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Abstract— We consider the problem of reconstructing a
discrete-time continuous-amplitude signal corrupted by a known
memoryless channel with a general output alphabet. We develop
a sequence of denoisers that asymptotically achieve optimum
performance in a semi-stochastic setting of an unknown indi-
vidual noiseless signal, where the quality of reconstruction is
measured with respect to a general given loss function satisfying
mild conditions. We also extend this to the fully stochastic setting
and show that our denoiser is asymptotically optimal for any
stationary noiseless source. We conclude with some experimental
validations of the proposed theory.

I. INTRODUCTION

Consider the problem of estimating the clean signal
{Xt}t∈T, Xt ∈ [a, b] ⊂ R, from its noisy observations
{Zt}t∈T, Zt ∈ R, where {Zt} is the output of a memoryless
channel whose input is {Xt}. This problem finds applications
in areas ranging from engineering, cryptography, astronomy
to bioinformatics. There is significant literature on particular
instantiations of this problem, for example, where the noise
corruption (channel) is additive in nature and has a specific
form of the distribution function, most notably Gaussian (cf.
[1], [2] and references therein). Recently, universal denoising
for discrete signals and channels was considered in [3]. The
results of [3], and the denoising scheme DUDE suggested
therein, although attractive theoretically, are restricted in their
practicality to problems with small alphabets. This is a result
of computational issues involved with collecting higher-order
statistics from the noisy data, mapping an estimated channel
input distribution to an estimated channel output distribution,
and statistical issues having to do with count statistics that
are too sparse to be reliable for even moderately large al-
phabets sizes. This leaves open challenges in the application
of DUDE to problems like gray-scale image denoising. The
problem was further extended to the discrete-valued input and
general output alphabet setting in [4]. This approach proposes
quantization of the output alphabet space and proceeds on
an approach similar to that in [3], showing that there is no
essential loss of optimality in quantizing the channel output
before denoising. In spite of its theoretical elegance, this
approach faces similar issues as the scheme of [3], limiting its
scope of applications to small channel input alphabets. More
recently, a modified DUDE, using ideas from lossless image
compression, was presented in [5]. As discussed in that work,
in spite of circumventing some of the computational issues

mentioned above, the approach leaves room for improvement
in the denoising performance.

Recent developments in universal denoising have also been
reported in [2]. Their approach is based on local smoothing
methods that make assumptions on the underlying structure
of the data which are more relevant in image denoising due
to inherent redundancy in natural images. The consistency
results showed the convergence of the denoising rule to the
conditional expected value of the clean symbol given the
noisy neighborhood sans the noisy symbol being denoised.
There is potential to improve this result by incorporating
the information from the noisy pixel that is being denoised
too, an approach at the heart of the denoisers we present
below. We establish the universal optimality of the suggested
denoisers in a generality that applies to arbitrarily distributed
noiseless signals, arbitrary memoryless channels, and arbitrary
loss functions (with some benign regularity conditions).

The remainder of the paper is organized as follows. In
section II, we discuss the problem setup and notations. This
is followed by a description of some technical results that are
key to the construction of the denoisers and their performance
analysis in Section III. Section IV details the construction and
performance guarantees for our suggested universal “symbol
by symbol” denoiser. Section V is devoted to extending the
ideas to the construction of a sliding window context-aided
denoiser and detailing a few of its theoretical performance
guarantees implying its universal asymptotic optimality. Sec-
tion VI briefly mentions some promising preliminary experi-
mental results. Proofs and associated details for the theorems
and lemmas, as well as additional theoretical and experimental
results, are given in [6].

