
ar
X

iv
:0

71
1.

30
77

v3
 [

cs
.I

T
]

 3
1

Ju
l 2

00
8

1

On Low Complexity Maximum Likelihood

Decoding of Convolutional Codes

Jie Luo, Member, IEEE

Abstract

This paper considers the average complexity of maximum likelihood (ML) decoding of convolutional

codes. ML decoding can be modeled as finding the most probable path taken through a Markov graph.

Integrated with the Viterbi algorithm (VA), complexity reduction methods such as the sphere decoder often

use the sum log likelihood (SLL) of a Markov path as a bound to disprove the optimality of other Markov path

sets and to consequently avoid exhaustive path search. In this paper, it is shown that SLL-based optimality

tests are inefficient if one fixes the coding memory and takes the codeword length to infinity. Alternatively,

optimality of a source symbol at a given time index can be testified using bounds derived from log likelihoods

of the neighboring symbols. It is demonstrated that such neighboring log likelihood (NLL)-based optimality

tests, whose efficiency does not depend on the codeword length, can bring significant complexity reduction

to ML decoding of convolutional codes. The results are generalized to ML sequence detection in a class of

discrete-time hidden Markov systems.

Index Terms

coding complexity, convolutional code, hidden Markov model, maximum likelihood decoding, Viterbi

algorithm

I. Introduction

We study the algorithms that reduce the average complexity of maximum likelihood (ML) decoding

of convolutional codes. By ML decoding, we mean the decoder uses code-search to find, and to

guarantee the output of, the most likely codeword.

Forney showed that ML decoding of convolutional codes is equivalent to finding the most probable

path taken through a Markov graph [1]. Denote the codeword length by N and the coding memory

by ν. For each time index, the number of Markov states in the Markov graph is exponential in ν. The

total number of Markov states is therefore exponential in ν but linear in N . Define the complexity of

The author is with the Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80523.

E-mail: rockey@engr.colostate.edu.

This work was supported by National Science Foundation grant CCF-0728826.

http://arxiv.org/abs/0711.3077v3

2

a decoder as the number of visited Markov states normalized by the codeword length N . Practical ML

decoding is often achieved using the Viterbi algorithm (VA) [2][1], whose complexity does not scale

in N but scales exponentially in ν. Well known decoders such as the list decoders [3], the sequential

decoders [4], and the iterative decoders [5] are able to achieve near optimal error performance with

low average complexity. However, these decoders do not guarantee the output of the ML codeword

[6].

If obtaining the ML codeword is strictly enforced (see Section VII for justification), to avoid

exhaustive path search, the decoder must develop certain criterion or bound that can be used to

disprove the optimality of a Markov path set. This is equivalent to developing an optimality test

criterion (OTC) [7] to test whether the ML path (or codeword) belongs to the complementary path

set (or codeword set)1.

Two major OTCs have been used in the ML decoding of convolutional codes. The first one is the

“path covering criterion” (PCC) (explained in [8] and in Appendix A) used in the VA [2][1]. VA

visits all Markov states in chronological order [1]. For each time index, the decoder maintains a set of

“cover” (defined in Appendix A) Markov paths each passing one of the Markov states [1]. According

to the PCC, the “cover” Markov path passing a Markov state disproves the optimality of all other

Markov paths passing the same state. The second OTC is the sum log likelihood (SLL)-based OTCs

used extensively in the sphere decoder [10][9]. Sphere decoder models ML decoding as finding the

lattice point closest to the channel output in the signal space [9]. Hence the distance between the

channel output and an arbitrary lattice point upper bounds the distance from the channel output

to the ML codeword. Such distance bound is based on the SLL of the corresponding codeword, and

is used in the sphere decoder [10][9] as well as other ML decoders [7] as the key means to avoid

exhaustive codeword search. In [11][12], Vikalo and Hassibi showed that PCC-based and SLL-based

optimality tests can be combined to find the ML codeword without visiting all Markov states.

