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Abstract

The problem of side-information scalable (SI-scalable) source coding is considered in this work, where the

encoder constructs a progressive description, such that the receiver with high quality side information will be

able to truncate the bitstream and reconstruct in the rate distortion sense, while the receiver with low quality

side information will have to receive further data in order to decode. We provide inner and outer bounds for

general discrete memoryless sources. The achievable region is shown to be tight for the case that either of the

decoders requires a lossless reconstruction, as well as thecase with degraded deterministic distortion measures.

Furthermore we show that the gap between the achievable region and the outer bounds can be bounded by a

constant when square error distortion measure is used. The notion of perfectly scalable coding is introduced as

both the stages operate on the Wyner-Ziv bound, and necessary and sufficient conditions are given for sources

satisfying a mild support condition. Using SI-scalable coding and successive refinement Wyner-Ziv coding as

basic building blocks, a complete characterization is provided for the important quadratic Gaussian source with

multiple jointly Gaussian side-informations, where the side information quality does not have to be monotonic

along the scalable coding order. Partial result is providedfor the doubly symmetric binary source with Hamming

distortion when the worse side information is a constant, for which one of the outer bound is strictly tighter than

the other one.

I. INTRODUCTION

Consider the following scenario where a server is to broadcast multimedia data to multiple users with different

side informations, however the side informations are not available at the server. A user may have such strong side

information that only minimal additional information is required from the server to satisfy a fidelity criterion, or

a user may have barely any side information and expect the server to provide virtually everything to satisfy a

(possibly different) fidelity criterion.

A naive strategy is to form a single description and broadcast it to all the users, who can decode only after

receiving it completely regardless of the quality of their individual side informations. However, for the users

with good-quality side information (who will simply be referred to as the good users), most of the information

received is redundant, which introduces a delay caused simply by the existence of users with poor-quality side

informations (referred to as the bad users) in the network. It is natural to ask whether an opportunistic method

exists,i.e., whether it is possible to construct a two-layer description, such that the good users can decode with

only the first layer, and the bad users receive both the first and the second layer to reconstruct. Moreover, it is

of importance to investigate whether such a coding order introduces any performance loss. We call this coding

strategyside-information scalable (SI-scalable) source coding, since the scalable coding direction is from the

http://arxiv.org/abs/0707.4597v1
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Fig. 1. The SR-WZ system vs. the SI-scalable system.

good users to the bad users. In this work, we consider mostly two-layer systems, except the quadratic Gaussian

source for which the solution to the general multi-layer problem is given.

This work is related to the successive refinement problem, where a source is to be encoded in a scalable manner

to satisfy different distortion requirement at each individual stage. This problem was studied by Koshelev [1], and

by Equitz and Cover [2]; a complete characterization of the rate-distortion region can be found in [3]. Another

related problem is the rate-distortion for source coding with side information at the decoder [4], for which Wyner

and Ziv provided conclusive result (now widely known as the Wyner-Ziv problem). Steinberg and Merhav [5]

recently extended the successive refinement problem in the Wyner-Ziv setting (SR-WZ), when the second stage

side informationY2 is better than that of the first stageY1, in the sense thatX ↔ Y2 ↔ Y1 forms a Markov string.

The extension to multistage systems with degraded side informations in such a direction was recently completed

in [6]. Also relevant is the work by Heegard and Berger [7] (see also [8]), where the problem of source coding

when side information may be present at the decoder was considered; the result was extended to the multistage

case when the side informations are degraded. This is quite similar to the problem being considered here and in

[5][6], however without the scalable coding requirement.

Both the SR-WZ [5][6] and SI-scalable problems can be thought as special cases of the problem of scalable

source coding with no specific structure imposed on the decoder SI; this general problem appears to be quite

difficult, since even without the scalable requirement, a complete solution to the problem has not been found [7].

Here we emphasize that the SR-WZ and the SI-scalable problemare quite different in terms of their applications,

though they seem similar since only the order of SI quality that is reversed. Roughly speaking, in the SI-scalable
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problem, the side informationY2 at the later stage is worse than the side informationY1 at the early stage, while

in the SR-WZ problem, the order is reversed. In more mathematically precise terms, for the SI-scalable problem,

the side informations are degraded asX ↔ Y1 ↔ Y2, in contrast to the SR-WZ problem where the reversed

order is specified asX ↔ Y2 ↔ Y1. The two problems are also different in terms of their possible applications.

The SR-WZ problem is more applicable for a single server-user pair, when the user is receiving side information

through another channel, and at the same time receiving the description(s) from the server; for this scenario, two

decoders can be extracted to provide a simplified model. On the other hand, the SI-scalable problem is more

applicable when multiple users exist in the network, and theserver wants to provide a scalable description, such

that the good user is not jeopardized unnecessarily (see Fig. 1).

It is also worth pointing out that Heegard and Berger showed when the scalable coding requirement is removed,

the optimal encoding by itself is in fact naturally progressive from the bad user to the good one; as such, the SI-

scalable problem is expected to be more difficult than the SR-WZ problem, since the encoding order is reversed

from the natural one. This difficulty is encapsulated by the fact that in the SR-WZ ordering the decoder with

better SI is able to decode whatever message was meant for thedecoder with worse SI and hence the first stage

can be maximally useful. However, in the SI-scalable problem an additional tension exists in the sense that the

second-stage decoder will need extra information to disambiguate the information of the first stage.

The problem is well understood for the lossless case. The keydifference from the lossy case is that the

quality of the side informations can be naturally determined by the value ofH(X|Y ). By the seminal work of

Slepian and Wolf [9],H(X|Y ) is the minimum rate of encodingX losslessly with side informationY at the

decoder, thus in a sense a largerH(X|Y ) corresponds to weaker side information. IfH(X|Y1) < H(X|Y2),

then the rate(R1, R2) = (H(X|Y1),H(X|Y2) − H(X|Y1)) is achievable, as noticed by Feder and Shulman

[10]. Extending this observation and a coding scheme in [11], Draper [12] proposed a universal incremental

Slepian-Wolf coding scheme when the distribution is unknown, which inspired Eckford and Yu [13] to design

rateless Slepian-Wolf LDPC code. For the lossless case, there is no loss of optimality by using a scalable coding

approach; an immediate question is to ask whether the same istrue for the lossy case in terms of rate distortion,

which we will show to be not so in general. In this rate-distortion setting, the order of goodness by the value

of H(X|Y ) is not sufficient because of the presence of the distortion constraints. This motivates the Markov

conditionX ↔ Y1 ↔ Y2 introduced for the SI-scalable coding problem. Going further along this point of view,

the SI-scalable problem is also applicable in the single user setting, when the source encoder does not know

exactly which side information the receiver has within a given set. Therefore it can be viewed as a special case

of the side-information universal rate distortion coding.

In this work, we formulate the problem of side information scalable source coding, and provide two inner

bounds and two outer bounds for the rate-distortion region.One of the inner-bounds has the same distortion and

rate expressions as one of the outer bounds, and they differ in the domain of optimization only by a Markov string

requirement. Though the inner and the outer bounds do not coincide in general, the inner bounds are indeed tight

for the case when either the first stage or the second stage requires a lossless reconstruction, as well as for the
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case when certain deterministic distortion measures are taken. Furthermore, a conclusive result is given for the

quadratic Gaussian source with any finite number of stages and arbitrary correlated Gaussian side informations.

With this set of inner and outer bounds, the problem ofperfect scalability is investigated, defined as when

both of the layers can achieve the corresponding Wyner-Ziv bounds; this is similar to the notion of (strict)

successive refinability in the SR-WZ problem [5][6]1. Necessary and sufficient conditions are derived for general

discrete memoryless sources to be perfectly scalable undera mild support condition. By using the tool of rate-

loss introduced by Zamir [14], we further show that the gap between the inner bounds and the outer bounds

are bounded by a constant when squared error distortion measure is used, and thus the inner bounds are “nearly

sufficient”, in the sense as given in [15].

In addition to the result for the Gaussian source, partial result is provided for the doubly symmetric binary

source (DSBS) with Hamming distortion measure when the second stage does not have side information, for

which the inner bounds and outer bounds coincide in certain distortion regimes. It is shown one of the outer

bound can be strictly better than the other for this source.

The rest of the paper is organized as follows. In Section II wedefine the problem and establish the notation.

In Section III, we provide inner and outer bounds to the rate-distortion region and show that the bounds coincide

in certain special cases. The notion of perfectly scalable is introduced in Section IV together with the example

of a binary source. The rate loss method is applied in SectionV to show the gap between the inner bound and

the outer bounds is bounded. In VI, the Gaussian source is treated within a more general setting. We conclude

the paper in Section VII.

II. N OTATION AND PRELIMINARIES

Let X be a finite set and letX n be the set of alln-vectors with components inX . Denote an arbitrary member

of X n asxn = (x1, x2, . . . , xn), or alternatively asx. Upper case is used for random variables and vectors. A

discrete memoryless source (DMS)(X , PX) is an infinite sequence{Xi}
∞
i=1 of independent copies of a random

variableX in X with a generic distributionPX with PX(xn) =
∏n

i=1 PX(xi). Similarly, let (X ,Y1,Y2, PXY1Y2
)

be a discrete memoryless three-source with generic distribution PXY1Y2
; the subscript will be dropped when it is

clear from the context asP (X,Y1, Y2).

Let X̂1 and X̂2 be finite reconstruction alphabets. Letdj : X × X̂j → [0,∞), j = 1, 2 be two distortion

measures. The single-letter distortion extension ofdj to vectors is defined as

dj(x, x̂) =
1

n

n∑

i=1

dj(xi, x̂i), ∀x ∈ X n, x̂ ∈ X̂ n
j , j = 1, 2. (1)

Definition 1: An (n,M1,M2,D1,D2) rate distortion (RD) SI-scalable code for sourceX with side information

1In the rest of the paper, decoder one, respectively decoder two, will also be referred to as the first stage decoder, respectively second
stage decoder, depending on the context.
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(Y1, Y2) consists of two encoding functionsφi and two decoding functionsψi, i = 1, 2:

φ1 : X
n → IM1

, φ2 : X
n → IM2

, (2)

ψ1 : IM1
× Yn

1 → X̂ n
1 , ψ2 : IM1

× IM2
× Yn

2 → X̂ n
2 , (3)

whereIk = {1, 2, . . . , k}, such that

Ed1(X
n, ψ1(φ1(X

n), Y n
1 )) ≤ D1, (4)

Ed2(X
n, ψ2(φ1(X

n), φ2(X
n), Y n

2 )) ≤ D2, (5)

whereE is the expectation operation.

Definition 2: A rate pair (R1, R2) is said to be(D1,D2)-achievable for SI-scalable encoding with side

information (Y1, Y2), if for any ǫ > 0 and sufficiently largen, there exist an(n,M1,M2,D1 + ǫ,D2 + ǫ)

RD SI-scalable code, such thatR1 + ǫ ≥ 1
n
log(M1) andR2 + ǫ ≥ 1

n
log(M2).

