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Incremental Redundancy Cooperative Coding for Wireless Networks:

Cooperative Diversity, Coding, and Transmission Energy Gain

Ruoheng Liu, Predrag Spasojević, and Emina Soljanin

Abstract

We study anincremental redundancy(IR) cooperative coding scheme for wireless networks. To exploit the

spatial diversity benefit we propose a cluster-based collaborating strategy for a quasi-static Rayleigh fading channel

model and based on a network geometric distance profile. Our scheme enhances the network performance by

embedding an IR cooperative coding scheme into an existing noncooperative route. More precisely, for each hop,

we form a collaborating cluster ofM−1 nodes between the (hop) sender and the (hop) destination. The transmitted

message is encoded using a mother code and partitioned intoM blocks corresponding to the each ofM slots. In

the first slot, the (hop) sender broadcasts its information by transmitting the first block, and its helpers attempt to

relay this message. In the remaining slots, the each of left-overM − 1 blocks is sent either through a helper which

has successfully decoded the message or directly by the (hop) sender where a dynamic schedule is based on the

ACK-based feedback from the cluster. By employing powerfulgood codes(e.g., turbo codes, LDPC codes, and

raptor codes) whose performance is characterized by a threshold behavior, our approach improves the reliability of

a multi-hop routing through not only cooperation diversitybenefit but also a coding advantage. The study of the

diversity and the coding gain of the proposed scheme is basedon asimple thresholdbound on the frame-error rate

(FER) of maximum likelihood decoding. A average FER upper bound and its asymptotic (in large SNR) version

are derived as a function of the average fading channel SNRs and the code threshold. Based on asymptotic bounds,

we investigate both the diversity, coding, and transmission energy gain in the high and moderate SNR regime for

three different scenarios: cooperative transmission, cooperative reception, and cluster hopping. Furthermore, given

a geometric distance profile of the network, these bounds guide to the design of the collaborating cluster and the

IR cooperation scheme.
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I. INTRODUCTION

To overcome fading, wireless networks employ various diversity techniques, e.g., channel interleavers,

multiple antennas, frequency hopping, etc. In [1], Sendonaris, Erkip, and Aazhang have proposed the

so-calleduser-cooperation diversitywhere users partner in sharing their antennas and other resources

to create a virtual array through distributed transmissionand signal processing. Only limited time and

frequency diversity is available when the propagation environment changes slowly relative to the signaling

rate, the receiver has a strict decoding delay constraint (as in speech and video transmission), and

the bandwidth of the channel input is considerably less thanthe coherence bandwidth. Hence, since

signal experiences a quasi-static frequency-flat fading, introducing spacial diversity through cooperation is

especially beneficial. An information-theoretic analysisof several cooperative protocols achieving diversity

gain throughrepetition-codingandspace-time-codingbased schemes have been reported in [2], [3]. More

recently, practical cooperative coding design has became atopic of active research. Coding strategies

for two-user collaborating transmission based on rate compatible punctured convolutional codes have

been considered in [4], [5]. Cooperation schemes employingdistributed turbo codes have been studied

in [6]–[8].

In this paper, we study anincremental redundancy(IR) cooperative coding scheme for wireless networks.

To exploit the spatial diversity benefit we propose a cluster-based collaborating strategy for a quasi-static

Rayleigh fading channel model and based on a network geometric distance profile. The cluster-based

collaborating strategy enhances the network performance by embedding an IR cooperative coding into an

existing noncooperative route. More precisely, for each ofthe noncooperative hops, we form a collaborating

cluster ofM − 1 nodes between the (hop) sender and the hop destination. The transmitted message is

encoded using a mother code which is partitioned intoM blocks each assigned to one ofM transmission

slots. In the first slot, the (hop) sender broadcasts own information by transmitting the first block, and its

helpers attempt to relay the message. In the remaining slots, the each of left-overM − 1 blocks is sent

either through a helper which has successfully decoded the message or directly by the (hop) sender based

on an acknowledgement (ACK) driven a dynamic schedule. By employing the powerfulgood codes[9],

[10] (e.g., turbo, LDPC, and raptor codes) whose performance is characterized by a threshold behavior,

our approach improves the reliability of multi-hop routingthrough not only cooperation diversity benefit
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but also a coding advantage.

To investigate benefits of the proposed IR cooperative coding scheme, we evaluate its frame error rate

(FER) performance for a quasi-static frequency-flat Rayleigh fading channel by studying the threshold

behavior of good codes [10]. We base the analysis on asimple code thresholdfor transmission of good

codes over an AWGN channel. This threshold ensures (asymptotically in the codeword length) reliable

performance undermaximum likelihood(ML) decoding. The FER performance bound based on the simple

threshold has the same form as theunion Bhattacharyya(UB) code threshold bound [11], [12], but the

former bound is tighter by almost1 dB for an example of a rate1/7 turbo code on an AWGN channel.

Based on this threshold and the channel outage concept, we derive a tight average FER upper-bound

which predicts well fading channel simulation results for the proposed scheme. A corresponding closed-

form FER upper-bounds asymptotic in large SNRs and obtainedfor three different scenarios: cooperative

transmission, moderate reception, and cluster hopping. These bounds allow for illustrating cooperative

diversity and coding gains in the high SNR regime. Finally, we express FER bounds in terms of the

distance profile and discuss how to design collaborating clusters to achieve cooperation benefits including

energy efficiency gain.

The paper is organized as follows: We describe the system model and an IR cooperative coding scheme

in Sec. II. We derive an upper bound on the scheme FER in Sec. III, and its asymptotic versions for

different cooperation scenarios in Sec. IV. Simulation results and the collaborating cluster design are

discussed in Sec. V.

II. SYSTEM MODEL

In this section, we describe a collaborating cluster, an IR cooperative coding scheme, and the fading

channel model which incorporates the geometric distance profile of the network.

A. Collaborating Cluster

We assume that, initially, a suitable non-cooperative route used for delivering packets from the source

to the sink is established. As shown in Fig. 1, for each of the noncooperative hops, a group ofM − 1

nodes forms acollaborating clusterS which is between the (hop) sender and the (hop) destination.The
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Fig. 1. Cooperative routing in wireless network with a geometric distance profile

(hop) sender serves as the regional broadcast node, and eachcluster member, termed helper, attempts

to relay the package to the (hop) destination. We further assume that the communication bandwidth and

time slots are both introduced for spatial reuse across noncooperative hops in a proper manner. Therefore,

since we can neglect inter-hop interference, it is sufficient to study the cooperative scheme corresponding

to a single noncooperative hop.

