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for coding. For example, for any integer i � 0 and for any real number
t > 0, there exists a network such that

Cuniform0 = Cuniform1 = � � � = Cuniformi

Caverage0 = Caverage1 = � � � = Caveragei

Cuniformi+1 �Cuniformi > t

Caveragei+1 �Caveragei > t:

In Theorem III.2, the existence of networks that achieve prescribed
rational-valued node-limited capacity functions was established. It is
known in general that not all networks necessarily achieve their capac-
ities [5]. It is presently unknown, however, whether a network coding
capacity could be irrational.5 Thus, we are not presently able to ex-
tend Theorem III.2 to real-valued functions. Nevertheless, Theorem
III.2 does immediately imply the following asymptotic achievability
result for real-valued functions.

Corollary III.5: Every monotonically nondecreasing, eventually
constant function f : [ f0g ! + is the limit of the node-limited
uniform and average capacity function of some sequence of directed
acyclic networks.
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Abstract—This correspondence introduces two new constructive tech-
niques to complete the determination of the sizes of optimal q-ary codes
of constant weight three and distance four.
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I. INTRODUCTION

The determination of Aq(n; d; w), the size of an optimal q-ary code
of length n, distance d, and constant weight w (all terms are defined in
the next section), has been the subject of study [1]–[25] due to several
important applications requiring nonbinary alphabets, such as coding
for bandwidth-efficient channels and design of oligonucleotide se-
quences for DNA computing. Recently, Chee and Ling [1] introduced
an effective technique for constructing optimal constant-weight q-ary
codes, which allowed the determination of A3(n; 4; 3) for all n. For
q > 3, the value of Aq(n; 4; 3) has also been determined, except when
n � q, n � 4 or 5(mod 6) [1, Th. 13]. Define the equation shown at
the bottom of the next page. The upper bound

Aq(n; 4; 3) � min Uq(n);
n

3
(1)

has been established in [1 Th. 12]. In each case where the value of
Aq(n; 4; 3) has been determined, it is found to meet this upper bound
[1, Ths. 13 and 14].

In this correspondence, we determine Aq(n; 4; 3) completely,
showing that it meets the upper bound (1) in all cases. First, we extend
the technique of [1] to work with large sets with holes. This allows the
determination of Aq(n; 4; 3) when n � 4mod6 and q � n, or when
n � 5mod6 and q � n � 1. A novel method based on sequences
is then used to determine Aq(n; 4; 3) for the remaining cases when
n = q.

II. DEFINITIONS AND NOTATIONS

The set of integers f1; . . . ; ng is denoted by [n]. For q a positive
integer, we denote the ring =q by q . The set of all nonzero elements
of q is denoted �

q . The ith coordinate of a vector is denoted by i,
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i � 1. For 2 n and positive integers i and j, 1 � i < j � n, the
vector ( i; i+1; . . . ; j) is denoted [i;j].

For a vector 2 n and positive integer k, +k denotes the vector
( 1 + k; 2 + k; . . . ; n + k) 2 n, and mod k denotes the vector
( 1mod k; 2mod k; . . . ; nmod k) 2 ( k)

n.
The q-ary Hamming n-space is the set Hq(n) = ( q)

n endowed
with the Hamming distance metric dH defined as follows:

dH( ; ) = jfi 2 [n] : i 6= igj;

the number of coordinates where and differ. The Hamming weight
of a vector 2 Hq(n) is the quantity dH( ; ), the number of nonzero
coordinates of . The support of is defined to be the set supp( ) =
fi 2 [n] : i 6= 0g. In other words, the Hamming weight of is the size
of the support of . The set of all elements in Hq(n) having Hamming
weight w is denoted Hq(n;w). A q-ary code of length n, distance d
and (constant) weight w, denoted (n; d; w)q-code, is a nonempty set
C � Hq(n;w) such that dH( ; ) � d for all ; 2 C, 6= . The
elements of C are called codewords.

The number of codewords in an (n; d;w)q-code is called the size
of the code. The maximum size of an (n; d; w)q-code is denoted
Aq(n; d; w). An (n; d; w)q-code having Aq(n; d; w) codewords is
said to be optimal.

Given a finite setX and a nonnegative integer k, the set of all k-sub-
sets of X is denoted X

k
. A set system is a pair (X;A), where X is

a finite set of points and A � 2X , whose elements are called blocks.
The order of the set system is jXj, the number of points. For a set of
nonnegative integers K , a set system (X;A) is said to be K-uniform
if jAj 2 K for all A 2 A.