II. PROBLEM SETTING AND NOTATIONS

Let x = (x1, x2, · · · ) be the individual noise-free source
signal with components taking values in [a, b] ⊂ R and Y =
(Y1, Y2, · · · ), Yi ∈ R be the corresponding noisy observations,
also referred to as the output of the channel (corruption
source). The channel considered here is memoryless, specified
by a family of distribution functions C = {FY |x}x∈[a,b], where
FY |x denotes the distribution of the channel output symbol
when the input symbol is x. We assume the associated family
of measures Υ = {µx}x∈[a,b] to be tight in the sense that
supx∈[a,b] µx([−T, T ]c) → 0 as T → ∞.
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An n-block denoiser is a measurable mapping taking R
n

into [a, b]n. We assume a loss function Λ : [a, b]2 → [0,∞)
and denote the normalized cumulative loss of an n-block
denoiser X̂n by

LX̂n(xn, yn) =
1
n

n∑
i=1

Λ(xi, X̂
n(yn)[i]) (1)

where X̂n(yn)[i] denotes the i-th component of X̂n(yn). We
denote Λmax = supx,y∈[a,b] Λ(x, y), and assume Λmax < ∞.
Denote F [a,b] to be the set of all probability distribution
functions with support contained in the interval [a, b]. For
F ∈ F [a,b], we let

U(F ) = min
x̂∈[a,b]

∫
x∈[a,b]

Λ(x, x̂)dF (x) (2)

denote its ‘Bayes envelope’ (our assumptions below on the
loss function will imply existence of the minimum). Define
the symbol-by-symbol minimum loss of xn by

D(xn) = min
g

E

[
1
n

n∑
i=1

Λ(xi, g(Yi))

]
(3)

where the minimum is over all measurable maps g : R →
[a, b]. For xn ∈ [a, b]n define

Fxn(x) =
|{1 ≤ i ≤ n : xi ≤ x}|

n
, (4)

i.e., the CDF associated with the empirical distribution of
xn. For simplicity we also assume henceforth that FY |x is
absolutely continuous ∀x ∈ [a, b], letting fY |x denote the
associated density w.r.t Lebesgue measure. Note that D(xn)
can be expressed as

D(xn) = min
g

∫
[a,b]

ExΛ(x, g(Y ))dFXn(x) (5)

where Ex denotes expectation when the underlying clean
symbol is x, the expectation being over the channel noise

ExΛ(x, g(Y )) =
∫

Λ(x, g(y))fY |x(y)dy (6)

For F ∈ F [a,b], let F ⊗ C and EF⊗C denote, respectively,
distribution and expectation when the channel input X ∼ F
and Y is the channel output. So that,

EF⊗CΛ(X, g(Y )) =
∫

[a,b]

ExΛ(x, g(Y ))dF (x) (7)

=
∫ b

a

[∫
R

Λ(x, g(y))fY |x(y)dy

]
dF (x)

Letting [F ⊗ C]X|y denote the conditional distribution of X
given Y = y under F ⊗ C (which can be obtained explicitly
given F and C), we have

min
g

EF⊗CΛ(X, g(Y )) = EF⊗CU
(
[F ⊗ C]X|Y

)
(8)

with U denoting the Bayes envelope as defined above, and
where the minimum is attained by the Bayes response to [F ⊗
C]X|y , namely,

gopt[F ](y) = arg min
x̂∈[a,b]

∫
[a,b]

Λ(x, x̂)d[F ⊗ C]X|y(x) (9)

Note that from (5), (6) and (7) we have

D(xn) = min
g

EFxn⊗CΛ(X, g(Y )) (10)

where Fxn was defined in equation (4) and the minimum is
attained by gopt [Fxn ]

III. TOWARDS CONSTRUCTION OF DENOISER

Fxn and, hence, gopt[Fxn ] are not known to an observer
of the noisy sequence, Y n. The first order of business is to
estimate the input empirical distribution from the observable
noisy sequence and knowledge of the channel. We approach
this problem by first estimating a function that tracks the
evolution of the “average” density function according to which
the output symbols are distributed. This, for the case of a
sequence of a finite length amounts to estimating the density
function according to which the sequence of output noisy
symbols are distributed. For an input sequence xn, given the
memoryless nature of the channel, the output symbols will be
distributed as {FY |x1 , · · · , FY |xn