B. IR Cooperative Coding Scheme

In order to establish IR coding collaboration in a single noncooperative hop, we assume that the (hop)

sender and cluster members have acquired a common time reference and are operating in a single radio

frequency bandW . The medium access control(MAC) within a noncooperative hop is based on a time-

division scheme. The one hop transmission intervalT is partitioned intoM non-overlappingslots of

durationτ0T, . . . , τM−1T , where
∑M−1

j=0 τj = 1. The cluster can transmit close toN = ⌊WT ⌋ symbols

during the transmission interval.

Each node in the wireless network has an encoder, a decoder, and a mapping device. The (hop) sender

encodes the information and obtains a mother codewordC of lengthN and rateR. The mapping device

partitions the codewordC into M blocks of relative lengthsτj , j = 0, . . . ,M − 1. For analysis simplicity,

we employ a probabilistic mapping device [12] by which the bits of C are assigned randomly to one of

M blocks with theassignment rateτj .

Let Cj denote the punctured codeword obtained fromC by choosing thej-th block. For a given good

(mother) code ensemble[C] and the (random) assignment rateτj , the punctured code ensemble[Cj ] exhibits
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a SNR threshold behavior for a general Gaussian (with or without fading) channel, i.e., if the received

SNR is larger than the punctured code threshold, the averageML decoding word error probability of[Cj ]

decays to zero as the codeword lengthN → ∞.1 In order to predict the error performance accurately,

we have introduced a tight punctured code thresholdχ[C](τj) (see detail in Sec. III-A), which can be

calculated based on the mother code threshold and shows a good match with the simulation result under

iterative decoding. Hence, this code threshold behavior helps us dynamically schedule the cooperation

in the following two stages. For notation convenience, let Node 0 denote the (hop) sender, Nodem,

for m = 1, . . . ,M − 1, denote the cluster members, and NodeM denote the (hop) destination (i.e., the

next-hop (hop) sender).

collaborating cluster

hop

destination

hop

sender

a. Slot1: (hop) sender broadcasts message

collaborating cluster

hop

destination

hop

sender

b. Slot 2–SlotM : reliable nodes relay information

Fig. 2. Cooperation coding scheme (In the first slot, (hop) sender broadcasts its information. In other slots, each cluster

member decides whether to relay decoded information by sending additional parity bits to form a more powerful code.)

1) Broadcast Stage:As shown in Fig. 2.a, the (hop) sender broadcasts its information by transmitting

C0 during Slot0. Each helper listens and attempts to decode this message. More precisely, helpers estimate

the instantaneous received SNR from the incoming signal early during the broadcast slot. LetF ⊆ S

denote thereliable set of cluster members whose received instantaneous SNR is larger than the punctured

code thresholdχ[C](τ0). This implies that Nodek ∈ F can guarantee to decodeC0 successfully. Next,

eachreliable node sends an ACK back to the (hop) sender over a fast and error-free feedback channel.

We note that in [3], [15], authors also define the cooperationset as the set of relays that can decode the

message successfully. Different from prior approaches, our scheme allows for afast ACKmessage sent

1For typical practical systems, the codeword length is fairly large [13], e.g., in CDMA2000 standard [14], the encoder allows for a variable

input length up toK ≃ 20730.
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back the (hop) sender from the reliable nodeswithout a need for prior decoding, and, thus, allowing for

a streamlined scheduling of cooperation retransmissions.At the end of the first slot, only reliable nodes

decode the received signal.

2) Forwarding stage:Fig. 2.b illustrates the transmission interval from Slot1 to SlotM−1 (here, dark

solid circles represent reliable nodes). Nodek, for k ∈ F , re-encodes and punctures received information

in the same manner as done by the (hop) sender and, consequently, relays thek-th block Ck to the

destination in Slotk. The (hop) sender transmits the left-over blocks in the remaining transmission slots

based on received ACKs. The signal received at the destination corresponds to an IR scheme with a fixed

number of retransmissions, where a retransmission experiences a different channel quality in the case that

the corresponding sender-to-heper instantaneous SNR is sufficiently good.

C. Channel Model

We consider the quasi-static frequency-flat Rayleigh fading channel model [16], where the fading

coefficient is random, but invariant during the transmission intervalT . The discrete-time channel model

is

yi,j = d
−L/2
i,j ai,j xi + zi,j for i ∈ {0, . . . ,M − 1} and j ∈ {1, . . . ,M}

wherexi is the signal transmitted by Nodei, L is the path loss exponent,di,j, ai,j, andzi,j are the distance,

fading coefficient, and background noise between Nodesi, j, respectively, andyi,j is the signal at Nodej

received from Nodei. We assume thatE , |xi|2 is the transmitted symbol energy which is identical

for all cluster nodes,zi,j is modeled as the mutually independent additive Gaussian noise N (0, 1/2),

and νi,j = |ai,j|2 is the exponentially distributed “channel power” with mean1. Then, the average and

instantaneous SNRs of the signal at Nodej received from Nodei can respectively be expressed as

SNRi,j , E · d−L
i,j , and θi,j , νi,j · SNRi,j.

We further assume that decoding is done with the knowledge ofthe fading coefficients.

III. N OISE THRESHOLD BASED PERFORMANCE ANALYSIS

The decoding is performed at the destination upon completion of M transmission slots. Proposed

cooperative coding scheme implies that the received signalis always the mother codewordC modified by
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the fading channel. Moreover, all communication links experience an independent quasi-static Rayleigh

fading channel, thus, the codewordC is equivalently transmitted overM parallel channels corresponding

to each of theM slots, and experiences|F| + 1 independent channel gains. This requires studying the

performance of codes transmitted over a block fading channel [16].

A. Threshold Behavior of Good Codes for an AWGN Channel

The basis for our analysis is the threshold behavior of good codes. In [11], Jin and McEliece have

defined the UB code threshold of a good code ensemble[C] as

c
[C]
0 , sup

0<δ≤1
lim sup
N→∞

lnA
[C]

⌊δN⌋

δ
(1)

whereA
[C]

⌊δN⌋ is average weight enumerator (AWE) of the code ensemble, andδ is the normalized Hamming

weights. The authors in [11] have derived the following coding theorem for a good code ensemble.

