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Abstract

The problem of side-information scalable (Sl-scalabla)rse coding is considered in this work, where the
encoder constructs a progressive description, such tleatetteiver with high quality side information will be
able to truncate the bitstream and reconstruct in the rartion sense, while the receiver with low quality
side information will have to receive further data in orderdecode. We provide inner and outer bounds for
general discrete memoryless sources. The achievablenrégishown to be tight for the case that either of the
decoders requires a lossless reconstruction, as well asagewith degraded deterministic distortion measures.
Furthermore we show that the gap between the achievablerregid the outer bounds can be bounded by a
constant when square error distortion measure is used. dtienrof perfectly scalable coding is introduced as
both the stages operate on the Wyner-Ziv bound, and negeasdrsufficient conditions are given for sources
satisfying a mild support condition. Using Sl-scalable ingdand successive refinement Wyner-Ziv coding as
basic building blocks, a complete characterization is e for the important quadratic Gaussian source with
multiple jointly Gaussian side-informations, where thdesinformation quality does not have to be monotonic
along the scalable coding order. Partial result is providedhe doubly symmetric binary source with Hamming
distortion when the worse side information is a constantwfoich one of the outer bound is strictly tighter than
the other one.

. INTRODUCTION

Consider the following scenario where a server is to brostdtaltimedia data to multiple users with different
side informations, however the side informations are natlable at the server. A user may have such strong side
information that only minimal additional information isqeired from the server to satisfy a fidelity criterion, or
a user may have barely any side information and expect thesis&r provide virtually everything to satisfy a
(possibly different) fidelity criterion.

A naive strategy is to form a single description and broaditas all the users, who can decode only after
receiving it completely regardless of the quality of theidividual side informations. However, for the users
with good-quality side information (who will simply be refed to as the good users), most of the information
received is redundant, which introduces a delay causedsibypthe existence of users with poor-quality side
informations (referred to as the bad users) in the netwarls hatural to ask whether an opportunistic method
exists,i.e.,, whether it is possible to construct a two-layer descriptguch that the good users can decode with
only the first layer, and the bad users receive both the firdttha second layer to reconstruct. Moreover, it is
of importance to investigate whether such a coding ordeoditces any performance loss. We call this coding
strategyside-information scalable (Sl-scalable) source coding, since the scalable codinectitim is from the
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Fig. 1. The SR-WZ system vs. the Sl-scalable system.

good users to the bad users. In this work, we consider mostydyer systems, except the quadratic Gaussian
source for which the solution to the general multi-layerljpeon is given.

This work is related to the successive refinement problenerevh source is to be encoded in a scalable manner
to satisfy different distortion requirement at each indival stage. This problem was studied by Koshelev [1], and
by Equitz and Cover [2]; a complete characterization of #ie-distortion region can be found in [3]. Another
related problem is the rate-distortion for source codinthwide information at the decoder [4], for which Wyner
and Ziv provided conclusive result (now widely known as thgnéf-Ziv problem). Steinberg and Merhav [5]
recently extended the successive refinement problem in §meekAZiv setting (SR-WZ), when the second stage
side informationY; is better than that of the first stad®, in the sense thaX’ «» Y5 < Y; forms a Markov string.
The extension to multistage systems with degraded sidenvations in such a direction was recently completed
in [6]. Also relevant is the work by Heegard and Berger [7]e(sdso [8]), where the problem of source coding
when side information may be present at the decoder wasdamesi; the result was extended to the multistage
case when the side informations are degraded. This is quilitasto the problem being considered here and in
[5][6], however without the scalable coding requirement.

Both the SR-WZ [5][6] and Sl-scalable problems can be thowaghspecial cases of the problem of scalable
source coding with no specific structure imposed on the dec8dt this general problem appears to be quite
difficult, since even without the scalable requirement, mpglete solution to the problem has not been found [7].
Here we emphasize that the SR-WZ and the Sl-scalable prodlerquite different in terms of their applications,
though they seem similar since only the order of SI qualigt fB reversed. Roughly speaking, in the Sl-scalable



problem, the side informatioli; at the later stage is worse than the side informalipat the early stage, while

in the SR-WZ problem, the order is reversed. In more mathiealbt precise terms, for the Sl-scalable problem,
the side informations are degraded s« Y; <> Y3, in contrast to the SR-WZ problem where the reversed
order is specified aX < Y5 < Y. The two problems are also different in terms of their pdssépplications.
The SR-WZ problem is more applicable for a single server-pae, when the user is receiving side information
through another channel, and at the same time receivingaberigtion(s) from the server; for this scenario, two
decoders can be extracted to provide a simplified model. @mother hand, the Sl-scalable problem is more
applicable when multiple users exist in the network, andsteer wants to provide a scalable description, such
that the good user is not jeopardized unnecessarily (seélfig

It is also worth pointing out that Heegard and Berger showkdmthe scalable coding requirement is removed,
the optimal encoding by itself is in fact naturally progigesrom the bad user to the good one; as such, the SI-
scalable problem is expected to be more difficult than the\&Rproblem, since the encoding order is reversed
from the natural one. This difficulty is encapsulated by thet fthat in the SR-WZ ordering the decoder with
better Sl is able to decode whatever message was meant fdetogler with worse Sl and hence the first stage
can be maximally useful. However, in the Sl-scalable pnobén additional tension exists in the sense that the
second-stage decoder will need extra information to disgquatbe the information of the first stage.

The problem is well understood for the lossless case. Thedi#grence from the lossy case is that the
quality of the side informations can be naturally determdig the value ofH (X|Y). By the seminal work of
Slepian and Wolf [9],H (X|Y") is the minimum rate of encoding’ losslessly with side informatiol™ at the
decoder, thus in a sense a largéf X |Y") corresponds to weaker side information. Hf( X|Y1) < H(X|Y3),
then the rate(R,, R2) = (H(X|Y1), H(X|Y2) — H(X|Y71)) is achievable, as noticed by Feder and Shulman
[10]. Extending this observation and a coding scheme in,[Dthper [12] proposed a universal incremental
Slepian-Wolf coding scheme when the distribution is unknpowhich inspired Eckford and Yu [13] to design
rateless Slepian-Wolf LDPC code. For the lossless cases theno loss of optimality by using a scalable coding
approach; an immediate question is to ask whether the satngeifor the lossy case in terms of rate distortion,
which we will show to be not so in general. In this rate-distor setting, the order of goodness by the value
of H(X|Y) is not sufficient because of the presence of the distortiarsttaints. This motivates the Markov
condition X <> Y7 «<» Y5 introduced for the Sl-scalable coding problem. Going fartalong this point of view,
the Sl-scalable problem is also applicable in the single ss#ting, when the source encoder does not know
exactly which side information the receiver has within aegiset. Therefore it can be viewed as a special case
of the side-information universal rate distortion coding.

In this work, we formulate the problem of side informatioralsble source coding, and provide two inner
bounds and two outer bounds for the rate-distortion regime of the inner-bounds has the same distortion and
rate expressions as one of the outer bounds, and they difftaeidomain of optimization only by a Markov string
requirement. Though the inner and the outer bounds do notici@ in general, the inner bounds are indeed tight
for the case when either the first stage or the second stagaes@ lossless reconstruction, as well as for the



case when certain deterministic distortion measures &entd-urthermore, a conclusive result is given for the
guadratic Gaussian source with any finite number of stagdsadritrary correlated Gaussian side informations.

With this set of inner and outer bounds, the problenpeffect scalability is investigated, defined as when
both of the layers can achieve the corresponding Wyner-Biunds; this is similar to the notion of (strict)
successive refinability in the SR-WZ problem [Sﬂﬁl\lecessary and sufficient conditions are derived for génera
discrete memoryless sources to be perfectly scalable undgid support condition. By using the tool of rate-
loss introduced by Zamir [14], we further show that the gapvieen the inner bounds and the outer bounds
are bounded by a constant when squared error distortionureeasused, and thus the inner bounds are “nearly
sufficient”, in the sense as given in [15].

In addition to the result for the Gaussian source, partiallteis provided for the doubly symmetric binary
source (DSBS) with Hamming distortion measure when the reé@age does not have side information, for
which the inner bounds and outer bounds coincide in cert@tordion regimes. It is shown one of the outer
bound can be strictly better than the other for this source.

The rest of the paper is organized as follows. In Sedfibn Illdetne the problem and establish the notation.
In Sectior(1ll, we provide inner and outer bounds to the distertion region and show that the bounds coincide
in certain special cases. The notion of perfectly scalablatroduced in Section IV together with the example
of a binary source. The rate loss method is applied in SeBflom show the gap between the inner bound and
the outer bounds is bounded.[In] VI, the Gaussian sourceasettewithin a more general setting. We conclude
the paper in Section MII.

Il. NOTATION AND PRELIMINARIES

Let X be a finite set and let™ be the set of alh-vectors with components ix'. Denote an arbitrary member
of X" asa™ = (x1,xo,...,2,), Or alternatively ase. Upper case is used for random variables and vectors. A
discrete memoryless source (DMSY, Px) is an infinite sequencgX;}>°, of independent copies of a random
variableX in X with a generic distributiorPx with Px (™) =[], Px (x;). Similarly, let (X, Y1, Y2, Pxv,v,)
be a discrete memoryless three-source with generic disiib Pxy,y,; the subscript will be dropped when it is
clear from the context a®(X, Y7, Y3).

Let X, and X, be finite reconstruction alphabets. Lét : X x X; — [0,00), j = 1,2 be two distortion
measures. The single-letter distortion extensior 0fo vectors is defined as

1 < X
dj(w, &) = — > di(wi,di), VzeX", &#eAp,  j=12 (1)
=1
Definition 1: An (n, My, Ms, D1, D5) rate distortion (RD) Sl-scalable code for sour€avith side information

In the rest of the paper, decoder one, respectively decedgrvill also be referred to as the first stage decoder, reispéc second
stage decoder, depending on the context.