Denote the collection of all the(D1,D2)-achievable rate pair(R1, R2) for SI-scalable encoding asR(D1,D2),

and we seek to characterize this region whenX ↔ Y1 ↔ Y2 forms a Markov string (see similar but

different degradedness conditions in [5], [6]). The Markovcondition in effect specifies thegoodness of the

side informations.

The rate-distortion function for degraded side-informations was established in [7] for the non-scalable coding

problem. In light of the discussion in Section I, it gives a lower bound on the sum-rate for any RD SI-scalable

code. More precisely, in order to achieve distortionD1 with side informationY1, and achieve distortionD2 with

side informationY2, whenX ↔ Y1 ↔ Y2, the rate-distortion function is

RHB(D1,D2) = min
p(D1,D2)

[I(X;W2|Y2) + I(X;W1|W2, Y1)], (6)

wherep(D1,D2) is the set of all random variable(W1,W2) ∈ W1 × W2 jointly distributed with the generic

random variables(X,Y1, Y2), such that the following conditions are satisfied2: (i) (W1,W2) ↔ X ↔ Y1 ↔ Y2

is a Markov string; (ii) X̂1 = f1(W1, Y1) andX̂2 = f2(W2, Y2) satisfy the distortion constraints. Notice that the

rate distortion functionR(D1,D2) given above suggests an encoding and decoding order from thebad user to

the good user.

Wyner and Ziv [4] showed that under the following quite general assumption that the distortion measure is

chosen in the setΓd defined as

Γd
∆
= {d(·, ·) : d(x, x) = 0,andd(x, x̂) > 0 if x̂ 6= x}, (7)

then the rate distortion function satisfiesR∗
X|Y (0) = H(X|Y ), whereR∗

X|Y (D) is the well-known Wyner-Ziv

rate distortion function with side informationY . If the same assumption is made on the distortion measure

2This form is slightly different from the one in [7] wheref1 was defined asf1(W1,W2, Y ), but it is straightforwardly to verify that
they are equivalent. The cardinality bound is also ignored,which is not essential here.
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d1(·, ·) ∈ Γd, then we can easily show (using an argument similar to the remark (3) in [4]) that

RHB(0,D2) = min
p(D2)

[I(X;W2|Y2) +H(X|W2, Y1)], (8)

wherep(D2) is the set of all random variableW2 such thatW2 ↔ X ↔ Y1 ↔ Y2 is a Markov string, and

X̂2 = f2(W2, Y2) satisfies the distortion constraint.

III. I NNER AND OUTER BOUNDS

To provide intuition into the the SI-scalable problem, we first examine a simple Gaussian source under the

mean squared error (MSE) distortion measure, and describe the coding schemes informally.

Let X ∼ N (0, σ2x) andY1 = Y = X+N , whereN ∼ N (0, σ2N ) is independent ofX; Y2 is simply a constant,

i.e., no side information at the second decoder.X ↔ Y1 ↔ Y2 is indeed a Markov string. To avoid lengthy

discussion on degenerate regimes, assumeσ2N ≈ σ2x, and consider only the following extreme cases.

• σ2x ≫ D1 ≫ D2: It is known binning with a Gaussian codebook, generated using a single-letter mechanism

(i.e., as an i.i.d. product distribution of the single-letter form) asW1 = X + Z1, whereZ1 is a zero-mean

Gaussian random variable independent ofX such thatD1 = E[X−E(X|Y,W1)]
2, is optimal for Wyner-Ziv

coding. This coding scheme can still be used for the first stage. In the second stage, by direct enumeration

in the list of possible codewords in the particular bin specified in the first stage, the exact codeword can be

recovered by decoder two, who does not have any side information. Sinceσ2x ≫ D1 ≫ D2, W1 alone is not

sufficient to guarantee a distortionD2, i.e., D2 ≪ E[X−E(X|W1)]
2. Thus a successive refinement codebook,

say using a Gaussian random variableW2 conditioned onW1 such thatD2 = E[X − E(X|W1,W2)]
2, is

needed. This leads to the achievable rates:

R1 ≥ I(X;W1|Y ), R1 +R2 ≥ I(X;W1|Y ) + I(W1;Y ) + I(X;W2|W1) = I(X;W1,W2). (9)

• σ2x ≫ D2 ≫ D1: If we chooseW1 = X + Z1 such thatD1 = E[X − E(X|Y,W1)]
2 and use the coding

method in the previous case, then sinceD2 ≫ D1, W1 is sufficient to achieve distortionD2, i.e., D2 ≫

E[X − E(X|W1)]
2. The rate needed for the enumeration isI(W1;Y ), and it is rather wasteful sinceW1

is more than we need. To solve this problem, we construct a coarser description using random variable

W2 = X + Z1 + Z2, such thatD2 = E[X − E(X|W2)]
2. The encoding process has three effective layers

for the needed two stages: (i) the first layer uses Wyner-Ziv coding with codewords generated byPW2
(ii)

the second layer uses successive refinement Wyner-Ziv coding with PW1|W2
(iii) the third layer enumerates

the specificW2 codeword within the first layer bin. Note that the first two layers form a SR-WZ scheme

with identical side informationY at the decoder. For decoding, decoder one decodes the first two layers

with side informationY , while decoder two decodes the first and the third layer without side information.
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By the Markov stringX ↔W1 ↔W2, this scheme gives the following rates:

R1 ≥ I(X;W1,W2|Y ) = I(X;W1|Y )

R1 +R2 ≥ I(X;W1|Y ) + I(W2;Y ) = I(X;W2) + I(X;W1|Y,W2). (10)

It is seen in the above discussion the specific coding schemesdepend on the distortion values, which is not

desirable since this usually suggests difficulty in provingthe converse. The two coding schemes can be unified

into a single one by introducing an auxiliary random variable, as will be shown in the sequel, however, it appears

the converse is indeed quite difficult to prove.

In the rest of this section, inner and outer bounds forR(D1,D2) are provided. The coding schemes for the

above Gaussian example are naturally generalized to give the inner bounds. It is further shown that the inner

bounds are in fact tight for certain special cases.

A. Two inner bounds

Define the regionRin(D1,D2) to be the set of all rate pairs(R1, R2) for which there exist random variables

(W1,W2, V ) in finite alphabetsW1,W2,V such that the following condition are satisfied.

1) (W1,W2, V ) ↔ X ↔ Y1 ↔ Y2 is a Markov string.

2) There exist deterministic mapsfj : Wj × Yj → X̂j such that

Edj(X, fj(Wj , Yj)) ≤ Dj, j = 1, 2. (11)

3) The non-negative rate pairs satisfy:

R1 ≥ I(X;V,W1|Y1), R1 +R2 ≥ I(X;V,W2|Y2) + I(X;W1|Y1, V ). (12)

4) W1 ↔ (X,V ) ↔W2 is a Markov string.

5) The alphabetsV, W1 andW2 satisfy

|V| ≤ |X |+ 3, |W1| ≤ |X |(|X | + 3) + 1, |W2| ≤ |X |(|X | + 3) + 1. (13)

The last two conditions can be removed without causing essential difference to the regionRin(D1,D2); with

them removed, no specific structure is required on the joint distribution of (X,V,W1,W2). To see the last two

conditions indeed do not cause loss of generality, apply thesupport lemma [11] as follows. For an arbitrary joint

distribution of(X,V,W1,W2) satisfying the first three conditions, we first reduce the cardinality of V. To preserve

PX and the two distortions and two mutual information values,|X | + 3 letters are needed. With this reduced

alphabet, observe that both the distortion and rate expressions depend only on the marginal of(X,V,W1) and

(X,V,W2), respectively, hence requiringW1 ↔ (X,V ) ↔ W2 being a Markov string does not cause any loss

of generality. Next to reduce the cardinality ofW1, it is seen|X ||V| − 1 letters are needed to preserve the joint

distribution of (X,V ), one more is needed to preserveD1 and another is needed to preserveI(X;W1|Y1, V ).
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Fig. 2. An illustration of the codewords in the nested binning structure.

Thus |X |(|X |+3)+ 1 letters suffice. Note that we do not need to preserve the valueof D2 and the value of the

other mutual information term because of the aforementioned Markov string. A similar argument holds for|W2|.

The following theorem asserts thatRin(D1,D2) is an achievable region.

Theorem1: For any discrete memoryless stochastic source with side informations under the Markov condition

X ↔ Y1 ↔ Y2,

R(D1,D2) ⊇ Rin(D1,D2).

This theorem is proved in Appendix II, and here we outline thecoding scheme for this achievable region in an

intuitive manner. The encoder first encodes using aV codebook with a “coarse” binning, such that decoder one

is able to decode it with side informationY1. A Wyner-Ziv successive refinement coding (with side information

Y1) is then added conditioned on the codewordV also for decoder one usingW1. The encoder then enumerates

the binning ofV up to a level such thatV is decodable by decoder two using the weaker side information Y2.

By doing so, decoder two is able to reduce the number of possible codewords in the (coarse) bin to a smaller

number, which essentially forms a “finer” bin; with the weaker side informationY2, the V codeword is then

decoded correctly with high probability. Another Wyner-Ziv successive refinement coding (with side information

Y2) is finally added conditioned on the codewordV for decoder two using a random codebook ofW2.

As seen in the above argument, in order to reduce the number ofpossibleV codewords from the first stage

to the second stage, the key idea is to construct a nested binning structure as illustrated in Fig. 2. Note that this

is a fundamentally different from the code structure in SR-WZ, where no nested binning is needed. Each of the

coarser bin contains the same number of finer bins; each finer bin holds certain number of codewords. They are

constructed in such a way that given the specific coarser bin index, the first stage decoder can decode in it with

the strong side information; at the second stage, additional bitstream is received by the decoder, which further

specifies one of the finer bin in the coarser bin, such that the second stage decoder can decode in this finer bin

using the weaker side information. If we assign each codeword to a finer bin independently, then its coarser bin

index is also independent of that of the other codewords.

We note that the coding scheme does not explicitly require that side informations are degraded. Indeed as long

as the chosen random variableV satisfiesI(V ;Y1) ≥ I(V ;Y2) as well as the Markov condition, the region is
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indeed achievable. More precisely, the following corollary is straightforward.

Corollary 1: For any discrete memoryless stochastically source with side informationsY1 andY2 (without the

Markov structure),R̃in(D1,D2) ⊆ R(D1,D2), whereR̃in(D1,D2) is Rin(D1,D2) with the additional condition

that I(V ;Y1) ≥ I(V ;Y2).

We can specialize the regionRin(D1,D2) to give another inner bound. Let̂Rin(D1,D2) be the set of all

rate pairs(R1, R2) for which there exist random variables(W1,W2) in finite alphabetsW1,W2 such that the

following condition are satisfied.

