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Abstract

This paper considers the quantization problem on the Grassmann manifoldGn,p, the set of allp-dimensional
planes (through the origin) in then-dimensional Euclidean space. The chief result is a closed-form formula for
the volume of a metric ball in the Grassmann manifold when theradius is sufficiently small. This volume formula
holds for Grassmann manifolds with arbitrary dimensionn andp, while previous results pertained only top = 1,
or a fixedp with asymptotically largen. Based on this result, several quantization bounds are derived for sphere
packing and rate distortion tradeoff. We establish asymptotically equivalent lower and upper bounds for the rate
distortion tradeoff. Since the upper bound is derived by constructing random codes, this result implies that the
random codes are asymptotically optimal. The above resultsare also extended to the more general case, in which
Gn,q is quantized through a code inGn,p, wherep and q are not necessarily the same. Finally, we discuss some
applications of the derived results to multi-antenna communication systems.

Index Terms

the Grassmann manifold, rate distortion tradeoff, MIMO communications

I. INTRODUCTION

The Grassmann manifold Gn,p (L) is the set of allp-dimensional planes (through the origin) in the
n-dimensional Euclidean spaceLn, whereL is eitherR or C. It forms a compact Riemann manifold of
real dimensionβp (n− p), whereβ = 1 whenL = R andβ = 2 whenL = C. The Grassmann manifold
provides a useful analysis tool for multi-antenna communications (also known as multiple-input multiple-
output (MIMO) communication systems). For non-coherent MIMO systems, sphere packings ofGn,p (L)
can be viewed as a generalization of spherical codes [1]–[3]. For MIMO systems with partial channel
state information at the transmitter (CSIT), which is obtained by finite-rate channel-state feedback, the
quantization of beamforming matrices is related to the quantization on the Grassmann manifold [4]–[6].

The basic quantization problems addressed in this paper arethe sphere packing bounds and rate distortion
tradeoff. Roughly speaking, a quantization is a representation of a source inGn,p (L). In particular, it maps
an element inGn,p (L) into a subset ofGn,p (L), known as a codeC. Define the minimum distance of a
codeδ , δ (C) as the minimum distance between any two codewords in the codeC. A sphere packing
bound relates the size of a code and a given minimum distanceδ. Rate distortion tradeoff is another
important aspect of the quantization problem. A distortionmetric is a mapping from the set of element
pairs inGn,p (L) into the set of non-negative real numbers. Given a source distribution and a distortion
metric, the rate distortion tradeoff is described by the minimum expected distortion achievable for a given
code size, or equivalently the minimum code size required toachieve a particular expected distortion.

There are several papers addressing the quantization problem for Grassmann manifolds. In [7], an
isometric embedding ofGn,p (R) into a sphere in Euclidean spaceR

1
2
(m−1)(m+2) is given. Then, using the

Rankin bound in Euclidean space, the Rankin bound inGn,p (R) is obtained. Unfortunately, this bound
is not tight when the code size is large. Instead of resortingto an isometric embedding, sphere packing
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bounds can also be derived from analysis in the Grassmann manifold directly. Let B (δ) denote a metric
ball of radiusδ in Gn,p (L). The sphere packing bounds can be derived from the volume ofB (δ) [3]. The
exact volume formula for aB (δ) in Gn,p (L) with p = 1 andL = C is derived in [4]. An asymptotic volume
formula for aB (δ) in Gn,p (L), wherep ≥ 1 is fixed andn approaches infinity, is derived in [3]. Based
on those volume formulas, the corresponding sphere packingbounds are developed in [3], [5]. Besides
the sphere packing bounds, the rate distortion tradeoff is also treated in [8], where approximations to the
distortion rate function are derived via the sphere packingbounds on the Grassmann manifold. However,
the derived approximations are based on the volume formulasin [3], [4] which are only valid for some
special choices ofn andp: eitherp = 1 or fixed p ≥ 1 with asymptotic largen.

The main contribution of this paper is to derive a closed-form formula for the volume of a small ball
in the Grassmann manifold. Based on this formula, sphere packing bounds are derived and rate distortion
tradeoff are accurately quantified. Specifically:

1) An explicit volume formula for a metric ball inGn,p (L) is derived when the radiusδ is sufficiently
small. It holds for Grassmann manifolds with arbitrary dimensions while previous results are only
valid for eitherp = 1 or a fixedp with asymptotically largen. The main order term of the volume
is cn,p,p,βδ

βp(n−p) for a constantcn,p,p,β depending onn, p andβ. Lower and upper bounds on the
volume formula are also derived.

2) Based on the volume formula, the Gilbert-Varshamov and Hamming bounds for sphere packings are
obtained. For the distortion rate function, a lower bound isestablished via sphere packing argument
and an upper bound is derived via random-code argument. The bounds are in fact asymptotically
identical, and so precisely quantify the asymptotic rate distortion tradeoff. Since the upper bound
is actually derived from the average distortion of random codes, it follows that random codes are
asymptotically optimal.

3) The volume formula and the results on the rate distortion tradeoff are extended to a more general
plane matching problem. In this plane matching problem, a plane from the codeC ⊂ Gn,p (L) is
chosen to match a random planeQ ∈ Gn,q (L) to minimize the distortion, wherep and q are not
necessarily the same. For plane matching, a metric ball inGn,q (L) centered at a plane inGn,p (L)
is studied. The volume formula is derived for such a ball withsufficiently small radius. The rate
distortion tradeoff is also quantified by the same method as above.

4) As an application of the derived quantization bounds, theinformation rate of a MIMO system with
finite-rate channel-state feedback and power on/off strategy is accurately quantified for the first time.
Since the corresponding Grassmann manifold for most practical MIMO systems hasp > 1 and small
n, the quantization bounds derived in this paper are necessary.

The paper is organized as follows. Section II provides some preliminaries on the Grassmann manifold.
Section III derives the explicit volume formula for a metricball in the Grassmann manifold. The corre-
sponding sphere packing bounds are obtained and the rate distortion tradeoff is accurately quantified in
Section IV. An application of the quantization bounds to MIMO systems with finite-rate channel-state
feedback is detailed in Section V. Section VI contains the conclusions.

II. PRELIMINARIES

This section presents a brief introduction to the Grassmannmanifold. A metric and a measure on the
Grassmann manifold are defined, and the problems relevant toquantization on the Grassmann manifold are
formulated. For completeness, we also extend the quantization problem to a more general plane matching
problem.

A. Metric and Measure on Gn,p (L)

For the sake of applications [4]–[6], the projection Frobenius metric (chordal distance) is employed
throughout the paper although the corresponding analysis is also applicable to the geodesic metric [3].
For any two planesP,Q ∈ Gn,p (L), we define the principle angles and the chordal distance betweenP



3

andQ as follows. Letu1 ∈ P andv1 ∈ Q be the unit vectors such that
∣
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for i = 1, · · · , p [7], [9]. The chordal

distance betweenP andQ is given by

dc (P,Q) ,

√

√

√

√

p
∑

i=1

sin2 θi. (1)

The invariant measureµ on Gn,p (L) is defined as follows. LetO (n) andU (n) be the groups ofn× n
orthogonal and unitary matrices respectively. LetA,B ∈ O (n) whenL = R, or A,B ∈ U (n) when
L = C. For any measurable setM ⊂ Gn,p (L) and arbitraryA andB,

µ (AM) = µ (M) = µ (MB) .

The invariant measure defines the uniform/isotropic distribution onGn,p (L) as well [9].

B. Quantization on Gn,p (L)

Given both a metric and a measure onGn,p (L), a quantization on the Grassmann manifold can be well
defined. LetC be a finite size discrete subset ofGn,p (L). A quantization is a mapping from theGn,p (L)
to the setC (also known as a code), i.e.,

q : Gn,p (L) → C.
An element in the codeC is called a codeword. Thus, roughly speaking, a quantization is to use a subset
of Gn,p (L) to represent the whole space.