(Y1,Y5) consists of two encoding functiong and two decoding functiong;, i = 1, 2:

1 X" — Ly, ¢o 1 X" — Iy, (2)
Py Ing, X VP — AT, o o Ingy X Ingy x V5 — X, 3)

wherel, = {1,2,...,k}, such that

Edl(Xn7¢1(¢l(Xn)7Y1n)) é D17 (4)
Edy(X™, 1o (1 (X™), d2(X™), Y31)) < Dy, (5)

whereE is the expectation operation.

Definition 2: A rate pair (R, R2) is said to be(D;, Dy)-achievable for Sl-scalable encoding with side
information (Y1,Y5), if for any e > 0 and sufficiently largen, there exist an(n, My, My, D1 + €, Dy + €)
RD Sl-scalable code, such th&; + e > Llog(M;) and Ry + € > 1 log(Ms).

Denote the collection of all theD,, D,)-achievable rate paitR,, R2) for Sl-scalable encoding & (D, D>),
and we seek to characterize this region wh&n <« Y; < Y, forms a Markov string (see similar but
different degradedness conditions in [5], [6]). The Markmandition in effect specifies thgoodness of the
side informations.

The rate-distortion function for degraded side-inforroas was established in [7] for the non-scalable coding
problem. In light of the discussion in Sectifin I, it gives avér bound on the sum-rate for any RD Sl-scalable
code. More precisely, in order to achieve distortibn with side informationY;, and achieve distortio®, with
side informationY;, when X < Y] « Y5, the rate-distortion function is

Ryp(D1,Ds) = p(gﬁ%z)[[(X; Wa|Ya) + I(X; W1 [Wa, Y1), (6)
where p(D1, Ds) is the set of all random variablgV,, W5) € Wy x Ws jointly distributed with the generic
random variables X, Y7,Y>), such that the following conditions are satisfiefl) (W1, Ws) < X < Y < Y5
is a Markov string; if) X, = f1(W,Y7) and X, = fa(Ws,Ys) satisfy the distortion constraints. Notice that the
rate distortion functionR(D1, D) given above suggests an encoding and decoding order frorpaitheiser to
the good user.

Wyner and Ziv [4] showed that under the following quite gethexssumption that the distortion measure is
chosen in the sdf,; defined as

Ty 2 {d(,,) : d(z,z) = 0,and d(z, %) > 0 if & # x}, @)

then the rate distortion function satisfi@W(O) = H(X|Y), whereR}‘Y(D) is the well-known Wyner-Ziv

rate distortion function with side informatiolr. If the same assumption is made on the distortion measure

This form is slightly different from the one in [7] wherf was defined ag: (W1, Wa,Y), but it is straightforwardly to verify that
they are equivalent. The cardinality bound is also ignoveaich is not essential here.



dy(-,-) € Ty, then we can easily show (using an argument similar to thearerf8) in [4]) that
Rizp(0, D2) = min[1(X; WaV2) + H(X|W2, Y1) ®)
p (L2
where p(D-) is the set of all random variablé’, such thatiW, <+ X < Y; « Y, is a Markov string, and
X, = fa(Ws,Ys) satisfies the distortion constraint.

[1I. INNER AND OUTER BOUNDS

To provide intuition into the the Sl-scalable problem, westfiexamine a simple Gaussian source under the
mean squared error (MSE) distortion measure, and desd¢réedding schemes informally.

Let X ~ N(0,02) andY; =Y = X + N, whereN ~ N(0,0%) is independent of; > is simply a constant,
i.e, no side information at the second decodEr.<» Y; « Y5 is indeed a Markov string. To avoid lengthy
discussion on degenerate regimes, assafne- o2, and consider only the following extreme cases.

e 02> D; > Ds: Itis known binning with a Gaussian codebook, generatedguaisingle-letter mechanism
(i.e., as an i.i.d. product distribution of the single-letter foras W, = X + 71, whereZ; is a zero-mean
Gaussian random variable independen&osuch thatD; = E[X —E(X|Y, W;)]?, is optimal for Wyner-Ziv
coding. This coding scheme can still be used for the firstestagthe second stage, by direct enumeration
in the list of possible codewords in the particular bin sfiediin the first stage, the exact codeword can be
recovered by decoder two, who does not have any side infaméainceo? > D; > D,, W, alone is not
sufficient to guarantee a distortid, i.e., Dy < E[X —E(X|W;)]2. Thus a successive refinement codebook,
say using a Gaussian random variablg conditioned onlW; such thatD, = E[X — E(X|Wy, W3)]?, is
needed. This leads to the achievable rates:

Ry > I(X;WA)Y),  Ri+ Ry = I(X; WA lY) + I(WiY) + 1(X; W |Wh) = I(X; Wi, Wa). 9)

e 02> Dy > Dy If we chooseW; = X + Z; such thatD; = E[X — E(X|Y,W;)]? and use the coding
method in the previous case, then singe > D, W; is sufficient to achieve distortiols,, i.e., Dy >
E[X — E(X|W;)]2. The rate needed for the enumeration/{$¥1;Y"), and it is rather wasteful sincé’
is more than we need. To solve this problem, we construct asepaescription using random variable
Wy = X + Z; + Zy, such thatD, = E[X — E(X|W>)]2. The encoding process has three effective layers
for the needed two stages) the first layer uses Wyner-Ziv coding with codewords getsetdy Py, (i)
the second layer uses successive refinement Wyner-Ziv gadth Py, yy, (iii) the third layer enumerates
the specifici¥, codeword within the first layer bin. Note that the first twoday form a SR-WZ scheme
with identical side informatiort” at the decoder. For decoding, decoder one decodes the fostapers
with side informationY’, while decoder two decodes the first and the third layer witlside information.



By the Markov stringX <> W; <> W, this scheme gives the following rates:

Ry > I(X;Wh, WalY) = I(X;Wh]Y)

Ri+Ry > I(X;Wi|Y)+I(WayY) = I(X;Wa) + I(X; W1 |Y, Wa). (10)

It is seen in the above discussion the specific coding scheleesnd on the distortion values, which is not
desirable since this usually suggests difficulty in provihg converse. The two coding schemes can be unified
into a single one by introducing an auxiliary random vamglals will be shown in the sequel, however, it appears
the converse is indeed quite difficult to prove.

In the rest of this section, inner and outer bounds?4D,, D-) are provided. The coding schemes for the
above Gaussian example are naturally generalized to gaventier bounds. It is further shown that the inner
bounds are in fact tight for certain special cases.

A. Two inner bounds
Define the regiorR;,, (D1, D2) to be the set of all rate paifs?;, R2) for which there exist random variables
(W7, Wa, V) in finite alphabetsV;, W,,V such that the following condition are satisfied.

1) (W1, W, V) <> X < Y] « Ys is a Markov string.
2) There exist deterministic magfs : W; x ); — X; such that

Ed;(X, f;(W;,Y;)) < D;, j=1,2. (11)
3) The non-negative rate pairs satisfy:
Ry > I(X;V,W1|Y1), Ri+ Ry > I(X;V,Wy|Ya) + I(X; Wi|Y1, V). (12)

4) Wi < (X, V) < Wa is a Markov string.
5) The alphabet¥, WW; and W, satisfy

VI <[X]+3, | < |X[(X]+3)+1, W] < |X[(|X] +3) + 1. (13)

The last two conditions can be removed without causing ¢isselifference to the regio®;, (D1, Ds); with
them removed, no specific structure is required on the jasttidution of (X, V, Wy, W,). To see the last two
conditions indeed do not cause loss of generality, apphsthmoort lemma [11] as follows. For an arbitrary joint
distribution of (X, V, W1, W) satisfying the first three conditions, we first reduce thelicelity of V. To preserve
Px and the two distortions and two mutual information valugs| + 3 letters are needed. With this reduced
alphabet, observe that both the distortion and rate expressiepend only on the marginal ¢X,V,W;) and

(X,V,Ws,), respectively, hence requiring’; < (X,V) < W, being a Markov string does not cause any loss
of generality. Next to reduce the cardinality Wy, it is seen|X||V| — 1 letters are needed to preserve the joint
distribution of (X, V'), one more is needed to preserfde and another is needed to preseie; W, |Y;, V).
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Fig. 2. Anillustration of the codewords in the nested bigngtructure.

Thus|X|(]X| +3) + 1 letters suffice. Note that we do not need to preserve the \afli®, and the value of the
other mutual information term because of the aforementidviarkov string. A similar argument holds foyVs|.
The following theorem asserts th&;,, (D1, D) is an achievable region.
Theorem1: For any discrete memoryless stochastic source with sidenrdtions under the Markov condition
X &Y &Y,

R(D1, D) D Rin(D1, D).

This theorem is proved in Appendi¥ Il, and here we outlinedhding scheme for this achievable region in an
intuitive manner. The encoder first encodes usirflg aodebook with a “coarse” binning, such that decoder one
is able to decode it with side informatidry. A Wyner-Ziv successive refinement coding (with side infation
Y1) is then added conditioned on the codewdfdalso for decoder one usird/;. The encoder then enumerates
the binning of V' up to a level such thaV” is decodable by decoder two using the weaker side informatip
By doing so, decoder two is able to reduce the number of plessdxlewords in the (coarse) bin to a smaller
number, which essentially forms a “finer” bin; with the wenlséde informationY-, the V' codeword is then
decoded correctly with high probability. Another Wyner&uccessive refinement coding (with side information
Y>) is finally added conditioned on the codewdvdfor decoder two using a random codebookWk.