1) W1 ↔W2 ↔ X ↔ Y1 ↔ Y2 or W2 ↔W1 ↔ X ↔ Y1 ↔ Y2 is a Markov string.

2) There exist deterministic mapsfj : Wj × Yj → X̂j such that

Edj(X, fj(Wj , Yj)) ≤ Dj, j = 1, 2. (14)

3) The non-negative rate pairs satisfy:

R1 ≥ I(X;W1|Y1), R1 +R2 ≥ I(X;W2|Y2) + I(X;W1|Y1,W2). (15)

4) The alphabetsW1 andW2 satisfy

|W1| ≤ (|X |+ 3)(|X |(|X | + 3) + 1), |W1| ≤ (|X |+ 3)(|X |(|X | + 3) + 1). (16)

Corollary 2: For any discrete memoryless stochastically source with side informations under the Markov

conditionX ↔ Y1 ↔ Y2,

Rin(D1,D2) ⊇ R̂in(D1,D2).

The regionR̂in(D1,D2) is particular interesting for the following reasons. Firstly, it can be explicitly matched

back to the coding scheme for the simple Gaussian example. Secondly, it will be shown that one of the

outer bounds has the same rate and distortion expressions asR̂in(D1,D2), only with a relaxed Markov string

requirement. We now prove this corollary.

Proof of Corollary 2

WhenW1 ↔W2 ↔ X, let V =W1. Then the rate expressions in Theorem 1 gives

R1 ≥ I(X;W1|Y1), R1 +R2 ≥ I(X;V,W2|Y2) + I(X;W1|V, Y1) = I(X;W2|Y2), (17)

and thereforeRin(D1,D2) ⊇ R̂in(D1,D2) for this case. WhenW2 ↔ W1 ↔ X, let V = W2. Then the rate

expressions in Theorem 1 gives

R1 ≥ I(X;V,W1|Y1) = I(X;W1|Y1)

R1 +R2 ≥ I(X;V,W2|Y2) + I(X;W1|V, Y1) = I(X;W2|Y2) + I(X;W1|W2, Y1),

and thereforeRin(D1,D2) ⊇ R̂in(D1,D2) for this case.
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The cardinality bound here is larger than that in Theorem 1 because of the requirement to preserve the Markov

conditions.

B. Two outer bounds

Define the following two regions, which will be shown to be twoouter bounds. An obvious outer bound is

given by the intersection of the Wyner-Ziv rate distortion function and the rate-distortion function for the problem

considered by Heegard and Berger [7] with degraded side informationX ↔ Y1 ↔ Y2

R∩(D1,D2) = {(R1, R2) : R1 ≥ R∗
X|Y1

(D1), R1 +R2 ≥ RHB(D1,D2)}. (18)

A tighter outer bound is now given as follows: define the region Rout(D1,D2) to be the set of all rate pairs

(R1, R2) for which there exist random variables(W1,W2) in finite alphabetsW1,W2 such that the following

conditions are satisfied.

1) (W1,W2) ↔ X ↔ Y1 ↔ Y2.

2) There exist deterministic mapsfj : Wj × Yj → X̂j such that

Edj(X, fj(Wj , Yj)) ≤ Dj, j = 1, 2. (19)

3) |W1| ≤ |X |(|X | + 3) + 2, |W2| ≤ |X |+ 3.

4) The non-negative rate vectors satisfies:

R1 ≥ I(X;W1|Y1), R1 +R2 ≥ I(X;W2|Y2) + I(X;W1|Y1,W2). (20)

The main result of this subsection is the following theorem.

Theorem2: For any discrete memoryless stochastically source with side informations under the Markov

conditionX ↔ Y1 ↔ Y2,

R∩(D1,D2) ⊇ Rout(D1,D2) ⊇ R(D1,D2).

The first inclusion ofR∩(D1,D2) ⊇ Rout(D1,D2) is obvious, sinceRout(D1,D2) takes the same form as

R∗
X|Y1

(D1) andRHB(D1,D2) when the ratesR1 andR1 +R2 are considered individually. Thus we will focus

on the latter inclusion, whose proof is given in Appendix III.

Note that the inner bound̂Rin(D1,D2) andRout(D1,D2) have the same rate and distortion expressions and

they differ only by a Markov string requirement (ignoring the non-essential cardinality bounds). Because of the

difference in the domain of optimizations, the two bounds may not produce the same rate-regions. This is quite

similar to the case of distributed lossy source coding problem, for which the Berger-Tung inner bound requires a

long Markov string and the Berger-Tung outer bound requiresonly two short Markov strings [16], but their rate

and distortion expressions are the same.
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C. Lossless reconstruction at one decoder

Since decoder one has better quality side information, it isreasonable for it to require a higher quality

reconstruction. Alternatively, from the point of view of universal coding, when the encoder does not know

the quality of the side information, it might assume the better quality one exists at the decoder and aim to

reconstruct with a higher quality, comparing with the case when the poorer quality side information is available.

In the extreme case, decoder one might require a lossless reconstruction. In this subsection, we consider the

setting where either decoder one or decoder two requires lossless reconstruction. We have the following theorem.

Theorem3: If D1 = 0 with d1(·, ·) ∈ Γd, or D2 = 0 with d2(·, ·) ∈ Γd (see 7 forΓd), thenR(D1,D2) =

Rin(D1,D2). More precisely, for the former case,

R(0,D2) =
⋃

PW2 (D2)

{(R1, R2) : R1 ≥ H(X|Y1), R1 +R2 ≥ I(X;W2|Y2) +H(X|Y1,W2).}, (21)

wherePW1
(D2) is the set of random variables satisfying the Markov stringW2 ↔ X ↔ Y1 ↔ Y2, and having a

deterministic functionf2 satisfyingEd(f2(W2, Y2),X) ≤ D2. For the latter case,

R(D1, 0) =
⋃

PW1 (D1)

{(R1, R2) : R1 ≥ I(X;W1|Y1), R1 +R2 ≥ H(X|Y2)}, (22)

wherePW1
(D1) is the set of random variables satisfying the Markov stringW1 ↔ X ↔ Y1 ↔ Y2, and having a

deterministic functionf1 satisfyingEd(f1(W1, Y1),X) ≤ D1.

Proof of Theorem 3: For D1 = 0, let W1 = X andV = W2. The achievable rate vector implied by Theorem 1

is given by

R1 ≥ H(X|Y1), R1 +R2 ≥ I(X;W2|Y2) +H(X|Y1,W2). (23)

It is seen that this rate region is tight by the converse of Slepian-Wolf coding for rateR1, and by (8) of Heegard-

Berger coding for rateR1 +R2.

For D2 = 0, let W1 = V andW2 = X. The achievable rate vector implied by Theorem 1 is given by

R1 ≥ I(X;W1|Y1), R1 +R2 ≥ H(X|Y2). (24)

It is easily seen that this rate region is tight by the converse of Wyner-Ziv coding for rateR1, and the converse

of Slepian-Wolf coding (or more precisely, Wyner-Ziv rate distortion functionRX|Y2
(0) with d2(·, ·) ∈ Γd as

given in [4]) for rateR1 +R2.

Zero distortion under a distortion measured ∈ Γd can be interpreted aslossless, however, it is a weaker

requirement than that the block error probability is arbitrarily small. Nevertheless,R(0,D2) andR(D1, 0) in

(21) and (22) still provide valid outer bounds for the more stringent lossless definition. On the other hand, it is

rather straightforward to specialize the coding scheme forthese cases, and show that the same conclusion is true

for lossless coding in the this case. Thus we have the following corollary.
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Corollary 3: The rate region, when the first stage, and respectively the second stage, requires lossless in terms

of arbitrary small block error probability is given by (21),respectively (22),

The key difference from the general case when both stages arelossy is the elimination of the need to generate

one of codebooks using an auxiliary random variables, whichsimplifies the matter tremendously. For example

whenD2 = 0, since the first stage encoder guarantees thatw1 andx are jointly typical, the second stage only

needs to construct a codebook ofx by binning the approximately2H(X|W1) suchx vector directly. Subsequently

the second stage encoder does not search for a vectorx∗ to be jointly typical with bothw1 andx, but instead

just sends the bin index of the observed source vectorx directly. Alternatively, it can be understood as both the

encoder and decoder at the second stage have access to a side information vectorw1, and thus a conditional

Slepian-Wolf coding with decoder side informationY2 suffices.

D. Deterministic distortion measure

Another case of interest is when some functions of the sourceX is required to be reconstructed with arbitrary

small distortion in terms of Hamming distortion; see [17] for the corresponding case for the multiple description

problem. More precisely, letQi : X → Zi, i = 1, 2 be two deterministic functions and denoteZi = Qi(X).

Consider the case that decoderi seeks to reconstructZi with arbitrarily small Hamming distortion3. The

achievable regionRin is tight when the functions satisfy certain degradedness condition as stated in the following

theorem.

Theorem4: Let the distortion measure be Hamming distortiondH : Zi ×Zi → {0, 1} for i = 1, 2.

1) If there exists a deterministic functionQ′ : Z1 → Z2 such thatQ2 = Q′ · Q1, thenR(0, 0) = Rin(0, 0).

More precisely

R(0, 0) = {(R1, R2) : R1 ≥ H(Z1|Y1), R1 +R2 ≥ H(Z2|Y2) +H(Z1|Y1Z2)} . (25)

2) If there exists a deterministic functionQ′ : Z2 → Z1 such thatQ1 = Q′ · Q2, thenR(0, 0) = Rin(0, 0).

More precisely

R(0, 0) = {(R1, R2) : R1 ≥ H(Z1|Y1), R1 +R2 ≥ H(Z2|Y2)} . (26)

Proof of Theorem 4: To prove (25), first observe that by lettingW1 = Z1 andV =W2 = Z2, Rin clearly reduces

to the given expression. For the converse, we start from the outer boundRout(0, 0), which implies thatZ1 is a

function ofW1 andY1, andZ2 is a function ofW2 andY2. For the first stage rateR1, we have the following

chain of equalities

R1 ≥ I(X;W1|Y1) = I(X;W1Z1|Y1) ≥ I(X;Z1|Y1) = H(Z1|Y1)−H(Z1|X,Y1) = H(Z1|Y1). (27)

3By a similar argument as in the last subsection, the same result holds if block error probability is made arbitrarily small.
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For the sum rate, we have

R1 +R2 ≥ I(X;W2|Y2) + I(X;W1|W2Y1)

= I(X;W2Z2|Y2) + I(X;W1|W2Y1)

= I(X;Z2|Y2) + I(X;W2|Y2Z2) + I(X;W1|W2Y1)

= H(Z2|Y2) + I(X;W2|Y2Z2) + I(X;W1|W2Y1)
(a)

≥ H(Z2|Y2) + I(X;W2|Y1Y2Z2) + I(X;W1|W2Y1)

(b)
= H(Z2|Y2) + I(X;W2|Y1Y2Z2) + I(X;W1|W2Y1Y2)

= H(Z2|Y2) + I(X;W2|Y1Y2Z2) + I(X;W1|W2Y1Y2Z2)

= H(Z2|Y2) + I(X;W1W2|Y1Y2Z2)

≥ H(Z2|Y2) + I(X;Z1|Y1Y2Z2)

= H(Z2|Y2) +H(Z1|Y1Y2Z2)

(c)
= H(Z2|Y2) +H(Z1|Y1Z2),

where (a) is due to the Markov stringW2 ↔ X ↔ (Y1Y2) andZ2 is function ofX; (b) is due to the Markov

string (W1W2) ↔ X ↔ Y1 ↔ Y2; (c) is due to the Markov string(Z1, Z2) ↔ Y1 ↔ Y2.