Sphere packing bounds relate the size of the code to the minimum distance among the codewords. Let
δ be the minimum distance between any two codewords of a codeC andB (δ) be a metric ball of radius
δ in theGn,p (L). If K is any positive integer such thatKµ (B (δ)) < 1, then there exists a codeC of size
K + 1 with minimum distanceδ. This principle is called as theGilbert-Varshamov lower bound,

|C| > 1

µ (B (δ))
. (2)

On the other hand,|C|µ (B (δ/2)) ≤ 1 for any codeC. The Hamming upper bound captures this fact as

|C| ≤ 1

µ (B (δ/2))
. (3)

For more information about the sphere packing bounds, see [3].
Rate distortion tradeoff is another important aspect of thequantization problem. A distortion metric is

a mapping,
d : Gn,p (L)× C → [0,+∞) ,

from the set of the element pairs inGn,p (L) andC into the set of non-negative real numbers. Throughout
this paper, we define the distortion metric as the square of the chordal distance,d (·, ·) , d2c (·, ·). Assume
that a sourceQ is randomly distributed inGn,p (L). The distortion associated with a quantizationq is
defined as

D , E [d (Q, q (Q))] = E
[

d2c (Q, q (Q))
]

.

The rate distortion tradeoff can be described by the infimum achievable distortion given acode size,
which is called thedistortion rate function, or equivalently the infimum code size required to achieve a
particular distortion, which is called therate distortion function. In this paper, the sourceQ is assumed to
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be uniformly distributed inGn,p (L). For a given codeC ⊂ Gn,p (L), the optimal quantization to minimize
the distortion is given by1

q (Q) = arg min
P∈C

dc (P,Q) .

The distortion associated with this quantization is

D (C) = E

[

min
P∈C

d2c (P,Q)

]

.

For a given code sizeK whereK is a positive integer, the distortion rate function is then given by2

D∗ (K) = inf
C:|C|=K

D (C) . (4)

The rate distortion function is given by

K∗ (D) = inf
D(C)≤D

|C| . (5)

C. An Extension: Plane Matching Problem

For the sake of completeness, we extend the quantization problem to a more general plane matching
problem. The plane matching problem involves planes from different spacesGn,p (L) andGn,q (L) where
p andq are not necessarily the same.

To formulate the plane matching problem, we need to define thechordal distance betweenP ∈ Gn,p (L)
andQ ∈ Gn,q (L). Without loss of generality, we assume thatp ≤ q. Using the same procedure described
in Section II-A, we are able to define the principle angles0 ≤ θ1 ≤ · · · ≤ θp ≤ π

2
. Based on the

principle angles, the chordal distance betweenP ∈ Gn,p (L) andQ ∈ Gn,q (L) are defined asdc (P,Q) ,
√

∑p

i=1 sin
2 θi. In this way, the definition of chordal distance in (1) is justa particular case of the general

definition.
Now consider the plane matching problem. Intuitively, the plane matching problem is to choose a plane

from the codeC ⊂ Gn,p (L) to match a random planeQ ∈ Gn,q (L) such that the average distortion is
minimized, where1 ≤ p ≤ n and1 ≤ q ≤ n are not necessarily the same. Formally, a plane matching is
a map from the whole space of Grassmann manifold, e.g.,Gn,q (L), to the codeC ⊂ Gn,p (L),

q : Gn,q (L) → C,
such that

D (C) , EQ

[

min
P∈C

d2c (P,Q)

]

is minimized. According to the same principles in the quantization problem, the rate distortion tradeoff
can be extended to the plane matching problem.

1The ties, i.e. the case that∃P1, P2 ∈ C such thatdc (P1, Q) = min
P∈C

dc (P,Q) = dc (P2, Q), are broken arbitrarily as they occur with

probability zero.
2The standard definition of the distortion rate function involves the code rate, which islog2 K. The definition in this paper is equivalent

to the standard one.
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III. M ETRIC BALLS IN THE GRASSMANN MANIFOLD

In this section, an explicit volume formula for a metric ballB (δ) in the Grassmann manifold is derived.
It is the essential tool to quantify the rate distortion tradeoff in Section IV.

The volume calculation depends on the relationship betweenthe measure and the metric defined on
the Grassmann manifold. This paper focuses on the invariantmeasureµ, which corresponds to the
uniform/isotropic distribution, and the chordal distancedc. For any givenP ∈ Gn,p (L) andQ ∈ Gn,q (L),
define

BP (δ) =
{

Q̂ ∈ Gn,q (L) : dc

(

P, Q̂
)

≤ δ
}

and
BQ (δ) =

{

P̂ ∈ Gn,p (L) : dc

(

P̂ , Q
)

≤ δ
}

.

For the invariant measureµ, it has been shown thatµ (BP (δ)) = µ (BQ (δ)) and the value is independent
of the choice of the center [9]. It is convenient to denoteBP (δ) andBQ (δ) by B (δ) without distinguishing
them. Then, the volume of a metric ballB (δ) is given by

µ (B (δ)) =

∫

· · ·
∫

∑p
i=1 sin

2 θi≤δ2

dµθ, (6)

where1 ≤ θ1 ≤ π
2
, · · · , 1 ≤ θp ≤ π

2
are the principle angles and the differential formdµθ is the joint

density of theθi’s, which is given in [9]–[11] and as well (20) in Appendix A below.
The following theorem calculates the volume formula and expresses it as an exponentiation of the

radius.
Theorem 1: Whenδ ≤ 1, the volume of a metric ballB (δ) is given by

µ (B (δ)) = cn,p,q,βδ
βp(n−q)

(

1 + c
(1)
n,p,q,βδ

2 + o
(

δ2
)

)

, (7)

where

β =

{

1 if L = R

2 if L = C
,

cn,p,q,β =







































1

Γ(β
2
p(n−q)+1)

∏p

i=1

Γ(β
2
(n−i+1))

Γ( β
2
(q−i+1))

if 1 ≤ p ≤ q ≤ n
2

1

Γ(β
2
p(n−q)+1)

∏p
i=1

Γ(β
2
(n−i+1))

Γ(β
2
(n−p−i+1))

if 1 ≤ p ≤ n
2
≤ q ≤ n and p+ q ≤ n

1

Γ(β
2
p(n−q)+1)

∏n−q
i=1

Γ(β
2
(n−i+1))

Γ(β
2
(q−i+1))

if 1 ≤ p ≤ n
2
≤ q ≤ n and p+ q ≥ n

1

Γ(β
2
p(n−q)+1)

∏n−q
i=1

Γ(β
2
(n−i+1))

Γ(β
2
(n−p−i+1))

if n
2
≤ p ≤ q ≤ n

, (8)

and

c
(1)
n,p,q,β = −

(

β

2
(q − p + 1)− 1

) β

2
p (n− q)

β

2
p (n− q) + 1

. (9)

Proof: See Appendix A.
The following corollary gives the two cases where the volumeformula becomes exact.
Corollary 1: Whenδ ≤ 1, in either of the following two cases,
1) L = C andq = p;
2) L = R andq = p+ 1,

the volume of a metric ballB (δ) can be exactly calculated by

µ (B (δ)) = cn,p,q,βδ
βp(n−q),

wherecn,p,q,β is defined in (8).
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We also have the general bounds:
Corollary 2: Assumeδ ≤ 1. If L = R andp = q , the volume ofB (δ) is bounded by

cn,p,p,1δ
p(n−p) ≤ µ (B (δ)) ≤ cn,p,p,1δ

p(n−p)
(

1− δ2
)− p

2 .

For all other cases,
(

1− δ2
)

β
2
p(q−p+1)−p

cn,p,q,βδ
βp(n−q) ≤ µ (B (δ)) ≤ cn,p,q,βδ

βp(n−q).
Proof: Corollary 1 and 2 follow the proof of Theorem 1 by tracking thehigher order terms.

Theorem 1 is of course consistent with the previous results in [4] and [3], which pertain to special
choices ofn andp and are stated below as examples.

Example 1: Consider the volume formula for aB (δ) wherep = q = 1. Without normalization, the total
volume ofGn,1 (C) is 2πn/ (n− 1)! and the volume of theB (δ) is 2πnδ2(n−1)/ (n− 1)! [4]. Therefore,

µ (B (δ)) = δ2(n−1),

agreeing with Theorem 1 whereβ = 2 and cn,1,1,2 = 1.
Example 2: For the case thatp = q are fixed andn → +∞, an asymptotic volume formula for aB (δ)

is derived by Barg [3], which reads

µ (B (δ)) =

(

δ√
p

)βnp+o(n)

. (10)

On the other hand, asymptotic analysis from Theorem 1 gives

µ (B (δ)) =

(

δ√
p

)βp(n−q)+O(logn)(

1−
(

β

2
(q − p+ 1)− 1

)

δ2 + o
(

δ2
)

)

for asymptotically largen and any fixed1 ≤ p ≤ q. The derivation follows the Stirling’s approximation
applied to− 1

βp(n−q)
log (cn,p,q,β). In this setting, Theorem 1 is consistent with (10) and provides refinement.