A t-wise balanced design, denoted tBD, is a set system (X;A)
with the property that every T 2 X

t
is contained in exactly one

block of A. If the tBD is K-uniform and of order n, then we also
denote it by tBD(n;K). A tBD(n; fkg) is also commonly known as
a Steiner system. In particular, a 2BD(n; f3g) is a Steiner triple system
of order n.

III. AN APPLICATION OF LARGE SETS WITH HOLES

Chee and Ling [1] used large sets of Steiner triple systems to deter-
mineAq(n; 4; 3) for n � 0; 1; 2; or 3mod6. In this section, we utilize
large sets with holes, a useful concept introduced by Teirlinck [26], to
determine Aq(n; 4; 3) for n � 5mod6.

Definition 1: A large set LS(t; (k;K); n) is a set f(X;Ar) : r 2
Rg of tBD(n;K) such that

1) (X;[r2RAr) is a kBD(n;K); and

2) for each A 2 [r2RAr , there are exactly jAj�t
k�t

elements
r 2 R such that A 2 Ar .

Note that in Definition 1, [r2RAr denotes the ordinary set union,
and not multiset union.

It is known that an LS(t; (k;K); n) contains n�t
k�t

tBD(n;K)

[26, Prop. 1.1]. Teirlinck [26] established a number of existence results
for LS(t; (k;K); n). In particular, the following was obtained.

Theorem 1 (Teirlinck [26, Prop. 3.2]): An LS(2; (3; f3; 5g); n) ex-
ists if and only if n � 3 is odd and n 6= 7.

When n � 5mod6, n � 5, the LS(2; (3; f3; 5g); n) that Teirlinck
constructed [26, Construction 3.1] in the proof of Theorem 1 has the
property that each 2BD(n; f3; 5g) in the large set contains exactly
one block of size five. Consider such an LS(2; (3; f3; 5g); n), say
L = f([n];Ar) : r 2 [n � 2]g. Each ([n];Ar), r 2 [n � 2],
is a 2BD(n; f3; 5g) containing exactly one block of size five and
hence 1

3
n
2
� 10 blocks of size three. By the definition of

LS(2; (3; f3; 5g); n), each block of size three in [r2[n�2]Ar appears
in exactly one 2BD(n; f3; 5g) of the large set and each block of size
five in [r2[n�2]Ar appears in exactly three 2BD(n; f3; 5g) of the
large set. Note also that any two blocks in [r2[n�2]Ar intersect in at
most two points, since ([n];[r2[n�2]Ar) is a 3BD.

Let F = fF1; . . . ; F(n�2)=3g be the set of all blocks of size five in
[r2[n�2]Ar. Define for each i 2 [(n � 2)=3]

Pi = f([n];Ar) : Fi 2 Ar; R 2 [n � 2]g:

Then it is easy to see thatPi, i 2 [(n�2)=3], are mutually disjoint, and
each Pi contains precisely three 2BD(n; f3; 5g). Hence, F induces a
partition of L as follows:

L = [
(n�2)=3
i=1 Pi:

We assume without loss of generality that ([n];A3i�2), ([n];A3i�1),
([n];A3i) 2 Pi, for i 2 [(n � 2)=3].

Let 2 � q � n � 1, � = b(q � 1)=3c, and � = q � 1 � 3�,
so that q � 1 = 3� + �. For each r 2 [q � 1], let Cr be the set of
all codewords 2 f0; rgn of weight three such that supp( ) 2 Ar .
Further, for each Fi, i 2 [�], let C0i be an optimal (5; 4; 3)4-code on
the alphabet set f0; 3i� 2; 3i� 1; 3ig so that supp( ) � Fi for each
2 C0i. Finally, if � � 1, let C0�+1 be an optimal (5; 4; 3)�+1-code on

the alphabet set f3�+1; . . . ; 3�+�g[f0g so that supp( ) � F�+1

for each 2 C0�+1. For convenience, define C0�+1 = if � = 0.
It is obvious from its construction that

C =

q�1

i=1

Ci [

�+1

i=1

C0i

is a q-ary code of length n and weight three. We claim that C is in fact
an optimal (n; 4; 3)q-code. Indeed, suppose ; 2 C are distinct.

• If ; 2 [q�1
i=1 Ci, we have dH( ; ) � 4 since if supp( ) and

supp( ) are two blocks from the same 2BD(n; f3; 5g), then they
intersect in at most one point, and if supp( ) and supp( ) are
two blocks from different 2BD(n; f3; 5g), then they intersect in
at most two points but , must differ in value in those corre-
sponding coordinates.

