construc-
tion). Therefore, it is easy to see that must lie outside .
Thus, line segment must intersect line segment . In
the triangle and . There-
fore, . Thus,

. Thus, comparing angles in the triangle
, we get .

Note that since lies in sector , it follows that
must lie in sector . Therefore, lies in . In the
triangle , therefore, we have ,
and . Therefore, .

Thus, if lies in the parallelogram , we have
. More-

over, since ,
we have . From Obser-
vation 1, . Therefore,

. In other words, the angle subtended
by at plus the angle subtended by at is
greater than .

Now let us consider the case where does not lie inside
the parallelogram . Since has a lower -coordi-
nate than , it follows that must lie below the line .
Thus, must lie to the “right” of line . Thus,

. From Observation 1,
we get . Therefore, we obtain

, implying
that the angle subtended by at plus the angle sub-
tended by at is greater than .

Using similar arguments as above, it follows that the
angle subtended by at plus the angle subtended
by is greater than . From Observation 1, we obtain

. Combining all of the above re-
sults, we see that the angle subtended at by
plus the angle subtended at by must be
greater than . Thus, we arrive at a
contradiction showing that our assumption that was
incorrect. Therefore, .

APPENDIX II
PROOFS OF ANALYTICAL RESULTS IN SECTION V-A

(LEMMA 6 AND 7)

A. Proof of Lemma 6

The proof of Lemma 6 uses a generalized version of Lemma 1
which is stated next.

Lemma 18: If , then for all
sessions .

Lemma 6 follows from Lemma 18 (proved below) and
Lemma 2.

1) Proof of Lemma 18: The broad outline of the proof is
similar to that of Lemma 1. We assume that there exists a session

such that

and show that .
Now, note that for every session
. This is because if , then . Thus

(33)

Now consider an arbitrary scheduling policy . Under
for every as at most

nodes among can be scheduled concurrently.
Thus

(from (33))
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for some

Thus, if exists, then its value is less than .
Thus, the network is not stable under . Alternatively, if the
limit does not exist, then also the network is not stable under

. Thus, . The result follows.

B. Proof of Lemma 7

Consider a network with three single-hop sessions
and such that and . Thus,

and . Let
. Note that a policy that schedules session in odd

slots and and in the even slots stabilizes the system. Hence,
.

Now, consider the arrival rate vector

which corresponds to the following arrival process: ( , resp.)
generates a packet every even (odd, resp.) slot, and generates a
packet in slots . Note that a maximal scheduling policy
that schedules only when and do not have a packet to
transmit, never schedules , and is therefore unstable. Thus,

.

APPENDIX III
PROOF OF ANALYTICAL RESULTS IN SECTION V-B (LEMMA 8)

A. Proof of Lemma 8

Proof: Let . Then, under , for some scheduling
policy , there exists a nonnegative real vector
such that for all w.p. . Now,
since

Thus, for all

w.p.

Since for all
w.p. , for all
w.p. . Thus, . Thus, from Lemma 18, for all

. Thus

(34)

Let the arrival rate vector be . Consider a max-
imal scheduling policy. Let the state of the arrival process in the
end of slot be . Clearly, constitutes an ir-
reducible aperiodic Markov chain. Let denote the number
of departures for session in slot .

Consider the Lyapunov function , where

Clearly, if for some

Now

and

Thus

Under maximal scheduling, if
for each .

Thus, if .
Next, let . From (34), . Since
the arrival process is a positive recurrent Markov chain, thus
for any there exists such that for all
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Thus, for all and for

Thus, for

for all , and

for all such that

Hence, by Foster’s theorem [8, Theorem 2.2.3], for each

is a positive recurrent Markov
chain. Also, all these Markov chains have the same set of
states, and same transition probabilities. Thus, under maximal
scheduling, there exists a nonnegative real vector
such that for all w.p. .
Thus, .

APPENDIX IV
PROOFS OF ANALYTICAL RESULTS IN SECTION V-C

(LEMMAS 9 AND 10)

A. Proof of Lemma 9

We prove Lemma 9 using the following supporting lemmas.

Lemma 19: If , then
for all session-links .

Lemma 20: Let

if

Then .