Theorem 1 [11, Theorem 8.1] Let a good code ensemble[C] with a finite UB code thresholdc[C]0 . For

any binary-input memoryless channel whose Bhattacharyya noise parameter2 γ < exp(−c
[C]
0 ), the average

ML decoding word error probabilityP [C]
W (γ)

N−→ 0.

This result is based on the classical union bound. Hence, thethresholdc[C]0 is loose.

To obtain a tight code threshold, we partition the normalized Hamming weights into two subsets,

U(P ) = {δ : 0 < δ ≤ P or 1 − P < δ ≤ 1} andU c(P ) = {δ : P < δ ≤ 1 − P}, for P ∈ (0, 0.5], and

define a simple code threshold by optimizing the weight partition parameterP as follows

c[C]⋆ , min
0<P≤0.5

{

c
[C]
P : 1− exp(−c

[C]
P ) ≥ R + ξ

[C]
P

}

(2)

where

c
[C]
P , lim sup

N→∞
max
δ∈U(P )

lnA
[C]

⌊δN⌋

⌊δN⌋ and ξ
[C]
P , lim sup

N→∞
max

δ∈Uc(P )

1

N

(

lnA
[C]

⌊δN⌋ − lnA
[RB]

⌊δN⌋

)

(3)

denote the restriction code UB noise threshold and SF distance corresponding to the weight subsetsU(P )

andU c(P ), respectively, and[RB] denotes the ensemble of random binary codes. Based onc
[C]
⋆ , we have

the following coding theorem for parallel AWGN channels.
2For a binary input memoryless channel with output alphabetY and transition probabilitiesP(y|0) andP(y|1), y ∈ Y, theBhattacharyya

noise parameterdefined asγ =
∑

y∈Y

√

P(y|0)P(y|1). In particular, for an AWGN channel with the received SNRθ, the Bhattacharyya

noise parameter isexp(−θ) (see [17] for more detail).
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Theorem 2 Let the symbols of a good binary code ensemble[C] be randomly assigned toQ parallel

binary-input AWGN channels where the set of assignment rates is {τ0, . . . , τQ−1} and the set of

Bhattacharyya noise parameters is{γ0, . . . , γQ−1}. If

γ < exp(−c[C]⋆ )

whereγ ,
∑Q−1

j=0 τjγj is the average Bhattacharyya noise parameter, then the average ML decoding word

error probabilityP [C]
W (γ)

N−→ 0.

Proof: The proof is in the Appendix B.

Example 1 (Simple threshold for turbo codes) Here, we study the UB and simple code thresholds of

a R = 1/7 turbo code. The turbo encoder consists ofJ = 3 recursive convolutional encoders with two

random interleavers. The component code transfer functions areG1 = (1, 13/15, 17/15) andG2 = G3 =

−10 −9 −8 −7 −6 −5 −4 −3
10

−4

10
−3

10
−2

10
−1

10
0

received SNR (dB)

w
or

d 
er

ro
r 

pr
ob

ab
ili

ty

simulation
simple threshold
UB threshold

Fig. 3. UB and simple code thresholds for an AWGN channel (turbo codeof R = 1/7 andN = 5376)

(13/15, 17/15). We compute the AWE based on the technique of [18] forN = 5376. By applying (1)

and (2), we calculate the UB thresholdc[T C]
0

.
= 0.21 and the simple thresholdc[T C]

⋆
.
= 0.17. As shown in

Fig. 3, we compare the UB and simple threshold with simulation results under iterative decoding when the

turbo codes are transmitted over an AWGN channel. Fig. 3 illustrates that the simple threshold predicts
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the cliff of the simulated word error probability accurately, and that the gap betweenc[T C]
0 and c

[T C]
⋆ is

almost1 dB.

For punctured codes, we may assume that punctured bits are sent to a dummy memoryless component

channel whose output is independent of the input, i.e.,γD = 1, whereas, non-punctured bits are transmitted

over the real channel with the Bhattacharyya noise parameters γ. By assuming the puncturing rate1− τ ,

the average Bhattacharyya noise parameters isγ = γ · τ + 1 · (1 − τ). Hence, Theorem 2 implies the

following result for a (randomly) punctured code ensemble.If an ensemble of good codes are randomly

punctured at a rate1− τ then there exists a punctured code threshold

χ[C](τ) = ln
τ

exp(−c
[C]
⋆ )− (1− τ)

for τ > 1− exp(−c[C]⋆ ) (4)

such that, if the Bhattacharyya distance− ln γ (i.e., the received SNR at an AWGN channel) is larger

thanχ[C](τ), the average ML decoding word error probability approacheszero asN → ∞.

B. Code Outage for a Block Fading Gaussian Channel

In the case of aQ-block fading Gaussian channel, the fading coefficient is essentially invariant during a

single block and different from one block to another. For thej-th block, the Bhattacharyya noise parameter

γj is a function of the average received SNRSNRj and the channel powerνj of the corresponding block,

i.e., γj = exp(−νj · SNRj). Hence, the average Bhattacharyya noise parameter overQ blocks

γ(ν) =

Q−1
∑

j=0

τjγj =

Q−1
∑

j=0

τj exp(−νj · SNRj)

is a function of the random vectorν , {ν1, . . . , νQ} and, thus, for a given good code, there is a non-

negligible probability that the effective Bhattacharyya noise distance− ln γ(ν) is less then the code

thresholdc[C]⋆ , termedcode outageprobability. Thus, the error probability is a function of both the fading

distribution and the noise threshold of the code. More precisely, the average ML decoding word error

probability for a good code ensemble[C] transmitted over aQ-block fading channel can be bounded as

follows:

P
[C]

W (γ) , E
[
P

[C]
W (γ)

]
= P{error(N), − ln γ(ν) ≤ c[C]⋆ }+ P{error(N), − ln γ(ν) > c[C]⋆ }

≤ P{− ln γ(ν) ≤ c[C]⋆ }+ o(1). (5)

The second term approaches zero with the code lengthN . We will omit o(1) in the further analysis.
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C. IR Cooperative Turbo Coding Performance

Now we study the FER performance of the IR cooperative codingscheme for a quasi-static frequency-

flat Rayleigh-fading channel.

In Slot 0, the (hop) sender (Node0) broadcasts its information by sending the punctured codeword C0.

