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Incremental Redundancy Cooperative Coding for Wireless Networks

Cooperative Diversity, Coding, and Transmission Energy Gain
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Abstract

We study anincremental redundanc{iR) cooperative coding scheme for wireless networks. Tplakthe
spatial diversity benefit we propose a cluster-based coiiing strategy for a quasi-static Rayleigh fading channe
model and based on a network geometric distance profile. Chense enhances the network performance by
embedding an IR cooperative coding scheme into an existimgaoperative route. More precisely, for each hop,
we form a collaborating cluster dff — 1 nodes between the (hop) sender and the (hop) destinatiertrdimsmitted
message is encoded using a mother code and partitionednidocks corresponding to the each bf slots. In
the first slot, the (hop) sender broadcasts its informatitrénsmitting the first block, and its helpers attempt to
relay this message. In the remaining slots, the each obleaft-\/ — 1 blocks is sent either through a helper which
has successfully decoded the message or directly by thg @eopler where a dynamic schedule is based on the
ACK-based feedback from the cluster. By employing powegobd codege.g., turbo codes, LDPC codes, and
raptor codes) whose performance is characterized by ahibicebehavior, our approach improves the reliability of
a multi-hop routing through not only cooperation diverdignefit but also a coding advantage. The study of the
diversity and the coding gain of the proposed scheme is basedsimple thresholdound on the frame-error rate
(FER) of maximum likelihood decoding. A average FER uppenritband its asymptotic (in large SNR) version
are derived as a function of the average fading channel SNRshe code threshold. Based on asymptotic bounds,
we investigate both the diversity, coding, and transmis&pergy gain in the high and moderate SNR regime for
three different scenarios: cooperative transmissionpemative reception, and cluster hopping. Furthermoregrgiv
a geometric distance profile of the network, these bounddegia the design of the collaborating cluster and the

IR cooperation scheme.
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I. INTRODUCTION

To overcome fading, wireless networks employ various ditgtechniques, e.g., channel interleavers,
multiple antennas, frequency hopping, etc. In [1], Senden&rkip, and Aazhang have proposed the
so-calleduser-cooperation diversityvhere users partner in sharing their antennas and otheurceso
to create a virtual array through distributed transmissiod signal processing. Only limited time and
frequency diversity is available when the propagationremrnent changes slowly relative to the signaling
rate, the receiver has a strict decoding delay constramtiffaspeech and video transmission), and
the bandwidth of the channel input is considerably less tthencoherence bandwidth. Hence, since
signal experiences a quasi-static frequency-flat fadmgoducing spacial diversity through cooperation is
especially beneficial. An information-theoretic analysiseveral cooperative protocols achieving diversity
gain throughrepetition-codingand space-time-codingased schemes have been reported in [2], [3]. More
recently, practical cooperative coding design has becartmpia of active research. Coding strategies
for two-user collaborating transmission based on rate @tiiole punctured convolutional codes have
been considered in [4], [5]. Cooperation schemes emplogistributed turbo codes have been studied
in [6]-[8].

In this paper, we study ancremental redundandyyR) cooperative coding scheme for wireless networks.
To exploit the spatial diversity benefit we propose a clubtesed collaborating strategy for a quasi-static
Rayleigh fading channel model and based on a network gemndiitance profile. The cluster-based
collaborating strategy enhances the network performagaarbedding an IR cooperative coding into an
existing noncooperative route. More precisely, for eacthefnoncooperative hops, we form a collaborating
cluster of M — 1 nodes between the (hop) sender and the hop destination.rdimantitted message is
encoded using a mother code which is partitioned itdlocks each assigned to one of transmission
slots. In the first slot, the (hop) sender broadcasts owrrimdition by transmitting the first block, and its
helpers attempt to relay the message. In the remaining, sheseach of left-oven/ — 1 blocks is sent
either through a helper which has successfully decoded #ssage or directly by the (hop) sender based
on an acknowledgement (ACK) driven a dynamic schedule. Bpleying the powerfulgood codeg9],
[10] (e.g., turbo, LDPC, and raptor codes) whose perforradaaacharacterized by a threshold behavior,

our approach improves the reliability of multi-hop routittgough not only cooperation diversity benefit



but also a coding advantage.

To investigate benefits of the proposed IR cooperative gpdaneme, we evaluate its frame error rate
(FER) performance for a quasi-static frequency-flat Rayldiading channel by studying the threshold
behavior of good codes [10]. We base the analysis sigle code thresholébr transmission of good
codes over an AWGN channel. This threshold ensures (asyicgdtp in the codeword length) reliable
performance undenaximum likelihoodML) decoding. The FER performance bound based on the simple
threshold has the same form as ti@on BhattacharyydUB) code threshold bound [11], [12], but the
former bound is tighter by almodtdB for an example of a raté/7 turbo code on an AWGN channel.
Based on this threshold and the channel outage concept, mee @etight average FER upper-bound
which predicts well fading channel simulation results foe proposed scheme. A corresponding closed-
form FER upper-bounds asymptotic in large SNRs and obtdimethree different scenarios: cooperative
transmission, moderate reception, and cluster hoppingsdibounds allow for illustrating cooperative
diversity and coding gains in the high SNR regime. Finallg express FER bounds in terms of the
distance profile and discuss how to design collaboratingteta to achieve cooperation benefits including
energy efficiency gain.

The paper is organized as follows: We describe the systenehaod an IR cooperative coding scheme
in Sec.Il. We derive an upper bound on the scheme FER in[Skand its asymptotic versions for
different cooperation scenarios in S&c] IV. Simulationulissand the collaborating cluster design are

discussed in Se&lV.