Lemma 9 follows from Lemmas 19 and 20, proved below.

1) Proof of Lemma 19: Let there exist a session-link such
that

We will show that . Now, since

Also, note that for every session-link
. Thus

(35)

Now consider an arbitrary scheduling policy . Under
for every as at most

nodes among can be scheduled concurrently.
Thus

(from (35))

for some

The last inequality follows since for all

. Thus, if exists, then its value is less than
. Hence, the network is not stable under . Alternatively, if

the limit does not exist, then also the network is not stable under
. Thus, . The result follows.

2) Proof of Lemma 20: We outline this proof as it is sim-
ilar to that for Lemma 2. Recall that and , respec-
tively, denote the arrivals in and departures from session-link
in the time duration . With regulators, the source of each
session-link has two queues: waiting-queue and release-queue.
If we only focus on the release-queue of session-link , note
that departure process from the queue is the same as . Let

denote the arrivals at the release-queue of session-link
in the time duration . Then, if is the

first session-link in its session, and otherwise.
Let denote the queue length at the release-queue of ses-
sion-link at the beginning of the th slot.

For the fluid limits of
are defined as in Section I-A.1; let denote
the respective fluid limits.

Now, we state and prove some important properties of the
fluid limits which we use to prove Lemma 20.

Lemma 21: Every fluid limit satisfies w.p.
for every session-link and .

Proof: The proof is similar to that for Lemma 14 when
is the first session-link of its session. When is not the first

session-link of its session, the proof follows because due to the
regulator, the release-queue of receives packet w.p. at most

in any slot .
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Lemma 22: Any fluid limit sat-
isfies the following equality for every and with proba-
bility (w.p.) :

(36)

The proof is similar to that for Lemma 15.

Lemma 23: Let for every . Also, let
if . Then, under

maximal scheduling, every fluid limit satisfies for
every w.p. for every .

The lemma follows from Lemma 21. The arguments are sim-
ilar to that in the Proof of Lemma 16.

We now prove Lemma 20.

Proof: We prove the following for each session-link
:

i) w.p. for every ;
ii) w.p. for every ;

iii) w.p. .
We prove using induction on the position of the session-links in
the paths of their sessions.

First, let be the first session-link of some session (i.e., the
session-link originating at the source of the session). The ar-
rivals in the release-queue of the first session-link are the ex-
ogenous arrivals. Now, i) follows from (6). From Lemmas 22
and 23, w.p. for every . Now, ii) follows
from i). Finally, using arguments similar to those in the proof
Lemma 2, and using i) and ii), we obtain iii).

Now, let i) and ii) hold for the st nd th session-links
in the path of the session in consideration. We now prove i)
and ii) for a session-link that is the th in the path of
the session. Let session-link be the session-link of session

that terminate at the source of session-link . Let
be the queue length at the waiting-queue of session-link at the
beginning of the th slot. Now

From iii) of induction hypothesis
w.p. . Note that w.p. if . Thus,
the waiting-queue of session-link is a queue which receives
packets as per an arrival process that satisfies SLLN with rate

and is served w.p. whenever it is nonempty. It fol-
lows that the departure-process of this queue satisfies SLLN
with rate . Thus, i) follows. Now, ii) and iii) follow as in
the base case.

The lemma follows from iii).

B. Proof of Lemma 10

We prove Lemma 10 using Lemma 19 and another supporting
lemma, Lemma 24, which we state and prove next.

Lemma 24: Consider an arrival rate vector such that
for all session-links .

Then the packet queue of every session-link will almost surely

become empty infinitely often. Furthermore, for every ses-
sion-link and time .

Proof: Let and denote the number of arrivals
and departures, respectively, for session-link in slot . Let

be the number of packets for the session of session-link
waiting for transmission at the source of session-link at the

end of slot . Let , and . If session-link
satisfies for every , then for every

(37)

(38)

Now we have

(from (37))

(from (38))

Let . Clearly, . Thus



594 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 2, FEBRUARY 2008

if

Therefore, from (8), the packet queue of every session-link will
almost surely become empty infinitely often. Also

Lemma 10 follows from Lemma 19 and Lemma 24.
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