Proof of part 2) (i.e., (26) relationship) is straightforward and is omitted.

Clearly in the converse proof, the requirement that the functions Q1 andQ2 are degraded is not needed.

Indeed this outer bound holds for any general functions, however the degradedness is needed for establishing the

achievability of the region. If the coding is not necessarily scalable, then it can be seen the sum rate is indeed

achievable, and the result above can be used to establish a non-trivial special result in the context of the problem

treated by Heegard and Berger [7].

Corollary 4: Let the two functionQ1 andQ2 be arbitrary, and let the distortion measure be Hamming distortion

dH : Zi ×Zi → {0, 1} for i = 1, 2, then we have

RHB(0, 0) = H(Z2|Y2) +H(Z1|Y1Z2). (28)

IV. PERFECTSCALABILITY AND A BINARY SOURCE

In this section we introduce the notion of perfect scalability, which is defined as when both the stages operate at

the Wyner-Ziv rates. We further examine the doubly symmetric binary source and provide a partial characterization

and investigate its scalability. The quadratic Gaussian source with jointly Gaussian side informations is treated

in Section VI in a more general setting.

A. Perfect Scalability

The notion of the (strict) successive refinability defined in[5] for the SR-WZ problem with forward degradation

in the side-informations (SI) can be applied to the reversely degraded case considered in this paper. This is done
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by introducing the notion of perfect scalability for the SI-scalable problem defined below.

Definition 3: A sourceX is said to beperfectly scalable for distortion pair(D1,D2), with side informations

under the Markov stringX ↔ Y1 ↔ Y2, if

(R∗
X|Y1

(D1), R
∗
X|Y2

(D2)−R∗
X|Y1

(D1)) ∈ R(D1,D2).

Theorem5: A sourceX with side informations under the Markov stringX ↔ Y1 ↔ Y2, for which∃ y1 ∈ Y1

such thatPXY1
(x, y1) > 0 for eachx ∈ X , is perfectly scalable for distortion pair(D1,D2) if and only if there

exist random variables(W1,W2) and deterministic mapsfj : Wj ×Yj → X̂j such that the following conditions

hold simultaneously:

1) R∗
X|Yj

(Dj) = I(X;Wj |Yj) andEdj(X, fj(W1, Yj)) ≤ Dj , for j = 1, 2.

2) W1 ↔W2 ↔ X ↔ Y1 ↔ Y2 forms a Markov string.

3) The alphabetW1 andW2 satisfy |W1| ≤ |X |(|X | + 3) + 2, and |W2| ≤ |X |+ 3.

The Markov string is the most crucial condition, and the substring W1 ↔W2 ↔ X is the same as one of the

condition for successive refinability without side information [2][3]. The support condition essentially requires

the existence of a worst lettery1 in the alphabetY1 such that it has non-zero probability mass for each(x, y1)

pair, x ∈ X .

Proof of Theorem 5

The sufficiency being trivial, we only prove the necessity. Without loss of generality, assumePX(x) > 0

for all x ∈ X . By Theorem 2, if(R∗
X|Y1

(D1), R
∗
X|Y2

(D2) − R∗
X|Y1

(D1) is achievable for(D1,D2), then using

the tighter outer boundRout(D1,D2) of Theorem 2, there exist random variableW1,W2 in finite alphabet,

whose sizes is bounded as|W1| ≤ |X |(|X | + 3) + 2 and |W2| ≤ |X | + 3, and functionsf1, f2 such that

(W1,W2) ↔ X ↔ Y1 ↔ Y2 is a Markov string,Edj(X, fj(Wj , Yj)) ≤ Dj for j = 1, 2 and

R∗
X|Y1

(D1) ≥ I(X;W1|Y1), R∗
X|Y2

(D2) ≥ I(X;W2|Y2) + I(X;W1|Y1,W2). (29)

It follows

R∗
X|Y2

(D2) ≥ I(X;W2|Y2) + I(X;W1|Y1,W2) ≥ I(X;W2|Y2)
(a)

≥ R∗
X|Y2

(D2), (30)

where (a) follows the converse of rate-distortion theorem for Wyner-Ziv coding. Since the leftmost and the

rightmost quantities are the same, all the inequalities must be equalities in (30), and it followsI(X;W1|Y1,W2) =

0. Similarly we have

R∗
X|Y1

(D1) ≥ I(X;W1|Y1) ≥ R∗
X|Y1

(D1), (31)

thus (31) also holds with equality.

Notice that ifW1 ↔ W2 ↔ X is a Markov string, then we can use Corollary 2 to claim the sufficiency and

complete the proof. However, this Markov condition is not true in general. This is where the support condition

is needed.
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For convenience, define the set

F (w2) = {x ∈ X : P (x,w2) > 0}. (32)

By the Markov string(W1,W2) ↔ X ↔ Y1, the joint distribution of(w1, w2, x, y1) can be factorized as follows

P (w1, w2, x, y1) = P (x, y1)P (w2|x)P (w1|x,w2). (33)

Furthermore,I(X;W1|Y1,W2) = 0 implies the Markov stringX ↔ (W2, Y1) ↔ W1, and thus the joint

distribution of (w1, w2, x, y1) can also be factorized as follows

P (w1, w2, x, y1) = P (x, y1, w2)p(w1|y1, w2)
(a)
= P (x, y1)P (w2|x)P (w1|y1, w2), (34)

where (a) follows by the Markov substringW2 ↔ X ↔ Y1 ↔ Y2. Fix an arbitrary(w∗
1 , w

∗
2) pair, by the

assumption thatP (x, y1) > 0 for any x ∈ X , we have

P (w∗
2 |x)P (w

∗
1|x,w

∗
2) = P (w∗

2|x)P (w
∗
1 |y1, w

∗
2) (35)

for anyx ∈ X . Thus for anyx ∈ F (w∗
2) (see definition in (32)) such thatP (w1|x,w

∗
2) is well defined, we have

p(w∗
1|y1, w

∗
2) = p(w∗

1|x,w
∗
2) (36)

and it further implies

p(w∗
1|w

∗
2) =

∑
x P (x,w

∗
1 , w

∗
2)∑

x P (x,w
∗
2)

=

∑
x∈F (w∗

2)
P (x,w∗

2)P (w
∗
1 |y1, w

∗
2)∑

x P (x,w
∗
2)

= p(w∗
1|y1, w

∗
2) = p(w∗

1|x,w
∗
2) (37)

for any x ∈ F (w∗
2). This indeed impliesW1 ↔W2 ↔ X is a Markov string, which completes the proof.

B. The Doubly Symmetric Binary Source with Hamming Distortion Measure

Consider the following source:X is a memoryless binary sourceX ∈ {0, 1} andP (X = 0) = 0.5. The first

stage side informationY can be taken as the output of a binary symmetric channel with inputX, and crossover

probability p < 0.5. The second stage does not have side information. This source clearly satisfies the support

condition in Theorem 5. It will be shown that for some distortion pairs, this source is perfectly scalable, while

for others this is not possible. We next first provide partialresults usingR̂in andR∩ previously given.

An explicit calculation ofRHB(D1,D2), together with the optimal forward test channel structure,was given

in a recent work [6]. With this explicit calculation, it can be shown that in the shaded region in Fig. 3, the outer

boundR∩(D1,D2) is in fact achievable (as well as in Region II, III and IV; however these three regions are

degenerate cases, and will be ignored in what follows). Recall the definition of the critical distortiondc in the

Wyner-Ziv problem for the DSBS source in [4]

G(dc)

dc − p
= G′(dc),

whereG(u) = hb(p ∗ u) − hb(u), hb(u) is the binary entropy functionhb(u) = −u log u − (1 − u) log(1 − u),
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Fig. 3. The partition of the distortion region, wheredc is the critical distortion in [4] below which time sharing isnot necessary.
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1
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W

Fig. 4. The forward test channel in Region I-D. The crossoverprobability for the BSC betweenX andW1 is D1, while the crossover
probability η for the BSC betweenW1 andW2 is such thatD1 ∗ η = D2.

andu ∗ v is the binary convolution for0 ≤ u, v ≤ 1 asu ∗ v = u(1− v) + v(1− u). It was shown in [4] that if

D ≤ dc, thenR∗
X|Y (D) = G(D). We will use the following result from [6].

Theorem6: For distortion pairs(D1,D2) such that0 ≤ D2 ≤ 0.5 and0 ≤ D1 ≤ min(dc,D2) (i.e., Region

I-D),

RHB(D1,D2) = 1− hb(D2 ∗ p) +G(D1).

This result implies that for the shaded region I-D, the forward test channel to achieve this lower bound is in

fact a cascade of two BSC channels depicted in Fig. 4. This choice clearly satisfies the condition in Corollary 2

with the rates given by the outer boundR∩(D1,D2), which shows that this outer bound is indeed achievable.

Note the following inequality

RHB(D1,D2) = 1− hb(D2 ∗ p) + hb(p ∗D1)− hb(D1) ≥ 1− hb(D2) = R(D2), (38)

where the inequality is due to the monotonicity ofG(u) in 0 ≤ u ≤ 0.5, we conclude that in this regime the

source is not perfectly scalable.

To seeR∩(D1,D2) is also achievable in region I-C, recall the result in [4] that the optimal forward test

channel to achieveR∗
X|Y (D) has the following structure: it is the time-sharing betweenzero-rate coding and a

BSC with crossover probabilitydc if D ≥ dc, or a single BSC with crossover probabilityD otherwise. Thus it is

straightforward to verify thatR∩(D1,D2) is achievable by time sharing the two forward test channels in Fig. 5;
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Fig. 5. The forward test channels in Region I-C. The crossover probability for the BSC betweenX andW2 is D2 in both the channels,
while the crossover probabilityη for the BSC betweenW2 andW1 in (a) is such thatD2 ≤ D1 ∗ η = η′

≤ dc. Note for (b),W1 can be
taken as a constant.
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Fig. 6. The rate outer bounds for a particular choice ofD1, D2 in Region I-B of Figure 3.

furthermore, an equivalent forward test channel can be found such that the Markov conditionW ′
1 ↔W2 ↔ X is

satisfied, which satisfies the conditions given in Theorem 5.Thus in this regime, the source is in fact perfectly

scalable.