As seen in the above argument, in order to reduce the numbgossibleV' codewords from the first stage
to the second stage, the key idea is to construct a nestethyistiucture as illustrated in Figl 2. Note that this
is a fundamentally different from the code structure in SR;Where no nested binning is needed. Each of the
coarser bin contains the same number of finer bins; each findrdids certain number of codewords. They are
constructed in such a way that given the specific coarsemiexi, the first stage decoder can decode in it with
the strong side information; at the second stage, addltioitstream is received by the decoder, which further
specifies one of the finer bin in the coarser bin, such thatélcersd stage decoder can decode in this finer bin
using the weaker side information. If we assign each codéwmi finer bin independently, then its coarser bin
index is also independent of that of the other codewords.

We note that the coding scheme does not explicitly requiaé sfde informations are degraded. Indeed as long
as the chosen random variabile satisfiesI(V;Y;) > I(V;Ys) as well as the Markov condition, the region is



indeed achievable. More precisely, the following corglleg straightforward.

Corollary 1: For any discrete memoryless stochastically source witl gitbrmationsy; andY, (without the
Markov structure)R,(Ds, D3) C R(Dq, D2), whereR., (D1, Ds) is Ry (D1, D) with the additional condition
thatI(V;Yy) > I(V;Ya).

We can specialize the regioR;, (D1, D2) to give another inner bound. Léim(Dl,Dg) be the set of all
rate pairs(R1, R2) for which there exist random variablég§l’;, 175) in finite alphabet3V;, W, such that the
following condition are satisfied.

D) WMo X oY YorWy o W < X Y+ Yy is a Markov string.

2) There exist deterministic mags : W; x ); — X; such that

Ed;(X, f;(W;,Y;)) < Dj,  j=1,2. (14)
3) The non-negative rate pairs satisfy:
Ry > I(X;W1|Y1), Ri+ Ry > I(X; WalYa) 4 I(X; Wi Yy, Wa). (15)
4) The alphabet$V; and W, satisfy
Wil < (1X] +3)(|X|(1X] +3) + 1), W] < (JX]+ 3)(|X](|X] + 3) +1). (16)

Corollary 2: For any discrete memoryless stochastically source witle &formations under the Markov
condition X < Y] < Y5,

Rin(D1, D3) D Rin(D1, Dy).

The regionfzm(Dl, D,) is particular interesting for the following reasons. Ryssit can be explicitly matched
back to the coding scheme for the simple Gaussian examplong8ly, it will be shown that one of the
outer bounds has the same rate and distortion expressidi%é@l,Dg), only with a relaxed Markov string
requirement. We now prove this corollary.

Proof of Corollary 2
WhenW; < W5 <+ X, let V = Wj. Then the rate expressions in Theorgm 1 gives

Ry > I(X;W1|Y1), Ri+ Ry > I(X;V,Wa|Ya) + I(X;W1|V, Y1) = I(X; W,|Ys), (17)

and thereforer;,, (D1, D3) 2 ﬁin(Dl,Dg) for this case. Wheil; «++ W, + X, let V = W5. Then the rate
expressions in Theore 1 gives

Ry > I(X;V,Wi|Y1) = I(X; Wh|Y7)
Ri+ Ry > I(X;V,Wa|Y2) + I(X; Wi |V, Y1) = I(X; Wa|Y2) + I(X; Wi |[Wa, V1),

and thereforeR;,, (D1, D2) 2 ﬁin(Dl,Dg) for this case.



The cardinality bound here is larger than that in Thedrémchbse of the requirement to preserve the Markov
conditions. [ |

B. Two outer bounds

Define the following two regions, which will be shown to be twater bounds. An obvious outer bound is
given by the intersection of the Wyner-Ziv rate distortiométion and the rate-distortion function for the problem
considered by Heegard and Berger [7] with degraded sidenrgbon X <> Y] <> Y5

Rn(D1, D2) = {(R1, Re) : Ry = Ry, (D1), Ri+ Ry > Rup(D1, Da)} (18)

A tighter outer bound is now given as follows: define the raglk,..(D;, D2) to be the set of all rate pairs
(R1, R2) for which there exist random variablg¢8l’;, 175) in finite alphabetaV;, W, such that the following
conditions are satisfied.

1) (Wl,Wg) X o el
2) There exist deterministic magfs : W; x ); — &; such that

3) | < |X[(JX]+3) +2, [Waf < X[ +3.
4) The non-negative rate vectors satisfies:

Ry > I(X;Wh|Y1), Ri+ Ry > I(X;Ws|Ys) + I(X; Wh|Y1, Wa). (20)

The main result of this subsection is the following theorem.

Theorem?2: For any discrete memoryless stochastically source witle séidormations under the Markov
condition X < Y] < Y5,

Rn(D1,D2) 2 Rout(D1, D2) 2 R(Dq, Da).
The first inclusion ofRn (D1, D2) 2 Rout(D1, D) is obvious, sinceR,,.(D1, Dy) takes the same form as
Ry,
on the latter inclusion, whose proof is given in AppendiX IlI

(D1) and Rgp(D1, D) when the rate?; and Ry + R» are considered individually. Thus we will focus

Note that the inner bounftm(Dl, Dy) andR,.:(D1, D2) have the same rate and distortion expressions and
they differ only by a Markov string requirement (ignoringethon-essential cardinality bounds). Because of the
difference in the domain of optimizations, the two boundsymat produce the same rate-regions. This is quite
similar to the case of distributed lossy source coding mnoblfor which the Berger-Tung inner bound requires a
long Markov string and the Berger-Tung outer bound requirdy two short Markov strings [16], but their rate
and distortion expressions are the same.
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C. Lossless reconstruction at one decoder

Since decoder one has better quality side information, iteessonable for it to require a higher quality
reconstruction. Alternatively, from the point of view of iuarsal coding, when the encoder does not know
the quality of the side information, it might assume the dretjuality one exists at the decoder and aim to
reconstruct with a higher quality, comparing with the caseemthe poorer quality side information is available.
In the extreme case, decoder one might require a losslesssteaction. In this subsection, we consider the
setting where either decoder one or decoder two requirseksreconstruction. We have the following theorem.

Theorem3: If Dy = 0 with d(-,-) € Ty, or Dy = 0 with dy(-,-) € Ty (seel¥ forl'y), thenR(Dy, Dy) =
Rin(D1, D2). More precisely, for the former case,

R(0,D5) = |J {(Ri,Ra): Ry > H(X|V1), Ri+ Ry > I(X;Wa|Va)+ H(X|Y1,W3).}, (21)
PW2 (D2)
where Py, (D2) is the set of random variables satisfying the Markov stiifig<«> X < Y; <> Y5, and having a
deterministic functionfsy satisfyingEd( f2(Ws,Y2), X) < Ds. For the latter case,

R(D1,0)= |J {(Ri,Ro): Ry > I(X;Wi|Y1), Ri+ Ry > H(X|V2)}, (22)
PWl (Dl)
where Py, (D) is the set of random variables satisfying the Markov stiifig«> X < Y; + Y3, and having a
deterministic functionf; satisfyingEd(f1(W1,Y7), X) < D;s.

Proof of Theorem[® For D; = 0, let W; = X andV = W5. The achievable rate vector implied by Theorlem 1
is given by

Ry > H(X|Y1), Ri+ Ry > I(X;Ws|Ys) + H(X|Y1,Ws). (23)

It is seen that this rate region is tight by the converse opigteWolf coding for rateR;, and by [[8) of Heegard-
Berger coding for rate?; + Rs.
For D, =0, let W7 =V and W, = X. The achievable rate vector implied by Theoriem 1 is given by

Ry > I(X;Wh|Y1), Ri+ Ry > H(X|Ys). (24)

It is easily seen that this rate region is tight by the coreasWyner-Ziv coding for rate?;, and the converse
of Slepian-Wolf coding (or more precisely, Wyner-Ziv ratistdrtion function Rx|y, (0) with dz(-,-) € T'q as
given in [4]) for rate Ry + Rs. [ |

Zero distortion under a distortion measufec I'; can be interpreted al®ssless, however, it is a weaker
requirement than that the block error probability is agyity small. Neverthelessk(0, D2) and R(Dy,0) in
(21) and [[ZR) still provide valid outer bounds for the monengtent lossless definition. On the other hand, it is
rather straightforward to specialize the coding schemehese cases, and show that the same conclusion is true
for lossless coding in the this case. Thus we have the fatigweorollary.
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Corollary 3: The rate region, when the first stage, and respectively tbenskestage, requires lossless in terms
of arbitrary small block error probability is given bly_(21gspectively[(2R),

The key difference from the general case when both stagdessg is the elimination of the need to generate
one of codebooks using an auxiliary random variables, wkiofplifies the matter tremendously. For example
when D, = 0, since the first stage encoder guaranteesdhaand x are jointly typical, the second stage only
needs to construct a codebookmby binning the approximatelg’ (XI"1) sucha vector directly. Subsequently
the second stage encoder does not search for a vetttr be jointly typical with bothw; and«, but instead
just sends the bin index of the observed source vectdirectly. Alternatively, it can be understood as both the
encoder and decoder at the second stage have access to afsideiion vectorw;, and thus a conditional
Slepian-Wolf coding with decoder side informatiéh suffices.

D. Deterministic distortion measure

Another case of interest is when some functions of the solrée required to be reconstructed with arbitrary
small distortion in terms of Hamming distortion; see [17] fbe corresponding case for the multiple description
problem. More precisely, le®); : X — Z;, i = 1,2 be two deterministic functions and denafe = Q;(X).
Consider the case that decodeseeks to reconstruct; with arbitrarily small Hamming distortioni. The
achievable regiofR;,, is tight when the functions satisfy certain degradednesdition as stated in the following
theorem.