The channel powersν0,j, j = 1, . . . ,M − 1, are i.i.d. exponential random variables invariant duringeach

transmission period. Thus, the reliable setF is randomly distributed over thecollectionof 2M−1 subsets

of S with the probability

P(F) =
∏

j∈F

P{θ0,j > χ[C](τ0)}
∏

j∈Fc

P{θ0,j ≤ χ[C](τ0)}

=
∏

j∈F

exp
[
−χ[C](τ0)SNR

−1
0,j

] ∏

j∈Fc

{
1− exp

[
−χ[C](τ0)SNR

−1
0,j

]}
, (6)

whereF c , S \ F .

For a givenF , the IR cooperation scheme allows the mother codeword to be transmitted to the

destination (NodeM) overM parallel channels (slots) associated with|F| + 1 independent quasi-static

fading gains. Hence, the Bhattacharyya noise parameter of Channeli is

γi =







exp(−θi,M) i ∈ F ,

exp(−θ0,M ) i ∈ F c ∪ {0}.
(7)

Consequently, the Bhattacharyya noise parameter averagedoverM parallel channels is now

γ(ν,F) =
(
1−

∑

i∈F

τi
)
exp(−θ0,M ) +

∑

i∈F

τi exp(−θi,M )

=
(
1−

∑

i∈F

τi
)
exp(−ν0,MSNR0,M) +

∑

i∈F

τi exp(−νi,MSNRi,M), (8)

where ν = {ν0,M , ν1,M . . . , νM−1,M} is a random vectorM-tuple with the exponential distribution.

Inequality (5) implies that the conditional average word error probability given a reliable setF can

be bounded as follows:

P
[C]

W

(
γ | F

)
≤ P{− ln γ(ν,F) ≤ c[C]⋆ } =

∫

A

M−1∏

i=0

e−νi,M dν , G(M,F ,SNR) (9)

whereA ,
{
ν : γ(ν,F) ≥ exp(−c

[C]
⋆ )
}

andSNR = {SNR0,M , . . . , SNRM−1,M}. Thus, the ML decoding

FER for cooperative turbo coding scheme averaged over all possible reliable sets can be bounded as

FER(M) =
∑

all possibleF

P(F)P
[C]

W

(
γ | F

)
≤

∑

all possibleF

P(F) · G(M,F ,SNR). (10)
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Example 2 (M = 1) The caseM = 1 is equivalent to the traditional non-cooperation transmission, and

the signal-hop FER is bounded as

FER(1) ≤G(1, ∅, SNR0,1) = P{ν0,1SNR0,1 ≤ c[C]⋆ } = 1− exp(−c[C]⋆ SNR0,1). (11)

Example 3 (M = 2) For the two-node cooperation case, the scheme FER can be written as

FER(2) ≤ P(F = ∅)P [C]

W

(
γ | ∅

)
+ P(F = {1})P [C]

W

(
γ | {1}

)

=
[

1− e−χ[C](τ)SNR
−1
0,1

]

G(2, ∅,SNR) + e−χ[C](τ)SNR
−1
0,1 G(2, {1},SNR), (12)

where (assumingτ0, τ1 ≤ exp(−c
[C]
⋆ ))

G(2, ∅,SNR) = 1− exp(−c[C]⋆ SNR
−1
0,2) (13)

G(2, {1},SNR) = 1− ω −
∫ 1

ω

[

exp(−c
[C]
⋆ )− τ1x

SNR0,2

τ0

]1/SNR1,2

dx, (14)

andω = exp
[
−χ[C](τ0) · SNR−1

0,2

]
.

In general, (10) cannot be calculated in a closed form and oneneeds to resort to numerical integration

methods.

IV. A SYMPTOTIC ANALYSIS

In this section we consider several different cooperation scenarios and derive asymptotic (in large SNR)

FER bounds, which have a closed form. For simplicity we guarantee that each punctured code can be

self-decodable by assuming

τ0, . . . , τM−1 > 1− exp(c[C]⋆ ). (15)

Next, we refer tor = max[d0,1, · · · , d0,M−1] as the sender-to-cluster distance,d = d0,M as the (non-

cooperation) hop distance, andD = max[d1,M , · · · , dM−1,M ] as the cluster-to-destination distance as

shown in Fig 1. Similarly, we define the sender-to-cluster SNR, the (non-cooperation) single-hop SNR,

and the cluster-to-destination SNR as

ρ , E · r−L, η = E · d−L, and λ , E ·D−L. (16)

Our analysis is based on the following theorem
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Theorem 3 Let φ1(λ1), . . . , φU(λU) beU independent random variables with the property that:

lim
λm→∞

λm P
[
φm(λm) > c

]
= − ln c,

and 0 ≤ φm(λm) ≤ 1 for m = 1, . . . , U.

Then, forτ, . . . , τU > 1− c and
∑U

m=1 τm = 1,

lim sup
{λ1,...,λU}→∞

U∏

m=1

λmP

[
U∑

m=1

τmφm(λm) > c

]

≤ 1

U !

U∏

m=1

ln
τm

c− (1− τm)
, (17)

where{λ1, . . . , λU} → ∞ meansλ1 → ∞, . . . , λU → ∞.

Proof: The proof is in the Appendix C.

A. Cooperative Transmission

In the cooperative transmissionscenario we assume thatM − 1 cluster members are very close to

the (hop) sender such thatr → 0. For this setting, we call the within-cluster channel asperfect and

P(F = {1, . . . ,M − 1}) = 1. Thus, the cooperation scheme FER can be written as

FER(M)
T = P

[C]

W

(
γ | F = {1, . . . ,M − 1}

)

≤ P{− ln γ(ν, {1, . . . ,M − 1}) ≤ c[C]⋆ }

= G(M,F = {1, . . . ,M − 1},SNR = {Ed−L
i,M}) (18)

Now, let’s consider the large SNR case. Note that

lim
SNRi,M→∞

SNRi,M P
[

exp(−νi,MSNRi,M) ≥ exp(−c[C]⋆ )
]

= lim
SNRi,M→∞

1− exp(−c
[C]
⋆ SNR

−1
i,M)

SNR
−1
i,M

=c[C]⋆ . (19)

Thus, (4), (9), (15), and Theorem 3 imply

lim sup
SNR→∞

M−1∏

i=0

SNRi,M · G(M, {1, . . . ,M − 1},SNR) ≤ 1

M !