Importantly though, Theorem 1 is distinct from the above results in that it holds for arbitraryp, q and
n. For a metric ball with parametern not asymptotically large, i.e.,p andq are comparable ton, it is not
appropriate to use (10) to estimate the volume. A trivial example is that thep = q = n case. Ifp = q = n,
the exact volume ofB (δ) for ∀δ > 0 is the constant1. The formula in Theorem 1 givescn,n,n,β = 1

andcn,n,n,βδβp(n−q) = 1. However, the approximation(δ/
√
n)

βn2

(formula (10)) will give a small number
much less than1 whenδ is small.

For engineering purposes, it may be satisfactory to approximate the volume of a metric ballB (δ) by
cn,p,q,βδ

βp(n−q) when the radiusδ is relatively small. Fig. 1 compares the exact volume of a metric ball (6)
and the volume approximationcn,p,q,βδβp(n−q). In the simulations, we always assumep = q. The volume
approximation becomes exact for the complex Grassmann manifold when δ ≤ 1. To calculate the exact
volume without appealing to Theorem 1, Monte Carlo simulation is employed to evaluate the complicated
integrals in (6). Since

µ (B (δ)) = Pr {Q : dc (P,Q) ≤ δ}
whereP ∈ Gn,p (L) is chosen arbitrarily andQ is uniformly distributed in theGn,p (L), simulating the
event{Q : dc (P,Q) ≤ δ} givesµ (B (δ)). The simulation results for the real and complex Grassmann
manifolds are presented in Fig. 1(a) and 1(b) respectively.Simulations show that the volume approximation
(solid lines) is close to the exact volume (circles) when theradius of the metric ball is not large. We also
compare our approximation with Barg’s approximation

(

δ/
√
p
)βnp

(from (10)) for the casen = 10 and
p = 2. Simulations show that the exact volume and Barg’s approximation (dash-dot lines) may not be of
the same order while the approximation in this paper is much more accurate.
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IV. QUANTIZATION BOUNDS

This section derives the sphere packing bounds and quantifies the rate distortion tradeoff for both
quantization problem and plane matching problem. The results developed hold for Grassmann manifolds
with arbitraryn, p andq.

A. Sphere Packing Bounds

The Gilbert-Varshamov and Hamming bounds forGn,p (L) are given in the following corollary.
Corollary 3: Whenδ is sufficiently small (δ ≤ 1 necessarily), there exists a codeC in theGn,p (L) with

sizeK and the minimum distanceδ such that

c−1
n,p,p,βδ

−βp(n−p)
(

1 +O
(

δ2
))

≤ K.

For any code with the minimum distanceδ,

K ≤ c−1
n,p,p,β

(

δ

2

)−βp(n−p)
(

1 +O
(

δ2
))

.

Proof: The corollary is proved by substituting the volume formula (7) into (2) and (3).
Remark 1: Applying Corollary 2 would provide sharper information on the higher order term. But we

omit this.

B. Quantization: the Rate Distortion Tradeoff

The rate distortion tradeoff for quantization is characterized in this subsection3. Here, we assume that
the quantization is onGn,p (L), the source is uniformly distributed inGn,p (L) and the distortion metric
is defined as the square of the chordal distance. The derivation is based on the volume formula in (7). A
lower bound and an upper bound on the distortion rate function are established. Denote the size of the
code byK. Then the lower and upper bounds are asymptotically identical whenp is fixed, n and the
code ratelog2K approach to infinity with a fixed ratio. Therefore, these bounds precisely quantify the
asymptotic rate distortion tradeoff. Note that the upper bound is the average distortion of random codes.
Random codes are asymptotically optimal.

The following theorem gives a lower bound and an upper bound on the distortion rate function.
Theorem 2: When K is sufficiently large ((cn,p,p,βK)−

2
βp(n−p) ≤ 1 necessarily), the distortion rate

function is bounded as in

βp (n− p)

βp (n− p) + 2
(cn,p,p,βK)

− 2
βp(n−p) (1 + o (1)) ≤ D∗ (K)

≤
2Γ
(

2
βp(n−p)

)

βp (n− p)
(cn,p,p,βK)−

2
βp(n−p) (1 + o (1)) (11)

Remark 2: For engineering purposes, the main order terms in (11) are usually accurate enough to
characterize the distortion rate function. The details of the(1 + o (1)) correction are spelled out in Theorem
3 below, where a quantization is viewed as a specific case of plane matching.

The lower bound and the upper bound are proved in Appendix B and C respectively. We sketch the
proof as follows.

The lower bound is proved by a sphere packing argument. The key is to construct an ideal quantizer,
which may not exist, to minimize the distortion. Suppose that there existsK metric balls of the same
radiusδ0 packing and covering the wholeGn,p (L) at the same time. Then the quantizer which maps each
of those balls into its center gives the minimum distortion among all quantizers. Of course such an ideal
packing may not exist. It provides a lower bound on the distortion rate function.

3For compositional clarity, the results for plane matching is summarized in a separate subsection IV-C.
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The basic idea behind the upper bound is that the distortion of any particular code is an upper bound
of the distortion rate function and so is the average distortion of an ensemble of codes. Toward the
proof, the ensemble of random codesCrand = {P1, · · · , PK} are employed, where the codewordsPi’s are
independently drawn from the uniform distribution onGn,p (L). For any given codeCrand, the corresponding
distortion is given by

D (Crand) = EQ

[

min
Pi∈Crand

d2c (Pi, Q)

]

,

whereQ ∈ Gn,p (L) is a uniformly distributed plane. It is clear thatD∗ (K) ≤ ECrand [D (Crand)]. We want
to calculateECrand [D (Crand)]. Note that

ECrand [D (Crand)] = ECrand

[

EQ

[

min
Pi∈Crand

d2c (Pi, Q)

]]

= EQ

[

ECrand

[

min
Pi∈Crand

d2c (Pi, Q)

]]

.

SinceCrand is randomly generated from the uniform distribution,ECrand [min d2c (Pi, Q)] should be inde-
pendent of the choice ofQ. Therefore,

ECrand [D (Crand)] = ECrand

[

min d2c (Pi, Q)
]

for any fixedQ. By the volume formula and the extreme order statistics, we are able to calculate the
distribution of d2c (Pi, Q) (for ∀i) andmin d2c (Pi, Q). In appendix C, we prove that for any givenQ ∈
Gn,p (L), K

2
t · ECrand [D (Crand)] converges to a constant asK approaches infinity. Therefore, an upper

bound of the distortion rate function is obtained for asymptotically largeK.
The rate distortion function is directly related to the distortion rate function. The following corollary

quantifies the rate distortion function.
Corollary 4: When the required distortionD is sufficiently small (D ≤ 1 necessarily), the rate distortion

function satisfies the following bounds,

1

cn,p,p,β





βp (n− p)

2Γ
(

2
βp(n−p)

)D





−
βp(n−p)

2

(1 + o (1)) ≤ K∗ (D)

≤ 1

cn,p,p,β

(

βp (n− p) + 2

βp (n− p)
D

)−βp(n−p)
2

(1 + o (1)) . (12)

To investigate the difference between the lower and upper bounds in (11), proceed as follows. Since
the exponential terms are the same in both bounds, focus on the coefficients. The difference between the
two bounds depends on the number of real dimensionsβp (n− p) of the underlying Grassmann manifold.
There are three cases to consider.

Case 1: βp (n− p) = 0. This only occursn = p. Then the wholeGn,n (L) contains only one element
and no quantization is needed essentially.

Case 2: βp (n− p) = 1. This happens if and only ifL = R, n = 2 andp = 1. In this case, it can be
verified that the principle angleθ between a uniformly distributedQ ∈ G2,1 (R) and any fixedP ∈ G2,1 (R)
is uniformly distributed in

[

0, π
2

]

. From here, the optimal quantization can be explicitly constructed. Since
there existsK metric balls with radiussin π

4K
such that those balls not only pack but also cover the whole

G2,1 (R), the quantizer mapping those balls into its center is optimal. The distortion rate function can be
explicitly calculated as

D∗ (K) =
1

2K
− 1

π
sin

π

2K
.