Unfortunately, we were not able to find the complete characterization for the regime I-A and I-B. Using

an approach similar to [6], an explicit outer bound can be derived from Rout(D1,D2). It can then be shown

numerically that for certain distortion pairs in this regime, Rout(D1,D2) is strictly tighter thanR∩(D1,D2).

This calculation can be found in [18] and is omitted here. An example is given in Fig. 6 for the two outer bounds

with a non-zero gap in between for a specific distortion pair in Region I-B.

V. A N EAR SUFFICIENCY RESULT

By using the tool of rate loss introduced by Zamir [14], whichwas further developed in [15], [19]–[21], it

can be shown that when both the source and reconstruction alphabets are reals, and the distortion measure is
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Fig. 7. An illustration of the gap between the inner bound andthe outer bounds when MSE is the distortion measure. The two regions
Rin(D1, D2) andRout(D1, D2) are given in dashed lines, since it is unknown whether they are indeed the same.

MSE, the gap between the achievable region and the out boundsare bounded by a constant. Thus the inner and

outer bounds are nearly sufficient in the sense defined in [15]. To show this result, we distinguish the two cases

D1 ≥ D2 andD1 ≤ D2. The sourceX is assumed to have finite varianceσ2x and finite (differential) entropy.

The result of this section is summarized in Fig. 7.

A. The case D1 ≥ D2

Construct two random variableW ′
1 = X + N1 + N2 andW ′

2 = X + N2, whereN1 andN2 are zero mean

independent Gaussian random variables, independent of everything else, with varianceσ21 and σ22 such that

σ21 + σ22 = D1 and σ22 = D2. By letting V ′ = W ′
1, it is obvious that the following rates are achievable for

distortion (D1,D2) from Theorem 1

R1 = I(X;X +N1 +N2|Y1), R1 +R2 = I(X;X +N2|Y2). (39)

LetU be optimal random variable to achieve the Wyner-Ziv rate at distortionD1 given decoder side information
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Y1. Then it is clear that the difference betweenR1 and the Wyner-Ziv rate can be bounded as,

I(X;X +N1 +N2|Y1)− I(X;U |Y1)

(a)
= I(X;X +N1 +N2|UY1)− I(X;U |Y1,X +N1 +N2)

≤ I(X;X +N1 +N2|UY1)

= I(X − X̂1;X − X̂1 +N1 +N2|UY1)

≤ I(X − X̂1, U, Y1;X − X̂1 +N1 +N2)

= I(X − X̂1;X − X̂1 +N1 +N2) + I(U, Y1;X − X̂1 +N1 +N2|X − X̂1)

= I(X − X̂1;X − X̂1 +N1 +N2)
(b)

≤
1

2
log2

D1 +D1

D1
= 0.5 (40)

where(a) is by applying chain rule toI(X;X +N1 +N2, U |Y1) in two different ways;(b) is true becausêX1

is the decoding function given(U, Y1), the distortion betweenX and X̂1 is bounded byD1, andX − X̂1 is

independent of(N1, N2).

Now we turn to bound the gap for the sum rateR1 + R2. Let W1 andW2 be the two random variables to

achieve the rate distortion functionRHB(D1,D2). First notice the following two identities due to the Markov

string (W1,W2) ↔ X ↔ Y1 ↔ Y2 and (N1, N2) are independent of(X,Y1, Y2)

I(X;W2|Y2) + I(X;W1|W2Y1) = I(X;W1W2|Y1) + I(Y1;W2|Y2) (41)

I(X;X +N2|Y2) = I(X;X +N2|Y1) + I(Y1;X +N2|Y2). (42)

Next we can bound the difference between the sum-rateR1+R2 (as given in (39)) and the Heegard-Berger sum

rate as follows.

I(X;X +N2|Y2)− I(X;W2|Y2)− I(X;W1|W2Y1)

= {I(X;X +N2|Y1)− I(X;W1W2|Y1)}+ {I(Y1;X +N2|Y2)− I(Y1;W2|Y2)}. (43)
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To bound the first bracket, notice that

I(X;X +N2|Y1)− I(X;W1W2|Y1)

= I(X;X +N2|W1W2Y1)− I(X;W1W2|Y1,X +N2)

≤ I(X;X +N2|W1W2Y1)

(a)
= I(X;X +N2|W1W2Y1Y2)

= I(X − X̂2;X − X̂2 +N2|W1W2Y1Y2)

≤ I(X − X̂2,W1,W2, Y1, Y2;X − X̂2 +N2)

= I(X − X̂2;X − X̂2 +N2) + I(W1,W2, Y1, Y2;X − X̂2 +N2|X − X̂2)

= I(X − X̂2;X − X̂2 +N2) ≤
1

2
log2

D2 +D2

D2
= 0.5 (44)

where (a) is due to the Markov string(W1,W2) ↔ X ↔ Y1 ↔ Y2, X̂2 is the decoding function given(W2, Y2),

and the other inequalities follow similar arguments as in Eqn. (40). To bound the second bracket, we write the

following

I(Y1;X +N2|Y2)− I(Y1;W2|Y2)

= I(Y1;X +N2|W2Y2)− I(Y1;W2|Y2,X +N2)

≤ I(Y1;X +N2|W2Y2)

≤ I(XY1;X +N2|W2Y2)

= I(X;X +N2|W2Y2) ≤
1

2
log2

D2 +D2

D2
= 0.5 (45)

Thus we have shown that forD1 ≥ D2, the gap between the outer boundR∩(D1,D2) and the inner bound

Rin(D1,D2) is bounded. More precisely, the gap forR1 is bounded by 0.5 bit, while the gap for the sum rate

is bounded by 1.0 bit.

B. The case D1 ≤ D2

Construct random variableW ′
1 = X+N1 andW ′

2 = X+N1+N2, whereN1 andN2 are zero mean independent

Gaussian random variables, independent of everything else, with varianceσ21 and σ22 such thatσ21 = D1 and

σ21 + σ22 = D2. By letting V ′ =W ′
2 = X +N1 +N2, it is easily seen that the following rates are achievable for

distortion (D1,D2)

R1 = I(X;X +N1|Y1)

R1 +R2 = I(X;X +N1 +N2|Y2) + I(X;X +N1|Y1,X +N1 +N2).

Clearly, the argument for the first stageR1 still holds with minor changes. To bound the sum-rate gap, notice
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the following identity

I(X;X +N1 +N2|Y2) + I(X;X +N1|Y1,X +N1 +N2)

= I(X;X +N1 +N2|Y1) + I(Y1;X +N1 +N2|Y2) + I(X;X +N1|Y1,X +N1 +N2) (46)

= I(Y1;X +N1 +N2|Y2) + I(X;X +N1|Y1). (47)

Next we seek to upper bound the following quantity

I(X;X +N1 +N2|Y2) + I(X;X +N1|Y1,X +N1 +N2)− I(X;W2|Y2)− I(X;W1|W2Y1)

= {I(X;X +N1|Y1)− I(X;W1W2|Y1)}+ {I(Y1;X +N1 +N2|Y2)− I(Y1;W2|Y2)}, (48)

where againW1,W2 are the R-D optimal random variables forRHB(D1,D2). For the first bracket, we have

I(X;X +N1|Y1)− I(X;W1W2|Y1)

= I(X;X +N1|W1W2Y1)− I(X;W1W2|Y1,X +N1)

≤ I(X;X +N1|W1W2Y1)

= I(X − X̂1;X − X̂1 +N2|W1W2Y1)

≤ I(X − X̂1,W1,W2, Y1;X − X̂1 +N2)

= I(X − X̂1;X − X̂1 +N1) + I(W1,W2, Y1;X − X̂1 +N1|X − X̂1)

= I(X − X̂1;X − X̂1 +N1)

≤
1

2
log

D1 +D1

D1
= 0.5, (49)

whereX̂1 is the decoding function given(W1, Y1). For the second bracket, following a similar approach as (45),

we have

I(Y1;X +N1 +N2|Y2)− I(Y1;W2|Y2)

≤ I(X;X +N1 +N2|W2Y2)

≤ I(X − X̂2,W2, Y2;X − X̂2 +N1 +N2)

= I(X − X̂2;X − X̂2 +N1 +N2) ≤ 0.5

Thus we conclude that for both cases the gap between the innerbound and the outer bound is bounded. Fig. 7

illustrates the inner bound and outer bounds, as well as the gap in between.

VI. T HE QUADRATIC GAUSSIAN SOURCE WITH JOINTLY GAUSSIAN SIDE INFORMATIONS

The degraded side information assumption, eitherX ↔ Y1 ↔ Y2 or X ↔ Y2 ↔ Y1, for the quadratic jointly

Gaussian case is especially interesting, since physicallydegradedness and stochastic degradedness [22] do not

cause essential difference in terms of the rate-distortionregion for the problem being considered [5]. Moreover,
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jointly Gaussian source-side information is always statistically degraded, these forwardly and reversely degraded

cases together provide a complete solution to the jointly Gaussian case with two decoders.

In this section we in fact consider a more general setting with an arbitrary number of decoders for jointly

Gaussian source and multiple side informations. Though thesource and side informations can have arbitrary

correlation, in light of the discussion above, we will treatonly physically degraded side informations. Note that

since a specific encoding order is specified, though the side informations are degraded as an unordered set, the

quality of side informations may not be monotonic along the scalable coding order. Clearly the solution for the

two stage case can be reduced in a straightforward manner from the general solution. Recall from Theorem 2

(see (18)) thatR∩(D1,D2) is an outer bound derived from the intersection of the Heegard-Berger and Wyner-Ziv

bounds. The generalization of the outer boundR∩(D1,D2) to N decoders plays an important role, and therefore

we take a detour in Section VI-A to start with the characterization of RHB(D1,D2, . . . ,DN ) for the jointly

Gaussian case.

A. RHB(D1,D2, . . . ,DN ) for the jointly Gaussian case

Consider the following sourceX ∼ N (0, σ2x), and side informationsYk = X+
∑k

i=1Ni, whereNi ∼ N (0, σ2i )

are mutually independent and independent ofX. The result by Heegard and Berger [7] gives

RHB(D1,D2, . . . ,DN ) = min
p(D1,D2,...,DN )

N∑

k=1

I(X;Wk|Yk,Wk+1,Wk+2, . . . ,WN ), (50)

wherep(D1,D2, . . . ,DN ) is the set of all random variable with the Markov string(W1,W2, . . . ,WN ) ↔ X ↔

(Y1, Y2, . . . , YN ), such that deterministic functionsfk(Yk,Wk,Wk+1, . . . ,WN ), k = 1, . . . , N exist which satisfy

the distortion constraints. In [6], the caseN = 2 was calculated explicitly, however such an explicit calculation

appears quite involved for generalN due to the discussion of various cases when some of the distortion constraints

are not tight. In the sequel we approach the problem by showing a jointly Gaussian forward test channel is optimal.