• If ; 2 [�+1
i=1 C

0
i, we have dH( ; ) � 4 since if ; 2 C0i, for

some i, then dH( ; ) � 4 follows from the fact that C0i is a code
of distance four, and if 2 C0i, 2 C0j for i 6= j, then supp( )
and supp( ) intersect in at most two points since jFi \ Fj j � 2,
but , must differ in value in those corresponding coordinates.

• If 2 [q�1
i=1 Ci and 2 [�+1

i=1 C
0
i, we have dH( ; ) � 4 since

in the case when 2 C3i�2 [ C3i�1 [ C3i and 2 C0i, we
have jsupp( ) \ supp( )j � 1, and in the case when 2

Uq(n) =

(q � 1)n

3

n� 1

2
� 1; if n � 5(mod 6) and q 6� 1(mod 3)

(q � 1)n

3

n� 1

2
; otherwise.
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C3i�2[C3i�1[C3i and 2 C0j (i 6= j), supp( ) and supp( ) in-
tersect in at most two points and ; must differ in value in those
corresponding coordinates.

Hence, we conclude that C is an (n; 4; 3)q-code. What remains
is for us to compute the size of C. We require the sizes of optimal
(5; 4; 3)q-codes, for q 2 f2; 3; 4g (which has been shown to take on
the value Uq(5) in [1]).

When q � 1 � 0mod 3

jCj =

q�1

i=1

jCij +

�

i=1

A4(5; 4; 3)

= (q � 1)
1

3

n

2
� 10 + 10

q � 1

3

=
(q � 1)n(n� 1)

6
=Uq(n):

When q � 1 � 1mod3

jCj =

q�1

i=1

jCij +

�

i=1

A4(5; 4; 3) +A2(5; 4; 3)

= (q � 1)
1

3

n

2
� 10 + 10

q � 2

3
+ 2

=
(q � 1)n(n� 1)

6
�

4

3
=Uq(n):

When q � 1 � 2mod3

jCj =

q�1

i=1

jCij +

�

i=1

A4(5; 4; 3) +A3(5; 4; 3)

= (q � 1)
1

3

n

2
� 10 + 10

q � 3

3
+ 5

=
(q � 1)n(n� 1)

6
�

5

3
=Uq(n):

Therefore, C is an optimal (n; 4; 3)q-code.
We can now state the following.

Theorem 2: Aq(n; 4; 3) = Uq(n) for n � 5mod6 and 2 � q �
n � 1.

Corollary 1: Aq(n; 4; 3) = Uq(n) for n�4mod6 and 2 � q�n.
Proof: If n � 4mod6 and 2 � q � n, consider an optimal

(n+ 1; 4; 3)q-code C of size Uq(n+ 1). The total number of nonzero
coordinates among all the Uq(n+ 1) codewords is 3Uq(n+ 1), since
the weight of each codeword is three. Hence there must exist i such that

jf 2 C : i 6= 0gj �
3Uq(n+ 1)

n+ 1

=

(q � 1)n

2
� 1; if q � 0 or 2mod3

(q � 1)n

2
; if q � 1mod3.

Shorten the code C at coordinate i to obtain an (n; 4; 3)q-code. This
will remove at most (q � 1)n=2 or (q � 1)n=2 � 1 codewords from
C, depending on whether q � 1mod3 or otherwise, so that the
(n; 4; 3)q-code we obtain has size at least

Uq(n+ 1)�
(q � 1)n

2
; if q � 1mod3

Uq(n+ 1)�
(q � 1)n

2
� 1 ; if q � 0 or 2mod3.

In each case, this size evaluates to Uq(n), proving that the
(n; 4; 3)q-code thus obtained is optimal.

At this point, the only values of Aq(n; 4; 3) that are unknown are
for q = n � 5mod6. In Section IV, we settle this problem more
generally by constructing optimal (q; 4; 3)q-codes for all q � 3 using
a construction based on sequences.

IV. THE VALUE OF Aq(q; 4; 3)

It is known [1] that

Aq(q; 4; 3) �
q

3
: (2)

Partial progress on the determination of Aq(q; 4; 3) was obtained in
[1]. This can be summarized as follows.

Theorem 3 (Chee and Ling [1, Ths. 13 and 14]):
1) Aq(q; 4; 3) =

q

3
when q � 0; 1; 2; or 3(mod6);

2) Aq(q; 4; 3) =
q

3
when q is the power of an odd prime.

The proof of Theorem 3 given in [1] relied on an unpublished result
of Ding et al. [2]. In this section, we establish a more general result on
Aq(q; 4; 3) that is self-contained. In particular, we prove the following.

