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Abstract

This paper considers the quantization problem on the Grassmanifoldg, ,,, the set of allp-dimensional
planes (through the origin) in the-dimensional Euclidean space. The chief result is a cldsad-formula for
the volume of a metric ball in the Grassmann manifold whenr#bus is sufficiently small. This volume formula
holds for Grassmann manifolds with arbitrary dimensioand p, while previous results pertained only po= 1,
or a fixedp with asymptotically larger. Based on this result, several quantization bounds areetkfor sphere
packing and rate distortion tradeoff. We establish asytwaly equivalent lower and upper bounds for the rate
distortion tradeoff. Since the upper bound is derived bystatting random codes, this result implies that the
random codes are asymptotically optimal. The above reandtsalso extended to the more general case, in which
Gn,q is quantized through a code @, ,, wherep andq are not necessarily the same. Finally, we discuss some
applications of the derived results to multi-antenna comication systems.

Index Terms

the Grassmann manifold, rate distortion tradeoff, MIMO coumications

. INTRODUCTION

The Grassmann manifold G, , (L) is the set of allp-dimensional planes (through the origin) in the
n-dimensional Euclidean spadé¢’, wherelL is eitherR or C. It forms a compact Riemann manifold of
real dimensiorgp (n — p), where = 1 whenL. = R and = 2 whenL = C. The Grassmann manifold
provides a useful analysis tool for multi-antenna commaindnis (also known as multiple-input multiple-
output (MIMO) communication systems). For non-coherenM@I systems, sphere packings @f , (L)
can be viewed as a generalization of spherical codes [1]H&] MIMO systems with partial channel
state information at the transmitter (CSIT), which is obéal by finite-rate channel-state feedback, the
guantization of beamforming matrices is related to the gmation on the Grassmann manifold [4]-[6].

The basic quantization problems addressed in this papénesphere packing bounds and rate distortion
tradeoff. Roughly speaking, a quantization is a represientaf a source irg, , (L). In particular, it maps
an element ing, , (L) into a subset ofj, , (L), known as a codé€. Define the minimum distance of a
coded = §(C) as the minimum distance between any two codewords in the €odesphere packing
bound relates the size of a code and a given minimum distan€ate distortion tradeoff is another
important aspect of the quantization problem. A distortietric is a mapping from the set of element
pairs ingG, , (L) into the set of non-negative real numbers. Given a sourdehiiion and a distortion
metric, the rate distortion tradeoff is described by theimum expected distortion achievable for a given
code size, or equivalently the minimum code size requiredctieve a particular expected distortion.

There are several papers addressing the quantizationepmofdr Grassmann manifolds. In [7], an
isometric embedding of, , (R) into a sphere in Euclidean spae ™~ (™+2) is given. Then, using the
Rankin bound in Euclidean space, the Rankin bound,jp (R) is obtained. Unfortunately, this bound
is not tight when the code size is large. Instead of resottiingn isometric embedding, sphere packing
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bounds can also be derived from analysis in the Grassmanifalaadirectly. Let B (§) denote a metric
ball of radiusé in G, , (L). The sphere packing bounds can be derived from the volunte (6§ [3]. The
exact volume formula for & (¢) in G, , (L) with p = 1 andLL = C is derived in [4]. An asymptotic volume
formula for aB (9) in G, , (L), wherep > 1 is fixed andn approaches infinity, is derived in [3]. Based
on those volume formulas, the corresponding sphere padidogds are developed in [3], [5]. Besides
the sphere packing bounds, the rate distortion tradeoffsis taeated in [8], where approximations to the
distortion rate function are derived via the sphere packiognds on the Grassmann manifold. However,
the derived approximations are based on the volume formual§3], [4] which are only valid for some
special choices ofi andp: eitherp = 1 or fixed p > 1 with asymptotic largen.

The main contribution of this paper is to derive a closearfdormula for the volume of a small ball
in the Grassmann manifold. Based on this formula, spherkipgbounds are derived and rate distortion
tradeoff are accurately quantified. Specifically:

1) An explicit volume formula for a metric ball ig,, ,, (L) is derived when the radiusis sufficiently
small. It holds for Grassmann manifolds with arbitrary dimsi®ns while previous results are only
valid for eitherp = 1 or a fixedp with asymptotically large:. The main order term of the volume
is ¢, 307" P) for a constant,,, s depending om, p and 3. Lower and upper bounds on the
volume formula are also derived.

2) Based on the volume formula, the Gilbert-Varshamov anchidang bounds for sphere packings are
obtained. For the distortion rate function, a lower boundstablished via sphere packing argument
and an upper bound is derived via random-code argument. ®teds are in fact asymptotically
identical, and so precisely quantify the asymptotic ratadtion tradeoff. Since the upper bound
is actually derived from the average distortion of randordes) it follows that random codes are
asymptotically optimal.