Note that if we choose to enforce only a subset of the distortion constraints, the rate for such a restriction gives a

lower bound onRHB(D1,D2, . . . ,DN ). By taking all the non-empty subsets of the distortion constraints, labeled

by elements ofIN = {1, 2, . . . , N}, a total of2N − 1 lower bounds are available and clearly the maximum of

them is also a lower bound. More precisely, we are interestedin maxR∗
HB(AD), whereAD ⊆ IN andR∗

HB(AD)

is defined in the sequel explicitly in terms of the distortionconstraints only; note that ifi ∈ AD, Di is still the

distortion constraint for the decoder with side information Yi. We next derive one of these lower bounds using

all the constraints(D1,D2, . . . ,DN ), i.e. AD = IN ; a similar derivation applies to the case with any subset
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AD ⊂ IN . Using (50) we have,

N∑

k=1

I(X;Wk|Yk,Wk+1,Wk+2, . . . ,WN )

= h(X|YN )− h(X|Y1W
N
1 )− h(X|YNWN ) + h(X|YN−1WN )

−h(X|YN−1W
N
N−1) + . . .+ h(X|Y1W

N
2 )

(a)
= h(X|YN )− h(X|Y1W

N
1 )

−[h(X|YNWN )− h(X|YN−1YNWN )]− . . . − [h(X|Y2W
N
2 )− h(X|Y1Y2W

N
2 )]

= h(X|YN )− h(X|Y1W
N
1 )− I(X;YN−1|YNWN )

−I(X;YN−2|YN−1W
N
N−1)− . . . − I(X;Y1|Y2W

N
2 )

(b)
= h(X|YN )− h(X|Y1W

N
1 )

−[h(YN−1|YNWN )− h(YN−1|XYN )]− . . .− [h(Y1|Y2W
N
2 )− h(Y1|Y2X)]

= h(X|YN ) +

N∑

k=2

h(Yk−1|XYk)−
N∑

k=2

h(Yk−1|YkW
N
k )− h(X|Y1,W

N
1 ),

where (a) is because of the Markov stringX ↔ (Yk−1W
N
k ) ↔ Yk, and (b) is because of the Markov string

WN
k ↔ (XYk) ↔ Yk−1, both of which are consequences ofWN

k ↔ X ↔ Yk−1 ↔ Yk. The first two terms

depend only on the source and distributionPXY1...YN
, and we now seek to bound the latter two terms, for which

we have

h(X|Y1W
N
1 ) = h(X − E(X|Y WN

1 )|YWN
1 ) ≤ h(X − E(X|Y WN

1 )) ≤ h(N (0,D1)) =
1

2
log(2πeD1), (51)

where the second inequality is because Gaussian distribution maximizes the entropy for a given second moment,

andE(X − E(X|Y WN
1 ))2 ≤ D1 by the existence of the decoding functionf1. Next define

γk =

∑k−1
i=1 σ

2
i∑k

i=1 σ
2
i

, k = 2, 3, ..., N. (52)

and write the following

Yk−1 = X +

k−1∑

i=1

Ni = X +

k−1∑

i=1

Ni + γk

k∑

i=1

Ni − γk

k∑

i=1

Ni (53)

= γk(X +
k∑

i=1

Ni) + (1− γk)X + [
k−1∑

i=1

Ni − γk

k∑

i=1

Ni] (54)

= γkYk + (1− γk)X + [
k−1∑

i=1

Ni − γk

k∑

i=1

Ni] (55)
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Notice that

E[Yk(
k−1∑

i=1

Ni − γk

k∑

i=1

Ni)] =
k−1∑

i=1

σ2i − γk

k∑

i=1

σ2i = 0, (56)

and Yk and (
∑k−1

i=1 Ni − γi
∑k

i=1Ni) are jointly Gaussian, which implies that they are independent. Further-

more because(
∑k−1

i=1 Ni − γi
∑k

i=1Ni) is independent ofX, the Markov string(Y1, Y2, . . . YN ) ↔ X ↔

(W1,W2, . . . ,WN ) implies that it is also independent of(W1,W2, . . . ,WN ). It follows

h(Yk−1|YkW
N
k ) = h

(
γkYk + (1− γk)X +

k−1∑

i=1

Ni − γk

k∑

i=1

Ni|YkW
N
k

)
(57)

= h

(
(1− γk)X +

k−1∑

i=1

Ni − γk

k∑

i=1

Ni|YkW
N
k

)
(58)

= h

(
(1− γk)(X − E(X|YkW

N
k )) +

k−1∑

i=1

Ni − γk

k∑

i=1

Ni|YkW
N
k

)
(59)

≤ h

(
(1− γk)(X − E(X|YkW

N
k )) +

k−1∑

i=1

Ni − γk

k∑

i=1

Ni

)
. (60)

By the aforementioned independence relation, the varianceof term in the bracket is bounded above by

D̂k
∆
= (1− γk)

2Dk + (1− γk)
2
k−1∑

i=1

σ2i + γ2kσ
2
k. (61)

Define the following quantities

K1
∆
= h(X|YN ) =

1

2
log

2πeσ4x

σ2x +
∑N

i=1 σ
2
i

, (62)

Kk
∆
= h(Yk−1|XYk) =

1

2
log

2πeσ4k∑k
i=1 σ

2
i

, k = 2, 3, . . . , N (63)

Summarizing the bounds in (51) and (60), we have

RHB(D1,D2, . . . DN ) ≥
1

2
log

∏N
i=1Ki∏N
i=1 D̂i

∆
= R∗

HB(IN ), (64)

where for convenience we definêD1 = D1.

To show that maxAD⊆{D1,D2,...,DN}R
∗
HB(AD) is indeed achievable, construct the random variables

(W ∗
1 ,W

∗
2 , . . . ,W

∗
N ) as follows. Assume thatDk ≤ E[X−E(X|Yk)]

2 for eachk = 1, 2, . . . , N , because otherwise

this distortion requirement can be ignored completely.

[Construction of (W ∗
1 ,W

∗
2 , . . . ,W

∗
N )]

1) For eachk = 1, 2, . . . , N , determine the varianceσ2Zk
of a Gaussian random variableZk such thatDk =

E[X − E(X|Yk,X + Zk)]
2.

2) Rank the variance ofσ2Zk
in an increasing order, and letω(k) denote the rank ofσ2Zk

.
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3) Calculateσ2Z′

1
= σ2Zω−1(1)

, andσ2Z′

k
= σ2Zω−1(k)

− σ2Zω−1(k−1)
for k = 2, 3, . . . , N .

4) Construct a set of independent zero-mean Gaussian randomvariables(Z ′
1, Z

′
2, . . . , Z

′
N ) to have variance

σ2Z′

k
.

5) Construct a set of random variables(W ∗
1 ,W

∗
2 , . . . ,W

∗
N ) as

W ∗
k = X +

ω(k)∑

i=1

Z ′
k. (65)

Next we show that this construction of(W ∗
1 ,W

∗
2 , . . . ,W

∗
N ) achieves one of aforementioned lower bounds and

thus is an optimal forward test channel. Choose the setA∗
D = {k : ω(k) < ω(j) for all j > k}, and denote the

rank (in increasing order) of its elementk asr(k). Clearly by the construction we have

N∑

k=1

I(X;W ∗
k |Yk,W

∗
k+1,W

∗
k+2, . . . ,W

∗
N )

=
∑

k∈A∗

D

I(X;W ∗
k |Yk,W

∗
k+1,W

∗
k+2, . . . ,W

∗
N )

=

|A∗

D|∑

j=1

I(X;W ∗
r−1(j)|Yr−1(j),W

∗
r−1(j+1))

= h(X|Yr−1(|A∗

D|))− h(X|W ∗
r−1(|A∗

D |)Yr−1(|A∗

D |))

+h(X|Yr−1(|A∗

D |−1)W
∗
r−1(|A∗

D |))− h(X|Yr−1(|A∗

D|−1)W
∗
r−1(|A∗

D|−1))

+ . . .+ h(X|Yr−1(1)W
∗
r−1(2)− h(X|Yr−1(1)W

∗
r−1(1))

= h(X|Yr−1(|A∗

D|))− h(X|Yr−1(1)W
∗
r−1(1))

−[h(Yr−1(|A∗

D|−1)|Yr−1(|A∗

D|)W
∗
r−1(|A∗

D|))− h(Yr−1(|A∗

D|−1)|XYr−1(|A∗

D |))]

− . . .− [h(Yr−1(1)|Yr−1(2)W
∗
r−1(2))− h(Yr−1(1)|XYr−1(2))]

= R∗
HB(A

∗
D)

because of the construction of(W ∗
1 ,W

∗
2 , . . . ,W

∗
N ) and the fact that they are jointly Gaussian with

(X,Y1, Y2, . . . , YN ). Thus, we have proved the following theorem.

Theorem7: The auxiliary random variable(W ∗
1 ,W

∗
2 , . . . ,W

∗
N ) constructed above achieves the minimum in

the Heegard and Berger rate distortion function for the jointly Gaussian source and side informations.

It is clear that we can determine the setA∗
D before constructing(W ∗

1 ,W
∗
2 , . . . ,W

∗
N ) using the aforementioned

procedure, which can simplify the construction. However, the current construction has the advantage that eachW ∗
k

is almost individually determined byDk, and does not substantially depend on the other distortion constraints.

This will prove to be useful for the general scalable coding problem. It is worth noting that it seemingly requires

comparing2N−1 values ofR∗
HB(AD) to determineRHB(D1,D2, . . . ,D2), however, from the forward calculation

we see that in factO(N) complexity suffices.

This result can be interpreted using Fig. 8. On the horizontal axis, theN marks stand for theN random
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Fig. 8. An illustration of the sum-rate for the Gaussian case.

variable(W ∗
ω−1(1),W

∗
ω−1(2), . . . ,W

∗
ω−1(N)), and the on the vertical axis, theN marks stand for theN levels of

side informations(Y1, Y2, . . . , YN ). The random variable pairs(Wk, Yk) are then the points of interest on the

plane, since if thek-th decoder has(Yk,Wk) the desired distortion can be achieved; the(Wk, Yk) pairs are in

one-to-one correspondence to the(ω(k), k) pairs. Next we associate the unit square below and to the right of

each integer point(i, j) is associated with a rate of value

Ri,j = I(Wω−1(i);Yj−1|YjWω−1(i+1)) (66)

where we defineWω−1(N+1) = ∅, andY0 = X. For eachk = 1, 2, . . . , N , if we cover the rectangle below and

to the right of(ω(k), k), then the sum rate associated with the covered area is exactly RHB(D1,D2, . . . ,DN ).