Theorem4: Let the distortion measure be Hamming distortityn : Z; x Z; — {0,1} for i =1, 2.

1) If there exists a deterministic functia’ : Z; — Z, such thatQ, = Q' - @1, thenR(0,0) = R;,(0,0).
More precisely

R(0,0) = {(Rl,Rg) Ry > H(Zl|Y1), Ri+ Ry > H(Z2|Y2) + H(Zl|Y122)} . (25)

2) If there exists a deterministic functia’ : Z, — Z; such thatQ; = Q' - Q2, thenR(0,0) = R;,,(0,0).
More precisely

R(0,0) = {(Rl,RQ) Ry > H(Zl|Y1), R+ Ry > H(Z2|Yé)} . (26)
Proof of Theorem[Z: To prove [25), first observe that by letting; = Z; andV = W, = Z,, R;,, clearly reduces
to the given expression. For the converse, we start from ther dooundR,,.(0,0), which implies that7; is a

function of Wy and Yy, and 7, is a function ofiW, and Ys. For the first stage rat&;, we have the following
chain of equalities

Ry > I(X;WhV) = I(X; Wi Z4|Y1) > I(X; Zi 1) = H(Z, Y1) — H(Z| X, Y1) = H(Z Y1), (27)

3By a similar argument as in the last subsection, the samét fresids if block error probability is made arbitrarily srhal
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For the sum rate, we have

Ri+ Ry > I(X;Ws|Ys)+ I(X; Wy |WaY7)

= I(X;WaZs|Ys) + I1(X; Wi [WaY7)

= I(X; Z2]Y2) + I(X; Wa|YaZy) + I(X; W [WaY1)
= H(Z:|Y2) + 1(X; Wa|YaZy) + I(X; W1 [WaY1)

Ve

H(Z5|Y2) + I(X; Wa|Y1YaZs) + 1(X; Wh|WoY7)

=

Z5|Y3) + I(X; Wa V1Y Zs) + I(X: Wy [WoY1Y5)

|
=

X; W2|Y1YéZQ) + I()(7 W1|W2Y1Y222)
X WiWa|Y1YaZs)

~ o~ o~ o~ o~

\Y
e

X; Z1|Y1YaZ5)

I
=

H(Z1|\Y1Y225)

—

c

= H

~

(
(Z2]Y2)
(Z2]Y2)
(Z2]Y2)
(Z2]Y2)
(Z2]Y2)
(Z2]Y2)
(Z2]Y2)

where (a) is due to the Markov strind,; <+ X «+ (Y1Y3) and Z; is function of X; (b) is due to the Markov
string (W1 W3) <» X < Y7 < Ys; (c) is due to the Markov stringZ;, Z5) <> Y7 < Ya.

Proof of part 2) (.e., (268) relationship) is straightforward and is omitted. [ |
Clearly in the converse proof, the requirement that the tions Q; and () are degraded is not needed.
Indeed this outer bound holds for any general functions,dvewthe degradedness is needed for establishing the
achievability of the region. If the coding is not necesgasitalable, then it can be seen the sum rate is indeed
achievable, and the result above can be used to establish-tivial special result in the context of the problem

treated by Heegard and Berger [7].
Corollary 4: Let the two function)); and(@- be arbitrary, and let the distortion measure be Hammin@udish
dp : Z; x Z; — {0,1} for i = 1,2, then we have

Rup(0,0) = H(Z2|Ys) + H(Z1|Y122). (28)

IV. PERFECTSCALABILITY AND A BINARY SOURCE

In this section we introduce the notion of perfect scalabilvhich is defined as when both the stages operate at
the Wyner-Ziv rates. We further examine the doubly symrnodtiary source and provide a partial characterization
and investigate its scalability. The quadratic Gaussiamcwith jointly Gaussian side informations is treated
in Section’V] in a more general setting.

A. Perfect Scalability

The notion of the (strict) successive refinability definefGhfor the SR-WZ problem with forward degradation
in the side-informations (Sl) can be applied to the revgrdelgraded case considered in this paper. This is done
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by introducing the notion of perfect scalability for the &lalable problem defined below.
Definition 3: A sourceX is said to beperfectly scalable for distortion pair(D;, D2), with side informations
under the Markov string{ <> Y7 «» Y5, if

(R}m (Dl),R}‘Yz(Dﬁ - R}m (D1)) € R(Dy, D3).

Theorem5: A sourceX with side informations under the Markov stridg <> Y7 « Y5, for which3 ¢, € )4
such thatPxy, (z,y1) > 0 for eachz € X, is perfectly scalable for distortion paiD;, D) if and only if there
exist random variable§V;, W5) and deterministic mapg; : W, x ; — X; such that the following conditions
hold simultaneously:

1) Ry, (D)) = I(X;W;]Y;) andEd; (X, f3(W1,Y)) < Dy, for j = 1,2.

2) W1 < Wy« X & Y] « Y, forms a Markov string.

3) The alphabeV; and W, satisfy |[W;| < |X|(|X| + 3) + 2, and|[Ws| < |X| + 3.

The Markov string is the most crucial condition, and the &g W, «+ W5 <> X is the same as one of the
condition for successive refinability without side infortiea [2][3]. The support condition essentially requires
the existence of a worst lettes in the alphabe®); such that it has non-zero probability mass for eéchy;)

pair, x € X.

Proof of Theorem[§

The sufficiency being trivial, we only prove the necessityithdut loss of generality, assum@y (z) > 0
for all x € X. By Theoreni 2, if(R}m (Dl),R}‘Yz(Dg) — Ry, (D) is achievable for(D,, D), then using
the tighter outer boun®,,:(D;, D2) of Theorem[2, there exist random variabilg, W in finite alphabet,
whose sizes is bounded &gV;| < |X|(|X| + 3) + 2 and [Ws| < |X| + 3, and functionsf, fo such that
(W1, W) > X < Y] & Yy is a Markov stringEd; (X, f;(W;,Y;)) < D; for j = 1,2 and

Ry, (D) = I(X5; Wi Y1), Ry, (D2) = I(X; Wa|Ya) + I(X; Wh|Yy, Wa). (29)
It follows
(a)
Ry, (D2) = I(X; Wa|Y2) + I(X; Wi [Yy, Wa) > I(X; WalY2) > Ry, (D2), (30)

where (a) follows the converse of rate-distortion theorem \Wyner-Ziv coding. Since the leftmost and the
rightmost quantities are the same, all the inequalitiestiefqualities in[(30), and it follows( X ; W1 |Y1, W5) =
0. Similarly we have

Ry, (D1) = I(X;Wh|Y1) = Ry, (D), (31)

thus [31) also holds with equality.

Notice that if W, + W5 <+ X is a Markov string, then we can use Corollaly 2 to claim thdiciehcy and
complete the proof. However, this Markov condition is nafetin general. This is where the support condition
is needed.
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For convenience, define the set
F(wy) ={zx € X : P(x,wy) > 0}. (32)

By the Markov string(1¥;, Ws) <> X < Y7, the joint distribution of(wy,ws, z, y1) can be factorized as follows
P(wy, w2, x,y1) = P(x,y1) P(wa|z) P(wi |z, ws). (33)

Furthermore,I(X; W1|Y;,Wsy) = 0 implies the Markov stringX <« (Ws,Y1) < Wi, and thus the joint
distribution of (wq, w9, x,y;) can also be factorized as follows

P(wi,ws,z,y1) = P(z,y1, w2)p(wi|yr, wa) @ P(z,y1)P(wa|x) P(w|y1, wa), (34)

where (a) follows by the Markov substring’s <+ X < Y1 < Y. Fix an arbitrary (w}, w3) pair, by the
assumption thaP(x,y;) > 0 for anyz € X, we have

P(wy|z)P(wi|z, wy) = P(ws|z)P(w|y1, wy) (35)
for anyx € X. Thus for anyz € F(w3) (see definition in[(32)) such thadt(w; |z, w?) is well defined, we have
p(wilyr, w3) = p(wi|z, wy) (36)

and it further implies

Z P(I’,’LUT,’LU;) ZmGF(w*)P(x7w§)P(wﬂylaw§)
* ¥\ T — 2 — * Y * * 37
p(wi|ws) zx P(m,wg) Z:{: P(ﬂc,wg) p(wily1, w3) = p(wi|z, w3) (37)

for any z € F(w3). This indeed implied?; <> W5 <+ X is a Markov string, which completes the proof. ®

B. The Doubly Symmetric Binary Source with Hamming Distortion Measure

Consider the following sourceX is a memoryless binary sourcé € {0,1} and P(X = 0) = 0.5. The first
stage side informatiof” can be taken as the output of a binary symmetric channel wjihtiX', and crossover
probability p < 0.5. The second stage does not have side information. This salearly satisfies the support
condition in Theoren5. It will be shown that for some distamtpairs, this source is perfectly scalable, while
for others this is not possible. We next first provide pantésults usingR,, and R previously given.

An explicit calculation of Ry (D1, D), together with the optimal forward test channel structwas given
in a recent work [6]. With this explicit calculation, it cam lshown that in the shaded region in Hiy. 3, the outer
boundR~ (D1, Ds) is in fact achievable (as well as in Region I, Ill and 1V; hoxee these three regions are
degenerate cases, and will be ignored in what follows). Réoa definition of the critical distortioni,. in the
Wyner-Ziv problem for the DSBS source in [4]

whereG(u) = hy(p * u) — hy(u), hy(u) is the binary entropy function,(u) = —ulogu — (1 — u)log(1 — u),
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1.0

Fig. 3. The partition of the distortion region, whetg is the critical distortion in [4] below which time sharing ®t necessary.