M−1∏

i=0

χ[C](τi). (20)
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For large enoughE, we can rewrite (18) as

FER(M)
T ≤E

1

M !

M−1∏

i=0

χ[C](τi)SNR
−1
i,M (21)

=
1

EMM !

M−1∏

i=0

χ[C](τi)d
L
i,M (22)

=
dML

EMM !

M−1∏

i=0

χ[C](τi) (23)

where≤E means that the inequality holds for sufficiently largeE, and the last step is based on the triangle

inequalityd− r ≤ di,M ≤ d+ r andr → 0.

B. Cooperative Reception

In the cooperative receptionscenario we assume thatM − 1 cluster members are very close to the

destination such thatD → 0. Hence, (15) implies that

G(M,F ,SNR) = 0 for F 6= ∅. (24)

Therefore, we can bound the cooperation scheme FER as

FER(M)
R = P(F = ∅)P [C]

W

(
γ | F = ∅

)

≤ P(F = ∅)G(M,F = ∅,SNR)

=

M−1∏

j=1

{
1− exp

[
−χ[C](τ0)SNR

−1
0,j

]}[
1− exp(−c[C]⋆ η−1)

]
(25)

=

M−1∏

j=1

{
1− exp

[
−χ[C](τ0)E

−1dL0,j
]}[

1− exp(−c[C]⋆ E−1dL)
]

(26)

Again, we focus on the large SNR case. Note that

lim
SNR→∞

SNR ·
[
1− exp(−aSNR−1)

]
= a for a > 0. (27)

Thus, for large enoughE, we can rewrite (26) as

FER(M)
R ≤E

[
χ[C](τ0)

]M−1
c[C]⋆ ·

M∏

j=1

SNR
−1
0,j (28)

=

[
χ[C](τ0)

]M−1
c
[C]
⋆

EM
·

M∏

j=1

dL0,j

=

[
χ[C](τ0)

]M−1
c
[C]
⋆

EM
· dML (29)

where the last step is due to the geometric propertyd−D ≤ d0,j ≤ d+D andr → 0.



14

C. Cooperative Hopping

Here, we assume thatd0,1 = · · · = d0,M−1 = r > 0 and d1,M = · · · = dM−1,M = D > 0. Hence, the

collaborating cluster

hop

destination

hop

sender

d

r D
rc

Fig. 4. geometric parameters for cooperative hopping

distancesd, r, andD satisfy the triangle inequality as shown in Fig. 4, and, thus, in the high SNR regime

we have

lim
SNR→∞

∏

j∈Fc\{0}

SNR0,j P(F)

= lim
ρ→∞

ρM−(|F|+1) P(F)

= lim
ρ→∞

{

exp
[
−χ[C](τ0)ρ

−1
]

}|F|{

1− exp(−χ[C](τ0)ρ
−1)

ρ−1

}M−(|F|+1)

= [χ[C](τ0)]
M−(|F|+1). (30)

Moreover, (4), (9), (15), (19) and Theorem 3 imply

lim sup
SNR→∞

∏

i∈F∪{0}

SNRi,M · G(M,F ,SNR)

= lim sup
λ, η→∞

(λ|F| η) · G(M,F ,SNR)

≤ χ[C](1−∑i∈F τi)

(|F|+ 1)!

∏

i∈F

χ[C](τi). (31)

Hence, for large enoughE, we can rewrite (26) as

FER(M) ≤E

∑

F

{

[χ[C](τ0)]
M−(|F|+1)χ[C](1−∑i∈F τi)

(|F|+ 1)!

∏

i∈F

χ[C](τi)

}

(ρ|F|+1−Mλ−|F| η−1) (32)

=
∑

F

{

[χ[C](τ0)]
M−(|F|+1)χ[C](1−∑i∈F τi)

(|F|+ 1)!

∏

i∈F

χ[C](τi)

}

︸ ︷︷ ︸

coding advantage

· (rM−|F|−1D|F| d)L
︸ ︷︷ ︸

geometric distance profile

·E−M . (33)
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D. Diversity Gain

Following [19], thediversity gainis defined as

div , lim
SNR→∞

− logFER
log SNR

. (34)

Since our collaborating model is a distributedmultiple-input single-output(MISO) system, the maximum

achievable diversity gain isM . Equations (21), (28), and (32) illustrate that all of the three discussed

scenarios: cooperative transmission, moderate reception, and cooperative hopping can achieve thefull

diversity gain, i.e.,div = M , in large SNR regime.

E. Cooperative Coding Gain

For small c[C]⋆ , we can build the following simple relationship between thepunctured code threshold

and the mother code thresholdc[C]⋆ . Equation (4) implies

lim
c
[C]
⋆ →0

χ[C](τ)

c
[C]
⋆

= lim
c
[C]
⋆ →0

(c[C]⋆ )−1 ln
τ

exp(−c
[C]
⋆ )− (1− τ)

=
1

τ
. (35)

Thus, we can rewrite (33) as

FER(M) ≤
E,c

[C]
⋆

∑

F

{ (
c
[C]
⋆

)M

τ
M−(|F|+1)
0 (1−∑i∈F τi)(

∏

i∈F τi)(|F|+ 1)!

}

· (rM−|F|−1D|F| d)L · E−M . (36)

where≤
E, c

[C]
⋆

means that the inequality holds for sufficiently largeE and smallc[C]⋆ .

Example 4 (M = 1 limiting case)

FER(M=1) ≤E
c
[C]
⋆

η
=

c
[C]
⋆

E
dL. (37)

Example 5 (M = 2 limiting case)

FER(M=2) ≤
E, c

[C]
⋆

(
c
[C]
⋆

)2

τ0 η ρ
+

(
c
[C]
⋆

)2

2τ0τ1 η λ
=

(

c
[C]
⋆

E

)2 [
(d r)L

τ0
+

(dD)L

2τ0τ1

]

. (38)

Similarly, (23) and (29) can be rewritten as

FER(M)
T ≤

E, c
[C]
⋆

1

M !
∏M−1

i=0 τi

(

c
[C]
⋆ dL

E

)M

(39)

FER(M)
R ≤

E, c
[C]
⋆

τ
−(M−1)
0

(

c
[C]
⋆ dL

E

)M

(40)
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In [20], the author defines thecooperative coding gainas

cop , lim
SNR→∞

FER−1/div

SNR
. (41)

Let η = SNR, the coding gain of cooperative transmission, moderate reception, and cooperative hopping

schemes satisfy

lim
c
[C]
⋆ →0

c[C]⋆ · cop(M)
T ≥

(

M !