} and have the corresponding
density functions, {fY |x1 , · · · , fY |xn

}. The function we are
interested in estimating is

1
n

n∑
i=1

fY |xi
(y). (11)

Once we have an estimate fn
Y = fn

Y [Y n] for this function, we
use it to estimate the input empirical distribution by

F̂xn [Y n] = arg min
F∈F [a,b]

n

d

⎛
⎜⎜⎜⎝fn

Y ,

∫
fY |xdF (x)︸ ︷︷ ︸
[F⊗C]Y

⎞
⎟⎟⎟⎠ (12)

where [F ⊗C]Y denotes the marginal of the output symbol Y

under the distribution F ⊗C described earlier. F [a,b]
n ⊆ F [a,b]

denotes the set of empirical distributions induced by n-tuples
with [a, b]-valued components where every member, F (x), of
F [a,b]

n is of the form

F (x) =
1
n

n∑
i=1

1(x≤xi) (13)

where, xn = {x1, x2, · · · , xn}, is the [a, b]-valued n-tuple.
The definition for the norm, d, is

d (f, g) =
∫

|f(y) − g(y)| dy (14)
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A. Density Estimation for independent and non identically
distributed random variables

Towards our first order of business, which is to estimate
F̂xn , we estimate the function in (11). Given the memory-
less nature of the channel, the sequence of output symbols,
Y1, Y2, · · · , Yn are independent random variables taking values
in R and have conditional densities, fY |x1 , fY |x2 , · · · , fY |xn

respectively. A density estimate is a sequence f1, f2, · · · , fn,
where for each n, fn

Y (y) = fn(y; Y1, · · · , Yn) is a real-valued
Borel measurable function of its arguments, and for fixed n,
fn

Y is a density estimate on R. The kernel estimate is given
by

fn
Y (y) =

1
nh

n∑
i=1

K

(
y − Yi

h

)
(15)

where h = hn is a sequence of positive numbers and K is a
Borel measurable function satisfying K ≥ 0,

∫
K = 1. The

L1 distance, Jn, is defined as

Jn =
∫ ∣∣∣∣∣fn

Y (y) − 1
n

n∑
i=0

fY |xi
(y)

∣∣∣∣∣ dy (16)

A result very similar to that in [7] is elaborated here, viz., for
the kernel estimate, all types of convergence of Jn to 0 are
equivalent. The choice of L1 distance, as elaborated in [7], is
motivated by its invariance under monotone transformations of
the coordinate axes and the fact that it is always well-defined.

Theorem 1: Let K be a nonnegative Borel measurable
function on R with

∫
K = 1 of class 2 ≤ s ≤ 3 (refer to

[8] for class definitions). Consider
1) Jn → 0 in probability as n → ∞, for some sequence

xn

2) Jn → 0 in probability as n → ∞, for all sequences xn

3) Jn → 0 almost surely as n → ∞, for all sequences xn

4) For all ε > 0, there exist r, n0 > 0 such that P (Jn ≥
ε) ≤ e−rn, n ≥ n0, all sequences xn.

5) limn→∞ h = 0, limn→∞ nh = ∞

It is then true that 5 ⇒ 4 ⇒ 3 ⇒ 2 ⇒ 1.

B. Channel Inversion

The mapping in equation (12) projects the kernel estimate at
the output of the channel to an estimate of the input empirical
distribution. This projection is such that it best approximates
(in the L1 sense), the kernel density estimate with a member
in the set of achievable output distributions.

For the mapping defined in equation (12),

Lemma 1: As Jn → 0, d([Fxn ⊗ C]Y ,
[
F̂xn ⊗ C

]
Y

) → 0
a.s.