3) The volume formula and the results on the rate distortiaddoff are extended to a more general
plane matching problem. In this plane matching problem, amelfrom the cod€ C G, , (L) is
chosen to match a random plafeec G, , (L) to minimize the distortion, wherp and ¢ are not
necessarily the same. For plane matching, a metric bali,in(L) centered at a plane ig, , (L)
is studied. The volume formula is derived for such a ball vgtificiently small radius. The rate
distortion tradeoff is also quantified by the same methodoaye

4) As an application of the derived quantization bounds,itiigmation rate of a MIMO system with
finite-rate channel-state feedback and power on/off giyateaccurately quantified for the first time.
Since the corresponding Grassmann manifold for most gaddIMO systems hag > 1 and small
n, the quantization bounds derived in this paper are negessar

The paper is organized as follows. Sectidn Il provides soreé&mpinaries on the Grassmann manifold.
Section[dI derives the explicit volume formula for a metball in the Grassmann manifold. The corre-
sponding sphere packing bounds are obtained and the ratetidis tradeoff is accurately quantified in
Section[dV. An application of the quantization bounds to MIMsystems with finite-rate channel-state
feedback is detailed in Secti@d V. Sectiod VI contains thectgsions.

[I. PRELIMINARIES

This section presents a brief introduction to the Grassmmanifold. A metric and a measure on the
Grassmann manifold are defined, and the problems relevaptaiotization on the Grassmann manifold are
formulated. For completeness, we also extend the quaiotizatoblem to a more general plane matching
problem.

A. Metric and Measure on G,, ,, (L)

For the sake of applications [4]-[6], the projection Frabenmetric ¢hordal distance) is employed
throughout the paper although the corresponding analgsédso applicable to the geodesic metric [3].
For any two planed’, @ € G, , (L), we define the principle angles and the chordal distancedsst



and () as follows. Letu; € P andv; € () be the unit vectors such th%n{vl} is maximal. Inductively,

let u; € P andv; € Q be the unit vectors such thaiu; = 0 andv!v; = 0 for all ulv;

fori=1,---,p[7], [9]. The chordal

is maximal. The principle angles are definedfas- arccos u;fvl-

distance betwee® and (@ is given by
(P,Q) = Zsm 0;. (2)

The invariant measurg on G, , (L) is defined as follows. Le® (n) andU (n) be the groups of x n
orthogonal and unitary matrices respectively. 4 etB € O (n) whenL = R, or A,B € U (n) when
L = C. For any measurable satl C G, , (L) and arbitraryA and B,

p(AM) = (M) = p (MB).

The invariant measure defines the uniform/isotropic diation ong, , (L) as well [9].

B. Quantization on G, ,, (L)

Given both a metric and a measure @p, (L), a quantization on the Grassmann manifold can be well
defined. LetC be a finite size discrete subset@f, (L). A quantization is a mapping from thg, , (L)
to the setC (also known as a code), i.e.,

q:Gn, (L) —C.

An element in the cod€ is called a codeword. Thus, roughly speaking, a quantizasido use a subset
of G, , (L) to represent the whole space.

Sphere packing bounds relate the size of the code to the mmidistance among the codewords. Let
d be the minimum distance between any two codewords of a €oaled B (§) be a metric ball of radius
Jintheg,, (L). If K is any positive integer such that, (B (§)) < 1, then there exists a codkof size
K + 1 with minimum distance). This principle is called as th&ilbert-Varshamov lower bound,

1

Cl > ——o- )
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On the other hand(| 1 (B (§/2)) < 1 for any codeC. The Hamming upper bound captures this fact as
1
< ——— . 3)
=B

For more information about the sphere packing bounds, dee [3
Rate distortion tradeoff is another important aspect ofghantization problem. A distortion metric is
a mapping,
0:G,, (L) xC—[0,400),

from the set of the element pairs ¢, , (L) andC into the set of non-negative real numbers. Throughout

this paper, we define the distortion metric as the squareeotiiordal distance (-, -) = d2 (-, -). Assume
that a sourcey is randomly distributed irg, , (L). The distortion associated with a quantizatigns

defined as
2ED(Q.q(Q)] =E[2(Q.9(Q))].

The rate distortion tradeoff can be described by the infimum achievable distortion giverode size,
which is called thedistortion rate function, or equivalently the infimum code size required to achieve a
particular distortion, which is called thate distortion function. In this paper, the soura@ is assumed to



be uniformly distributed irg, , (L). For a given cod€ C G, , (L), the optimal quantization to minimize
the distortion is given by

q(Q) = arg min d. (P, Q).

The distortion associated with this quantization is

peC

D) = Elmin d (P,Q)]

For a given code siz& where K is a positive integer, the distortion rate function is théveg by’

D*(K) = inf D(C). (4)

The rate distortion function is given by

K* (D) ZD(%I;QD Cl. (5)

C. An Extension: Plane Matching Problem

For the sake of completeness, we extend the quantizatidsigonoto a more general plane matching
problem. The plane matching problem involves planes froffemint spaceg,, , (L) andg, , (L) where
p and g are not necessarily the same.

To formulate the plane matching problem, we need to definehiedal distance betweén € G, , (L)
and@ € G, , (L). Without loss of generality, we assume that ¢. Using the same procedure described
in Section[1I-A, we are able to define the principle angles< ¢, < --- < 6, < 7. Based on the
principle angles, the chordal distance betwéer G, , (L) andQ € G, , (L) are defined ag. (P, Q) =

E/Zle sin? 6;. In this way, the definition of chordal distance [ (1) is jasparticular case of the general
efinition.