Theorem 4: Aq(q; 4; 3) =
q

3
for all q � 3.

A. The Construction Method

The elements of [n]
k

can be ordered using the lexicographic order
� defined below.

Definition 2: For distinct A;B 2 [n]
k

a, A � B if and only if

minfi : i 2 A�Bg 2 A.

For A 2 [n]
k

, let rank(A) denote the position of A in the lexico-

graphic ordering of [n]
k

; hence, rank(�) is a bijection

rank :
[n]

k
!

n

k
:

It is well known (see, for example, [27]) that for 1 � t1 < t2 < � � � <
tk � n, we have

rank(ft1; t2; . . . ; tkg) = 1 +

k

i=1

t �1

j=t +1

n� j

k � i
(3)

where t0 = 0.
Let (n) denote the n

3
� n f0; 1g-matrix whose rows are the el-

ements of H2(n; 3), whose supports are in (ascending) lexicographic
order. Let 2 ( �

q)
( ) be a q-ary sequence of length n�1

2
com-

prising symbols from �

q . We fill each column of (n) with as fol-
lows. We traverse the entries of each column in a top-down manner
and replace the nonzero elements of the column by the elements of
in order. More precisely, when filling the jth column of (n) with ,
let i1 < i2 < � � � < i( ) be the row indices so that (n)i ;j is

nonzero, t 2 n�1
2

. We then replace the entry in (n)i ;j by t,
t 2 n�1

2
. The resulting matrix is denoted by (n; ). It is obvious

that the set of rows of (n; ) forms a q-ary code of constant weight
three having size n

3
. We call this code the code of (n; ). The dis-

tance of this code would depend on the sequence . We show in the
next section that it is possible to design a q-ary sequence (q) so that
the code of (q; (q)) has distance four.
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Example 1: Let = (1; 2; 3; 3; 4; 1) 2 ( �

5)
6. Then we have

(5) =

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

1 0 0 1 1

0 1 1 1 0

0 1 1 0 1

0 1 0 1 1

0 0 1 1 1

;

(5; ) =

1 1 1 0 0

2 2 0 1 0

3 3 0 0 1

3 0 2 2 0

4 0 3 0 2

1 0 0 3 3

0 3 3 3 0

0 4 4 0 3

0 1 0 4 4

0 0 1 1 1

:

The code of (5; ) is a (5; 4; 3)5-code of size 5
3

= 10.

B. Sequence Design

We call a sequence 2 ( �

q)
( ) such that the code of (q; ) has

distance four a special sequence, and denote it by S(q).
If and are two distinct rows of (q; ), then jsupp( ) \

supp( )j 2 f0; 1; 2g. Futhermore, if jsupp( ) \ supp( )j 2 f0; 1g,
then dH( ; ) � 4. Hence, is a special sequence if and only if
dH( ; ) = 4 for any two distinct rows and of (q; s) satisfying
jsupp( ) \ supp( )j = 2.

For q � 3, define the sequence

(q) = (q)(q�2) (q)(q�3) � � � (q)(1)

where

(q)(t) =
(0; 1; 2; . . . ; q � 3); if t = q � 2

( (q)(t+1) + 2)[1;t]mod q � 1; if t 2 [q � 3].

Explicitly, we have, for 1 � i � t � q � 2

(q)
(t)
i = 2(q � 2� t) + (i� 1)mod q � 1: (4)

Further, define

(q) = (q) + 1:

Then (q) 2 ( �

q)
( ).

Example 2: The following table lists the sequences (q), for 3 �
q � 10:

q y(q)

3 1

4 123

5 123341

6 1234345512

7 123453456561123

8 123456345675671712234

9 1234567345678567817812123345

10 123456783456789567891789129123234456
.

We show that (q) is a special sequence for all q � 3.

Lemma 1: Let q � 3 and be a q

3
� q matrix such that the

supports of its rows are all the elements of [q]
3

in lexicographic order.

Further, let 2 � x � q and , be two distinct rows of such that
supp( ) \ supp( ) = f1; xg. If the first column of is filled with
(q), then 1 6= 1.

Proof: Suppose supp( ) = f1; x; ag and supp( ) = f1; x; bg,
a; b 6=2 f1; xg. Without loss of generaity, assume a < b. There are
three cases to consider.

When 1 < a < b < x, we have by (3)

rank(f1; a; xg) =

a�1

j=2

(q � j) + (x� a)

rank(f1; b; xg) =

b�1

j=2

(q � j) + (x� b):

If the first column of is filled with (q), we have 1 = (q)
(q�a)
x�a

and 1 = (q)
(q�b)
x�b . Hence, 1 = 1 if and only if (q)

(q�a)
x�a =

(q)
(q�b)
x�b , which [by (4)] holds if and only if a=b. This shows 1 6= 1.