Case 3: βp (n− p) ≥ 2. For this general case, an elementary calculation shows that

1

2
≤ βp (n− p)

βp (n− p) + 2
≤ 2

βp (n− p)
Γ

(

2

βp (n− p)

)

≤ 1,
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and we expect the difference between the two bounds to decrease asn approaches infinity. Indeed, the
following corollary shows that the lower and upper bounds are asymptotically the same.

Corollary 5: Suppose thatp is fixed, n and the code ratelog2K approach to infinity simultaneously
with r̄ , lim

(n,K)→+∞

log2 K
n

. If the normalized code ratēr is sufficiently large (p2−
2
βp

r̄ ≤ 1 necessarily), then

lim
(n,K)→+∞

D∗ (K) = p2−
2
βp

r̄.

On the other hand, if the required distortionD is sufficiently small (D ≤ 1 necessarily), then the minimum
code size required to achieve that distortion satisfies

lim
(n,K)→+∞

log2K
∗ (D)

n
=

βp

2
log2

( p

D

)

.

Proof: The leading order is read off from

lim
n→+∞

βp (n− p)

βp (n− p) + 2
= 1 = lim

n→+∞

2

βp (n− p)
Γ

(

2

βp (n− p)

)

,

lim
n→+∞

(cn,p,p,β)
− 2

βp(n−p) = p,

lim
(n,K)→+∞

K− 2
p(n−p) = 2−

2
βp

r̄,

and
Kcn,p,p,β

(n,K)→∞−→ ∞.

That the(1 + o (1)) multiplicative errors fall into place is the content of Theorem 3.
The lower and upper bounds asymptotically agreeing accurately quantifies the distortion rate function.

Since the upper bound is actually derived from the average distortion of random codes, this implies that
random codes are asymptotically optimal.

As a comparison, we cite the distortion rate function approximation derived in [8]. ForGn,p (C) with
p = 1, that paper offers the approximation

D∗ (K) ≈
(

n− 1

n

)

K− 1
n−1 (13)

by asymptotic arguments. According to our results in Theorem 2, the approximation (13) is indeed a lower
bound for the distortion rate function and valid for all possible n’s. For Gn,p (C) with p fixed andn ≫ p,
a lower bound of an upper bound on the distortion rate function is given in [8] based on an estimation
of the minimum distance of a code. It is less robust than the result in Theorem 2 in that it is neither a
lower bound nor an upper bound, and it only holds forn ≫ p (see Fig. 2 for an empirical comparison).

Besides characterizing the rate distortion tradeoff, we are also interested in designing a code to minimize
distortion for a given code sizeK. Generally speaking, it is computational complicated to design a code to
minimize distortion directly. In [5] and [12], a suboptimaldesign criterion, i.e., maximization the minimum
distance between codeword pairs, is proposed to reduce computational complexity. Refer this suboptimal
criterion asmax-min criterion. According to our volume formula (7), the same criterion can be verified.
Let the minimum distance of a codeC be δ. Note that the metric balls of radiusδ

2
and centered atPi ∈ C

are disjoint. Then the corresponding distortion is upper bounded by

D (C) ≤ δ2

4
Kµ (B (δ/2)) + p (1−Kµ (B (δ/2))) . (14)

Apply the volume formula (7). An elementary calculation shows that the first derivative of the upper
bound is negative when

δ <

√

4βp2 (n− p)

2 + βp (n− p)
.
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This property implies the upper bound (14) is a decreasing function of δ whenδ is small enough. Thus,
max-min criterion is an appropriate design criterion to obtain codes with small distortion. Since this
criterion only requires to calculate the distance between codeword pairs, the computational complexity is
less than that of designing a code to minimize the distortiondirectly.

Fig. 2 compares the simulated distortion rate function (theplus markers) with its lower bound (the
dashed lines) and upper bound (the solid lines) in (11). To simulate the distortion rate function, we use
the max-min criterion to design codes and use the minimum distortion of the designed codes as the
distortion rate function. Simulation results show that thebounds in (11) hold for largeK. WhenK is
relatively small, the formula (11) can serve as good approximations to the distortion rate function as well.
Simulations also verify the previous discussion on the difference between the two bounds. The difference
between the bounds is small and it becomes smaller asn increases. In addition, we compare our bounds
with the approximation (the “x” markers) derived in [8]. Simulations show that the approximation in [8]
is neither an upper bound nor a lower bound. It works for the case thatn = 10 and p = 2 but doesn’t
work whenn ≤ 8 andp = 2. As a comparison, the bounds (11) derived in this paper hold for arbitrary
n andp.

C. Plane Matching: the Rate Distortion Tradeoff

For completeness, this subsection summarizes the results about the rate distortion tradeoff for plane
matching. The corresponding proofs follow those for the quantization problem.

Let a codeC ∈ Gn,p (L). The plane matching problem is to choose a plane inC to match a random
planeQ ∈ Gn,q (L). Without loss of generality, we assume1 ≤ p ≤ q ≤ n. Denote the size of the codeC
by K. WhenK is sufficient large, the distortion rate function is boundedby

βp (n− q)

βp (n− q) + 2
(cn,p,q,βK)−

2
βp(n−q) (1 + o (1)) ≤ D∗ (K)

≤
2Γ
(

2
βp(n−q)

)

βp (n− q)
(cn,p,q,βK)−

2
βp(n−q) (1 + o (1)) .

When the required distortionD is sufficiently small, the rate distortion function is bounded by

1

cn,p,q,β





βp (n− q)

2Γ
(

2
βp(n−q)

)D





−
βp(n−q)

2

(1 + o (1)) ≤ K∗ (D)

≤ 1

cn,p,q,β

(

βp (n− q) + 2

βp (n− q)
D

)−
βp(n−q)

2

(1 + o (1)) .

We finally detail the above(1 + o (1)) errors, and so those in (11) and (12) as well with the following
theorem.

Theorem 3: Let a be an arbitrary real number such that0 < a < 1 and K be sufficiently large
((cn,p,q,βK)−

2
βp(n−q) ≤ 1 necessarily). IfL = R andq = p, then

p (n− p)

p (n− p) + 2
(cn,p,p,1K)−

2
p(n−p)

(

1− (cn,p,p,1K)−
2

p(n−p)

)
1

n−p ≤ D∗ (K)

≤
2Γ
(

2
p(n−p)

)

p (n− p)
(Kcn,p,p,1)

− 2
p(n−p) + p exp

(

− (Kcn,p,p,1)
1−a
)

.
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If L = R andq = p + 1, or L = C andq = p, then

βp (n− q)

βp (n− q) + 2
(cn,p,q,βK)

− 2
βp(n−q) ≤ D∗ (K)

≤
2Γ
(

2
βp(n−q)

)

βp (n− q)
(Kcn,p,q,β)

− 2
βp(n−q) + p exp

(

− (Kcn,p,q,β)
1−a
)

.

If L = R andq > p + 1, or L = C andq > p, then

βp (n− q)

βp (n− q) + 2
(cn,p,q,βK)−

2
βp(n−q) ≤ D∗ (K)

≤
2Γ
(

2
βp(n−q)

)

βp (n− q)
(Kcn,p,q,β)

− 2
βp(n−q)

(

1− (Kcn,p,q,β)
− 2a

βp(n−q)

)−
βp(q−p+1)−2p

βp(n−q)

+ p exp

(

− (Kcn,p,q,β)
1−a
(

1− (Kcn,p,q,β)
− 2a

βp(n−q)

)
βp(q−p+1)

2
−p

)

.

Proof: The proof is given in Appendix B and C.
The lower and upper bounds are asymptotically identical. Let p and q be fixed. Letn and the code

rate log2K approach to infinity simultaneously with̄r = lim
(n,K)→∞

log2 K
n

. If the normalized code ratēr is

sufficiently large, then
lim

(n,K)→+∞
D∗ (K) = p2−

2
βp

r̄.

On the other hand, if the required distortionD is sufficiently small, then the minimum code size required
to achieve that distortion satisfies

lim
(n,K)→+∞

log2K
∗ (D)

n
=

βp

2
log2

( p

D

)

.