Now consider the plane matching problem. Intuitively, thene matching problem is to choose a plane
from the codeC C G, , (L) to match a random plan@ < G, , (L) such that the average distortion is
minimized, wherel < p <n and1 < ¢ < n are not necessarily the same. Formally, a plane matching is
a map from the whole space of Grassmann manifold, ,g,(L), to the codeC C G, , (L),

q:Gnq (L) = C,
such that
A L2
D(C) Eq |pin d:(P.Q)
is minimized. According to the same principles in the quaatton problem, the rate distortion tradeoff
can be extended to the plane matching problem.

The ties, i.e. the case thatP, P> € C such thatd. (P1,Q) = gleiré d. (P,Q) = dc (P2, Q), are broken arbitrarily as they occur with

probability zero.
2The standard definition of the distortion rate function iwes the code rate, which isg, K. The definition in this paper is equivalent
to the standard one.



[1I. M ETRIC BALLS IN THE GRASSMANN MANIFOLD
In this section, an explicit volume formula for a metric bA&I(9) in the Grassmann manifold is derived.
It is the essential tool to quantify the rate distortion &raff in Sectior TV.
The volume calculation depends on the relationship betwkermeasure and the metric defined on
the Grassmann manifold. This paper focuses on the invaredsureu, which corresponds to the
uniform/isotropic distribution, and the chordal distanteFor any givenP € G,,, (L) and@ € G, , (L),

define Bp (0) = {Q € Gng (L) : de <P’ Q> = 5}
and

Bq(0)={P g, W) d(P,Q) <5}.

For the invariant measure, it has been shown that(Bp (0)) = i (Bg (6)) and the value is independent
of the choice of the center [9]. It is convenient to denBie(J) a dBQ (5) by B (¢) without distinguishing
them. Then, the volume of a metric ba® (0) is given by

pEBE)= [ [ due ©)
P, sin? ;<42
wherel < 6, < 7,---,1 < 0, < 7 are the principle angles and the differential forin, is the joint
density of thed;’s, which is given in [9]-[11] and as wel{20) in AppendiX A lba.

The following theorem calculates the volume formula andregges it as an exponentiation of the
radius.

Theorem 1: When§ < 1, the volume of a metric balB (§) is given by

(B () = g8 (14 cll) , 50% +0(5%)) (7)

where
g {1 fL=R
2 iftL=C "~
( (£ (n—i+1))
1 D 2 n
T(Zp(n—q)+1) 11i=1 W) f1< g<?2
1, SAalm) <p<n< <
Crpaf = T(Ep(n—g)+1) 1 1i=1 r((% p— 2+)1)) fl<p<gi<g<nandp+qg<n -
R 1 n—q T(5(n—i+1) . n )
Wnilm ifl1<p<2<g<nandp+qg>n
! nmg (3020D) gm0 o o
( T(5p(n—a)+1) [T r(5(n-p-i+1)) if §<p<g<n
and » |
(1) 5 Cp(n—gq
=\ 35 — 1)—1 i o]
Proof: See AppendiX’A. m

The following corollary gives the two cases where the voluorenula becomes exact.
Corollary 1: Whené < 1, in either of the following two cases,

1) L=C andqg = p;
2) L=Randqg=p+1,
the volume of a metric balB (§) can be exactly calculated by
(B (0)) = Capqpd™" ™,

wherec, , , 5 is defined in[B).



We also have the general bounds:
Corollary 2: Assumed < 1. If L =R andp = ¢ , the volume ofB () is bounded by

_p
2

Cnppa 0”7 < (B(8)) < Cuppud™ P (1 67)

For all other cases,

(1 — 52) gp(q_p+1)_p C”J’v%ﬁ(sﬁp(n_q) S o (B (5>> S C”J’J]ﬁ(sﬁp(n_q)'
Proof: Corollary[l andR follow the proof of Theoreh 1 by tracking thigher order terms. =
Theorem[dL is of course consistent with the previous resaltgl and [3], which pertain to special
choices ofn andp and are stated below as examples.
Example 1: Consider the volume formula for 8 (§) wherep = ¢ = 1. Without normalization, the total
volume ofG,, ; (C) is 27"/ (n — 1)! and the volume of the () is 27"6%"~Y / (n — 1)! [4]. Therefore,

p(B () = Y,

agreeing with Theorerd 1 where= 2 andc,, 112 = 1.
Example 2: For the case thai = ¢ are fixed andh — +o0, an asymptotic volume formula for & (¢)
is derived by Barg [3], which reads

B - < % )Banro(n). (10

On the other hand, asymptotic analysis from Theotém 1 gives

B (%)Bp(n—qwro(logn) <1 - <§ (G=p+1)— 1) 6% +o (52))

for asymptotically large: and any fixedl < p < ¢. The derivation follows the Stirling’s approximation
applied to—m log (¢np.q.5)- IN this setting, Theoreld 1 is consistent withl(10) and pesirefinement.
Importantly though, Theoreiid 1 is distinct from the abovaultssin that it holds for arbitrary, ¢ and
n. For a metric ball with parameter not asymptotically large, i.ep andq are comparable te, it is not
appropriate to usé_(lL0) to estimate the volume. A trivialnegke is that they = ¢ = n case. Ifp = ¢ = n,

the exact volume ofB () for Vé > 0 is the constant. The formula in Theoreril1 gives, s = 1

andc, .., 50°7"~9 = 1. However, the approximatio(wS/\/ﬁ)an (formula [I0)) will give a small number
much less thari wheny is small.