1. SYSTEM MODEL

In this section, we describe a collaborating cluster, an dBperative coding scheme, and the fading

channel model which incorporates the geometric distanoélgrmof the network.

A. Collaborating Cluster

We assume that, initially, a suitable non-cooperativeeaiged for delivering packets from the source
to the sink is established. As shown in Hig. 1, for each of tbecooperative hops, a group 61 — 1

nodes forms aollaborating clusterS which is between the (hop) sender and the (hop) destinafioa.
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Fig. 1. Cooperative routing in wireless network with a geometristaince profile

(hop) sender serves as the regional broadcast node, andckestbr member, termed helper, attempts
to relay the package to the (hop) destination. We furthemrassthat the communication bandwidth and

time slots are both introduced for spatial reuse acrossauperative hops in a proper manner. Therefore,
since we can neglect inter-hop interference, it is sufficterstudy the cooperative scheme corresponding

to a single noncooperative hop.

B. IR Cooperative Coding Scheme

In order to establish IR coding collaboration in a single camwperative hop, we assume that the (hop)
sender and cluster members have acquired a common timeneéeand are operating in a single radio
frequency bandV. The medium access contrgMAC) within a noncooperative hop is based on a time-
division scheme. The one hop transmission intefiais partitioned intoM non-overlappingslots of
durationtoT', ..., a1 T, Wherer.Viglrj = 1. The cluster can transmit close 6 = |WT| symbols
during the transmission interval.

Each node in the wireless network has an encoder, a decodkeg mapping device. The (hop) sender
encodes the information and obtains a mother codewood length V and rateR. The mapping device
partitions the codeword into M blocks of relative lengths;, j = 0,..., M — 1. For analysis simplicity,
we employ a probabilistic mapping device [12] by which theslaf C are assigned randomly to one of
M blocks with theassignment rate;.

Let C; denote the punctured codeword obtained frérby choosing thej-th block. For a given good

(mother) code ensembl€] and the (random) assignment rajethe punctured code ensemiife] exhibits



a SNR threshold behavior for a general Gaussian (with orowitfiading) channel, i.e., if the received
SNR is larger than the punctured code threshold, the avéviigdecoding word error probability ofC;]
decays to zero as the codeword length— oo.! In order to predict the error performance accurately,
we have introduced a tight punctured code threshgft{r;) (see detail in Sed_TIzA), which can be
calculated based on the mother code threshold and showsdangakzh with the simulation result under
iterative decoding. Hence, this code threshold behavitpshes dynamically schedule the cooperation
in the following two stages. For notation convenience, letdBl0 denote the (hop) sender, Node,
form=1,...,M — 1, denote the cluster members, and Nddedenote the (hop) destination (i.e., the

next-hop (hop) sender).
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Fig. 2. Cooperation coding scheme (In the first slot, (hop) sendeadwasts its information. In other slots, each cluster

member decides whether to relay decoded information byisgratiditional parity bits to form a more powerful code.)

1) Broadcast StageAs shown in Fig[R.a, the (hop) sender broadcasts its infaomdy transmitting
Co during Slot0. Each helper listens and attempts to decode this message.gvixisely, helpers estimate
the instantaneous received SNR from the incoming signdy ering the broadcast slot. Lef C S
denote theeliable set of cluster members whose received instantaneous SNIRj&r than the punctured
code thresholdy“!(7,). This implies that Node: € F can guarantee to decodg successfully. Next,
eachreliable node sends an ACK back to the (hop) sender over a fast andfexeofeedback channel.
We note that in [3], [15], authors also define the cooperasieinas the set of relays that can decode the
message successfully. Different from prior approaches,sobeme allows for #gast ACKmessage sent

!For typical practical systems, the codeword length isydatge [13], e.g., in CDMA2000 standard [14], the encodésves for a variable

input length up toK ~ 20730.



back the (hop) sender from the reliable noaéthouta need for prior decoding, and, thus, allowing for
a streamlined scheduling of cooperation retransmissiadhghe end of the first slot, only reliable nodes
decode the received signal.

2) Forwarding stage:Fig.[2.b illustrates the transmission interval from Sldb Slot M —1 (here, dark
solid circles represent reliable nodes). Ndddor k£ € F, re-encodes and punctures received information
in the same manner as done by the (hop) sender and, condgquelatys thek-th block C, to the
destination in Slot&. The (hop) sender transmits the left-over blocks in the reim@ transmission slots
based on received ACKs. The signal received at the destmatirresponds to an IR scheme with a fixed
number of retransmissions, where a retransmission expasea different channel quality in the case that

the corresponding sender-to-heper instantaneous SNHfisently good.

C. Channel Model

We consider the quasi-static frequency-flat Rayleigh fadthannel model [16], where the fading
coefficient is random, but invariant during the transmisdsiaterval 7. The discrete-time channel model
IS

yij =it aijai+ 2y forie{0,...,M —1} andj € {1,..., M}

wherez; is the signal transmitted by NodgeL is the path loss exponent, ;, a; ;, andz; ; are the distance,
fading coefficient, and background noise between Nadgsrespectively, and; ; is the signal at Nodg
received from Node. We assume thatl = |z;|? is the transmitted symbol energy which is identical
for all cluster nodes;; is modeled as the mutually independent additive Gaussidse id(0,1/2),
andv; ; = |a;;|* is the exponentially distributed “channel power” with meanThen, the average and

instantaneous SNRs of the signal at Ngdeeceived from Nodé can respectively be expressed as

SNR;; 2 E-d; F, and 6;; £ v;; - SNR; ;.