M−1∏

i=0

τi

)1/M

, (42)

lim
c
[C]
⋆ →0

c[C]⋆ · cop(M)
R ≥ τ

(M−1)/M
0 , (43)

lim
c
[C]
⋆ →0

c[C]⋆ · cop(M) ≥
{
∑

F

[
(r/d)M−|F|−1(D/d)|F|

]L

τ
M−(|F|+1)
0 (1−∑i∈F τi)(

∏

i∈F τi)(|F|+ 1)!

}−1/M

. (44)

Inequality (44) illustrates that, in general, the cooperative coding gain is a function ofτi (a parameter of

the cooperation scheme) and the geometric distance profile of the network.

V. SIMULATIONS AND DISCUSSIONS

A. IR Cooperative Turbo Coding

In this section, we study error performance of the cooperation scheme based on the mother turbo code

described in Example 1. FER simulations consider binary antipodal signaling and an independent flat

quasi-static Rayleigh fading. Each receiver has perfect channel state information and employs coherent

detection. All receivers employ the multiple turbo decoderassociated with a triangle iterative decoding

algorithm [21].

Here we consider aM = 5 collaborating cluster and assumeSNR0,1 = · · · = SNR0,4 = ρ and

η = SNR0,5 = · · · = SNR4,5 = λ. Thus, the FER performance of cooperative turbo codes is a function

of both cluster-to-destination SNRρ and sender-to-cluster SNRλ. Fig. 5 depicts the FER by fixing

ρ = −15, 0, 15 dB and changingλ from −2 to 16 dB. On the other hand, in Fig. 6, we fixλ = 2, 6

dB and study the FER performance vs. sender-to-cluster SNRρ. For these two cases, we compare the

simulation result with the analytic upper bound (10) and theasymptotic bound (36). We observe that the

upper bound (10) accurately predicts the coding performance and the asymptotic bound (36) converges to

bound in (10) for medium and high SNR. This observation enables us to estimate the FER performance
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Fig. 5. FER vs. cluster-to-destination SNR (M = 5, within-cluster SNRρ = −15, 0, 15, and mother turbo code of rate

R = 1/7 and lengthN = 5376)
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Fig. 6. FER performance vs. sender-to-cluster SNR (M = 5, cluster-to-destination SNRλ = 2, 6, and mother turbo code of

rateR = 1/7 and lengthN = 5376)
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as a function ofρ and λ by combining (10) and (36) in Fig. 7, where we use the bound (10) for low

SNR and employ bound (36) to simplify the computation for medium and high SNR.
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Fig. 7. FER performance as a function of within-cluster and cluster-to-destination SNRs (M = 5 and mother turbo code of

rateR = 1/7)

B. Collaborating Cluster SizeM

In this subsection we study the effect of the collaborating cluster sizeM on the performance of

cooperative transmission. For most practical wireless networks, we assume that nodes have limited battery

energy. Hence, achieving high transmission energy efficiency is more important that maximizing diversity

gain. Our approach is to assume that the allowable FER isǫ, which guarantees thequality of service(QoS),

and to determine theǫ-achievable transmission energy by applying the bounds described in Section IV.

The closed form bound predict accurately the error performance for medium and high SNR.

Let τ0 = · · · = τM−1 = 1/M , now, (39) implies

FER(M)
T ≤

E, c
[C]
⋆

1

M !

(

M · c[C]⋆ dL

E(M)

)M

. (45)
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To satisfy the QoS requirement, we require3

1

M !

(

M · c[C]⋆ dL

E(M)

)M

= ǫ. (46)

With the help of Stirling’s approximation [22] and by (16), the transmission energy is

E(M) .
=

c
[C]
⋆ · edL

(ǫ
√
2πM)1/M

. (47)

To illustrate how much energy can be saved with cooperative transmission, we consider non-cooperation

transmission and turbo codes transmitted over a fully interleaved fading channel cases as benchmarks.

For non-cooperation transmission (i.e,M = 1), without Stirling’s approximation,ǫ-achievable energy is

given by

E(1) =
c
[C]
⋆ · dL
ǫ

. (48)

For a fully interleaved fading channel, we can equivalentlyconsider the error performance analysis for a

M-block fading channel withM → ∞. In this case, the strong law of large numbers implies that

γ ,
1

M

M∑

j=1

γj

= E(γ) w.p. 1

=

∫ ∞

0

e−ηνe−ν dν =
1

1 + η
(49)

which is exactly the Bhattacharyya noise parameter for a fully interleaved fading channel [11]. Theorem 2

illustrates that, the word error probabilityP [C]
W (γ)

N−→ 0 if

γ =
1

1 + η
< exp(−c[C]⋆ ).

Thus, in this case, the reliable transmission energy is

E(∞) =
[

exp(c[C]⋆ )− 1
]

· dL < c[C]⋆ · dL (50)

3Strictly speaking, the bounds (36), (39), and (40) are basedon the large SNR assumption. However, through simulations,we observe

that the asymptotic bounds also works well for the medium SNR. On the other hand, these asymptotic bounds can be expressedin a closed

form, whereas, the calculation for the bound (10) must be resorted to numerical integration method. Thus, here and hereafter, we use these

asymptotic bound to estimate the FER performance.
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TABLE I

ENERGY SAVING VS. M

M 2 3 4 5 ∞

EstimatedU (M) (dB) 8.4 11.1 12.4 13.2 < 20

which indicates the limiting case in the sense ofM → ∞. Let U (M) , E(1)/E(M) denote the transmission

energy saving. Equations (47) and (48) lead to

U (M) .
=

(2πM)1/2M

e · ǫ1−1/M
(51)

which illustrates the fact that the energy saving is a function of onlyM and ǫ, and does not depend on

the good code. Furthermore,U (M) increases withM , however, the increase is very slow for largeM . For

example, letǫ = 0.01 and consider the turbo codes described in Example 1. We numerically compute the

estimated energy saving from (51) in Table I and compare it with the fully interleaved fading channel saving

U (∞) = E(1)/E(∞) < 1/ǫ. Fig. 8 illustrates the simulated FER performance versus transmission energy

E as well as the upper bound (10) and its asymptotic version (36) for d = 1 and r → 0. Furthermore,
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Fig. 8. FER vs. transmission energy for perfect within-cluster channel (D=1, P(|F| = M − 1) = 1, and mother turbo code

of rateR = 1/7 and lengthN = 5376)
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in Fig. 8, we compare the FER performance of cooperative transmissions vs. transmission over fully a

interleaved fading channel. in the latter case the error performance exhibits a threshold behavior and the

reliable transmission energy is described in (50). Both Table I and Fig. 8 illustrate the fact that, although

the cumulative energy saving significantly increases withM , the rate of increase drops quickly.