For engineering purposes, it may be satisfactory to appraté the volume of a metric balb () by
Cnp.q.50°P"? when the radius is relatively small. Figll compares the exact volume of ariméiall (@)
and the volume approximation, ,, , 50°*"~%. In the simulations, we always assume- ¢. The volume
approximation becomes exact for the complex Grassmannfoidnhené < 1. To calculate the exact
volume without appealing to Theordrh 1, Monte Carlo simolafs employed to evaluate the complicated
integrals in [6). Since

p(B(0)) =Pr{@: d.(P,Q) <5}

where P € G, , (L) is chosen arbitrarily and) is uniformly distributed in theg, , (L), simulating the
event{Q : d.(P,Q) <} givesu (B (0)). The simulation results for the real and complex Grassmann
manifolds are presented in FI§. 1(a) @&hd 1(b) respectiGigulations show that the volume approximation
(solid lines) is close to the exact volume (circles) whenrddius of the metric ball is not large. We also
compare our approximation with Barg'’s approximati@ij\/g’o)ﬁnp (from (Z0)) for the cases = 10 and

p = 2. Simulations show that the exact volume and Barg's appration (dash-dot lines) may not be of
the same order while the approximation in this paper is muohenaccurate.



V. QUANTIZATION BOUNDS

This section derives the sphere packing bounds and quantife rate distortion tradeoff for both
guantization problem and plane matching problem. The tesidveloped hold for Grassmann manifolds
with arbitraryn, p andg.

A. Sphere Packing Bounds

The Gilbert-Varshamov and Hamming bounds ¢br, (L) are given in the following corollary.
Corollary 3: Wheno is sufficiently small § < 1 necessarily), there exists a cadlén the G, ,, (L) with
size K and the minimum distancé such that

c—L  §5—Bp(n—p) (1 +0 (52)) <K.

n,p,p,8
For any code with the minimum distanée

—Bp(n—p)

_ 4]
K<cnls (1+0(5?)).
Proof: The corollary is proved by substituting the volume formiifx irto (2) and [(B). [ ]

Remark 1: Applying Corollary[2 would provide sharper information drethigher order term. But we
omit this.

B. Quantization: the Rate Distortion Tradeoff

The rate distortion tradeoff for quantization is charaetst in this subsection Here, we assume that
the quantization is o, , (L), the source is uniformly distributed i6, , (L) and the distortion metric
is defined as the square of the chordal distance. The denivegibased on the volume formula [ (7). A
lower bound and an upper bound on the distortion rate funcii@ established. Denote the size of the
code by K. Then the lower and upper bounds are asymptotically idantihenp is fixed, n and the
code ratelog, K approach to infinity with a fixed ratio. Therefore, these lisiprecisely quantify the
asymptotic rate distortion tradeoff. Note that the uppeurtmbis the average distortion of random codes.
Random codes are asymptotically optimal.

The following theorem gives a lower bound and an upper bounthe distortion rate function.

Theorem 2: When K is sufficiently large (¢, 5K )_BP“?*P) < 1 necessarily), the distortion rate
function is bounded as in

fp(n —p) o (e *
Toln—p) +3 G K) 70T (140 (1)) < D* (K)
p] (S 2
< % (Cnpppl) 7= (14 0(1)) (11)

Remark 2: For engineering purposes, the main order termsih (11) awellysaccurate enough to
characterize the distortion rate function. The detaildef1 + o (1)) correction are spelled out in Theorem
3 below, where a quantization is viewed as a specific caseanfepatching.

The lower bound and the upper bound are proved in Appentix dBGmespectively. We sketch the
proof as follows.

The lower bound is proved by a sphere packing argument. Thask® construct an ideal quantizer,
which may not exist, to minimize the distortion. Supposet tihere existsk' metric balls of the same
radiusd, packing and covering the who(g, , (L) at the same time. Then the quantizer which maps each
of those balls into its center gives the minimum distortiomoag all quantizers. Of course such an ideal
packing may not exist. It provides a lower bound on the digiorrate function.

3For compositional clarity, the results for plane matchisgiimmarized in a separate subsedionlV-C.



The basic idea behind the upper bound is that the distortiany particular code is an upper bound
of the distortion rate function and so is the average distorof an ensemble of codes. Toward the
proof, the ensemble of random codgs.q = { P, - - , Px} are employed, where the codeworll&s are
independently drawn from the uniform distribution@p,, (L). For any given codé,..q, the corresponding
distortion is given by

_ : 2 (D
D (Crand> - EQ |iPiI€nClend dc (Ra Q):| )
where@ € G, , (L) is a uniformly distributed plane. It is clear th&* (K) < E¢__, [D (Crana)]- We want
to calculateE¢_, , [D (Ciana)]- Note that

Ee [D (Cona)] = Ee {EQ[ min 2 (B,Q)H

Pi ecrand

SinceC,.nq is randomly generated from the uniform distributidty,, , [min d? (P;, Q)] should be inde-
pendent of the choice ap. Therefore,

Ecrand [D (Crand)] = Ecrand [mln di (P'H Q)]

for any fixed@. By the volume formula and the extreme order statistics, veeadle to calculate the
distribution of d? (P, Q) (for Vi) and min d? (P;, Q). In appendiX_C, we prove that for any givéh €
Gnp (L), K7 -Ec_ [D(Cuna)] cOnverges to a constant @ approaches infinity. Therefore, an upper
bound of the distortion rate function is obtained for asyotipally large K.