Z?] ’

We further assume that decoding is done with the knowledgeeofading coefficients.

I1l. NOISE THRESHOLD BASED PERFORMANCE ANALYSIS

The decoding is performed at the destination upon completib A/ transmission slots. Proposed

cooperative coding scheme implies that the received sigraivays the mother codewotimodified by



the fading channel. Moreover, all communication links elgrece an independent quasi-static Rayleigh
fading channel, thus, the codewards equivalently transmitted ovev/ parallel channels corresponding
to each of theM slots, and experiencds| + 1 independent channel gains. This requires studying the

performance of codes transmitted over a block fading chgi6¢

A. Threshold Behavior of Good Codes for an AWGN Channel

The basis for our analysis is the threshold behavior of gomdes. In [11], Jin and McEliece have
defined the UB code threshold of a good code enseridhlas
ln AL5NJ

cgq £ sup limsup

1
0<6<1 N-—oo 0 ( )

whereA 5]\” is average weight enumerator (AWE) of the code ensembleg the normalized Hamming

weights. The authors in [11] have derived the following ogdtheorem for a good code ensembile.

Theorem 1 [11, Theorem 8.1] Let a good code ensemfdlewith a finite UB code threshold[ocl. For
any binary-input memoryless channel whose Bhattachargjserparametéry < exp(—c ) the average

ML decoding word error probabilityDW () 0. [ |

This result is based on the classical union bound. Hencethtleeholdc[oq is loose.
To obtain a tight code threshold, we partition the normalix¢amming weights into two subsets,
UP)={0:0<o<Porl—P<éd<l1l}andU(P)={06:P <o6<1- P}, for P € (0, 0.5], and

define a simple code threshold by optimizing the weight partiparameter” as follows

02 win {91 —exp(—) = R+ €] )
o' = i qcp exp(—cp') > R+ ¢&p (2)
where
InAS 1
92y In Ay and 92 —(1 A A[RB]) 3
e s, vy 9 6 2 iy (A 0 AR) @

denote the restriction code UB noise threshold and SF distaarresponding to the weight subsets”)
andU°(P), respectively, andiRB] denotes the ensemble of random binary codes. Baseti'owe have

the following coding theorem for parallel AWGN channels.
%For a binary input memoryless channel with output alphabeind transition probabilitie® (y|0) andP(y|1), y € ), the Bhattacharyya

noise parametedefined asy = 3 v/ P(y|0)P(y|1). In particular, for an AWGN channel with the received SMRthe Bhattacharyya

yey

noise parameter isxp(—6) (see [17] for more detail).



Theorem 2 Let the symbols of a good binary code ensemglebe randomly assigned tQ parallel
binary-input AWGN channels where the set of assignmentsrase{r,,...,79_1} and the set of

Bhattacharyya noise parameters{is, ..., vg-1}. If
7 < exp(—c)

wherew £ E?:‘Ol 7;7; 1S the average Bhattacharyya noise parameter, then thage/étL decoding word
error probabilitva[g} ) 0.

Proof: The proof is in the AppendikIB. u

Example 1 (Simple threshold for turbo codes) Here, we study the UB and simple code thresholds of
a R = 1/7 turbo code. The turbo encoder consistsJof 3 recursive convolutional encoders with two

random interleavers. The component code transfer furetoeG, = (1, 13/15, 17/15) and G, = G5 =
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Fig. 3. UB and simple code thresholds for an AWGN channel (turbo afd® = 1/7 and N = 5376)

(13/15, 17/15). We compute the AWE based on the technique of [18] for= 5376. By applying (1)
and [2), we calculate the UB threshojﬂc] = 0.21 and the simple threshold”“ = 0.17. As shown in
Fig.[3, we compare the UB and simple threshold with simutatesults under iterative decoding when the

turbo codes are transmitted over an AWGN channel. [Hig. 3tilldes that the simple threshold predicts
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the cliff of the simulated word error probability accurgteand that the gap betweef © and ¢/’ is

almost1 dB. m

For punctured codes, we may assume that punctured bits @tréose@ dummy memoryless component
channel whose output is independent of the input,1.6.= 1, whereas, non-punctured bits are transmitted
over the real channel with the Bhattacharyya noise parametd8y assuming the puncturing rate- 7,
the average Bhattacharyya noise parameters4s~y -7+ 1- (1 — 7). Hence, Theorerfil2 implies the
following result for a (randomly) punctured code ensembl@n ensemble of good codes are randomly

punctured at a raté — 7 then there exists a punctured code threshold

€l — 1 T for 7 > 1 — exp(—cl (4)
X n T exp(—ckt
(7) exp(—cfb-— (1—71) ( )

such that, if the Bhattacharyya distanedn~ (i.e., the received SNR at an AWGN channel) is larger

thanx!I(7), the average ML decoding word error probability approactess asN — oo.

B. Code Outage for a Block Fading Gaussian Channel

In the case of &)-block fading Gaussian channel, the fading coefficient seesally invariant during a
single block and different from one block to another. For tth block, the Bhattacharyya noise parameter
v; 1s a function of the average received SSRR; and the channel power; of the corresponding block,

i.e.,v; = exp(—v; - SNR;). Hence, the average Bhattacharyya noise parameter(pusocks
Q-1 Q-1
F(w) =Y 77 =Y miexp(—v; - SNR))
j=0 j=0
is a function of the random vectar = {v,,...,vo} and, thus, for a given good code, there is a non-
negligible probability that the effective Bhattacharyyaise distance—In7%(v) is less then the code
thresholdc, termedcode outageorobability. Thus, the error probability is a function oftbhdhe fading
distribution and the noise threshold of the code. More gedyj the average ML decoding word error
probability for a good code ensemblg] transmitted over &)-block fading channel can be bounded as
follows:
Py (7) 2 B[P (7)] = Pleror(N), —In3(v) < ¥} + Plerror(N), —In7(v) > c}
< P{-In7(v) < 7} +o(1). (5)

The second term approaches zero with the code lehgtlive will omit o(1) in the further analysis.
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C. IR Cooperative Turbo Coding Performance

Now we study the FER performance of the IR cooperative codaiggeme for a quasi-static frequency-
flat Rayleigh-fading channel.