V. AN APPLICATION TO MIMO SYSTEMS WITH FINITE RATE CHANNEL STATE FEEDBACK

As an application of the derived quantization bounds on the Grassmann manifold, this section discusses
the information theoretical benefit of finite-rate channel-state feedback for MIMO systems using power
on/off strategy. In particular, we show that the benefit of the channel state feedback can be accurately
characterized by the distortion of a quantization on the Grassmann manifold.

The effect of finite-rate feedback on MIMO systems using power on/off strategy has been widely studied.
MIMO systems with only one on-beam are discussed in [4] and [5], where the beamforming codebook
design criterion and performance analysis are derived by geometric arguments in the Grassmann manifold
Gn,1 (C). MIMO systems with multiple on-beams are considered in [8],[13]–[16]. Criteria to select the
beamforming matrix are developed in [13] and [14]. The signal-to-noise ratio (SNR) loss due to quantized
beamforming is discussed in [8]. The corresponding analysis is based on Barg’s formula (10) and only valid
for MIMO systems with asymptotically large number of transmit antennas. The effect of beamforming
quantization on information rate is investigated in [15] and [16]. The loss in information rate is quantified
for high SNR region in [15]. That analysis is based on an approximation of the logdet function in the high
SNR region and a metric on the Grassmann manifold other than the chordal distance. In [16], a formula to
calculate the information rate for all SNR regimes is proposed by letting the numbers of transmit antennas,
receive antennas and feedback rate approach infinity simultaneously. But this formula overestimates the
performance in general.

The basic model of a wireless communication system withLT transmit antennas,LR receive antennas
and finite-rate channel state feedback is given in Fig. 3. Theinformation bit stream is encoded into the
Gaussian signal vectorX ∈ C

s×1 and then multiplied by the beamforming matrixP ∈ C
LT×s to generate

the transmitted signalT = PX, wheres is the dimension of the signalX satisfying1 ≤ s ≤ LT and
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the beamforming matrixP satisfiesP†P = Is. In power on/off strategy,E
[

XX†
]

= PonIs where thePon

constant denotes the on-power. Assume that the channelH is Rayleigh flat fading, i.e., the entries ofH
are independent and identically distributed (i.i.d.) circularly symmetric complex Gaussian variables with
zero mean and unit variance (CN (0, 1)) and H is i.i.d. for each channel use. LetY ∈ CLR×1 be the
received signal andW ∈ C

LR×1 be the Gaussian noise, then

Y = HPX+W,

whereE
[

WW†
]

= ILR
. We also assume that there is a beamforming codebookB =

{

Pi ∈ CLT×s :

P
†
iPi = Is

}

declared to both the transmitter and the receiver before thetransmission. At the beginning
of each channel use, the channel stateH is perfectly estimated at the receiver. A message, which
is a function of the channel state, is sent back to the transmitter through a feedback channel. The
feedback is error-free and rate limited. According to the channel state feedback, the transmitter chooses
an appropriate beamforming matrixPi ∈ B. Let the feedback rate beRfbbits/channel use. Then the size
of the beamforming codebook|B| ≤ 2Rfb . The feedback function is a mapping from the set of channel
state into the beamforming matrix index set,ϕ : {H} → {i : 1 ≤ i ≤ |B|}. This section will quantify
the corresponding information rate

I = max
B:|B|≤2Rfb

max
ϕ

E
[

log
∣

∣

∣
ILR

+ PonHPϕ(H)P
†
ϕ(H)H

∣

∣

∣

]

,

wherePon = ρ/s andρ is the average received SNR.
Before discussing the finite-rate feedback case, we consider the case that the transmitter has full

knowledge of the channel stateH. In this setting, the optimal beamforming matrix is given byPopt = Vs

whereVs ∈ CLT×s is the matrix composed by the right singular vectors ofH corresponding to the largest
s singular values [6]. The corresponding information rate is

Iopt = EH

[

s
∑

i=1

ln (1 + Ponλi)

]

, (15)

whereλi is the ith largest eigenvalue ofHH†. In [6, Section III], we derive an asymptotic formula to
approximate a quantity of the formEH [

∑s
i=1 ln (1 + cλi)] wherec > 0 is a constant. Apply the asymptotic

formula in [6]. Iopt can be well approximated.
The effect of finite-rate feedback can be characterized by the quantization bounds in the Grassmann

manifold. For finite-rate feedback, we define a suboptimal feedback function

i = ϕ (H) , arg min
1≤i≤|B|

d2c (P (Pi) ,P (Vs)) , (16)

whereP (Pi) andP (Vs) are the planes in theGLT ,s (C) generated byPi andVs respectively. In [6],
we showed that this feedback function is asymptotically optimal asRfb → +∞ and near optimal when
Rfb < +∞. With this feedback function and assuming that the feedbackrateRfb is large, it has also been
shown in [6] that

I ≈ EH

[

s
∑

i=1

ln (1 + ηsupPonλi)

]

, (17)

where

ηsup , 1− 1

s
inf

B:|B|≤2Rfb

EVs

[

min
1≤i≤|B|

d2c (P (Pi) ,P (Vs))

]

= 1− 1

s
D∗
(

2Rfb
)

. (18)
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Thus, the difference between perfect beamforming case (15)and finite-rate feedback case (17) is quan-
tified by ηsup, which depends on the distortion rate function on theGLT ,s (C). Substituting quantization
bounds (11) into (18) and applying the asymptotic formula in[6] for EH [

∑s

i=1 ln (1 + cλi)] produce
approximations of the information rateI as a function of the feedback rateRfb.

Simulations verify the above approximations. Letm = min (LT , LR). Fig. 4 compares the simulated
information rate (circles) and approximations as functions of Rfb/m

2. The information rate approximated
by the lower bound (solid lines) and the upper bound (dotted lines) in (11) are presented. The simulation
results show that the performances approximated by the bounds (11) match the actual performance almost
perfectly. As a comparison, the approximation proposed in [16], [17], which is based on asymptotic
analysis and Gaussian approximation, overestimates the information rate. Furthermore, we compare the
simulated information rate and the approximations for a large range of SNRs in Fig. 5. Without loss of
generality, we only present the lower bound in (11) because it corresponds to the random codes and can
be achieved by appropriate code design. Fig. 5(a) shows thatthe difference between the simulated and
approximated information rate is almost unnoticeable. To make the performance difference clearer, Fig.
5(b) gives the relative performance as the ratio of the considered performance and the capacity of a4× 2
MIMO achieved by water filling power control. The differencein relative performance is also small for
all SNR regimes.

VI. CONCLUSION

This paper considers the quantization problem on the Grassmann manifold. Based on an explicit volume
formula for a metric ball in theGn,p (L), sphere packing bounds are obtained and the rate distortion
tradeoff is accurately characterized by establishing bounds on the distortion function. Simulations verify
the developed results. As an application of the derived quantization bounds, the information rate of a
MIMO system with finite-rate channel-state feedback and power on/off strategy is accurately quantified
for the first time.

APPENDIX

A. Proof of Theorem 1

The proof is divided into three parts, in which we calculate the volume formula for the1 ≤ p ≤ q ≤ n
2
,

n
2
≤ p ≤ q ≤ n and1 ≤ p ≤ n

2
≤ q ≤ n cases respectively.

1) 1 ≤ p ≤ q ≤ n
2

case: First we prove the basic form

µ (B (δ)) = cn,p,q,βδ
βp(n−q)

(

1 + c
(1)
n,p,q,βδ

2 + o
(

δ2
)

)

for δ ≤ 1. Afterward, we calculate the constantscn,p,q,β and c(1)n,p,q,β.
The volume of a metric ballµ (B (δ)) is given by

µ (B (δ)) =

∫

· · ·
∫

√
∑p

i=1 sin
2 θi≤δ

dµθ, (19)

where the differential formdµθ is the joint density ofθi’s. For convenience, we introduce the following
notations. Defineri , cos θi and orderri’s such thatri ≤ rj (θi ≥ θj) if i < j. Definer = [r1, · · · , rp]
and also

∣

∣∆p

(

r2
)∣

∣ =

p
∏

i<j

∣

∣r2j − r2i
∣

∣ .
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Recall thatβ = 1 for L = R andβ = 2 for L = C. With these notations, the invariant measuredµθ can
be written as follows [11].

dµθ = vn,p,q,β
∣

∣∆p

(

r2
)∣

∣

β
p
∏

i=1

(

(

r2i
)

β
2
(q−p+1)−1 (

1− r2i
)

β
2
(n−p−q+1)−1

dr2i

)