The rate distortion function is directly related to the ditibn rate function. The following corollary
guantifies the rate distortion function.

Corollary 4: When the required distortioR is sufficiently small O < 1 necessarily), the rate distortion
function satisfies the following bounds,

_ Bp(n—p)
1 _
Bp(n—p) . (1+0(1)) < K(D)
Cn,lhpvﬁ 2P (m)
_ Bp(n—p)

D (140(1)). (12)

Cn n—

To investigate the difference bépt’\z;\’/ﬁeen tﬁg (Iowelz and uppentt® in [I1), proceed as follows. Since
the exponential terms are the same in both bounds, focuseoodfficients. The difference between the
two bounds depends on the number of real dimensigpns — p) of the underlying Grassmann manifold.
There are three cases to consider.

Case 1: fSp(n —p) = 0. This only occurs: = p. Then the wholgj,, ,, (L) contains only one element
and no quantization is needed essentially.

Case 2. Sp(n—p) = 1. This happens if and only if. = R, n =2 andp = 1. In this case, it can be
verified that the principle anglebetween a uniformly distribute@ € G, (R) and any fixedP € G, ; (R)
is uniformly distributed in[O, g] From here, the optimal quantization can be explicitly ¢arded. Since
there existsk” metric balls with radiusin ;% such that those balls not only pack but also cover the whole
G21 (R), the quantizer mapping those balls into its center is ogtiffiae distortion rate function can be

explicitly calculated as

1 1

Case 3: Op(n — p) > 2. For this general case, an glementary calculation shows tha
1 _ Bp(n—p) 2 < 2 )
- < r <1,

27 Bpn—p)+27~ Bp(n—p) \Bp(n—p)) ~

<



and we expect the difference between the two bounds to deci@a approaches infinity. Indeed, the
following corollary shows that the lower and upper bounds asymptotically the same.

Corollary 5: Suppose thap is fixed, n and the code rateg, K approach to infinity simultaneously

with 7 £ lim % If the normalized code rateis sufficiently large pz‘%’* < 1 necessarily), then

(n,K)—+o0

lim D (K)=p2 5.

(n,K)—+o0
On the other hand, if the required distortiénis sufficiently small O < 1 necessarily), then the minimum
code size required to achieve that distortion satisfies
log, K* (D
lim L() = %bgz (p)

D

] (n,K)—+o0 n
Proof: The leading order is read off from

. Bp(n—p) . 2 ( 2 )
| =1=1
B+ B =) \Bp(i=p))

lim (Cn,p,p,ﬁ)_ﬁp(zim =D,

n—+4o00
2 2 =
lim Ko =275,
(n,K)—+o00
and .
Kepppp 2% .
That the(1 + o (1)) multiplicative errors fall into place is the content of Them[3. u

The lower and upper bounds asymptotically agreeing acelyrguantifies the distortion rate function.
Since the upper bound is actually derived from the averag@uion of random codes, this implies that
random codes are asymptotically optimal.

As a comparison, we cite the distortion rate function appnation derived in [8]. FoiG,, , (C) with
p = 1, that paper offers the approximation

D" (K) ~ (” . 1) K (13)
by asymptotic arguments. According to our results in ThedZe the approximatiori.(13) is indeed a lower
bound for the distortion rate function and valid for all pbgsn’s. For G, , (C) with p fixed andn > p,
a lower bound of an upper bound on the distortion rate funcisogiven in [8] based on an estimation
of the minimum distance of a code. It is less robust than tkaltén TheorenfR2 in that it is neither a
lower bound nor an upper bound, and it only holds o> p (see Fig[R for an empirical comparison).
Besides characterizing the rate distortion tradeoff, veeadso interested in designing a code to minimize
distortion for a given code siz&. Generally speaking, it is computational complicated tsigie a code to
minimize distortion directly. In [5] and [12], a suboptimdsign criterion, i.e., maximization the minimum
distance between codeword pairs, is proposed to reduceutatignal complexity. Refer this suboptimal
criterion asmax-min criterion. According to our volume formul&l(7), the sameemon can be verified.
Let the minimum distance of a codebe §. Note that the metric balls of raditgsand centered ab, € C
are disjoint. Then the corresponding distortion is upperrued by

52
D€)< [ Kn(B(6/2))+p (1~ Ku(B(3/2))). (14)
Apply the volume formulal{7). An elementary calculation wi3othat the first derivative of the upper

bound is negative when
4Bp* (n — p)
0 < )
\/2 + Bp(n—p)
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This property implies the upper bourdd114) is a decreasimgtian of 6 when§ is small enough. Thus,
max-min criterion is an appropriate design criterion toabbtcodes with small distortion. Since this
criterion only requires to calculate the distance betwemdeword pairs, the computational complexity is
less than that of designing a code to minimize the distortivectly.

Fig. [@ compares the simulated distortion rate function fthes markers) with its lower bound (the
dashed lines) and upper bound (the solid linesYin (11). mwkite the distortion rate function, we use
the max-min criterion to design codes and use the minimurtodiisn of the designed codes as the
distortion rate function. Simulation results show that teunds in [1IL) hold for largdl. When K is
relatively small, the formuld{11) can serve as good appnaions to the distortion rate function as well.
Simulations also verify the previous discussion on theed#hce between the two bounds. The difference
between the bounds is small and it becomes smaller iasreases. In addition, we compare our bounds
with the approximation (the “x” markers) derived in [8]. Sikations show that the approximation in [8]
is neither an upper bound nor a lower bound. It works for theedhatn = 10 andp = 2 but doesn't
work whenn < 8 andp = 2. As a comparison, the bounds111) derived in this paper raidafbitrary
n andp.