Definition 1 (Levy metric): The Levy distance λ (F,G) be-
tween any two distributions F and G is defined as

λ (F,G) = inf{ε > 0 : F (x−ε)−ε ≤ G(x) ≤ F (x+ε)+ε for all x}

Definition 2 (Prohorov metric): For any two laws P and Q
on S, f : S → R let

∫
fd (P − Q) :=

∫
fdP − ∫

fdQ, for
bounded

∫
fdP and

∫
fdQ, the Prohorov metric is defined as

β (P,Q) := sup
{∣∣∣∣

∫
fd (P − Q)

∣∣∣∣ :‖ f ‖BL≤ 1
}

where
‖ f ‖BL=‖ f ‖L + ‖ f ‖∞ (17)

and

‖ f ‖L=:= sup
x�=y

|f(x) − f(y)|
d(x, y)

, ‖ f ‖∞= sup
x

|f(x)|
(18)

Lemma 2: For the channel, C, define

ε∆(y) = sup
x∈[a,b]

sup
x̂∈[a,b]

|x−x̂|≤∆

∣∣fY |x(y) − fY |x̂(y)
∣∣ (19)

and suppose that the channel satisfies the following two
conditions

1) lim∆→0 ε∆(y) = 0, ∀ y
2) The set of densities {fY |x}x∈[a,b] is a set of linearly

independent functions in L1(µ)
If, for distributions F and G, d([F ⊗ C]Y , [G ⊗ C]Y ) → 0
then, λ (F,G) → 0.

Thus for a channel, C,

1) whose associated measures are both, tight and absolutely
continuous

2) that satisfies the continuity conditions in Lemma 2

and mapping defined in equation (12) we have,
λ

(
Fxn , F̂xn

)
→ 0

C. Distribution-independent Approximation of the Estimate of
the Input empirical distribution

We develop a distribution-independent approximation of
the input empirical distribution, F̂xn [Y n]. We begin by
defining some new quantities. For ∆ > 0, if b−a

∆ ∈
Z

+, consider a family of vectors, F∆ = {P∆: P∆ =(
P (a0), P (a1), · · · , P (aN(∆))

)}, N(∆) = (b−a)
∆ ,A = {ai =

a + i∆, i = 0, · · · , N(∆)},∑N(∆)
i=1 P (ai) = 1 else, de-

fine the family of vectors as F∆ = {P∆: P∆ =(
P (a0), P (a1), · · · , P (aN(∆)−1), P (aN(∆))

)}, N(∆)− 1 =

 (b−a)

∆ �,A = {ai = a + i∆, i = 0, · · · , N(∆)}, aN(∆) =
b,

∑N(∆)
i=1 P (ai) = 1. Further, defining P as the probability

measure associated with a distribution function F , i.e.,

P (A) =
∫

A∈B[a,b]
dF (x) (20)

where B[a,b] is the Borel sigma-algebra generated by open
sets in [a, b], we state the following theorem,

Theorem 2: For any F ∈ F [a,b], ∃ P∆ ∈ F∆ s.t.

lim
∆→0

inf
ε>0

{ε : P∆(I) ≤ P (Iε) + ε, I ∈ [a, b]} = 0 (21)
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where I is any closed interval in [a, b], I
ε = {x̃ : |x − x̃| <

ε, x ∈ I} and P is the probability measure associated with
the distribution function, F . Particularly, the P∆ that satisfies
(21) has the form,

P∆(ai) = F (ai) − F (ai−1) (22)

where ai’s are as defined above.

IV. ANALYSIS

Definition 3: For a bounded continuous Lipschitz loss func-
tion Λ with

λ(∆, y) = sup
x

sup
x′:|x−x′|<∆

|Λ(x, y) − Λ(x′, y)| (23)

λ (∆) = sup
y

λ (∆, y) (24)

let

‖ Λ ‖L= sup
0<∆<(b−a)

λ (∆)
∆

(25)

Definition 4: For a channel which satisfies the continuity
condition lim∆→0 δ∆ = 0 where

δ∆ = sup
x∈[a,b]

sup
x̂∈[a,b]

|x−x̂|≤∆

∫ ∣∣fY |x(y) − fY |x̂(y)
∣∣︸ ︷︷ ︸

ε∆(y)

dy (26)

let

‖ δ ‖L= sup
0<∆<(b−a)