, (20)

where the constantvn,p,q,β is given by

vn,p,q,β =

p
∏

i=1

Γ
(

1 + β

2

)

Γ
(

β

2
(n− i+ 1)

)

Γ
(

β

2
i+ 1

)

Γ
(

β

2
(n− p− i+ 1)

)

Γ
(

β

2
(q − i+ 1)

) . (21)

To get the form (7), we perform the variable changeδ2xi = 1 − r2i for 1 ≤ i ≤ p. Under this
transformation, the integral domain

Dδ ,

{

r :
∑

(

1− r2i
)

≤ δ2, 0 ≤ r2i ≤ 1 for i = 1, · · · , p
}

is changed to

D1 ,

{

x :
∑

xi ≤ 1, 0 ≤ xi ≤
1

δ2
for i = 1, · · · , p

}

=
{

x :
∑

xi ≤ 1, 0 ≤ xi for i = 1, · · · , p
}

,

where the last equation holds sinceδ ≤ 1. Thus

µ (B (δ)) = vn,p,q,βδ
βp(n−q)

∫

· · ·
∫

D1

|∆(x)|β
p
∏

i=1

(

(

1− δ2xi

)
β
2
(q−p+1)−1

(xi)
β
2
(n−p−q+1)−1 dxi

)

.

Next note that
(

1− δ2xi

)
β
2
(q−p+1)−1

= 1−
(

β

2
(q − p+ 1)− 1

)

xiδ
2 + o

(

δ2
)

,

and so we are able to express the volume ofB (δ) in the desired form with

cn,p,q,β , vn,p,q,β

∫

· · ·
∫

D1

|∆(x)|β
p
∏

i=1

(

(xi)
β
2
(n−p−q+1)−1 dxi

)

,

and

c
(1)
n,p,q,β , −p ·

(

β

2
(q − p+ 1)− 1

)

∫

· · ·
∫

D1

x1 |∆(x)|β∏p

i=1

(

(xi)
β
2
(n−p−q+1)−1 dxi

)

∫

· · ·
∫

D1

|∆(x)|β∏p

i=1

(

(xi)
β
2
(n−p−q+1)−1 dxi

) .

In order to calculate the constantscn,p,q,β and c(1)n,p,q,β, we need the following lemma [18].
Lemma 1: It holds that

∫

· · ·
∫

x1 · · ·xm |∆(x)|β
(

1−
p
∑

i=1

xi

)γ−1 p
∏

i=1

xα−1
i dxi

=
Γ (γ)

Γ
(

γ +m+ αp+ β

2
p (p− 1)

)

m
∏

i=1

(

α +
β

2
(p− i)

)

×
p
∏

i=1

Γ
(

α + β

2
(p− i)

)

Γ
(

1 + β

2
i
)

Γ
(

1 + β

2

) .
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where0 ≤ m ≤ p, ℜ (α) > 0, ℜ (γ) > 0, ℜ
(

β

2

)

> −min
(

1
p
, ℜ(α)
p−1

, ℜ(γ)
p−1

)

and the integral is taken over

0 ≤ xi,
∑p

i=1 xi ≤ 1.
Proof: This is Selberg’s second generalization of the beta integral. See [18, Section 17.10] for a

detailed proof.
According to Lemma 1, we have that

∫

· · ·
∫

D1

|∆(x)|β
p
∏

i=1

(

(xi)
β
2
(n−p−q+1)−1 dxi

)

=
1

Γ
(

pβ

2
(n− p− q + 1) + β

2
p (p− 1) + 1

)

×
p
∏

i=1

Γ
(

1 + β

2
i
)

Γ
(

β

2
(n− p− q + 1) + β

2
(p− i)

)

Γ
(

1 + β

2

)

=
1

Γ
(

β

2
p (n− q) + 1

)

p
∏

i=1

Γ
(

1 + β

2
i
)

Γ
(

β

2
(n− q − i+ 1)

)

Γ
(

1 + β

2

) .

Substituting the formula (21) forvn,p,q,β into the integral expansion ofcn,p,q,β yields

cn,p,q,β =
1

Γ
(

β

2
p (n− q) + 1

)

p
∏

i=1

Γ
(

β

2
(n− i+ 1)

)

Γ
(

β

2
(q − i+ 1)

)

after some simplifications.
The constantc(1)n,p,q,β can be calculated in a similar way. Lemma 1 implies that

∫

· · ·
∫

D1

x1 |∆(x)|β
p
∏

i=1

(

(xi)
β
2
(n−p−q+1)−1 dxi

)

=
β

2
(n− p− q + 1) + β

2
(p− 1)

Γ
(

β

2
p (n− q) + 2

)

p
∏

i=1

Γ
(

1 + β

2
i
)

Γ
(

β

2
(n− q − i+ 1)

)

Γ
(

1 + β

2

)

=
β

2
(n− q)

β

2
p (n− q) + 1

(

1

Γ
(

β

2
p (n− q) + 1

)

p
∏

i=1

Γ
(

1 + β

2
i
)

Γ
(

β

2
(n− q − i+ 1)

)

Γ
(

1 + β

2

)

)

.

Therefore,

c
(1)
n,p,q,β = −

(

β

2
(q − p + 1)− 1

) β

2
p (n− q)

β

2
p (n− q) + 1

,

which completes the proof of the1 ≤ p ≤ q ≤ n
2

case.

2) n
2
≤ p ≤ q ≤ n case: This computation is closely related to that for the1 ≤ p ≤ q ≤ n

2
case.

To see the connection between then
2
≤ p ≤ q ≤ n and1 ≤ p ≤ q ≤ n

2
cases, we define the generator

matrix and the orthogonal complement plane. For any given planeP ∈ Gn,p (L), the generator matrix
P ∈ Ln×p is the matrix whosep columns are orthonormal and expand the planeP . The generator matrix
is not uniquely defined. However, the chordal distance between P ∈ Gn,p (L) andQ ∈ Gn,q (L) can be
uniquely defined by their generator matrices. Indeed,

d2c (P,Q) = min (p, q)− tr
(

P†QQ†P
)

,

whereP and Q are generator matrices for the planeP and Q respectively. It can be shown that the
chordal distance is independent of the choice of the generator matrices. The orthogonal complement
plane is defined as follows. For any given planeP ∈ Gn,p (L), its orthogonal complement planeP⊥ is the
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plane inGn,n−p (L) such that the minimum principle angle betweenP andP⊥ is π
2
. It is straightforward

thatP†P⊥ = 0 whereP andP⊥ are the generator matrices forP andP⊥ respectively, and the matrix0
is thep× (n− p) matrix with all elements0.

With the definition of the orthogonal complement plane, the chordal distance betweenP andQ can be
related to that betweenP⊥ andQ⊥. The relationship is given in the following lemma.

Lemma 2: For any given planesP ∈ Gn,p (L) and Q ∈ Gn,q (L), let P⊥ ∈ Gn,n−p (L) and Q⊥ ∈
Gn,n−q (L) be their orthogonal complement planes respectively. Then

d2c (P,Q) = d2c
(

P⊥, Q⊥
)

.
Proof: This lemma can be proved by the generator matrices. LetP, Q, P⊥ andQ⊥ be the generator

matrices forP , Q, P⊥ andQ⊥ respectively. Without loss of generality, we also assume that1 ≤ p ≤ q ≤ n.
Then

p = tr
(

P†
[

Q | Q⊥
] [

Q | Q⊥
]†
P
)

= tr
(

P†QQ†P
)

+ tr
(

P†Q⊥
(

Q⊥
)†
P
)

,

where the matrix
[

Q | Q⊥
]

is the one composed ofQ andQ⊥. Similarly,

n− q = tr
(

(

Q⊥
)† [

P | P⊥
] [

P | P⊥
]†
Q⊥
)

= tr
(

(

Q⊥
)†
PP†Q⊥

)

+ tr
(

(

Q⊥
)†
P⊥
(

P⊥
)†
Q⊥
)

.

Then

d2c (P,Q)
(a)
= p− tr

(

P†QQ†P
)

= tr
(

P†Q⊥
(

Q⊥
)†
P
)

= n− q − tr
(

(

Q⊥
)†
P⊥
(

P⊥
)†
Q⊥
)

(b)
= d2c

(

P⊥, Q⊥
)

,

where (a) and (b) are from the definition of the chordal distance and the facts thatmin (p, q) = p and
min (n− p, n− q) = n− q.