C. Normalized Cluster Distances

Here, we assumed0,1, . . . , d0,M−1 = r, d1,M = · · · = dM−1,M = D, d ≈ r +D andτ0 = · · · = τM−1 =

1/M . We move the collaborating cluster from the hop sender towards the hop destination, and evaluate

the energy saving relative a non-cooperative hop as a function of the normalized cluster distancer/d .

Again, we consider theǫ-achievable energy based on the bound (36). This bound implies that
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Fig. 9. ǫ-achievable transmission energy saving vs. normalized cluster distancer/d (the required FERǫ = 0.01, path loss

exponentL = 3)

M−1∑

k=0

(
M − 1

k

) (
Mc

[C]
⋆

)M

(M − k)(k + 1)!
·
[
(r/d)M−k−1(D/d)k

]L · (E(M)d−L)−M = ǫ, (52)

and

UM =

√

E(1)

E(M)
= M−1

{

ǫM−1

M−1∑

k=0

(
M − 1

k

)
1

(M − k)(k + 1)!

[
(r/d)M−k−1(1− r/d)k

]L

}−1/M

(53)
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The energy saving is depicted in Fig. 9 forM = 2, . . . , 5 and0 < r/d < 1, where we assumeǫ = 0.01,

path loss exponentL = 3, and a rateR = 1/7 mother turbo code described in Example 1.

APPENDIX

A. Modified Shulman-Feder Reliable Channel Region

In this appendix, we shall state for reference the MSF reliable channel regions for good binary codes transmitted over

parallel channels [3].

Theorem 4 (cf. [3, Theorem 5]) Let’s consider a good code ensemble[C] of rate R transmitted overQ binary-input

symmetric-output parallel channels with a set of mutual information{Iq}, Bhattacharyya noise parameters{γq}, and assignment

rate{τq}, if

γ < exp
(
−c

[C]
P

)
and I > R+ ξ

[C]
P (54)

where

I =

Q
∑

q=1

τqIq and γ =

Q
∑

q=1

τqIq

denote the average mutual information and Bhattacharyya noise parameter of theQ parallel channels, then, the average ML

decoding word error probability decays to zero as the codeword length approaches infinity.

B. Proof of Theorem 2

Proposition 1

ln(1 + x) <
2x

1 + x
for x < 1 and ln(1 + x) >

2x

1 + x
for x ≥ 1. (55)

Proof: [Proposition 1] Consider

g(x) = ln(1 + x)− 2x

1 + x
.

We haveg(x) = 0 for x = 1, and

g′(x) =
x− 1

(1 + x)2
. (56)

Therefore, (55) holds.

Lemma 1 For a binary-input AWGN channel with received SNRλ, the Bhattacharyya noise parameterγ and channel mutual

informationI satisfy

γ(λ) ≥ 1− I(λ) (57)
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where

γ(λ) = e−λ

I(λ) = 1− 1√
π

∫ +∞

−∞
e−(y−

√
λ)2 log2

(

1 + e−4y
√
λ
)

dy (58)

and the equality holds forλ = 0 or λ → ∞.

Proof: [Lemma 1] It is easy to verify that the equality in (57) holds for λ → ∞, sinceγ(λ) → 0 andI(λ) → 1 asλ → ∞.

Now, we only consider finiteλ, i.e., γ(λ) > 0. Let a =
√
λ, and

h(a) =
1− I(a2)

γ(a2)
. (59)

Note that

h(a) = 1, for a = 0. (60)

Hence, it will be sufficient to prove thath(a) is a decreasing function over(0, ∞). following (58), h(a) can be rewritten as

h(a) =
1√
π

∫ +∞

−∞
e−y2+2ay log2

(

1 + e−4ay
)

dy (61)

with

h′(a) =
2 log2 e√

π

∫ +∞

−∞
e−y2+2ayy ·

[

ln
(

1 + e−4ay
)

− 2e−4ay

1 + e−4ay

]

dy. (62)

Proposition 1 implies

y ·
[

ln
(

1 + e−4ay
)

− 2e−4ay

1 + e−4ay

]

≤ 0 ∀ y and a > 0

and yieldsh′(a) ≤ 0 for a > 0. Combining with (60), we haveh(a) ≤ 1 for a ≥ 0. Thus, we have the desired result (57).

Lemma 2 For a good code ensemble with rateR, the UB code thresholdc[C]0 satisfies

1− exp(−c
[C]
0 ) ≥ R (63)

wherec[C]0 is defined in (2).

Proof: [Lemma 2] Proof by contradiction. We assume that (63) does not hold. Then, there exists a positiveǫ0 such that

R > 1− exp(−c
[C]
0 ) + ǫ0. (64)

Let’s consider a binary erasure channel (BEC) with erasure probability p = exp(−c
[C]
0 ) − ǫ0. Then, the channel capacity and

Bhattacharyya noise parameter are

C(p) ,1− p = 1− exp(−c
[C]
0 ) + ǫ0 and γ(p) , p = exp(−c

[C]
0 )− ǫ0
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Sinceγ(p) < exp(−c
[C]
0 ), the decoding error probability

lim
N→∞

P
[C]
W (γ) = 0. (65)

By Shannon’s channel coding theorem, (65) implies

C(p) = 1− exp(−c
[C]
0 ) + ǫ0 ≥ R,

which contradicts (64).

Now, we consider the proof of Theorem 2.

Proof: [Theorem 2] First, we prove the existence ofc
[C]
⋆ , i.e., that the set

Ω ,

{

P : 1− exp(−c
[C]
P ) ≥ R+ ξ

[C]
P

}

is not empty. Let’s consider a particular weight partitionP0 such thatΦ+
P0

= Φ andΦ−
P0

= ∅. Equation (1) and (3) imply

c
[C]
P0

= c
[C]
0 andξ[C]P0

= 0. Moreover, by Lemma 2 lead to

1− exp(−c
[C]
P0
) ≥ R+ ξ

[C]
P0

.