In Slot 0, the (hop) sender (Nod® broadcasts its information by sending the punctured code,.
The channel powers, ;, j =1,..., M — 1, are i.i.d. exponential random variables invariant duragh
transmission period. Thus, the reliable geis randomly distributed over theollectionof 22~! subsets

of S with the probability

= H P{fo; > x!(70)} H P{bo; < X'“(70)}

JjeF jere
- H exp[—x"I(m )SNRg ;] H {1—exp[—x ](TO>SNR5H I3 (6)
JEF JjeF*

whereF¢ £ S\ F.

For a givenF, the IR cooperation scheme allows the mother codeword tordresmitted to the
destination (NodeV/) over M parallel channels (slots) associated wi#| + 1 independent quasi-static
fading gains. Hence, the Bhattacharyya noise parametehahi@li is

exp(—b; ) i€ F,

Yi = (7)
eXp(—Ho,M) i€ Feu {0}

Consequently, the Bhattacharyya noise parameter aveaged/ parallel channels is now

Y, F)=(1- Z 7;) exp(—bo,n) + Z 7; exp(—0; ar)

i€F i€F
= (1 — Z TZ') exp(—vomSNRo ar) + Z 7; exp(—vi SNR; a1), (8)
i€ F i€ F

wherev = {von,Vim---,Vu—1.m) IS @ random vectorM -tuple with the exponential distribution.
Inequality [%) implies that the conditional average wordoemprobability given a reliable sef can

be bounded as follows:
M—
W7 F) <P{-m(w, F) <) = / [[ e dv 2 G(M, F,SNR) 9)
A
where A 2{v : 7(v, F) > exp(—c)} andSNR = {SNRy »/, . . ., SNRys_1/}. Thus, the ML decoding
FER for cooperative turbo coding scheme averaged over aBiple reliable sets can be bounded as

FERY = 3 PAPY(TIF) < Y P(F)-G(M.F.SNR), 4o

all possible 7 all possible 7
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Example 2 (M = 1) The caseM = 1 is equivalent to the traditional non-cooperation transiois, and

the signal-hop FER is bounded as

FER(l) Sg(]_, @, SNRQJ) = P{VQJSNRQJ S CLC]} =1- exp(—cLC]SNRQl). (11)

Example 3 (M = 2) For the two-node cooperation case, the scheme FER can bdemais
FER® < P(F = 0Py (7| 0) + P(F = (1P (7] {1})
_ [1 B 6_X[61(T)SNR5}] G(2,0,SNR) + o~ X ()SNRy | G(2,{1},SNR), (12)
where (assumingy, 71 < exp(—c\))
G(2,0,SNR) = 1 — exp(—cl“'SNRy3) (13)

1/SNR; 2
dx, (24)

G(2,{1},SNR) = 1 — w — /

w

! exp(—c[*q) — 7 >NRo2
7o

andw = exp [—x (7)) - SNR&%}.

In general, [10) cannot be calculated in a closed form andne®els to resort to numerical integration

methods.

IV. ASYMPTOTIC ANALYSIS

In this section we consider several different cooperate@narios and derive asymptotic (in large SNR)
FER bounds, which have a closed form. For simplicity we guot@e that each punctured code can be

self-decodable by assuming

Tos - Taa—1 > 1 — exp(clf). (15)
Next, we refer tor = max|[dyy,---,dom—1] @s the sender-to-cluster distande= dy s as the (non-
cooperation) hop distance, and = max[d; as,--- ,dy—1.m] @S the cluster-to-destination distance as

shown in Fig[l. Similarly, we define the sender-to-clustelRSkhe (non-cooperation) single-hop SNR,

and the cluster-to-destination SNR as
pE2FE-rt pn=F-dt and N\2E-D L (16)

Our analysis is based on the following theorem
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Theorem 3 Let ¢1(\1),...,0u(A\y) be U independent random variables with the property that:

Hm Ay P¢m(Am) > c] = —Inc,

Am —00

and 0 < ¢, (M) <1 for m=1,...,U.

Then, forr,...,7y >1—c¢ andZ;{L:1 Tm = 1,

U
1 T,
}}f?;‘;amHA P[Z“ﬁ )zel < g m == an)
where{\,..., Ay} — oo means\; — oo,..., \y — 0.
Proof: The proof is in the AppendikIC. [

A. Cooperative Transmission

In the cooperative transmissioacenario we assume that — 1 cluster members are very close to
the (hop) sender such that— 0. For this setting, we call the within-cluster channel mefectand

P(F={1,...,M —1}) = 1. Thus, the cooperation scheme FER can be written as

FERM = Py(¥| F={1,...,M —1})

< P{—lnﬁ(u, {17 . '7M - 1}) < CLC]}

=G(M,F={1,...,M —1},SNR = {Ed; ;}) (18)
Now, let's consider the large SNR case. Note that

lim SNR; P [exp(—ui,MSNRivM) > eXp(—c[f])

SNRZ"A{—N)O
1-— exp(—cLC}SNRZ-_Zb)
= m — :
SNR; ar—o0 SNRZ,M
=clf, (19)

Thus, [@), [®), [[Ib), and Theorehh 3 imply

M-1 M-1

limsup ] SNRias - G(M,{1,. —1},SNR) H (7). (20)

SNR—00 i—0
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For large enougtt, we can rewrite[(1l8) as

M—1
1
FERY" <p — [ X¥(m)SNR;, (1)
" i=0
1 M-1
= EM H X[C](Ti)dﬁM (22)
" =0
dML M-1 .
" =0

where<y means that the inequality holds for sufficiently lageand the last step is based on the triangle

inequalityd —r < d; ,y < d+r andr — 0.