By this lemma, the connection between then
2
≤ p ≤ q ≤ n case and1 ≤ p ≤ q ≤ n

2
case is clear. The

volume formula for then
2
≤ p ≤ q ≤ n case can be calculated as follows.

µ (BP (δ)) = Pr
(

Q ∈ Gn,q (L) : d2c (P,Q) ≤ δ2
)

= Pr
(

Q⊥ ∈ Gn,n−q (L) : d2c
(

P⊥, Q⊥
)

≤ δ2
)

= µ (BP⊥ (δ))

whereBP (δ) and BP⊥ (δ) are the metric balls inGn,q (L) and Gn,n−q (L) respectively. Therefore, the
results for the1 ≤ p ≤ q ≤ n

2
case can be directly applied by lettingp′ = n− q andq′ = n− p. Finally

after some simplification, we have

µ (BP (δ)) = cn,p,q,βδ
βp(n−q)

(

1 + c
(1)
n,p,q,βδ

2 + o
(

δ2
)

)

,

where

cn,p,q,β =
1

Γ
(

β

2
p (n− q) + 1

)

n−q
∏

i=1

Γ
(

β

2
(n− i+ 1)

)

Γ
(

β

2
(n− p− i+ 1)

) ,

and

c
(1)
n,p,q,β = −

(

β

2
(q − p + 1)− 1

) β

2
p (n− q)

β

2
p (n− q) + 1

.
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3) 1 ≤ p ≤ n
2
≤ q ≤ n case: This computation is again related to that for the1 ≤ p ≤ q ≤ n

2
case.

Similar to then
2
≤ p ≤ q ≤ n case, the connection between then

2
≤ p ≤ q ≤ n case and1 ≤ p ≤ q ≤ n

2
case can be revealed by the generator matrix and the orthogonal complement plane. Letp′ = min (p, n− q)
andq′ = max (p, n− q). Then1 ≤ p′ ≤ q′ ≤ n

2
. For any given planesP ∈ Gn,p (L) andQ ∈ Gn,q (L), let

Q⊥ ∈ Gn,n−q (L) be the orthogonal complement plane ofQ. Let P, Q andQ⊥ be the generator matrices
for P , Q andQ⊥. Then

d2c (P,Q) = p− tr
(

P†QQ†P
)

= tr
(

P†Q⊥
(

Q⊥
)†
P
)

= p′ − d2c
(

P,Q⊥
)

.

Therefore,

µ (BP (δ)) = Pr
(

Q ∈ Gn,q (L) : d2c (P,Q) ≤ δ2
)

= Pr
(

Q⊥ ∈ Gn,n−q (L) : d2c
(

P,Q⊥
)

≥ p− δ2
)

.

Now calculate the volume formula. Note that

µ (BP (δ)) = Pr
(

Q⊥ ∈ Gn,n−q (L) : d2c
(

P,Q⊥
)

≥ p′ − δ2
)

.

Then

µ (BP (δ)) =

∫

· · ·
∫

0≤r2i ≤1,
∑p′

i=1(1−r2i )≥p′−δ2

dµθ,p′,q′

=

∫

· · ·
∫

0≤r2i ≤1,
∑p′

i=1 r
2
i≤δ2

dµθ,p′,q′,

wheredµθ,p′,q′ is the invariant measure with parametern, p′ andq′. Substitute the form fordµθ,p′,q′ (20)
into the above formula. Then

µ (BP (δ)) = vn,p′,q′,βδ
βp′q′

∫

· · ·
∫

D1

|∆(x)|β
p′
∏

i=1

(

x
β
2
(q′−p′+1)−1

i

(

1− δ2xi

)
β
2
(n−p′−q′+1)−1

dxi

)

= cn,p′,q′,βδ
βp′q′

(

1 + c
(1)
n,p′,q′,βδ

2 + o
(

δ2
)

)

,

where the first equation comes from the variable changesδ2xi = r2i (1 ≤ i ≤ p′), vn,p′,q′,β is defined in
(21),

D1 ,

{

x :

p′
∑

i=1

xi ≤ 1, 0 ≤ xi for i = 1, · · · , p′
}

,

cn,p′,q′,β = vn,p′,q′,β

∫

· · ·
∫

D1

|∆(x)|β
p′
∏

i=1

(

x
β
2
(q′−p′+1)−1

i dxi

)

,

and

c
(1)
n,p′,q′,β = −p′

(

β

2
(n− p′ − q′ + 1)− 1

)

∫

· · ·
∫

D1

x1 |∆(x)|β∏p′

i=1

(

x
β
2
(q′−p′+1)−1

i dxi

)

∫

· · ·
∫

D1

|∆(x)|β∏p′

i=1

(

x
β
2
(q′−p′+1)−1

i dxi

) .
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Applying Lemma 1 and after some simplification, we have that

cn,p′,q′,β =
1

Γ
(

β

2
p′q′ + 1

)

p′
∏

i=1

Γ
(

β

2
(n− i+ 1)

)

Γ
(

β

2
(n− p′ − i+ 1)

) ,

and

c
(1)
n,p′,q′,β = −

(

β

2
(n− p′ − q′ + 1)− 1

) β

2
p′q′

β

2
p′q′ + 1

.

Summarily, if1 ≤ p ≤ n
2
≤ q ≤ n,

µ (B (δ)) = cn,p,q,βδ
βp(n−q)

(

1 + c
(1)
n,p,q,βδ

2 + o
(

δ2
)

)

,

where

cn,p,q,β =











1

Γ(β
2
p(n−q)+1)

∏n−q

i=1

Γ(β
2
(n−i+1))

Γ(β
2
(q−i+1))

if p+ q ≥ n

1

Γ(β
2
p(n−q)+1)

∏p

i=1

Γ(β
2
(n−i+1))

Γ(β
2
(n−p−i+1))

if p+ q ≤ n
,

and

c
(1)
n,p,q,β = −

(

β

2
(q − p + 1)− 1

) β

2
p (n− q)

β

2
p (n− q) + 1

.

B. Proof of the lower bound on D∗ (K)

Assume a sourceQ is uniformly distributed inGn,p (L). For any codebookC, define the empirical
cumulative distribution function as

Fd2c ,C (x) = Pr

{

Q :

(

min
P∈C

d2c (P,Q)

)

≤ x

}

.

Then the distortion associated with the codebookC is given by

D (C) =
∫ p

0

x · dFd2c ,C
(x) . (22)

The following theorem gives the empirical distribution to minimize the distortion.
Lemma 3: The empirical distribution function minimizing the distortion for a givenK is

F ∗
d2c ,C

(x) =







0 if x < 0
K · µ (B (

√
x)) if 0 ≤ x ≤ x∗

1 if x∗ < x
,

wherex∗ satisfiesK · µ
(

B
(√

x∗
))

= 1.
Proof: For any empirical distributionFd2c ,C (x),

Fd2c ,C (x) = Pr

{

Q :

(

min
P∈C

d2c (P,Q)

)

≤ x

}

= Pr
(

∪K
i=1

{

Q : d2c (Pi, Q) ≤ x
})

≤
K
∑

i=1

Pr
{

Q : d2c (Pi, Q) ≤ x
}

= K · µ
(

B
(√

x
))

.

Thus
Fd2c ,C (x) ≤ min

(

1, K · µ
(

B
(√

x
)))

. (23)
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Therefore,
∫ p

0

x · dFd2c ,C (x)−
∫ p

0

x · dF ∗
d2c ,C

(x)

(a)
=

∫ p

0

F ∗
d2c ,C

(x) dx−
∫ p

0

Fd2c ,C (x) dx

=

∫ x0

0

(

K · µ
(

B
(√

x
))

− Fd2c ,C (x)
)

dx+

∫ p

x0

(

1− Fd2c ,C (x)
)

dx

(b)

≥ 0,

where (a) follows from integration by parts, and (b) followsfrom (23).
From Lemma 3, it is clear that

D∗ (K) ≥
∫ p

0

x · dF ∗
d2c ,C

(x)

=

∫ p

0

x · dKF (x) , (24)

whereF (x) , µ (B (
√
x)).

1) Proof of Theorem 2: Theorem 2 is proved by substituting the volume formula (7) into (24). Another
way to prove it is to apply the lower bound in Corollary 3, whose proof is more involved and given in
the following.