Hence, the setΩ 6= ∅.

Next, we prove, for parallel AWGN channels, thatP
[C]
W (γ)

N−→ 0 if

− ln γ > c
[C]
P for any P ∈ Ω. (66)

Note that, when (66) holds, we have

1− γ ≥ 1− exp(−c
[C]
P ) ≥ R+ ξ

[C]
P for any P ∈ Ω.

On the other hand, Lemma 1 implies

I =

Q
∑

q=1

τqIq ≥
Q
∑

q=1

(1− τqγq) = 1− γ.

Therefore,

I > R+ ξ
[C]
P for any P ∈ Ω.

By combining (66) and Theorem 4, we have the desired resultP
[C]
W (γ)

N−→ 0.
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C. Proof of Theorem 3

Lemma 3 Let φ(λ0) andξ(λ1) be two independent random variable with the property that:

lim
λ0→∞

λ0 P[φ(λ0) > c] = f(c), lim sup
λ1,→∞

λ1 P[ξ(λ1) > c] ≤ h(c), and 0 ≤ φ(λ0), ξ(λ1) ≤ 1 (67)

wheref(c) andh(c) are monotone decreasing and integrable, andf ′(c) is integrable. Then, for0 < 1− c < τ, 1− τ ,

lim sup
λ0,λ1→∞

λ0λ1 P[τφ(λ0) + (1− τ)ξ(λ1) > c] ≤ −
∫ 1

q

h
(c− τz

1− τ

)

f ′(z)dz (68)

whereq = [c− (1− τ)]/τ.

Proof: [Lemma 3] The outline of the proof is as follows: first, we letΦ = {z0, . . . , zL} for some finiteL be any partition of

the interval[k(c), 1] with z0 = k(c) andzL = 1. Next we obtain an outer bound on the eventτφ(λ0) + (1− τ)ξ(λ1) > c as

{τφ(λ0) + (1− τ)ξ(λ1) > c} ⊇
L⋃

i=1

{zi−1 ≤ φ(λ0) < zi} ∩
{

ξ(λ1) >
c− τzi
1− τ

}

(69)

Sinceφ(λ0) andξ(λ1) are independent, the upper bound becomes

P

[

zi−1 ≤ φ(λ0) < zi, ξ(λ1) >
c− τzi
1− τ

]

=
{

P[φ(λ0) > zi−1]− P[φ(λ0) > zi]
}

P

[

ξ(λ1) >
c− τzi
1− τ

]

(70)

Thus,

lim sup
λ0,λ1→∞

λ0λ1 P[τφ(λ0) + (1− τ)ξ(λ1) > c] ≤
L∑

i=1

lim sup
λ0,λ1→∞

λ0λ1 P

[

zi−1 ≤ φ(λ0) < zi, ξ(λ1) >
c− τzi
1− τ

]

=

L∑

i=1

[
f(zi−1)− f(zi)

]
h
(c− τzi

1− τ

)

. (71)

Note that (71) holds for all partitionsΦ of the interval[k(c), 1]; andf(c), f ′(c), andh(c) are all integrable, the supremum

of the right-hand side of (71) becomes the integral in (68).

Now, we consider the proof of Theorem 3.

Proof: [Theorem 3] Following the induction method, first we check the U = 1 case. Note thatτ = 1 in this case, thus, (17)

is satisfied forU = 1.

Next we assume that (17) holds forU = j − 1 and considerU = j. Let

τ ′m =
τm

1− τj
for m = 1, . . . , j − 1,

f(c) = − ln c, and h(c) =
1

(j − 1)!

j−1
∏

m=1

ln
τ ′m

c− (1− τ ′m)

Sinceτ ′m < 1− c,
∑j−1

m=1 τm = 1, and the induction hypothesis, we have

lim sup
{λ1,...,λj−1}→∞

j−1
∏

m=1

λm · P
[

j−1
∑

m=1

τ ′mφm(λm) > c

]

≤ h(c). (72)
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Note thatf(c) andh(c) are monotone decreasing and integrable, andf ′(c) is integrable. Then, by Lemma 3,

lim sup
{λ1,...,λj}→∞

j
∏

m=1

λm P

[
j
∑

m=1

τmφm(λm) > c

]

= lim sup
{λ1,...,λj}→∞

j
∏

m=1

λm P

[

τjφj(λj) + (1 − τj)

j−1
∑

m=1

τ ′mφm(λm) > c

]

≤ −
∫ 1

q

h
(c− τz

1− τ

)

f ′(z)dz

=
1

(j − 1)!

∫ 1

q

1

z

j−1
∏

m=1

ln
τm

c− zτj − (1− τj − τm)
dz (73)

whereq = [c− (1− τj)]/τj . Since− ln z is convex, Jensen’s inequality implies that

ln
τm

c− zτj − (1 − τj − τm)
= − ln

[zτj − c+ (1− τj)

1− c
· τm − (1 − c)

τm
+

τj − zτj
1− c

· 1
]

≤ − zτj − c+ (1 − τj)

1− c
ln

τm − (1− c)

τm
− τj − zτj

1− c
ln 1

=
z − q

1− q
ln

τm
c− (1 − τm)

for q ≤ z ≤ 1, 1 ≤ m ≤ j − 1. (74)

Hence,

∫ 1

q

1

z

j−1
∏

m=1

ln
τm

c− zτj − (1− τj − τm)
dz ≤

[
j−1
∏

m=1

ln
τm

c− (1− τm)

]
∫ 1

q

1

z

[

z − q

1− q

]j−1

dz. (75)

Note that1/z and [(z − q)/(1 − q)]j−1 are, respectively, monotonically decreasing and increasing in z. Chebyshev integral

inequality [23] implies

∫ 1

q

1

z

[

z − q

1− q

]j−1

dz ≤ 1

1− q

∫ 1

q

1

z
dz

∫ 1

q

[

z − q

1 − q

]j−1

dz =
ln q

j
. (76)

Finally, by combining (73), (75), and (76), we have the desired result

lim sup
{λ1,...,λj}→∞

j
∏

m=1

λm P

[
j
∑

m=1

τmφm(λm) > c

]

≤ 1

j!

[
j
∏

m=1

ln
τm

c− (1 − τm)

]

. (77)

Since both the base case and the inductive step satisfy (17),we conclude that (17) holds for allU .
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