B. Cooperative Reception

In the cooperative receptiorscenario we assume thaf — 1 cluster members are very close to the

destination such thab — 0. Hence, [Ib) implies that
G(M,F,SNR) =0 for F + 0. (24)
Therefore, we can bound the cooperation scheme FER as
FERY) — P(F = 0) Py (7| F = 0)

< P(F = 0)G(M, F = 0, SNR)

= {1 — exp [—X[C} (TO)SNRQ_,H } [1 — eXp(—cLC}n_l)] (25)

= {1 — exp [—X[C}(TO)E_ld(ﬁj] } [1 - exp(—c[*C]E_ldL)} (26)
Again, we focus on the large SNR case. Note that

. ) _ _ —1\] _
SN%IEOOSNR [1 exp(—aSNR )] a for a > 0. (27)

Thus, for large enougli, we can rewrite[(26) as
M
FERG" <p [x%(r)] " - T SNRy ! (28)
j=1

[ ()]
EM H d0LJ

]
j=1

M-1 |[C
[XC)(70)] el i
EM

(29)

where the last step is due to the geometric propértyD < d,; < d+ D andr — 0.
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C. Cooperative Hopping

Here, we assume thaty, = - = doy—1 =7 > 0anddyy = --- = dy—1.x = D > 0. Hence, the
r 7 D
1refy
> ! o] »-
hop O\JQ d hop
sender collaborating cluster destination

Fig. 4. geometric parameters for cooperative hopping

distancesl, r, and D satisfy the triangle inequality as shown in Hi§j. 4, and, ttmshe high SNR regime
we have
lim  J] SNRy;P(F)

SNR—oo
JjeF\{0}

= lim pM - (P p(F)

p—00
17l M—(|F|+1)
1-— —+[C] -1
= lim {exp [—X[C] (0)p™"] } { exp( 9_(1 (r0)p™") }
p—00 P
= ()] 714D, (30)

Moreover, [#), [P),[(15),[{19) and Theordi 3 imply

limsup J] SNRiu -G(M, F,SNR)

SNR—o0 . 700}

= limsup(\¥'n) - G(M, F,SNR)

A, n—00
€11 — .
X9 =2 ierT) ]
< i ).
= (|F] + 1)! JE]:I X H(7i) (31)

Hence, for large enough’, we can rewrite[(d6) as

FER™ <, Z{ [X© (To)]M‘('J;)fi])(ll — D icr i) 1 X[C](Ti)}(p|F+l—M)\—|F ) (32)
— .

1eF

-y { i (T°”M_(5;\Uf?>('l PNEI0 Y X[C}(n)} (T Q)L (33)
ia ’ i€F

~
_,geometric distance profile

coding advantage
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D. Diversity Gain
Following [19], thediversity gainis defined as

. —log FER
div = lim T SNR

(34)
Since our collaborating model is a distributenlltiple-input single-outpufMISO) system, the maximum
achievable diversity gain id/. Equations[(21),[(28), and{32) illustrate that all of theeth discussed
scenarios: cooperative transmission, moderate recepdioth cooperative hopping can achieve thé

diversity gain, i.e.div = M, in large SNR regime.

E. Cooperative Coding Gain

For smallc), we can build the following simple relationship between fhectured code threshold
and the mother code threshatf’. Equation [[#) implies
€1y

1
lim X[ic(}) = lim (Y~ In © = —. (35)
0 o =0 exp(—¢.’) —(1—7) 7

Thus, we can rewritd (83) as
(€

FERY < gl Z{ M—(|F|+1) (1= Yier ) [Lier ) (| F] + 1)!

where<_ 1 means that the inequality holds for sufficiently larfeand smallc!“!.

) Ox

} (PMFE D @E L B (36)

Example 4 (M = 1 limiting case)

FERM=D <, = — = b, (37)

Example 5 (M = 2 limiting case)
[C])2 [C])2 ]\ 2 L L
FERM=2) E ” (C* ) + (C* ) _ (&) {(dr) 4 (dD) } . (38)

S Tomp 2191 A FE To 27071

Similarly, (23) and[(Z9) can be rewritten as

1 el e M
FERY <, o < ) (39)
9 ok _ 7—2

y P
FERL" <, o7 MV [ = (40)
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In [20], the author defines theooperative coding gaias

FER—l/diV
cop= lim —————.

SNR—oo  SNR (41)

Let » = SNR, the coding gain of cooperative transmission, moderateptéan, and cooperative hopping

schemes satisfy

M1 N\ UM
. . (M) | _

CECI]IEO A cop{! > (M. g 7‘2> : (42)
lim - copfl”) > 7"V, “3)
c[*c]—>0

M—|F|-1 IFIE I
lim . cop® > {Z — 1£<T/d) (D/d)*] } _ (44)
* — — +
50 F To (1 =2 ier ) Ler ) (|71 + 1)

Inequality [44) illustrates that, in general, the coopeeatoding gain is a function of; (a parameter of

the cooperation scheme) and the geometric distance prdfileeanetwork.