C. Plane Matching: the Rate Distortion Tradeoff

For completeness, this subsection summarizes the reddtd ¢he rate distortion tradeoff for plane
matching. The corresponding proofs follow those for themgization problem.

Let a codeC € G, , (L). The plane matching problem is to choose a plan€ ito match a random
plane@ € G, , (L). Without loss of generality, we assunie< p < ¢ < n. Denote the size of the code
by K. When K is sufficient large, the distortion rate function is boundbgd

Bp(n —q)
Bp(n—q)+2

or (ﬁ)
Bp(n—q)

When the required distortio® is sufficiently small, the rate distortion function is bowaldby

(Cnpa,s ) 7 (1+0(1)) < D" (K)

(Capg s K) 7707 (14 0(1)) .

__ Bp(n—q)
2

1 Bp (n —q) D

c r 2
sl \ 2 (Bp(n—q)>
517(721*11)

1 (Bpn—q)+2
_Cn,p,q,ﬁ< Bp (n —q) D) (o).

We finally detail the abovél + o (1)) errors, and so those il {11) arld](12) as well with the follgvin
theorem.
Theorem 3: Let a be an arbitrary real number such thHat< a« < 1 and K be sufficiently large

((cnm,qﬁK)‘Bp(Ew) < 1 necessarily). IfL = R andg¢ = p, then

(1+0(1)) < K" (D)

p(n—p) - _ 2 N _ oo
m (Cnpop, 1 ) P07) (1 — (CrppaK) p("fp)) < D" (K)
2l <p(n2—p)> -2 1—a
(Kenppa) 777 + pexp (_ (Kenpp) ) :

~ p(n—p)



11

If L=Randg=p+ 1, orL =C andq = p, then

Bp(n—q) S -
Cn K) #en-00 < D* (K
Bp(n_q)_'_z( Pa,8 ) ( )
< —QF <Bp(2_q)> (Kc )_m +pexp (— (Kc )1_“)
—_ /Bp (n _ q> n7p7q75 n7p7q75 °
If L=Randg>p+ 1, orL=C andgq > p, then
Bp(n—q) S -
— (e, K) o < D* (K
Bp(n_q)+2( p:4:8 ) ( )
2r (¢) _Bpla—pty-2p
Bp(n—q) -2 —__2a _ Bp(n—q)
< — (Keg, Bp(n—aq) <1 — (Kecy, BP("*Q))
Bp (n — q) ( ,p,q,ﬁ) ( ,p,q,ﬁ)
Bplg—p+1)
1-a S 2 p
+pexp <_ (Kcnpap) (1 — (Kenpap) Bp(”fq)) ) .
Proof: The proof is given in AppendikIB ardl C. [ |
The lower and upper bounds are asymptotically identical.;Land ¢ be fixed. Letn and the code
rate log, K approach to infinity simultaneously with= ( %n % If the normalized code rate is
n,K)—oco

sufficiently large, then )
li D*(K) = p2 75",
(n,Kl)Iil—l-oo ( ) P
On the other hand, if the required distortiénis sufficiently small, then the minimum code size required
to achieve that distortion satisfies

i 282K D)_ Ppy (3)
(n,K )—+00 n 2 2\D/"

V. AN APPLICATION TOMIMO SYSTEMS WITH FINITE RATE CHANNEL STATE FEEDBACK

As an application of the derived quantization bounds on tres&nann manifold, this section discusses
the information theoretical benefit of finite-rate chansigte feedback for MIMO systems using power
on/off strategy. In particular, we show that the benefit & thannel state feedback can be accurately
characterized by the distortion of a quantization on thes&raann manifold.

The effect of finite-rate feedback on MIMO systems using poaveoff strategy has been widely studied.
MIMO systems with only one on-beam are discussed in [4] afjdviBere the beamforming codebook
design criterion and performance analysis are derived byngéric arguments in the Grassmann manifold
Gn1 (C). MIMO systems with multiple on-beams are considered in [8B]-[16]. Criteria to select the
beamforming matrix are developed in [13] and [14]. The sigoanoise ratio (SNR) loss due to quantized
beamforming is discussed in [8]. The corresponding armalgddased on Barg’s formulga{10) and only valid
for MIMO systems with asymptotically large number of trarsantennas. The effect of beamforming
guantization on information rate is investigated in [15¢4h6]. The loss in information rate is quantified
for high SNR region in [15]. That analysis is based on an axipration of the logdet function in the high
SNR region and a metric on the Grassmann manifold other tieohordal distance. In [16], a formula to
calculate the information rate for all SNR regimes is pragabBy letting the numbers of transmit antennas,
receive antennas and feedback rate approach infinity simedgusly. But this formula overestimates the
performance in general.