Y X W w.
—_— BSC > BSC Ly BSC 3

Fig. 4. The forward test channel in Region I-D. The crossgrebability for the BSC betweeX and W, is D;, while the crossover
probability  for the BSC betwee’; and W> is such thatD; « n = Ds.

andu = v is the binary convolution fof < u,v <1 asuxv = u(l —v) + v(l —u). It was shown in [4] that if
D <d,, thenR}‘Y(D) = G(D). We will use the following result from [6].
Theorem®6: For distortion pairgD;, D2) such thatd < Dy < 0.5 and0 < D; < min(d., D) (i.e., Region

I-D),

Ryp(D1,D2) =1 — hy(D2 *p) + G(Dy).

This result implies that for the shaded region I-D, the fawviest channel to achieve this lower bound is in
fact a cascade of two BSC channels depicted in[Big. 4. Thikcehwearly satisfies the condition in Corolldry 2
with the rates given by the outer boufith (D1, D2), which shows that this outer bound is indeed achievable.
Note the following inequality

RHB(Dl, DQ) =1-— hb(D2 *p) + hb(p * Dl) — hb(Dl) 2 1-— hb(Dg) = R(DQ), (38)

where the inequality is due to the monotonicity @fu) in 0 < u < 0.5, we conclude that in this regime the
source is not perfectly scalable.

To seeRn~ (D1, D9) is also achievable in region I-C, recall the result in [4]tthize optimal forward test
channel to achievé%_’gqy
BSC with crossover probability,. if D > d., or a single BSC with crossover probabilify otherwise. Thus it is

(D) has the following structure: it is the time-sharing betweerno-rate coding and a

straightforward to verify thaR~ (D1, D) is achievable by time sharing the two forward test chanmekig.[3;
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Y X Wz W]
— BSC > BSC > BSC >
(a)
Y X W,
— » BSC > BSC AN

(b)

Fig. 5. The forward test channels in Region I-C. The crosspwvebability for the BSC betweeX andW> is D- in both the channels,
while the crossover probability for the BSC betweenV, and W in (a) is such thatD, < Dy xn =7’ < d.. Note for (b),W; can be
taken as a constant.

©,D,)

out

0.1451 ! R
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0.135~

o 0.13F

0.1251

0.121-

0.115~

1 1
0'185.1 0.105 0.11 0.115 0.12 0.125

Fig. 6. The rate outer bounds for a particular choicelaf D- in Region I-B of Figurd B.

furthermore, an equivalent forward test channel can bedauth that the Markov conditioW] <> W5 «» X is
satisfied, which satisfies the conditions given in Theorénitas in this regime, the source is in fact perfectly
scalable.

Unfortunately, we were not able to find the complete charaeton for the regime I-A and I-B. Using
an approach similar to [6], an explicit outer bound can bavddrfrom R,,.(D;, D2). It can then be shown
numerically that for certain distortion pairs in this re@nR,.,. (D1, D2) is strictly tighter thanRn~(D1, D3).
This calculation can be found in [18] and is omitted here. Aarmaple is given in Fig.l6 for the two outer bounds
with a non-zero gap in between for a specific distortion paiRegion I-B.

V. A NEAR SUFFICIENCY RESULT

By using the tool of rate loss introduced by Zamir [14], whighs further developed in [15], [19]-[21], it
can be shown that when both the source and reconstructidvaladts are reals, and the distortion measure is
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\ | SRuut(Dl’D2)
RD.D) |4

\ Y \ R, (D,D,)
-

Achievable

Not achievab
=

TNIOs Rl
——1.0 bit —

0.5 bit

Fig. 7. An illustration of the gap between the inner bound #reouter bounds when MSE is the distortion measure. The égioms
Rin (D1, D2) and Rout (D1, D2) are given in dashed lines, since it is unknown whether theyiradeed the same.

MSE, the gap between the achievable region and the out baredsounded by a constant. Thus the inner and
outer bounds are nearly sufficient in the sense defined in bghow this result, we distinguish the two cases

Dy > Dy and D; < D,. The sourceX is assumed to have finite varianeé and finite (differential) entropy.
The result of this section is summarized in Hig. 7.

A. The case D1 > Dy

Construct two random variablg’] = X + N; + N» and W) = X + N, where N; and N, are zero mean

independent Gaussian random variables, independent oftewe else, with variancer? and o3 such that
o? + 03 = Dy ando} = D,. By letting V' = W, it is obvious that the following rates are achievable for
distortion (Dq, D) from TheorenilL

R1:I(X;X—|—N1+N2|Y1), R1+R2:I(X;X+N2|Yé). (39)

Let U be optimal random variable to achieve the Wyner-Ziv ratestodion D, given decoder side information
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Y7. Then it is clear that the difference betweBn and the Wyner-Ziv rate can be bounded as,

I(X; X 4+ N1+ No|Y1) — I(X;U|Y7)
WX X+ N+ No|UYY) — I(X; UYL X + Ny + Na)
< I(X;X 4 Ny + No|UYy)
= I(X —X;;X — X1+ Ny + N|UY)
< I(X —X,U,Y;; X — X1+ N, + Ny)
= I(X XX - X1+ N+ No)+I(U,Y1; X — X1+ Ny + No| X — X))
= I(X - X1i;X — X1 + N1 + N»)
(2 %1og2131%1)1:0.5 (40)

where (a) is by applying chain rule td(X; X + N; + No, U|Y7) in two different ways;(b) is true becausé(
is the decoding function givefl,Y}), the distortion betweetX and X7 is bounded byD:, and X — X, is
independent of Ny, Ns).

Now we turn to bound the gap for the sum rate + R,. Let W7 and W, be the two random variables to
achieve the rate distortion functioRy z(D1, D2). First notice the following two identities due to the Markov
string (W1, Ws) <+ X < Y] « Y5 and (N1, Ny) are independent ofX, Y7, Y3)

I(X; WalYe) + I(X; Wi [WaYr) = I(X;WiWa|Yy) + 1(Y1; WalYa) (41)
I(X; X + NolYs) = I(X; X 4+ No|Yr)+ 1(Y1; X + NofYs). (42)

Next we can bound the difference between the sum#ate R, (as given in[(3B)) and the Heegard-Berger sum
rate as follows.

I(X; X + No|Ys) — I[(X; WalYs) — I(X; W1 |[WaYh)
= {I(X;X + Nao|Y1) — I(X; Wi WalY1)} + {I(Y1; X + Na|Ya) — I(Y1; WalYa)}. (43)
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To bound the first bracket, notice that

I(X; X + No|Y1) — I(X; W1 W3 Y1)
I(X; X +N2‘W1W2Y1) — I(X;W1W2‘Y1,X+N2)

< I(X; X + No|[WiWaYr)

WX X 4 Ny W WY V)

= I(X — X2; X — Xy + Ny | W1 WoY1Ys)

< I(X = Xo, Wi, Wa, Y1, Y9 X — Xo + No)

I[(X — Xo; X — Xo + Ny) + I(Wy, Wa, Y1, Ya; X — Xo + No|X — Xy)

) . 1. Do+ D
IX—XQ;X—XQ—I—NQ)§§log2g:0.5 (44)

(
(
(
(
(
(
(
( 5

where (a) is due to the Markov strin@/;, Ws) «+» X + Y] + Yo, X5 is the decoding function give(iVs, Y),
and the other inequalities follow similar arguments as im.B5gQ0). To bound the second bracket, we write the
following

I(Y1; X 4+ No|Ys) — I(Yy; WhlYs)
= I(Y1; X 4+ No|W3Ys) — I(Y1; Wa|Ya, X + Ny)

(
< I(Y1; X + No|WaYs)
< I(XY1; X + No|WaYa)
= I(X; X + Na|]WaYs) < %logz D2DL2D2 =0.5 (45)

Thus we have shown that fdp; > D,, the gap between the outer bouRd (D1, D2) and the inner bound
Rin(D1, D2) is bounded. More precisely, the gap fBi is bounded by 0.5 bit, while the gap for the sum rate
is bounded by 1.0 bit.

B. The case D1 < Dy

Construct random variabl’| = X +N; andW; = X+ N; + N,, whereN; and N, are zero mean independent
Gaussian random variables, independent of everything wlise variances? and o3 such thato? = D; and
0? + 03 = Do. By letting V/ = W} = X + Ny + Ny, it is easily seen that the following rates are achievabie fo
distortion (D1, D)

Ry = I(X;X + Ni[11)
Ri+ Ry = I(X;X + Ny + No|Yo)+ I(X; X + Ni|Y1, X + Ny + No).

Clearly, the argument for the first stag® still holds with minor changes. To bound the sum-rate gagiceo
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the following identity

I(X; X + Ny + No|Ys) + I(X; X + N1|Y1, X + Ny + No)
= I(X;X—i—Nl—i—Ng‘Yl)—i-I(Yl;X—l-Nl+N2’Y2)+[(X;X+N1‘Y1,X+N1—l—Ng) (46)
= I(Y;; X + Ny + No|Ys) + I(X; X 4 N1|Y1). 47)

Next we seek to upper bound the following quantity

I(X; X 4+ Ny + No|Ya) + I(X; X + Ni|Y1, X + Ny + No) — I(X; Wa|Ya) — I(X; Wy |WaYr)
= {I(X; X + N1|Y1) = I(X; WiWa|Y1)} + {I(Y1; X + N1+ No|Ya) — I(Y1; WalY2)}, (48)

where agairiVy, W, are the R-D optimal random variables & 5(D1, D3). For the first bracket, we have

I(X; X + Ni|Y1) — I(X; W1 Wa Y1)
= I(X; X + N [WiWoY1) — I(X; Wy Wa|Y1, X + Ny)
< I(X; X + N [WiWeY7)
= I(X — X1; X — X1 + No|W WoY7)
< I(X — X1, Wy, Wy, Y1; X — X1 + Ny)
= I(X —X;X — X1+ Np) + I(Wy, Wo, Y13 X — X + N1 X — X))
= I(X —X;;X — X+ Ny)
< %nglD;lDl:o.a (49)

where X is the decoding function givefi’y,Y1). For the second bracket, following a similar approact a, (45
we have

I(Y1; X + Ny + Na|Y) — I(Yy; Wa|Ya)
I

IN

X: X+ Ny —l—Ng’Wng)

IN

I(X — X9, Wy, Yo; X — Xy + Ny + Ny)

Il
~

(
(
(
(X — X9: X — Xo+ Ny + Ny) <0.5

Thus we conclude that for both cases the gap between the lmugrd and the outer bound is bounded. Eig. 7
illustrates the inner bound and outer bounds, as well as dlpeirg between.