V. SIMULATIONS AND DISCUSSIONS
A. IR Cooperative Turbo Coding

In this section, we study error performance of the coopanascheme based on the mother turbo code
described in ExamplEl 1. FER simulations consider binarypadal signaling and an independent flat
guasi-static Rayleigh fading. Each receiver has perfeahictl state information and employs coherent
detection. All receivers employ the multiple turbo decodssociated with a triangle iterative decoding
algorithm [21].

Here we consider a/ = 5 collaborating cluster and assuns&R,; = --- = SNRy4 = p and
n = SNRys = --- = SNRy5 = A. Thus, the FER performance of cooperative turbo codes is etium
of both cluster-to-destination SNR and sender-to-cluster SNR. Fig. [§ depicts the FER by fixing
p = —15,0, 15 dB and changing\ from —2 to 16 dB. On the other hand, in Fil 6, we fix = 2,6
dB and study the FER performance vs. sender-to-cluster 3NFor these two cases, we compare the
simulation result with the analytic upper boudl(10) and degmptotic bound(36). We observe that the
upper bound[{10) accurately predicts the coding performamd the asymptotic bound{36) converges to

bound in [ID) for medium and high SNR. This observation ezmbiks to estimate the FER performance
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10 § * simulation (noncooperation ) [i
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Fig. 5. FER vs. cluster-to-destination SNR/( = 5, within-cluster SNRp = —15, 0, 15, and mother turbo code of rate
R =1/7 and lengthN = 5376)
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-s/| © simulation (cooperation) ® ‘
10 " — upper bound : e
- - - asymptotic bound - 5
ellm simulation (noncooperation ) : ]
10 1 : ! L I I I
e e 0 5 10 15

sender-to—cluster SNR p (dB)

Fig. 6. FER performance vs. sender-to-cluster SNR £ 5, cluster-to-destination SNR = 2, 6, and mother turbo code of

rate R = 1/7 and lengthN = 5376)
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as a function ofp and A by combining [ID) and[{36) in Fidl 7, where we use the bound (@0 low
SNR and employ bound{B6) to simplify the computation for medand high SNR.

- log 10 FER
25 T T T T T
& \
5 o)) \@ [te)
.20 \ o
g W
E:’ »
5 15 | ‘ 9
o \ 8\
T \9 S 2
Q
P » 6—
e S5—n |
I 5 4 =
O B
2 4—
%]
= | 2 3—
= 3
[3) 0 \ 5 d
xza
1\
— | | | ]7 | 1‘
-15 -10 -5 0 5 10 15

sender—to—cluster SNR (dB)

Fig. 7. FER performance as a function of within-cluster and cludedestination SNRsM = 5 and mother turbo code of

rate R = 1/7)

B. Collaborating Cluster Sizé/

In this subsection we study the effect of the collaboratihgster size M on the performance of
cooperative transmission. For most practical wirelesa/odds, we assume that nodes have limited battery
energy. Hence, achieving high transmission energy effigiésmore important that maximizing diversity
gain. Our approach is to assume that the allowable FERw§ich guarantees trguality of servicQoS),
and to determine the-achievable transmission energy by applying the boundsritesl in Sectior1V.
The closed form bound predict accurately the error perfocador medium and high SNR.

Let o= = 1y_1 = 1/M, now, [39) implies

(M) 1 (M- gt Y
FERT SE,CLC] M W . (45)
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To satisfy the QoS requirement, we reqgire

AR AN
L (Meedr) (46)
T oD

With the help of Stirling’s approximation [22] and bly {16het transmission energy is

A gt

To illustrate how much energy can be saved with cooperatamsinission, we consider non-cooperation

EM) = (47)

transmission and turbo codes transmitted over a fully ieéeed fading channel cases as benchmarks.
For non-cooperation transmission (i, = 1), without Stirling’s approximation¢-achievable energy is
given by

Ll gL

For a fully interleaved fading channel, we can equivalentipsider the error performance analysis for a

M-block fading channel with\/ — cc. In this case, the strong law of large numbers implies that
1 M
— A )
Y= Y ;%

=E(y) wp 1

0 1
_ / M dy — (49)
0 1+n

which is exactly the Bhattacharyya noise parameter forlg faterleaved fading channel [11]. Theoréin 2

illustrates that, the word error probabilifyv[g} () oif

1
5 — (€]
= < exp(—c’).
g 1+7 p(—c”)

Thus, in this case, the reliable transmission energy is

E) = [exp(c[*c}) — 1] cdb < 9 gt (50)

3Strictly speaking, the boundE436[L139), afidl(40) are basethe large SNR assumption. However, through simulatiemsobserve
that the asymptotic bounds also works well for the medium S@R the other hand, these asymptotic bounds can be expriesaetlosed
form, whereas, the calculation for the boulidl (10) must berted to numerical integration method. Thus, here and ftereave use these

asymptotic bound to estimate the FER performance.
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TABLE |

ENERGY SAVING VS. M

M 2 3 4 5 00

EstimatedU ™ (dB) || 8.4 11.1 124 132 | <20

which indicates the limiting case in the sense\6f— occ. Let UM) 2 E() /E(M) denote the transmission

energy saving. Equations{47) arid](48) lead to

U(M) B (27TM)1/2M

e . el—1/M (51)

which illustrates the fact that the energy saving is a fumctyf only M/ ande, and does not depend on
the good code. Furthermor&*) increases with\/, however, the increase is very slow for lare For
example, let = 0.01 and consider the turbo codes described in Exarple 1. We meatigrcompute the
estimated energy saving fron{51) in Table | and comparetht thie fully interleaved fading channel saving
U = EW /E() < 1/e. Fig.[8 illustrates the simulated FER performance versaissmission energy
E as well as the upper bound{10) and its asymptotic versioh (864 = 1 andr — 0. Furthermore,