δ∆

∆
(27)

Lemma 3: For any F, F̂ ∈ F [a,b], U ∼ F , a channel C s.t.
‖ δ ‖L< ∞ and a bounded Lipschitz loss function∣∣EF⊗CΛ(U, g(Y )) − EF̂⊗CΛ(U, g(Y ))

∣∣
≤ (‖ Λ ‖L +Λmax ‖ δ ‖L +(b − a) ‖ Λ ‖L‖ δ ‖L +

Λmax) β
(
P, P̂

)
where P and P̂ are the laws associated with F and F̂ .

Lemma 4: For any ∆ > 0, F ∈ F [a,b], U ∼ F with the
associated measure P , P∆ ∈ F∆ and a continuous bounded
loss function

|EP∆⊗CΛ(U, g(Y )) − EF⊗CΛ(U, g(Y ))| ≤
δ∆Λmax + λ(∆) (1 + δ∆)

where λ(∆) is the global modulus of continuity of the loss
function Λ as defined in equation (23) and δ∆ is as defined in
equation (26).

Lemma 5: For every n ≥ 1, xn ∈ [a, b]n, measurable g :
R → [a, b], and ε > 0,

P

(∣∣∣∣∣ 1
n

n∑
i=1

Λ(xi, g(Yi)) − EFxn⊗CΛ(U, g(Y ))

∣∣∣∣∣ > ε

)
(28)

≤ A(ε, Λmax) exp(−G(ε, Λmax)n) (29)

where,

A(ε, B) = exp
(

2ε2

B2

)
, G(ε, B) =

2ε2

B2
(30)

Let γ = (‖ Λ ‖L +Λmax ‖ δ ‖L +(b − a) ‖ Λ ‖L‖ δ ‖L +Λmax)

Theorem 3: For all ε > 0, ρ ∈ (0, 1), δ > 0, ∆ > 0 and
xn ∈ [a, b]n

P (|LX̃n,δ,∆(xn, Y n) − D(xn)| >

3ε + 5δΛmax + 4δ∆Λmax + 4λ(∆)(1 + δ∆))

≤ |Gδ,∆|
[
A(ε + δΛmax, Λmax)e−G(ε+δΛmax,Λmax)n + e−(1−ρ) nγ2

2

]
+ e−(1−ρ) nγ2

2 , for all n > n0

(
C, n,K, {h}, ε

γ

)
where

X̃n,δ,∆[yn](i) = gopt[P̃
δ,∆
xn [yn]](yi), 1 ≤ i ≤ n (31)

P̃ δ,∆
xn is the quantized version of P̂∆

xn , the closest member in
F∆ to F̂xn in the sense defined in section III C and

P̃ δ,∆
xn = Qδ(P̂∆

xn) (32)

Let Fδ,∆ denote the set of scalars with components in [0,1]
that are integer multiples of δ. Note that P̃ δ,∆

xn [yn] ∈ Fδ,∆

for all yn. Also, let Gδ,∆ = {gopt[P ]}P∈Fδ,∆ (extending the
definition of gopt in (9) to quantized distributions).
Take now, δ = δn, ∆ = ∆n such that δn ↓
0, ∆n ↓ 0 for all ε > 0 and

∑∞
n=1(1/δn)∆nA(ε +

δnΛmax, Λmax)e−G(ε+δnΛmax,Λmax)n < ∞. Let

X̂n
univ = X̃n,δ,∆ (33)

A direct consequence of Theorem 3 and the Borel-Cantelli
Lemma gives us the main theorem.