VI. THE QUADRATIC GAUSSIAN SOURCE WITHJOINTLY GAUSSIAN SIDE INFORMATIONS

The degraded side information assumption, eithier> Y7 + Y5 or X < Y, < Y7, for the quadratic jointly
Gaussian case is especially interesting, since physidayradedness and stochastic degradedness [22] do not
cause essential difference in terms of the rate-distorégion for the problem being considered [5]. Moreover,
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jointly Gaussian source-side information is always stiaadly degraded, these forwardly and reversely degraded
cases together provide a complete solution to the jointlysSean case with two decoders.

In this section we in fact consider a more general settindp @it arbitrary number of decoders for jointly
Gaussian source and multiple side informations. Thoughsthece and side informations can have arbitrary
correlation, in light of the discussion above, we will treatly physically degraded side informations. Note that
since a specific encoding order is specified, though the sidenhations are degraded as an unordered set, the
quality of side informations may not be monotonic along thelable coding order. Clearly the solution for the
two stage case can be reduced in a straightforward mannartfie general solution. Recall from Theoréim 2
(seeldB)) thaR~(Dy, D7) is an outer bound derived from the intersection of the He@arger and Wyner-Ziv
bounds. The generalization of the outer bodel(D;, D3) to N decoders plays an important role, and therefore
we take a detour in Sectidn VItA to start with the charaction of Ryp(D1, Ds,...,Dy) for the jointly
Gaussian case.

A. Ryp(D1,Ds,...,Dy) for the jointly Gaussian case

Consider the following sourc& ~ N (0,02), and side informations), = X+Zf:1 N;, whereN; ~ N(0,07)
are mutually independent and independenXofThe result by Heegard and Berger [7] gives

N

Ryg(Dy,Ds,....Dx) =  min I(X Wi Vi, Wi 1, Wisas -, W), 50
uB(D1, Ds N) p(DhD%---yDN)kZ:l( 11 Yies W1, W2 N) (50)

wherep(D1, D,, ..., Dy) is the set of all random variable with the Markov strifid’;, W, ..., Wy) <> X <
(Y1,Ys,....Yy), such that deterministic function (Yx, Wi, Wii1,...,Wn), k= 1,..., N exist which satisfy
the distortion constraints. In [6], the ca8é= 2 was calculated explicitly, however such an explicit cadtioin
appears quite involved for genersldue to the discussion of various cases when some of thetibisteonstraints
are not tight. In the sequel we approach the problem by shpavjnintly Gaussian forward test channel is optimal.

Note that if we choose to enforce only a subset of the distotbnstraints, the rate for such a restriction gives a
lower bound onRy (D1, D2, ..., Dy). By taking all the non-empty subsets of the distortion ciaists, labeled
by elements offy = {1,2,..., N}, a total of2"¥ — 1 lower bounds are available and clearly the maximum of
them is also a lower bound. More precisely, we are interestethx R}; 5 (Ap), whereAp C Iy and R}, 5(Ap)
is defined in the sequel explicitly in terms of the distortimonstraints only; note that if € Ap, D; is still the
distortion constraint for the decoder with side informatig. We next derive one of these lower bounds using
all the constraint Dy, Do, ..., Dy), i.e. Ap = Iy; a similar derivation applies to the case with any subset
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Ap C Iy. Using [B0) we have,

N
> I(X WiV, Wit Wiga, -, W)
k=1
= AW(X|Yyn) - hW(X|YIWN) — WX YN W) + (X |YN_1 W)

—h(X YN W) + .+ R(X W)
= h(X[Yn) - h(X1W)

—[R(X|YNWN) = B(X YN YNWR)] = . = [R(X[YaW5Y) — h(X[V1Ya W3]
= W(X|Yn) = R(XMW) = I(X; V-1 YN W)

—I(X;YN_o[YNaWH ) — . = I(X; Y1 Yo W)
2 h(X[Yw) - XYY

—[W(YN_1[YNWN) = h(YN_1|XYN)] — ... — [h(V1]Ya W) — h(Y1|Y2 X))

N N
= WXYN) + D (Va1 |XYe) = > h(YVia Vi) — h(X vy, W),
k=2 k=2
where (a) is because of the Markov striag <> (Yy_1W/) <> Y, and (b) is because of the Markov string
WY < (XYy) < Yi_1, both of which are consequences6f" «» X <+ Y1 <> Yj. The first two terms
depend only on the source and distributiBRy, ..y, , and we now seek to bound the latter two terms, for which
we have

X YIWTY) = h(X = E(X[YWM)[YWY) < h(X —E(X[YW)) < hN(0,D1)) = log<2weD1> (51)

where the second inequality is because Gaussian distiboteximizes the entropy for a given second moment,
andE(X — E(X|YW{V))? < D; by the existence of the decoding functign Next define

k—1 2
WD =L PP 2
Zz 10 z
and write the following
k—1 k—1 k k
Vo1 = X+ZN,-=X+ZNZ-+%ZN,-—W;€ZN¢ (53)
= X+ZN (1 =) X + ZN WZN (54)

k-1

= Y+ (1 —wX+D_Ni— %ZN (55)
i=1 i=1
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Notice that

k—1 k k

k—1
EVi(d Ni—w > Nl =Y of =% > oi =0, (56)
i=1 =1

=1 =1
andY;, and (Zf;ll N; — v Zle N;) are jointly Gaussian, which implies that they are independEurther-
more becausQZf:_f N; — Zle N;) is independent ofX, the Markov string(Y7,Ys,...Yy) « X «
(W1, Ws, ..., Wy) implies that it is also independent Of;, W, ..., Wy). It follows

k—1 k
WY |[VaWY) = h <7kYk +A=wWX+D> Ni—w Y Ni|YkW,§V> (57)
i=1 i=1
k—1 k
= h ((1 —Vk)XJrZNz—%ZNAYkWéV) (58)
i=1 i=1
k—1 k
= h ((1 —’Yk)(X—E(X\YkWéV))+2Ni—’}’kzNi’YkWév> (59)
i=1 i=1
k—1 k
< h ((1 — ) (X —E(X|VW) + >N — % ZM) . (60)
i=1 i=1
By the aforementioned independence relation, the variah¢erm in the bracket is bounded above by
A k—1
D= (1= )’ Dp+ (1= )* > o} + 9707 (61)
i=1
Define the following quantities
A 1 2rect
K, = h(X|Yy)=zlog ——FF— 62
1 ( ’ N) 20g0_923+27];\;10_i27 ( )
A 1 271'60']%
Ki = h(Ypa|XYy) =slog ——, k=2,3,...,N (63)
2 >z 07
Summarizing the bounds i (b1) arid60), we have
1 N K A,
Ryp(D1,Ds,...Dy) > = log HZJ;I = = Ry p(In), (64)
2 Hi:l D;

where for convenience we defide, = D;.

To show that max,,c(p, p,...py} Riyp(Ap) is indeed achievable, construct the random variables
(Wi, Ws,..., W) as follows. Assume thab, < E[X —E(X|Y})]? for eachk = 1,2,..., N, because otherwise
this distortion requirement can be ignored completely.

[Construction of (W}, W5, ..., W]

1) For eachk =1,2,..., N, determine the varianoﬁ%k of a Gaussian random variab. such thatD, =
E[X — E(X|Yy, X + Z)]%
2) Rank the variance of, in an increasing order, and let(k) denote the rank of? .
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2 _ 2 2 _ 2 2 _
3) Calculatesy, = 07 10y’ andoy, = 0% vy ™ T2 s, fork=2,3,...,N.
4) Construct a set of independent zero-mean Gaussian ramdoables(Z}, Z;, ..., Z};) to have variance
2
O-Z;c'
5) Construct a set of random variablgd’;', Wy, ..., Wy) as
w(k)
Wi=X+> 7 (65)
i=1
Next we show that this construction OfV;, W', ..., W) achieves one of aforementioned lower bounds and

thus is an optimal forward test channel. Choose thedset= {k : w(k) < w(y) for allj > k}, and denote the
rank (in increasing order) of its elemehtasr (k). Clearly by the construction we have

N
D TG Wi Y Wiy, Wikig, o, WR)
k=1

= > TG WY, Wiy, Wika, o, WR)
kEAT,
|AD|

= Z;I(X?W:w)‘yrlw +1)
=
= W XYoaqagy) = AW gag Y (a5)
FR(XNY -1 g ) Wi ag ) — XY= 4y - W4 -1)
o MXY )W) = MX Y ) Wi ()
= XY as ) — XY Wi )
(Yo g 0| Y ap )W g ) — PYr1ag -1 X Yo ag )]
= = [PV ) Yo )W) — R(Yma (1) [ X Y1)
= Ryp(AD)
because of the construction of#’;, Wy,...,Wy) and the fact that they are jointly Gaussian with
(X,Y1,Ys,...,YN). Thus, we have proved the following theorem.