10” gt f

~o- simulation
. —— upper bound ]
10-1? o R NN R - - - asymptotic bound !

w 10 E ;
E Rl
4: ) 1
10 3
: | o | ,
10 interleaved | ]
i ¢ |fading channel : ]
I , o, ,
-6 .
10 . . ! ! | |
-10 -5 0 5 10 15 20 25

Transmission energy E (dB)

Fig. 8. FER vs. transmission energy for perfect within-clusterreted (D=1, P(|]F| = M — 1) = 1, and mother turbo code

of rate R = 1/7 and lengthN = 5376)
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in Fig. [, we compare the FER performance of cooperativestnggsions vs. transmission over fully a
interleaved fading channel. in the latter case the errdiopeance exhibits a threshold behavior and the
reliable transmission energy is describedlin (50). Bothd@land Fig.[B illustrate the fact that, although

the cumulative energy saving significantly increases withthe rate of increase drops quickly.

C. Normalized Cluster Distances

Here, we assuméy;,....doy—1 =7, diy = =dyiy=D,d=r+Dandry=---=7y_1 =
1/M. We move the collaborating cluster from the hop sender tdsvéine hop destination, and evaluate
the energy saving relative a non-cooperative hop as a fumaf the normalized cluster distancgd .

Again, we consider the-achievable energy based on the bound (36). This bound emstiat

18 w w x I

=L

PRwNP

[N

[ERN
N

=y
N

EQ/EM energy saving (dB)
- =
[ w

10

8 | | | |
0 0.2 0.4 0.6 0.8 1
r/d

Fig. 9. e-achievable transmission energy saving vs. normalizest@luistance:/d (the required FER = 0.01, path loss

exponentl = 3)

P (Mk— 1) ( (MY

MmN O (BT = (52)

k=0

M-1 1M
M 1) M1 M—-1 1 M—k—1 L
Ur=Vgan =M {6 2 < k )(M—k)(k+1)! /Ay (1 = r/d)] } (53)
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The energy saving is depicted in FIg. 9 fof =2,...,5 and0 < r/d < 1, where we assume= 0.01,

path loss exponent = 3, and a rateR = 1/7 mother turbo code described in Example 1.

APPENDIX

A. Modified Shulman-Feder Reliable Channel Region

In this appendix, we shall state for reference the MSF ridiaihannel regions for good binary codes transmitted over

parallel channels [3].

Theorem 4 (cf. [3, Theorem 5]) Let's consider a good code ensemhbl@ of rate R transmitted over@ binary-input
symmetric-output parallel channels with a set of mutuadinfation{, }, Bhattacharyya noise parametérg }, and assignment

rate {7}, if
5 <exp(=cfl) and T>R+¢S (54)
where

Q Q
I= ZTqu and ¥ = ZTqu
g=1 q=1

denote the average mutual information and Bhattacharyyse mmrameter of th€) parallel channels, then, the average ML

decoding word error probability decays to zero as the coddwength approaches infinity.

B. Proof of Theorerfll2

Proposition 1

> 1.

1n(1+:v)<1+x forz <1 and 1n(1+:v)>1+x forx > 1 (55)

Proof: [Propositionl] Consider
2z
gx)=In(l+z) — Ttz
We haveg(z) =0 for x = 1, and
oy ox—1

Therefore, [[5b) holds. [ |

Lemma 1 For a binary-input AWGN channel with received SNRthe Bhattacharyya noise parameteand channel mutual

information I satisfy

YA > 1-1I()) (57)
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where

1 [t
I0)=1—— e—<y—ﬁ>21og2(1+e—4yﬁ) dy (58)

and the equality holds fok = 0 or A — oc.
Proof: [Lemmall] It is easy to verify that the equality ii{57) holds i — oo, sincey(\) — 0 andI(\) — 1 as\ — .

Now, we only consider finite\, i.e.,v(\) > 0. Let a = v/}, and

1—1I(a?
h(a) = Tgi). (59)
Note that
h(a) =1, for a=0. (60)

Hence, it will be sufficient to prove thdt(a) is a decreasing function ovéd, oo). following (&8), 1(a) can be rewritten as

hia) = —— / T v ay log, (1 + e—4ay) dy (61)
VT o
with
h'(a) = 210—\/%6 joo e~V H2ayy, 1n(1 + 6*4%) - 12;%] dy. (62)
PropositiorL implies
Y- ln(l—i—e%‘”’) —%1 <0 Vyanda>0

and yieldsh’(a) < 0 for a > 0. Combining with [&D), we havé(a) < 1 for ¢ > 0. Thus, we have the desired restl(5m.

Lemma 2 For a good code ensemble with rae the UB code thresholdgc] satisfies

1- exp(—cgc]) >R (63)
Wherec([)c] is defined in [(R).
Proof: [Lemmal2] Proof by contradiction. We assume thall (63) doashold. Then, there exists a positivg such that

R>1- exp(—c([)c}) + €o. (64)

Let's consider a binary erasure channel (BEC) with erasubability p = exp(—cgcl) — ¢9- Then, the channel capacity and
Bhattacharyya noise parameter are

Cp) 21 —p=1—exp(—c) + e and y(p) 2 p = exp(—cl)) — e
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Sincev(p) < exp(—cgc]), the decoding error probability
lim P () = 0. (65)
N—o0
By Shannon’s channel coding theoref,](65) implies
Clp) =1 —exp(—cy)) + > R,

which contradicts[{84). [ |

Now, we consider the proof of Theordrh 2.