The basic model of a wireless communication system Withtransmit antennad, z receive antennas
and finite-rate channel state feedback is given in Hig. 3. mf@mation bit stream is encoded into the
Gaussian signal vectd € C**! and then multiplied by the beamforming matic CL7** to generate
the transmitted signdl’ = PX, wheres is the dimension of the sign& satisfyingl < s < Ly and
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the beamforming matri® satisfiesP'P = I,. In power on/off strategyis [XXT} = P,.I, where theP,,
constant denotes the on-power. Assume that the chddrslRayleigh flat fading, i.e., the entries Bf
are independent and identically distributed (i.i.d.) glagly symmetric complex Gaussian variables with
zero mean and unit varianc€ X/ (0,1)) and H is i.i.d. for each channel use. L& € C=*! be the
received signal andW < CE=*! be the Gaussian noise, then

Y = HPX + W,

where E [WWT] = 1,.. We also assume that there is a beamforming codettbek {P; € CL7>*

PZPi = Isk declared to both the transmitter and the receiver befordrmsmission. At the beginning
of each channel use, the channel stkfeis perfectly estimated at the receiver. A message, which
is a function of the channel state, is sent back to the tratemmtihrough a feedback channel. The
feedback is error-free and rate limited. According to tharstel state feedback, the transmitter chooses
an appropriate beamforming matX; € 5. Let the feedback rate bRg bits/channel use. Then the size
of the beamforming codebodiB| < 2%». The feedback function is a mapping from the set of channel
state into the beamforming matrix index set; {H} — {i: 1 <1 < |B|}. This section will quantify
the corresponding information rate

where P,, = p/s andp is the average received SNR.

Before discussing the finite-rate feedback case, we cangide case that the transmitter has full
knowledge of the channel stak®. In this setting, the optimal beamforming matrix is givenBy,, = V
whereV, € CE7 is the matrix composed by the right singular vectordb€orresponding to the largest
s singular values [6]. The corresponding information rate is

i In (1 -+ Pon)\i)

i=1

Iopt == EH ) (15)

where ); is thei*® largest eigenvalue cHH!. In [6, Section IIl], we derive an asymptotic formula to
approximate a quantity of the forig [>_;_, In (1 + ¢);)] wherec > 0 is a constant. Apply the asymptotic
formula in [6]. Z,, can be well approximated.

The effect of finite-rate feedback can be characterized bydilantization bounds in the Grassmann
manifold. For finite-rate feedback, we define a suboptimatifack function

i = (H) £ arg min d2 (P (P;),P (V,)), (16)
1<i<|B|

whereP (P;) and P (V,) are the planes in th§,, . (C) generated byP; and V, respectively. In [6],
we showed that this feedback function is asymptoticallyiropt as Ry, — +o0c and near optimal when

Ry, < +00. With this feedback function and assuming that the feedbatkRy, is large, it has also been
shown in [6] that

> I (1+ neupPoni)

1=1

T ~ Em : (17)

where

oy 21— inf EVS{ min d? (P(Pz—),P(Vs))}

S B:|B|<2%m 1<i<|B]

1 * fb
= 1--D (27 . (18)
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Thus, the difference between perfect beamforming dade 48 )finite-rate feedback cade(17) is quan-
tified by 7..,, Which depends on the distortion rate function on ¢he ; (C). Substituting quantization
bounds [111) into[[18) and applying the asymptotic formulg@hfor Eg > ;_,In(1+ ¢);)] produce
approximations of the information rafe as a function of the feedback ratg,,.

Simulations verify the above approximations. ket= min (Ly, Lg). Fig.[4 compares the simulated
information rate (circles) and approximations as funatiof R, /m?. The information rate approximated
by the lower bound (solid lines) and the upper bound (dotiteek) in [11) are presented. The simulation
results show that the performances approximated by thedsofid) match the actual performance almost
perfectly. As a comparison, the approximation proposedl1®y],[[17], which is based on asymptotic
analysis and Gaussian approximation, overestimates tbamation rate. Furthermore, we compare the
simulated information rate and the approximations for gdarange of SNRs in Fidl 5. Without loss of
generality, we only present the lower bound[inl(11) becatiserresponds to the random codes and can
be achieved by appropriate code design. Elg. 5(a) showsthadifference between the simulated and
approximated information rate is almost unnoticeable. Bkenthe performance difference clearer, Fig.
H(b) gives the relative performance as the ratio of the camsd performance and the capacity of a2
MIMO achieved by water filling power control. The differengerelative performance is also small for
all SNR regimes.

VI. CONCLUSION

This paper considers the quantization problem on the Grassmanifold. Based on an explicit volume
formula for a metric ball in thejg, , (L), sphere packing bounds are obtained and the rate distortion
tradeoff is accurately characterized by establishing dewn the distortion function. Simulations verify
the developed results. As an application of the derived tgetion bounds, the information rate of a
MIMO system with finite-rate channel-state feedback and groan/off strategy is accurately quantified
for the first time.

APPENDIX
A. Proof of Theorem [

The proof is divided into three parts, in which we calculdte volume formula for theé < p < ¢ < 3,
5 <p<g<nandl <p< 7 <q<n cases respectively.

1) 1 <p<q< 75 case First we prove the basic form
(B (9)) = g8 (14 cll) , 50% + 0 (52))

for § < 1. Afterward, we calculate the constants, , 5 and )

n,p,q,B"
The volume of a metric balk (B (9)) is given by pq
nBE) = [ [ due 19)
\/ 2P sin?0;,<6
where the differential formiu, is the joint density ob;’s. For convenience, we introduce the following
notations. Define;; £ cos®; and orderr;’s such thatr; < r; (6; > 0,) if i < j. Definer = [ry,--- 7]

and also

p
18 (%) =TT I =7

1<j
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Recall thats =1 for L = R and 5 = 2 for L. = C. With these notations, the invariant measdrg can
be written as follows [11].