With Fig. 8, the coding scheme can be understood as follows. The coding proceeds fromYN to Y1, i.e.,

from high to low on the vertical axis; thek-th step (k-th decoder) specifies an integer point(ω(k), k), which

corresponds to a(Wk, Yk) pair, on the figure, and additional rate is required if the area below and to the right

of this point induces new area to cover. This order is illustrated in Fig. 8 along the arrows. Note that

k∑

j=1

Ri,j =

k∑

j=1

I(Wω−1(i);Yj−1|YjWω−1(i+1)) (67)

=
k∑

j=1

[I(Wω−1(i);Yj−1|Wω−1(i+1))− I(Wω−1(i);Yj |Wω−1(i+1))] (68)

= I(Wω−1(i);X|Wω−1(i+1))− I(Wω−1(i);Yk|Wω−1(i+1))] (69)

= I(Wω−1(i);X|YkWω−1(i+1)), (70)
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and it is the rate for a vertical slice of hightk between horizontal positioni and i + 1, which is in a quite

similar form as (66). In this example figure, the decoders with side informationYN−3 and Y3 do not require

additional rates. More generally, if(ω(k), k) is inside the area already covered by the previous coding steps

(N,N − 1, . . . , k + 1), then this stage does not require additional rates. In fact,the corners of the final covered

area specifies the setA∗
D.

The following observations are essential for the general Gaussian scalable coding problem: each unit square

in Fig. 8 is not merely associated with rateRi,j , it is in fact associated with a fraction of codeCi,j with the

following properties

1) The rate ofCi,j is (asymptotically)Ri,j;

2) If the fractions of code associated with the area below andto the right of(ω(k), k) are available, then the

decoder with side informationYk can decode within distortionDk;

3) The same set of codeCi,j can be used to fulfill only subset of the constraints, the ratecalculated by the

covering area method is the quadratic Gaussian Heegard and Berger rate distortion function.

The first and second observations are straightforward by constructing the nested binning together with conditional

codebooks as described in Section III,i.e., N − 1 conditioning stage fromW ∗
ω−1(1) to W ∗

ω−1(N) and each

conditioned codebook hasN nested levels from coarse forY1 to fine for YN . In fact, it is not necessary to

useN nested level for each codebook, but we do so for simplicity ofunderstanding. The last property is due to

the inherent Markov string amongW ∗
1 ,W

∗
2 , . . . ,W

∗
N andX.

B. Scalable coding with joint Gaussian side informations

Now consider the scalable coding problem where side informations and distortions are given by a permutation

π(·) of that in the last subsection,i.e., Y ′
i = Yπ(i) andD′

i = Dπ(i). We next show that the identically permuted

set of random variable(W ∗
1 ,W

∗
2 , . . . ,W

∗
N ) achieves the Heegard-Berger rate distortion function for any first k

stages, thus optimal. In light of pictorial interpretationin Fig. 8, this reduces to rearranging the coded stream of

Ci,j. Fig. 9 shows the effect of changing the scalable coding order.

More precisely, for a certain side informationY ′
i = Yπ(i), define the following sets:

C(k) = {π(i) : i < k, π(i) > π(k)} (71)

E−(k) = {π(i) : i < k, π(i) < π(k), ω(π(i)) > ω(π(k))}, (72)

and the following function

E(k) = max [{π(i) : i < k, π(i) < π(k), ω(π(i)) < ω(π(k))} ∪ {0}] , (73)

and letY0 = X. Let the set of integersE−(k) be ordered increasingly, and the rank of its elementj be r(j).

Denote the set of random variables{Wj : j ∈ C} asW ∗
C for an integer setC. The following k-th stage rate is
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Fig. 9. An illustration of incremental rate for scalable coding. The denser shaded region gives the incremental rateRk for the stage
with side informationYk.

achievable fork = 1, 2, . . . , N

Rk =

|E−(k)|∑

i=1

I(Yr−1(i);W
∗
r−1(i)|Yπ(k)W

∗
r−1(i+1)W

∗
r−1(i+2), . . . ,W

∗
r−1(|E−(k)|)W

∗
C(k))

+I(YE(k);W
∗
π(k)|Yπ(k)W

∗
E−(k)W

∗
C(k)).

It is clearly this rate corresponds to exactly the dense shaded region in Fig. 9, which is the sum of rates of fraction

of codesC(i, j) as described above. The property of this fraction codeC(i, j) thus implies the following.

Theorem8: The Gaussian scalable coding achievable rate region for distortion vector

(Dπ(1),Dπ(2), . . . ,Dπ(N)) is the rate vectors(R1, R2, . . . , RN ) satisfies

k∑

i=1

Ri ≥ RHB(Dπ(1),Dπ(2), . . . ,Dπ(k)), k = 1, 2, ..., N (74)

where the side informations are(Yπ(1), Yπ(2), . . . , Yπ(k)). Furthermore, it is achievable by a jointly Gaussian

codebook with nested binning.

An immediate consequence of this result is the following corollary.

Corollary 5: A distortion vector (Dπ(1),Dπ(2), . . . ,Dπ(N)) is perfectly scalable along side informations

(Yπ(1), Yπ(2), . . . , Yπ(k)) for the jointly Gaussian source if and only ifRHB(Dπ(1),Dπ(2), . . . ,Dπ(k)) =

R∗
X|Yπ(k)

(Dπ(k)) for eachk = 1, 2, . . . , N .

This corollary applies to one of the important special caseswhereD1 = D2 = . . . = DN andπ(k) = N−k+1

for eachk, i.e., when all the decoders have the same distortion requirement,and the scalable order is along a
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decreasing order of side information quality. This impliesthat at least for the Gaussian case, an opportunistic

coding strategy does exist when the distortion requirementis the same for all the users.

VII. C ONCLUSION

We studied the problem of scalable source coding with reversely degraded side-information and gave two inner

bounds as well as two outer bounds. These bounds are tight forspecial cases such as one lossless decoder and

under certain deterministic distortion measures. Furthermore we provided a complete solution to the Gaussian

source with quadratic distortion measure with any number ofjointly Gaussian side informations. The problem of

perfect scalability is investigated and the gap between theinner and outer bounds are shown to be bounded. For

the doubly symmetric binary source with Hamming distortion, we provided partial results of the rate-distortion

region. The result illustrates the difference between the lossless and the lossy source coding: though a universal

approach exists with uncertain side informations at the decoder for the lossless case, such uncertainty generally

causes loss of performance in the lossy case.

APPENDIX I

NOTATION AND BASIC PROPERTIES OFTYPICAL SEQUENCES

We will follow the definition of typicality in [11], but use a slightly different notation to make the small

positive quantityδ explicit (see [5]).

Definition 4: A sequencex ∈ X n is said to beδ-strongly-typical with respect to a distributionPX(x) on X

if

1) For all a ∈ X with PX(a) > 0
∣∣∣∣
1

n
N(a|x)− PX(a)

∣∣∣∣ < δ, (75)

2) For all a ∈ X with PX(a) = 0, N(a|x)=0,

whereN(a|x) is the number of occurrences of the symbola in the sequencex. The set of sequencesx ∈ X n that

is δ-strongly-typical is called theδ-strongly-typical set and denoted asT δ
[X], where the dimensionn is dropped.

The following properties are well-known and will be used in the proof:

1) Given ax ∈ T δ
[X], for a y whose component is drawn i.i.d according toPY and anyδ′ > δ, we have

2−n(I(X;Y )+λ1) ≤ P [(x,y) ∈ T δ′

[XY ]] ≤ 2−n(I(X;Y )−λ1) (76)

whereλ1 is a small positive quantityλ1 → 0 asn→ ∞ and bothδ, δ′ → 0.

2) Similarly, given(x,y) ∈ T δ′

[XY ], for any δ′′ > δ′, let the component ofz be drawn i.i.d according to the

conditional marginalPZi|Yi
(yi), then

2−n(I(X;Z|Y )+λ2) ≤ P [(x,y,z) ∈ T δ′′

[XY Z]] ≤ 2−n(I(X;Z|Y )−λ2) (77)

whereλ2 is a small positive quantityλ2 → 0 asn→ ∞ and bothδ′, δ′′ → 0.
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3) Markov Lemma [16]: If X ↔ Y ↔ Z is a Markov string, andX andY are such that their component is

drawn independently according toPXY . Then for allδ > 0

lim
n→∞

P [(X ,z) ∈ T
|Y|δ
[XZ] |(Y ,z) ∈ T δ

[Y Z]] → 1. (78)

furthermore,

lim
n→∞

P [(X,Y ,z) ∈ T δ
[XY Z] |(Y ,z) ∈ T δ

[Y Z]] → 1. (79)

APPENDIX II

PROOF OFTHEOREM 1

Codebook generation: Let a probability distributionPW1W2XY1Y2
= PXVW1W2

PY1|XPY2|Y1
, and two

reconstruction functionsf1(Y1,W1) andf2(Y2,W2) be given. First construct2nRA coarser bins and2nRA+R′

A finer

bins, whereRA andR′
A are to be specified later. Generate2RV length-n codewords according toPV (·), denote this

set of codewords asCv; assign each of them into one of the finer bins independently.For each codewordv ∈ Cv,

generate2nRW1 length-n codewords according toPW1|V (w1|v) =
∏n

k=1 PW1|V (w1,k|vk), denote this set of

codewords asCW1
(v); independently assign each codeword to one of the2nRB bins. Again for eachV codeword,

independently generate2nRW2 length-n codewords according toPW2|V (w2|v) =
∏n

k=1 PW2|V (w2,k|vk), denote

this set of codewords asCW2
(v); independently assign each codeword to one of the2nRC bins. Reveal this

codebook to the encoders and decoders.

Encoding: For a givenx, find in Cv a codewordv∗ such that(x,v∗) ∈ T 2δ
[XV ]; calculate the coarser bin index

i(v∗), and the finer bin index within the coarser binj(v∗). Then in theCw1
(v∗) codebook, find a codeword

w∗
1 such that(w∗

1,v
∗,x∗) ∈ T 3δ

[W1V X], and calculate its corresponding bin indexk. In Cw2
(v∗) codebook, find

a codewordw∗
2 such that(w∗

2,v
∗,x) ∈ T 3δ

[W2V X], and calculate its corresponding bin indexl. The first-stage

encoder sendsi andk, and the second-stage encoder sendsj andl. In the above procedure, if there is more than

one joint-typical sequence, choose the least; if there is none, choose a default codeword and declare an error.

Decoding: The first stage decoder findŝv in the coarser bini, such that(v̂,y1) ∈ T
3|X |δ
[V Y1]

; then in theCw1
(v̂)

codebook, findŵ1 such that(ŵ1, v̂,y1) ∈ T
4|X |δ
[W1V Y1]

. In the second stage, the decoder findsv̂ in the finer bin

specified by(i, j) such that(v̂,y2) ∈ T
3|X |δ
[V Y2]

; then in theCw2
(v̂) codebook, findŵ2 such that(ŵ2, v̂,y2) ∈

T
4|X |δ
[W2V Y2]

. In the above procedure, if there is none or there are more than one, an error is declared and the decoding

stops. The first decoder reconstructs asx̂1,k = f1(ŵ1,k, y1,k) and the second decoder asx̂2,k = f2(ŵ2,k, y2,k).