Theorem7: The auxiliary random variableiW;, W5, ... W) constructed above achieves the minimum in
the Heegard and Berger rate distortion function for thetjpi@aussian source and side informations.

It is clear that we can determine the s&f, before constructingW;*, Wy, ..., Wy,) using the aforementioned
procedure, which can simplify the construction. Howeueg, ¢urrent construction has the advantage that 8gth
is almost individually determined byp;, and does not substantially depend on the other distortbmstcaints.
This will prove to be useful for the general scalable codingpbfem. It is worth noting that it seemingly requires
comparing2™ —1 values ofR}; 5 (Ap) to determineR (D1, Do, . . ., D2), however, from the forward calculation
we see that in facO(/N) complexity suffices.

This result can be interpreted using Hig. 8. On the horidoamtis, the N marks stand for theV random
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AYk
YN
N+ =
B B ,/”ykiﬁ
[ 1%72 S
\N;
j% |
Ri,j
5| %
2* ,/Kf’ 3
1 ,\
1 2 i N >
w .
o~ (k)

Fig. 8. An illustration of the sum-rate for the Gaussian case

variable(W;,l(l), W;,I(Q), ..

side informations(Y1,Ys,...,Yy). The random variable pair§¥y,Y;) are then the points of interest on the

.,W;,l(N)), and the on the vertical axis, th€ marks stand for théV levels of

plane, since if the:-th decoder hagY;, Wy) the desired distortion can be achieved; (g, Y}) pairs are in
one-to-one correspondence to thek), k) pairs. Next we associate the unit square below and to the afyh
each integer pointi, j) is associated with a rate of value

Rij=I(Wy(); Yj-1[YiWe-13i41)) (66)

where we definéV,, . (y1) = 0, andYy = X. For eachk = 1,2,..., N, if we cover the rectangle below and
to the right of (w(k), k), then the sum rate associated with the covered area is eXagth (D1, D2, ..., Dn).

With Fig. [, the coding scheme can be understood as followg. doding proceeds frony to Y7, i.e,
from high to low on the vertical axis; the-th step g-th decoder) specifies an integer poiat(k), k), which
corresponds to @y, Yy) pair, on the figure, and additional rate is required if theadvelow and to the right
of this point induces new area to cover. This order is ilatsd in Fig[8 along the arrows. Note that

k k
> Rij = Y I(Wami(0); Vi1l VW41 (67)
j=1 j=1
k
= Z[I(Ww*(i);Y3—1|Ww*1(i+1)) - I(Wwfl(i);YHWw*l(i-l-l))] (68)
j=1
= I(Wwfl(i);X|Ww71(i+1)) - I(Wwfl(i);YHWw*l(i—i-l))] (69)
= I(Ww—l (2), X’Yka—l(i+1)), (70)
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and it is the rate for a vertical slice of higlt between horizontal position andi + 1, which is in a quite
similar form as [(66). In this example figure, the decoderswgite informationYy_3 and Y3 do not require
additional rates. More generally, {fv(k), k) is inside the area already covered by the previous codings ste
(N,N —1,...,k+1), then this stage does not require additional rates. In faetcorners of the final covered
area specifies the set},.

The following observations are essential for the generalsSian scalable coding problem: each unit square
in Fig.[8 is not merely associated with raf ;, it is in fact associated with a fraction of codg ; with the
following properties

1) The rate ofC; ; is (asymptotically)R; ;;

2) If the fractions of code associated with the area belowtarttie right of (w(k), k) are available, then the
decoder with side informatiolr;, can decode within distortio®,;

3) The same set of codg; ; can be used to fulfill only subset of the constraints, the caleulated by the
covering area method is the quadratic Gaussian Heegard emggBrate distortion function.

The first and second observations are straightforward bgtoaeting the nested binning together with conditional

codebooks as described in Sectiod lille., N — 1 conditioning stage fronW:,l(l) to W* and each

w=(N)
conditioned codebook ha¥ nested levels from coarse fdf; to fine for Yy. In fact, it is not necessary to
use N nested level for each codebook, but we do so for simplicityraderstanding. The last property is due to

the inherent Markov string amonid’;, W5, ..., Wy and X.

B. Scalable coding with joint Gaussian side informations

Now consider the scalable coding problem where side infooms and distortions are given by a permutation
7(-) of that in the last subsectiong,, Y/ = Y, ;) and D; = D, ;). We next show that the identically permuted
set of random variableW, Wy, ..., W3) achieves the Heegard-Berger rate distortion function for farst &
stages, thus optimal. In light of pictorial interpretationFig.[8, this reduces to rearranging the coded stream of
C; ;- Fig.[9 shows the effect of changing the scalable codingrorde

More precisely, for a certain side informatidff = Y ;), define the following sets:

Ck) = {n(i):i<k,n(i) > n(k)} (71)
E_(k) = {n(i):i<k,n()<n(k),w(n(i)) >wm(k))}, (72)

and the following function
E(k) =max [{n(i) :i < k,w(i) < 7(k),w(n(i)) < w(mw(k))} U{0}], (73)

and letYy, = X. Let the set of integer&_(k) be ordered increasingly, and the rank of its elemgbe r(j).
Denote the set of random variablgl’; : j € C} as W/ for an integer seC. The following k-th stage rate is
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3.
»
s

w

o' (k)

Fig. 9. An illustration of incremental rate for scalable twd The denser shaded region gives the incremental Ratéor the stage
with side informationY’,.

achievable fork = 1,2,..., N

|E- (k)|
R = 3 IV Wi Wat Wi oy sy Wi o W)
i=1

L (YE@): W Ve WE_ 1o Wem))-
It is clearly this rate corresponds to exactly the denseethaelgion in FigL B, which is the sum of rates of fraction
of codesC(i, j) as described above. The property of this fraction codg j) thus implies the following.

Theorem8: The Gaussian scalable coding achievable rate region fortorie  vector

(Dr(1)s Dr2ys - - s Dr(ay) is the rate vector§Ry, Ry, ..., Ry) satisfies

k
> Ri > Rup(Dy(1), Days - Dagry)s k=1,2,..,N (74)
=1
where the side informations ar€7 (1), Yx(2),- - -, Yr(x))- Furthermore, it is achievable by a jointly Gaussian

codebook with nested binning.

An immediate consequence of this result is the followingotiary.

Corollary 5: A distortion vector (D 1y, D2y, ---, Dr(ny) is perfectly scalable along side informations
(Ye), Yr@),- - Yey) for the jointly Gaussian source if and only iRyp(Dray, Dr)s - Drgy) =
Rjﬂyﬂ(k)(Dw(k)) for eachk =1,2,...,N.

This corollary applies to one of the important special cagesreD; = Dy = ... = Dy andn(k) = N—k+1
for eachk, i.e, when all the decoders have the same distortion requireraedtthe scalable order is along a
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decreasing order of side information quality. This implieat at least for the Gaussian case, an opportunistic
coding strategy does exist when the distortion requirengetite same for all the users.

VIlI. CONCLUSION

We studied the problem of scalable source coding with reledegraded side-information and gave two inner
bounds as well as two outer bounds. These bounds are tiglspéaial cases such as one lossless decoder and
under certain deterministic distortion measures. Funtioee we provided a complete solution to the Gaussian
source with quadratic distortion measure with any numbgoiotly Gaussian side informations. The problem of
perfect scalability is investigated and the gap betweerirther and outer bounds are shown to be bounded. For
the doubly symmetric binary source with Hamming distortiare provided partial results of the rate-distortion
region. The result illustrates the difference between tissless and the lossy source coding: though a universal
approach exists with uncertain side informations at theodecfor the lossless case, such uncertainty generally
causes loss of performance in the lossy case.

APPENDIX |
NOTATION AND BASIC PROPERTIES OFTYPICAL SEQUENCES

We will follow the definition of typicality in [11], but use alightly different notation to make the small
positive quantityd explicit (see [5]).
Definition 4: A sequencer € X" is said to bej-strongly-typical with respect to a distributiafiy (z) on X

1) For alla € X with Px(a) >0

%N(a]a:) — Px(a)| <6, (75)

2) For alla € X with Px(a) =0, N(a|z)=0,
whereN (a|x) is the number of occurrences of the symbah the sequence. The set of sequencesc A" that
is §-strongly-typical is called thé-strongly-typical set and denoted ig(], where the dimension is dropped.
The following properties are well-known and will be used e fproof:

1) Given ax € T[‘f)q, for ay whose component is drawn i.i.d according®p and anys’ > ¢, we have
27N < Pl(a,y) € Ty < 277N (76)

where \; is a small positive quantitp; — 0 asn — oo and bothd, 5’ — 0.
2) Similarly, given(z,y) € Tgm, for any §” > ¢, let the component of be drawn i.i.d according to the
conditional marginalP, |y, (y;), then

5//
Tixy g

where )\, is a small positive quantitp, — 0 asn — oo and bothd’, 6" — 0.
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3) Markov Lemma [16]: If X < Y <« Z is a Markov string, andX andY are such that their component is
drawn independently according #yy . Then for allé > 0

. Vs
lim P[(X,z) € TR (Y, 2) € Th ] = 1. (78)
furthermore,
lim P[(X,Y,z) € Ty |(Y,2) € Ty — 1. (79)
APPENDIX I
PROOF OFTHEOREM[]]
Codebook generation: Let a probability distribution Py, w,xviyv. = Pxvw,w,Py,xPy,|y,, and two

reconstruction functiong; (Y1, 1) and fo(Ys, W3) be given. First constru@*/*+ coarser bins angi*?*+ % finer
bins, whereR 4, and R/, are to be specified later. Generat& length codewords according tBy (-), denote this
set of codewords &5,; assign each of them into one of the finer bins independdfdlyeach codeword € C,,
generate2"*w: length» codewords according t@yw, v (wilv) = [[;—; Pw, v (wixlvk), denote this set of
codewords asyy, (v); independently assign each codeword to one oRtHe bins. Again for each/ codeword,
independently genera@/*w: length.» codewords according &y, v (wa|v) = [1,_; Pw,v(wak|vx), denote
this set of codewords ady, (v); independently assign each codeword to one of 2t bins. Reveal this
codebook to the encoders and decoders.