1o = Vnpas | (x \BH( e e R ) B (20)

where the constant, , , 5 is given by

2 L(I+9)r(5(n—i+1)
Unpqﬁ_gr(l_l_l)r( S(n—p —i+1))r (§ (g—i+1)) (21)

To get the form [(7), we perform the variable chanife; = 1 — r? for 1 < ¢ < p. Under this
transformation, the integral domain

D5é{r:2(1—r)<52 0<r?<l1fori=1,- p}

is changed to

D,

1
{x: ingl,ngigﬁforizl,---,p}
= {x: ingl, ngiforizl,---,p},
where the last equation holds sin€e 1. Thus

(B (5)) = g 5070 / / A |BH N )

Next note that

2

and so we are able to express the volume3dh) in the desired form with

1)-1
C”vPvQyB é Un,p,q,ﬁ/ /|A |BH (n pP— q+ d )

(1 . 52xi)§(lI—p+l)—1 —1_ (é (g—p+1) — 1) xiéz +o (52) :

and 8
: o f 1 GOP Ty ()30 )
w o (B 1) Dy -
“npap P (2 (g-» ) f f A (x |B H (( )g n—p—q+1)—1 dxi>

In order to calculate the constants, , s andc!)
Lemma 1: It holds that

P 1oy
/.../xl...$m|A(X)|ﬁ (1_2932-) [ =" dz
=1 =1

B I (v) T (o2
_F(7+m+ap+§p(p—1))g< TRl >)
Xﬁf(a—l—%(p—i))F(l—i—%i)

1 r(i+3)

npqs We need the following lemma [18].
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where0 < m < p, R(a) >0, R(y) > 0, R () > —min (%,%‘?, 3;7”1)) and the integral is taken over
0 S Zi, Zle Z; S 1.
Proof: This is Selberg’s second generalization of the beta inte@ee [18, Section 17.10] for a
detailed proof. [ |
According to Lemmdll, we have that

/ /|A |BH 8 (n—p—q+1) ldz’,)

1
r(pg( —q+1)+ p(p—1)+1)
PA+3)T (Fn—p—g+1)+5(—1)

<1l £+ )

i=1

B 1 ﬁF(1+§i)F(§(n—q—i+1))
I'(Sp(n—q)+1) I'(1+2) '
Substituting the formuld{21) fos, , , 5 into the integral expansion af, , , s yields

p

1 F(mn—i+1
B )

Crpag = :
pap F(gp(n—q)—l-l) P F(g(q—2+1))

after some simplifications.
The constant( ) .5 €an be calculated in a similar way. Lemiida 1 implies that

//561 A (x)[° ﬁ <(xi)§("—P—q+l)_1 dxi>

Therefore,

which completes the proof of the< p < ¢ < 7 case.

2) 5 <p<q<ncase This computation is closely related to that for thec p < ¢ < 7 case.

To see the connection between the< p < ¢ <n and1 < p < ¢ < 5 cases, we define the generator
matrix and the orthogonal complement plane. For any givemeP < G, , (L), the generator matrix
P € L™*? is the matrix whose columns are orthonormal and expand the plah&he generator matrix
is not uniquely defined. However, the chordal distance betwe < G, , (L) and@ € G, , (L) can be
uniquely defined by their generator matrices. Indeed,

dz (P,Q) = min (p,q) — tr (P'QQ'P)

where P and Q are generator matrices for the plafeand Q respectively. It can be shown that the
chordal distance is independent of the choice of the gemeraatrices. The orthogonal complement
plane is defined as follows. For any given plaie G, , (L), its orthogonal complement plare" is the
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plane inG, ,,_, (L) such that the minimum principle angle betweBrand P is 5. It is straightforward
that PP+ = 0 whereP and P+ are the generator matrices fér and P+ respectively, and the matrix
is thep x (n — p) matrix with all elements).

With the definition of the orthogonal complement plane, therdal distance betweeR and( can be
related to that betweeR* and Q+. The relationship is given in the following lemma.

Lemma 2: For any given planes® € G,, (L) andQ € G,,(L), let P+ € G,,, ,(L) and Q*+ €
Gn.n—q (L) be their orthogonal complement planes respectively. Then

2 (P,Q)=d:(P-,Q").
Proof: This lemma can be proved by the generator matricesPL &), P+ andQ* be the generator

matrices forP, @, P+ andQ+ respectively. Without loss of generality, we also assumaélth< p < ¢ < n.
Then

p = u(P'[Q]Q][Q|Q"]'P)
— tr (P'QQ'P) + tr (P’fQL (QL)TP) ,
where the matrix[Q | Qﬂ is the one composed & and Q*. Similarly,
n—q = tr <(QJ_)T PP [P PJ_]TQJ_>
— 4r <(QJ_)T PPTQJ_) 4 tr <(QJ_)T plL (PJ_)T QJ_) .

Then
(P, ¢ p-tr(PIQQ'P)
- u(P'Q*(Q")'P)
— n—g—tr <(QJ_)T pL (PJ_)T QJ_>
2 @ (PHQY).,
where (a) and (b) are from the definition of the c