Probability of error: First define the encoding errors:

E0 = {X /∈ T δ
[X]} ∪ {Y1 /∈ T δ

[Y1]
} ∪ {Y2 /∈ T δ

[Y2]
}

E1 = Ec
0 ∩ {∀v ∈ Cv, (X ,v) /∈ T 2δ

[XV ]}

E2 = Ec
0 ∩ E

c
1 ∩ {∀w1 ∈ Cw1

(v∗), (w1,v
∗,X) /∈ T 3δ

[W1V X]}

E3 = Ec
0 ∩ E

c
1 ∩ {∀w2 ∈ Cw2

(v∗), (w2,v
∗,X) /∈ T 3δ

[W2V X]}.
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Next define the decoding errors:

E4 = Ec
0 ∩ E

c
1 ∩ {(v∗,X ,Y1) /∈ T 2δ

[V XY1]
}

E5 = Ec
0 ∩ E

c
1 ∩ {(v∗,X ,Y2) /∈ T 2δ

[V XY2]
}

E6 = Ec
0 ∩ E

c
1 ∩ {∃v′ 6= v∗ : i(v′) = i(v∗) and (v′,Y1) ∈ T

3|X |δ
[V Y1]

}

E7 = Ec
0 ∩ E

c
1 ∩ {∃v′ 6= v∗ : i(v′) = i(v∗) andj(v′) = j(v∗) and (v′,Y2) ∈ T

3|X |δ
[V Y2]

}

E8 = Ec
0 ∩ E

c
1 ∩E

c
2 ∩E

c
4 ∩E

c
6 ∩ {(w∗

1
,v∗,X ,Y1) /∈ T 3δ

[W1V XY1]
}

E9 = Ec
0 ∩ E

c
1 ∩E

c
3 ∩E

c
5 ∩E

c
7 ∩ {(w∗

2
,v∗,X ,Y2) /∈ T 3δ

[W2V XY2]
}

E10 = Ec
0 ∩ E

c
1 ∩E

c
2 ∩E

c
4 ∩E

c
6 ∩ {∃w′

1
6= w∗

1
: l(w′

1
) = l(w∗

1
) and(w′

1
,v∗,Y1) ∈ T

4|X |δ
[W1V Y1]

}

E11 = Ec
0 ∩ E

c
1 ∩E

c
3 ∩E

c
5 ∩E

c
7 ∩ {∃w′

2
6= w∗

2
: l(w′

2
) = l(w∗

2
) and(w′

2
,v∗,Y2) ∈ T

4|X |δ
[W2V Y2]

}

Apparently, for anyǫ′, for n > n1(ǫ
′, δ), P (E0) ≤ ǫ′. We have also

P (E1) ≤ P (X ∈ T δ
[X])P ({∀ v ∈ Cv, (X,v) /∈ T 2δ

[XV ]}|X ∈ T δ
[X])

≤
∑

x∈T δ
[X]

PX(x)(1− 2−n(I(X;V )+λ))nR1

≤ exp(−2−n(I(X;V )+λ−RV )), (80)

where Property 1) of the typical sequences and(1 − x)y < e−xy are used. ThusP (E1) → 0, provided that

RV > I(X;V ) + λ.

P (E4) andP (E5) both tends to zero due to the Markov lemma; it requires the condition (v∗,X) ∈ T 2δ
[V X]

to hold, which is indeed so givenE1 does not happen. Similarly, bothP (E8) andP (E9) tends to zero for the

same reason. Notice that if(v∗,X ,Y1) ∈ T 2δ
[V XY1]

, then(v∗,Y1) ∈ T
3|X |δ
[V Y1]

, thusv∗ can be correctly decoded if

there is no other codewords in the same bin satisfying the typicality test.

Conditioned onEc
1, we have(X,v) ∈ T 2δ

[XV ]. Thus

P (E2) ≤
∑

(x,v)∈T 2δ
[XV ]

Pr(x,v)(1− 2−n(I(X;W1|V )+λ))nR2

≤ exp(−2−n(I(X;W1|V )+λ2−R2)) (81)

where property 2) of the typical sequences is used. ThusP (E2) tends to zero providedRW1
> I(X;W1|V )+λ1.

Similarly P (E′
3) tends to zero providedRW2

> I(X;W2|V ) + λ2.

Conditioned onEc
1, y1 ∈ T δ

[Y1]
, since codeword inCv are generated independently according toPU (·)

P (E6) ≤
∑

v∈Cv

2−nRA2−n(I(Y1;V )−λ1)

= 2n(RV −RA−I(Y1;V )+λ1) (82)

where we have used property 2) of the typical sequences and the fact the bin to whichv is assigned is independent.
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ThusP (E6) → 0 provided thatRA > RV − I(Y1;V ) + λ3. Similarly P (E7) → 0 provided thatRA + R′
A >

RV − I(Y2;V ) + λ4.

Conditioned onEc
4, (v

∗,Y1) ∈ T
2|X |δ
[V Y1]

. Thus

P (E10) ≤ 2nRW12−nRB2−n(I(Y1;W1|V )−λ3)

= 2n(RW1−RB−I(Y1;W1|V )+λ3) (83)

where property 3) of the typical sequences is used. ThusP (E10) tends to zero providedRB > RW1
−

I(Y1;W1|V ) + λ5. Similarly, P (E11) tends to zero providedRC > RW2
− I(Y2;W2|V ) + λ6. Thus the rates

only need to satisfy

R1 = RA +RB > I(X;V W1|Y1) + λ′ (84)

R1 +R2 = RA +R′
A +RB +RC > I(X;V W2|Y2) + I(X;W2|V Y1) + λ′′ (85)

whereλ′ andλ′′ are both small positive quantities and vanish asδ → 0 andn→ ∞; thenPe ≤
∑11

i=0 P (Ei) →

0. It only remains to show that the distortions constraints are satisfied as well. When no error occurs, then

(Ŵ1,X,Y1) ∈ T
3|V|δ
[W1XY ] and(Ŵ2,X ,Y1) ∈ T

3|V|δ
[W2XY ]. By standard argument using the definition of the typical

sequences, it can be shown that

d(x, x̂1) ≤ Ed[X, f1(W1, Y1)] + ǫ′ (86)

where ǫ′ = max(d(x, x̂))(3|V × W1 × X × Y1|δ + Pe). Thus the distortion can be made arbitrarily small by

choosing sufficiently smallδ and sufficiently largen. Similar arguments holds for the second stage decoder. This

completes the proof.

APPENDIX III

PROOF OF THETHEOREM 2

Assume the existence of(n,M1,M2,D1,D2) RD SI-scalable code, there exist encoding and decoding functions

φi andψi for 1 = 1, 2. Denoteφi(Xn) asTi. X
−
k will be used to denote the vector(X1,X2, . . . ,Xk−1) andX+

k

to denote(Xk+1,Xk+2, . . . ,Xn); the subscriptk will be dropped when it is clear from the context. The proof

follows the same line as the converse proof in [7]. The following chain of inequalities is standard (see page 440
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of [22]). Here we omit the small positive quantityǫ for simplicity.

nR1 ≥ H(T1) ≥ H(T1|Y1) = I(X ;T1|Y1) =

n∑

k=1

I(Xk;T1|Y1X
−
k )

=

n∑

k=1

H(Xk|Y1X
−
k )−H(Xk|T1Y1X

−
k )

=

n∑

k=1

H(Xk|Y1,k)−H(Xk|T1Y1X
−
k )

≥
n∑

k=1

I(Xk;T1Y
−

1 Y
+

1 |Yk). (87)

Next we bound the sum rate as follows

n(R1 +R2) ≥ H(T1T2) ≥ H(T1T2|Y2) = I(X;T1T2|Y2)

= I(X ;T1T2Y1|Y2)− I(X ;Y1|T1T2Y2)

=
n∑

k=1

[I(Xk;T1T2Y1|Y2X
−)− I(X ;Y1,k|T1T2Y2Y

−

1 )].

Since(Xk, Y2,k) is independent of(X−,Y −

2 ,Y +

2 ), we have

I(Xk;T1T2Y1|Y2X
−) = I(Xk;T1T2Y1Y

−

2 Y
+

2 X−|Y2,k) ≥ I(Xk;T1T2Y1Y
−

2 Y
+

2 |Y2,k) (88)

The Markov conditionY1,k ↔ (Xk, Y2,k) ↔ (X−X+T1T2Y
−

1 Y
−

2 Y
+

2 ) gives

I(X ;Y1,k|T1T2Y2Y
−

1 ) = I(Xk;Y1,k|T1T2Y2Y
−

1 ). (89)

Thus we have

n(R1 +R2) ≥
n∑

k=1

[I(Xk;T1T2Y1Y
−

2 Y
+

2 |Y2,k)− I(Xk;Y1,k|T1T2Y2Y
−

1 )]

=

n∑

k=1

[I(Xk;T1T2Y
−

1 Y2
−Y

+

2 |Y2,k) + I(Xk;Y
+

1 |T1T2Y2Y
−

1 Y1,k)]. (90)

The degradedness givesY2,k ↔ Y1,k ↔ (Xk, T1T2,Y
−

1 Y
−

2 Y
+

2 ), which implies

n(R1 +R2) ≥
n∑

k=1

[I(Xk;T1T2Y
−

2 Y
+

2 Y
−

1 |Y2,k) + I(Xk;Y
+

1 |T1T2Y
−

2 Y
+

2 Y
−

1 Y1,k)]. (91)

DefineW1,k = (T1Y
−

1 Y
+

1 ) andW2,k = (T1T2Y
−

2 Y
+

2 Y
−

1 ), by which we have

nR1 ≥
n∑

k=1

I(Xk;W1,k|Y1,k) (92)

n(R1 +R2) ≥
n∑

k=1

[I(Xk;W2,k|Y2,k) + I(Xk;W1,k|W2,kY1,k)]. (93)
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Therefore the Markov condition(W1,k,W2,k) ↔ Xk ↔ Y1,k ↔ Y2,k is true. Next introduce the time sharing

random variableQ, which is independent of the multisource, and uniformly distributed overIn. DefineWj =

(Wj,Q, Q), j = 1, 2. The existence of functionfj follows by defining

f1(W1, Y1) = ψ1,Q(φ1(X),Y1) (94)

f2(W2, Y2) = ψ2,Q(φ1(X), φ2(X),Y2) (95)

which leads the fulfillment of the distortion constraints. It only remains to show both the bound can be written

in single letter form inW1,W2, which is straightforward following the approach in (page 435 of) [22]. This

completes the proof forRout(D1,D2) ⊇ R(D1,D2). �
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