Encoding: For a givenz, find in C, a codewordv* such that(x, v*) € T[Z)‘gv}; calculate the coarser bin index
i(v*), and the finer bin index within the coarser bjfw*). Then in theC,, (v*) codebook, find a codeword
w7 such that(wj, v*, z*) € T[?I’?/ V)’

a codewordw; such that(ws, v*,z) € Tj0, | ¢,

encoder sendsandk, and the second-stage encoder sehdad!. In the above procedure, if there is more than

and calculate its corresponding bin indexIn C,, (v*) codebook, find
and calculate its corresponding bin indexThe first-stage

one joint-typical sequence, choose the least; if there ienohoose a default codeword and declare an error.
Decoding: The first stage decoder findsin the coarser bin, such that(v,y1) € Tf{/‘);‘f then in theC,, (v)
[‘;IVX"}SY] In the second stage, the decoder firdm the finer bin

then in theC,,(v) codebook, findw, such that(wsz,v,y2) €

codebook, findw; such that(wq,v,y1) €

T3S
Ty,
In the above procedure, if there is none or there are moredhe, an error is declared and the decoding

specified by(i, j) such that(v,y2) €
Al
(WaVYa]®

stops. The first decoder reconstructsiag = fi (w1, y1,;) and the second decoder @as;, = fao(wW2 k. Y2.k)-
Probability of error: First define the encoding errors:

By = {X ¢ Tqu{va ¢ T,y U{Ya ¢ T3}

E, = Ejn{VYv e, (X,v) ¢ [XV}

By = E§NE{N{Vw; € Cy, (v"), (w1,v*, X) ¢ T,y x}
Es = E;NEfn{Vws € Cy,(v"), (wa,v", X) ¢TW2VX}}-
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Next define the decoding errors:
E4 = Eg N Ef N {(’U*, Xv Yl) ¢ T[%};XYI}}
Es = Eg N Ef N {(U*7 X, Y2) gé T[%EXYQ}
Es = ESNESN{IW £v:i(v) =i(v*) and (v, Y1) € TAIEP}

(VY1)
Br = E§NE;N {30 £0v" 1 i(v)) = i(v") and j(v') = j(v*) and (v', Y2) € Ty}
Es = EGNE{NESNE;NEgN{(w},v*, X, Y1) & T,y xv )
By = EGNE{NESNESNE;N{(w}v*, X,Y2) & T,y xy,)
By = E§NES0ESNES N BN {3w] # wi: l(w)) = (w}) and (w},v*, Y1) € Ty}
By = E§OES0ESNES 0 BN 3w} # wy : (w)) = [(w}) and (wh, v*, Yz) € Ty}
Apparently, for anye’, for n > ny(€¢,0), P(Ey) < €. We have also
P(By) < P(X €Ti)P{Vvel, (X,v)¢TH X €Ty
< Z Px(m)(l _ 2—n(I(X;V)+)\))nR1
TEeTy,
< exp(—2 MVIRASRY), (80)

where Property 1) of the typical sequences &hd- z)¥ < e *¥ are used. Thu’(E;) — 0, provided that
Ry > I(X;V)+ A

P(E,) and P(Es) both tends to zero due to the Markov lemma; it requires thalition (v*, X)) € T[%EX]
to hold, which is indeed so givef; does not happen. Similarly, botR(Eg) and P(Ey) tends to zero for the
same reason. Notice that(®*, X,Y7) € T[%EXYI], then (v*, Y1) € T[?{l);f
there is no other codewords in the same bin satisfying thedlity test.

Conditioned onE¢, we have(X,v) € T[%?V}- Thus

thusv™ can be correctly decoded if

P(Ey) < Z Pr(z,v)(1 — 2 nIXEWAV)+HA) yn ke
(m,v)eTf;gv]

< exp(_2—n(I(X;W1\V)+A2—R2)) (81)

where property 2) of the typical sequences is used. THUs;) tends to zero provide®yy, > I(X;W1|V)+ A;.
Similarly P(EY) tends to zero provide®yy, > I(X; Wa|V) + Aq.

Conditioned onE¢, y; € T?

Vi) since codeword i, are generated independently according’tg(-)

P(EG) S Z 2—nRA2—n(I(Y1§V)_)‘1)
gn(Ry —Ra—I(Y1:V)+A1) (82)

where we have used property 2) of the typical sequences arfd¢hthe bin to whichs is assigned is independent.
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Thus P(Es) — 0 provided thatR4 > Ry — I(Y1;V) + As. Similarly P(E7) — 0 provided thatR4 + R/, >
Ry — I(Y9; V) + Ay

Conditioned onEY, (v*,Y7) € T2YP Thus

(VY]
P(BEy) < 2nBwignReg-n(I(YiWi[V)=Xs)

on(Rw, —Rp—1(Yi;Wi|V)+Xs) (83)

where property 3) of the typical sequences is used. TRUE;,) tends to zero providedRig > Ry, —
I(Y1; Wh|V') 4+ Xs. Similarly, P(E;;) tends to zero providedkc > Ry, — I(Ya; Wa|V) + X¢. Thus the rates
only need to satisfy

Ry = R+ Rp > I(X; VW |Yy) + X (84)
Ry+ Ry =Ry+ R, + Rp+ Re > I(X; VW |Ys) + I(X; Wy [VY;) + N (85)

where\ and \” are both small positive quantities and vanishhas 0 andn — oo; then P, < Zilio P(E;) —

0. It only remains to show that the distortions constraints satisfied as well. When no error occurs, then
- 3|V|5 - 3|V|6
(Wi, X, Y1) € TR, and (W, X, Y3) € Ty

sequences, it can be shown that

By standard argument using the definition of the typical

d(w, #1) < Ed[X, f1(W1,Y1)] + € (86)

where e’ = max(d(z,z))(3]V x Wy x X x Y1|d + P.). Thus the distortion can be made arbitrarily small by
choosing sufficiently smalf and sufficiently large:. Similar arguments holds for the second stage decoder. This
completes the proof. |

APPENDIX I
PROOF OF THETHEOREM[Z

Assume the existence 6f, My, M,, D1, D2) RD Sl-scalable code, there exist encoding and decodindifursc
¢; andy; for 1 = 1,2. Denoteg;(X") asT;. X, will be used to denote the vectoX, Xo,..., X;_1) andX;r
to denote( Xy 1, Xgio,...,Xy); the subscript will be dropped when it is clear from the context. The proof
follows the same line as the converse proof in [7]. The foltaychain of inequalities is standard (see page 440



of [22]). Here we omit the small positive quantityfor simplicity.

nRy > H(D)>HT|Y1) =1(X;T1[Y1) =Y I(Xg;Ti[Y1 X))

k=1
n

= Y H(XyViXy) - HX T Y1 X))

k=1
n

= Y H(Xy|Yip) — HXG D1 X))
=1

Sl

> ) I(XpThYy Yo [Ya).
k=1

Next we bound the sum rate as follows
TL(Rl + Rg) > H(TlTQ) > H(T1T2|Y§) = I(X7T1T2|Y2)
= I(X, T1T2Y1 |Y§) — I()(7 Y1 |T1T2Y2)
= ) (X LY [Y2X ") - I(X; Y[ T1 T2 YaY, )],

k=1

Since (X}, Ys ;) is independent ofX~,Y, ,Y;"), we have
[(Xp; oY1 | Y2 X 7) = (X TiToYa Yy Yy X7 |Yay) > [(Xp; TiTaYa Yy Yo |Yoi)
The Markov conditionY; ; <+ (X, Ya) ¢ (X~ XtTITRY, Y, Yy') gives
I(X; Y1, Y2Y, ) = 1( X Yk | IRY2Y, ).
Thus we have

n(Ri+Ry) > Y [[(XpTY1Yy Yy [Yaor) — I(Xp; Yy VT Y2Y, )]

M+ 1M-

[I(XM TIT2Y1_Y2_Y2+ |YZk) + I(Xk§ Y1+|T1T2Y5Y1_5/1,k)]-
k=1

The degradedness givés ;, <> Y1 i, <> (X, 1175, Yl_Yz_Y2+), which implies

n

n(Ri+Ry) > Y [I(Xg;ThTYy Yo' Yy [Vou) + I(Xp YT IR Y, YT Yy Vi)

k=1

Define W, ;, = (1Y, Y;") andWyy, = (T1T2Y, Y, Y, ), by which we have

nRy > Z I(Xpe; W kY k)

k=1
n

n(Ri+Ry) > ) [I(Xe; WoglYau) + T(Xe; Wik Wa Y1 p)].
=1
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(87)

(88)

(89)

(90)

(91)

(92)

(93)
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Therefore the Markov conditioGiV; j,, W i) <+ Xi < Y1 <> Yy is true. Next introduce the time sharing
random variable?), which is independent of the multisource, and uniformiytribsited overl,,. DefineW; =
(W;.0,Q), j =1,2. The existence of functiorf; follows by defining

JiVL, Y1) = 1 g(o1(X), Y1) (94)
fo(Wa,Ya) = 4o g(p1(X),d2(X),Y2) (95)

which leads the fulfillment of the distortion constraintsohly remains to show both the bound can be written

in single letter form inWy, W5, which is straightforward following the approach in (padg&s4of) [22]. This
completes the proof foR (D1, D) 2 R(Dy, D3). [ ]
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