2) Proof of the lower bounds in Corollary 3: The difficulty to calculate (24) is that we don’t know
the exactF (x) for some cases. To overcome this difficulty, we construct a further lower bound on (24).

For all cases except theβ = 1 and q = p case, a lower bound on (24) is constructed as follows. Let
F0 (x) = cn,p,q,βx

β
2
p(n−q) and x0 satisfyKF0 (x0) = 1. SinceF (x) ≤ F0 (x) (Corollary 2),KF (x0) ≤

KF0 (x0) = 1. But KF (x∗) = 1. We havex0 ≤ x∗. Therefore,
∫ x∗

0

x · dKF (x)

=

∫ x∗

0

(1−KF (x)) dx

≥
∫ x0

0

(1−KF (x)) dx

≥
∫ x0

0

(1−KF0 (x)) dx

=

∫ x0

0

x · dKF0 (x)

=
βp (n− q)

βp (n− q) + 2
(cn,p,q,βK)−

2
βp(n−q) .

For the caseβ = 1 andq = p, the computation is more complicated. The following lemma is helpful.
Lemma 4: Let α = 1

2
p (n− p). Let F0 (x) = cn,p,p,1x

α and x0 satisfy KF0 (x0) = 1. Let Fub =

cn,p,p,1x
α (1− x)−

p
2 and xub satisfyKFub (xub) = 1. Let Fubub = cn,p,p,1x

α (1− x0)
− p

2 and xubub satisfy
KFubub (xubub) = 1. Then

∫ xubub

0

x · dKFubub (x) ≤
∫ xub

0

x · dKFub (x) ≤
∫ x∗

0

x · dKF (x) .
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Proof: Similar to the arguments for all the cases except theβ = 1 andq = p case, it can be proved that
xub ≤ x∗ ≤ x0 and

∫ xub

0
x · dKFub (x) ≤

∫ x∗

0
x · dKF (x). Then(1− x)−

p
2 ≤ (1− x0)

− p
2 for x ∈ [0, xub].

It implies Fub (x) ≤ Fubub (x) for x ∈ [0, xub]. Therefore,xubub ≤ xub and
∫ xubub

0
x · dKFubub (x) ≤

∫ xub

0
x · dKFub (x).

We calculate
∫ xubub

0
x · dKFubub (x) as follows.xubub = x0 (1− x0)

1
n−p .

∫ xubub

0

x · dKFubub (x)

=

∫ xubub

0

x · dKF0 (x) (1− x0)
− p

2

=
p (n− p)

p (n− p) + 2
Kcn,p,p,1 (1− x0)

− p
2 x

1
2
p(n−p)+1

ubub

=
p (n− p)

p (n− p) + 2
xubub

=
p (n− p)

p (n− p) + 2
(cn,p,p,1K)

− 2
p(n−p)

(

1− (cn,p,p,1K)
− 2

p(n−p)

)
1

n−p

.

C. Proof of the upper bound on D∗ (K)

To get an upper bound onD∗ (K), we shall compute the average distortion of the random codes. Let
Crand = {P1, · · · , PK} be a random code whose codewordsPi’s are independently drawn from the uniform
distribution onGn,p (L). For any given elementQ ∈ Gn,p (L), defineXi = d2c (Pi, Q), 1 ≤ i ≤ K. Then
Xi’s are independent and identically distributed (i.i.d.) random variables with distribution function

F (x) = µ
(

B
(√

x
))

= cn,p,p,βx
t
2 (1 +O (x)) .

DefineWK = min (X1, · · · , XK). Then

ECrand [D (Crand)]

= ECrand

[

EQ

[

min
Pi∈Crand

d2c (Q,Pi)

]]

= EQ

[

ECrand

[

min
Pi∈Crand

d2c (Q,Pi)

]]

= EQ [EWK
[WK ]] .

To calculateEWK
[WK ], we need to know the distribution ofWK . To derive it, the the following lemma

is useful.
Lemma 5: Let Xi’s 1 ≤ i ≤ K be i.i.d. random variables with distribution functionF (x). Let WK =

min (X1, · · · , XK). Then

exp (−KF (x)) > Pr (WK > x) = (1− F (x))K

where the upper bound holds for allx.
Proof: See [19, page 10].

With the above upper bound on the distribution function ofWK , we derive an upper bound onEWK
[WK ].

In the following, we useE [·] instead ofEWK
[·] for simplicity. Let Flb (x) be an arbitrary distribution
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function such thatFlb (x) ≤ F (x). It is clear thatFlb (x) is zero if x < 0. Then

E [WK ] =

∫ p

0

Pr (WK > x) dx

(a)

≤
∫ p

0

exp (−KF (x)) dx

≤
∫ p

0

exp (−KFlb (x)) dx

≤
∫ x0

0

exp (−KFlb (x)) dx+

∫ p

x0

exp (−KFlb (x0)) dx

≤
∫ x0

0

exp (−KFlb (x)) dx+ p exp (−KFlb (x0)) ,

where (a) follows Lemma 5. Here and throughout,x0 = (cn,p,q,βK)−
2

βp(n−q)
a, a ∈ (0, 1) is an arbitrary

real number andK is large enough to guaranteex0 ≤ 1.
If 1) L = R and p ≤ q ≤ p + 1, or 2) L = C and q = p, then we can takeFlb (x) = cn,p,q,βx

β
2
p(n−q)

(Corollary 1 and 2). We have

E [WK ] ≤
∫ ∞

0

exp
(

−Kcn,p,q,βx
2

βp(n−q)

)

dx

+ p exp

(

−Kcn,p,q,β

(

(Kcn,p,q,β)
− 2

βp(n−q)
a
)

βp(n−q)
2

)

(b)
= (Kcn,p,q,β)

− 2
βp(n−q)

∫ ∞

0

e−y · dy 1
α

+ p exp
(

− (Kcn,p,q,β)
1−a
)

= (Kcn,p,q,β)
− 2

βp(n−q)

2Γ
(

2
βp(n−q)

)

βp (n− q)
+ p exp

(

− (Kcn,p,q,β)
1−a
)

,

where (b) is from the variable changey = Kcn,p,q,βx
2

βp(n−q) . Thus, for any givenn, p andq,

lim
K→∞

E
[

K
2

βp(n−q)WK

]

≤
2Γ
(

2
βp(n−q)

)

βp (n− q)
(cn,p,q,β)

− 2
βp(n−q) ,

and so, whenK is large enough,

D∗ (K) ≤
2Γ
(

2
βp(n−q)

)

βp (n− q)
(cn,p,q,βK)−

2
βp(n−q) (1 + o (1)) .

If 1) L = R and q ≥ p + 1, or 2) L = C and q > p, then F (x) ≥ cn,p,q,βx
α (1− x)γ where

α = β

2
p (n− q) and γ = βp(q−p+1)

2
− p (Corollary 1 and 2). Note that(1− x)γ ≥ (1− x0)

γ for all
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x ∈ [0, x0]. We takeFlb (x) = cn,p,q,βx
α (1− x0)

γ. Then

E [WK ] ≤
∫ x0

0

exp (−Kcn,p,q,βx
α (1− x0)

γ) dx

+ p exp (−Kcn,p,q,βx
α
0 (1− x0)

γ) dx
(c)

≤ (Kcn,p,q,β)
− 1

α

(

1− (Kcn,p,q,β)
− a

α

)− γ
α

∫ ∞

0

e−y · dy 1
α

p exp
(

− (Kcn,p,q,β)
1−a
(

1− (Kcn,p,q,β)
− a

α

)γ)

=
Γ
(

1
α

)

α
(Kcn,p,q,β)

− 1
α

(

1− (Kcn,p,q,β)
− a

α

)− γ
α

+ p exp
(

− (Kcn,p,q,β)
1−a
(

1− (Kcn,p,q,β)
− a

α

)γ)

,

where (c) follows the variable changey = Kcn,p,q,βx
α (1− x0)

γ . Once more, for any givenn, p andq,

lim
K→∞

E
[

K
2

βp(n−q)WK

]

≤
2Γ
(

2
βp(n−q)

)

βp (n− q)
(cn,p,q,β)

− 2
βp(n−q) ,

and

D∗ (K) ≤
2Γ
(

2
βp(n−q)

)

βp (n− q)
(cn,p,q,βK)−

2
βp(n−q) (1 + o (1)) ,

for sufficiently largeK.
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