Proof: [Theoren®] First, we prove the existencedf, i.e., that the set
= {P 11— exp(—cgg]) > R+§£f]}

is not empty. Let's consider a particular weight partiti®h such that(I)Jlgo = ® and®p = (). Equation [Il) and[{3) imply

c[lgj = cgc] andggfo] = 0. Moreover, by Lemm&l2 lead to

1- exp(—c[lgo]) >R+ 5&50].

Hence, the sef) # (.

Next, we prove, for parallel AWGN channels, th@éﬂ ) AN
—In7y > c[g] for any P € Q. (66)
Note that, when[{86) holds, we have
1—-57>1- exp(—c[g]) > R—I—Sg for any P € Q.
On the other hand, Lemnfa 1 implies

Q Q
I= ZTqu > Z(l —TgY) =1—7.
q=1 qg=1

Therefore,

7>R+§E§] for any P € Q.

By combining [66) and Theorel 4, we have the desired re%(ﬁﬁh(ﬁ) o, [ ]
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C. Proof of Theorerll3

Lemma 3 Let ¢(\g) and&(\1) be two independent random variable with the property that:

lim Ao P[p(Xo) > ] = f(c¢), limsup A1 P[E(A1) > ] <h(e), and 0 < @(Xo), £(A1) <1 (67)

Ao—r00 A1,—00

where f(¢) and h(c) are monotone decreasing and integrable, Aftd) is integrable. Then, fob <1 —c< 7,1 —7

1 j—
limsup Ao Plre(Ao) + (1 - 7)E(A) > o] < — / n(S=2) F (2)dz (68)
Ao,A\1—00 q 1 - T
whereg = [c— (1 —7)]/7.
Proof: [Lemmal3] The outline of the proof is as follows: first, we Bt= {z, ..., 2.} for some finiteL be any partition of

the interval[k(c), 1] with zo = k(c) andz;, = 1. Next we obtain an outer bound on the eveti{\o) + (1 — 7){(M\1) > c as

L
{r6(0) + (1= 1) > ¢} 2 Jfais < 000) < b0 {e0n) > 2 (69)

, 1—7
=1

Since (M) and£(\;) are independent, the upper bound becomes

P |21 < 6(ho) < 21, (1) > Cf_ﬂ —{P6(A) > zi-1] = Plo(Xo) > 2] } P [wl) > Cfff] (70)
Thus,
Tmsup dody Plré() + (1= 7)e(h) > d < i limsup Aok, P [zi_l < 6(h) < 7, £0) > Cfff}
N [F(zi1) — f(zi)]h(cl__Tji). (71)

Il
-

Note that [7IL) holds for all partition® of the interval[k(c), 1]; and f(c), f'(c), andh(c) are all integrable, the supremum

of the right-hand side of{T1) becomes the integraldd (68). [ |

Now, we consider the proof of Theordh 3.
Proof: [Theorem[B] Following the induction method, first we check th = 1 case. Note that = 1 in this case, thus[{17)
is satisfied forU = 1.

Next we assume thaf{lL7) holds for= ;7 — 1 and considel/ = j. Let

T = ™ for m=1,...,5—1,
l—Tj
f(e)=—1Ine, and h(c _1'H - 1_7_)

Sincer,, < 1—c¢, Z 1 Tm = 1, and the induction hypothesis, we have

j—1

3 bmOm) > ] < h(0). (72)

j—1
lim sup H Am - P

L C PR VR iR | m=1
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Note thatf(c) andh(c) are monotone decreasing and integrable, #fitd) is integrable. Then, by Lemnia 3,

1mm>]IAPh)WMMP%= lim sup HAPP@ 14&27%

{)\1,...,)\;,‘}*}00 {)\1 ..... SN }%OO

m=1 m=1
1 j—
< —/ n(52) 1 ()
q 1—7
1 b T
=—— [ = 1 T d 73
(j—l)!/q Zn:!_zllnc—ZTj—(l—Tj—Tm)Z (73)
whereq = [c — (1 — 75)]/7;. Since—1n z is convex, Jensen’s inequality implies that
In T :_hl{ZTj—C-‘r(l—Tj).Tm—(l—c)—i_Tj—ZTj.1:|
c—z21j— (1= 7j — ) l1-c¢ Tm l1-c¢

et (=) Tm—(A—0) T2

IN
I

1—c T, 1—c¢
Z—dq Tm
= n
1—q c—(1—mn)

for <2<1,1<m<j—1. (74)

Hence,

1y T, = T, Y1 |2 qj_1
== ™ dz < In——" | [ = | dz. 75
/q zl__Inc—ZTj—(l—Tj—Tm)Z_L!__[ nC—(l—Tm)]A z [l—ql * (75)

Note thatl/z and [(z — q)/(1 — q)}’~! are, respectively, monotonically decreasing and incnegsi ». Chebyshev integral

Aléliizld <___/° L/[T:Z] 222?. (76)

Finally, by combining[ZB),[{45), and{I’6), we have the dmsiresult

inequality [23] implies

J J J
1 T,
lim sup Am P Tm®Pm(Am) >c| < — In— . 77
{ArsAg o0 7711_:[1 mzzl ) ] 7t LHI c—(1 _Tm)] o
Since both the base case and the inductive step sdiiSfy W&7¢onclude thaf{17) holds for all. [ |
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