Theorem 4: For all x ∈ R
∞,

lim
n→∞

[
LX̂n

univ
(xn, Y n) − D(xn)

]
= 0 a.s. (34)

V. EXTENSION TO 2k + 1-CONTEXT LENGTH DENOISER

In this section, we propose an extension of the symbol-
by-symbol denoiser discussed in the earlier sections to the
2k+1-length sliding window denoising scheme. The scheme is
pictorially depicted in the figure below. The 2k+1-tuple super-

2k+1 supersymbol

su
b
s
e

q
u

e
n

c
e
s

Fig. 1. Schematic representation of the 2k + 1-window denoiser
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symbol is formed by jumping a length of 2k + 1 to achieve
the independence condition between the super-symbols. This
facilitates the extension of the ideas from the symbols of the
symbol-by-symbol denoiser to the super-symbol of the 2k +1
sliding window denoiser. As seen in Fig. 1 , this subsequencing
gives rise to 2k + 1 subsequences (of supersymbols of length
2k+1). As in the symbol-by-symbol scheme, let P̃ δ,∆,k

xn denote
the estimate of the 2k+1-th order input empirical distribution
of the source and the denoiser is defined as

X̃n,δ,∆,k[yn](i) = gopt[P̃
δ,∆,k
xn [yn]](y), k+1 ≤ i ≤ n−k

(35)
Let Dk(xn) denote the 2k + 1-th order sliding window
minimum loss defined as

Dk(xn) = min
g

E

[
1

n − 2k

n−k∑
i=k+1

Λ(xi, g(Y i+k
i−k ))

]
(36)

Note, this is the 2k + 1 analog of D(xn) defined in equation
(3). As before, Dk(xn) can be expressed as

Dk(xn) = min
g

EF k
xn⊗CΛ(X, g(Y k

−k)) (37)

where F k
xn is the 2k + 1-th order empirical distribution of the

source. Again, let k = kn → ∞, δ = δn ↓ 0, ∆ = ∆n ↓ 0
s.t. we have summability in the 2k + 1-th order analog of the
inequality in (29) over n, [6], [4] and denote

X̂n
univ = X̃n,δ,∆,k (38)

Theorem 5: For all x ∈ R
∞, k

lim sup
n→∞

[
LX̂n

univ
(xn, Y n) − Dk(xn)

]
≤ 0 a.s. (39)

Our results also imply optimality for the stochastic setting
when the source (clean signal) is now a stationary process, X,
with distribution FX. Defining D(FX, C) as

D(FX, C) = lim
n→∞min

X̂n

ELX̂n (Xn, Y n) (40)

where, the expectation is assuming Xn are the first n symbols
of the source with distribution FX and Y n is as defined before.

Theorem 6: For all stationary X

lim
n→∞ELX̂univ

(Xn, Y n) = D (FX, C) (41)

VI. EXPERIMENTAL RESULTS

Results of applying the proposed scheme to a natural test
image, shown in Fig. 2, and presented in the table below.
The image is corrupted by an AWGN source with σ = 20.
As can be seen from the figure, arguably the denoised image
reproduces the contrast of the original ‘clean’ image better
than that on the lower-right corner. The context ‘2k + 1’= 2
indicates knowledge of one adjoining pixel from the left
while higher context lengths considers knowledge of the 2-
D neighborhood of the noisy pixel being denoised. The table
below shows successive improvements of the scheme with
increasing lengths of the context, k. It essentially attains with

Fig. 2. Top-left: Original image, top-right: Noisy image (corrupted by
an AWGN, σ = 20), bottom-left: Denoised image using the proposed
scheme (2k + 1 = 5), bottom right: Denoised image using wavelet-based
soft-thresholding [1]

2k+1 as low as 5, the performance of the scheme in [1] which
is specifically tuned for AWGN with squared-loss metric. For
less standard (but no less realistic) noise models and loss
metrics, the proposed technique outperforms many of the state-
of-the-art denoising schemes, as is discussed in [9].

scheme wavelet [1] sym-sym ‘2k+1’ =2 2k+1 = 3 2k+1 = 5

RMSE 9.5359 15.4143 13.0226 10.7619 9.6207

TABLE I

ROOT MEAN SQUARED ERROR (RMSE) IN DENOISING
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