The cases 1 < a < x < b and 1 < x < a < b can be dealt with in
a similar manner.

Given an n

3
�n matrix , such that the supports of its rows are all

the elements of [n]
3

in lexicographic order, let j denote the matrix

obtained by moving column j of to the front, where j 2 [n]. Perform
the following reorder operation on j :

Reorder :
Traverse the first column of j in a top-down manner. If is
such that 1; . . . ; ( ) 6= 0 and ( )+1

; . . . ; ( ) = 0;

then stop. Otherwise, let s = minfi : i = 0g and let
t = minfi > s : i 6= 0g: Move row t of j to the position
just before row s: Repeat:

The resulting matrix is denoted 0

j . We show below that the reorder
operation puts the supports of the rows of j into lexicographic order.

Lemma 2: IfU; V 2 [n]
k

,U � V , and x 2 U\V , thenUnfxg �

V n fxg.
Proof: Since x 2 U \V , x 6=2 U�V . Hence, minfi : i 2 (U n

fxg)�(V n fxg)g= minfi : i 2 U�V g 2 U , implying U n fxg �
V n fxg.

Lemma 3: The supports of the rows of 0

j are in lexicographic order.
Proof: Let and be rows i1 and i2 of 0

j , i1 < i2, and let
U = supp( ), V = supp( ). We show that U � V .

If 1 � i1 �
n�1
2

and n�1
2

+1 � i2 �
n

3
a, then by definition

of 0

j , we have 1 2 U and 1 6=2 V . Hence, minfi : i 2 U�V g =
1 2 U implying U � V .

If 1 � i1 < i2 � n�1
2

, then and corresponds to two rows
in whose supports contain a common element j. By considering the
deletion of j from these supports, we see that U � V by Lemma 2.

If n�1
2

+ 1 � i1 < i2 �
n

3
, it is clear that U � V since the

reorder operation does not change their relative order in .

We are now ready to establish:

Theorem 5: The sequence (q) is a special sequence for all q � 3.
Proof: Let and be any two distinct rows of (q; (q))

satisfying jsupp( ) \ supp( )j = 2. By a previous comment
in Section IV-B, it suffices to show that dH( ; ) = 4. Suppose
supp( ) \ supp( ) = fi; jg. Then by Lemma 3, 0

i(q; (q)) is
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a matrix satisfying the hypothesis of Lemma 1. Hence, Lemma 1
implies that i 6= i. Similarly, by considering 0

j(q; (q)), we have
j 6= j . This proves dH( ; ) = 4.

This shows that Aq(q; 4; 3) =
q

3
for all q � 3. Theorem 4 now

follows.

V. CONCLUSION

In this correspondence, we complete the determination of
Aq(n; 4; 3) by employing large sets with holes to construct op-
timal (n; 4; 3)q-codes for n � 4 or 5mod 6, n � q � 1, and by
using a new technique based on special sequences to construct optimal
(q; 4; 3)q-codes. The results of this correspondence combine with
those in [1] to give:

Main Theorem: Aq(n; 4; 3) = minfUq(n);
n

3
g for all n and q.
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Markov Processes Asymptotically Achieve the Capacity of
Finite-State Intersymbol Interference Channels

Jiangxin Chen and Paul H. Siegel, Fellow, IEEE

Abstract—Recent progress in capacity evaluation has made it possible to
compute a sequence of lower bounds on the capacity of a finite-state in-
tersymbol-interference (ISI) channel by finding a sequence of optimized
Markov input processes with increasing order r, for which the state of the
process is the previous r input symbols. In this correspondence, we prove
that, as the order r goes to infinity, the sequence of optimized Markov
sources asymptotically achieves the capacity of the channel. The conclu-
sion is extended to two-dimensional finite-state ISI channels, the binary-
symmetric channel (BSC) with constrained inputs, and general indecom-
posable finite-state channels with a mild constraint.

Index Terms—Capacity, finite-state channels, intersymbol interference
(ISI) channels, Markov processes, run-length limited constraints, two-
dimensional channels.

I. INTRODUCTION

Magnetic recording channels are generally modeled as finite-state,
linear intersymbol-interference (ISI) channels with additive Gaussian
noise and a binary input constraint. While the capacity of a general
Gaussian linear ISI channel can be evaluated with the water-filling for-
mula [1], a formula for the capacity when the input is constrained to a
finite alphabet remains unknown.
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