Assume PCC-based optimality test is always implemented. In this paper, we first show that

additional complexity reduction brought by the SLL-based optimality test diminishes as one fixes

the coding memory ν and takes the codeword length N to infinity. Such inefficiency is due to the

fact that SLL-based OTC does not exploit the structure of the convolutional code. Searching the

ML codeword is equivalent to finding the ML source message, which contains a sequence of source

symbols. We show whether the ML message contains a particular symbol at a given time index can

be tested using an OTC that depends only on the log likelihood of channel output symbols in a fixed-

1In the literature such as [7], OTC refers to a criterion designed to test whether a single codeword is optimum. In this paper,

we extend the definition of OTC to a general criterion that can either verify or disprove the optimality of a codeword set.

3

sized time neighborhood. We call such test the neighboring log likelihood (NLL)-based optimality

test, and show its efficiency does not depend on the codeword length. We theoretically demonstrate

that NLL-based optimality test can bring significant complexity reduction to ML decoding when

the communication system has a high signal to noise ratio (SNR). Complexity of the decoder using

SLL-base optimality test, on the other hand, remains the same as the VA for all SNR if the codeword

length is taken to infinity. The results are also generalized to ML sequence detection in a class of

discrete-time hidden Markov systems [13].

II. Problem Formulation

Let C be an (n, k) convolutional code over GF(q) defined by a polynomial generater matrix G(D)

[14],

G(D) = G[0] +G[1]D + . . .+G[ν − 1]Dν−1, (1)

where D is the delay operator; ν is the coding memory; G[l], l = 0, . . . , ν − 1, are k × n matrices

over GF(q). Assume G(D) is a minimal encoder [14].

Denote the source message by a sequence of vector symbols,

x(D) = x[d]Dd + x[d+ 1]Dd+1 + . . . , (2)

where d is the time index, possibly negative; x[d], ∀d, are row vectors of dimension k over GF(q).

The encoded message, or the corresponding codeword, is given by

y(D) = x(D)G(D) =
∑

d

ν−1
∑

l=0

x[d− l]G[l]Dd. (3)

To simplify the presentation, we assume time index d takes all integer values. We assume x[d] = 0

for d < 0 and d ≥ N . We term N the codeword length.

Define a function gq(y) that maps y from GF(q) to R (the set of real numbers) in one-to-one

sense. If y(D) is a vector sequence, gq(y(D)) applies the mapping to each of the elements of y(D),

respectively2. Assume the codeword is transmitted over a memoryless Gaussian channel. The channel

output symbol sequence is given by

r(D) = gq(y(D)) + n(D) = gq(x(D)G(D)) + n(D), (4)

where n(D) = n[d]Dd + n[d + 1]Dd+1 + . . . is the noise sequence with n[d] ∼ N(0, σ2I) being

i.i.d. Gaussian. Without loss of generality, we define the scaled signal to noise ratio of the system

as SNR = 1
σ2 . In Section VI, we show that the results are generalizable not only to other channel

models, but also to a class of hidden Markov systems.

2Hence the output of gq(y(D)) is a vector sequence of the same length and dimension as y(D).

4

Given the channel output, for any source message x(D) and its corresponding codeword y(D) =

x(D)G(D), we define the “negative SLL” as

Sx(x(D)) = Sy(y(D)) =
N+ν−1
∑

d=0

‖r[d]− gq (y[d])‖
2
. (5)

The objective of ML decoding is to find the ML message xML(D) that minimizes the negative SLL,

xML(D) = argmin
x[d],0≤d<N

Sx(x(D)). (6)

Throughout this paper, we assume PCC-based optimality test is always implemented. For the sake

of completeness, a description of PCC-based optimality test is given in Appendix A.

III. Inefficiency of Sum Log Likelihood-based Optimality Test

For ML decoders using SLL-based optimality test, the decoder first obtains a quick guess of the

source message without solving the ML decoding problem. SLL of the obtained message is then used to

help disproving the optimality of certain Markov path sets and consequently to avoid exhaustive path

search. We make an ideal assumption that the “guessed” message equals the transmitted message3.

We show in this section that, even under this ideal assumption, complexity reduction brought by the

SLL-based optimality tests still diminishes as we take N to infinity.

Let x(D) be the actual source message, which is also the message “guessed” by the decoder. Let

y(D) = x(D)G(D) be the transmitted codeword. The corresponding negative SLL is given by

Sx(x(D)) =
N+ν−1
∑

d=0

‖r[d]− gd (y[d])‖
2 =

N+ν−1
∑

d=0

‖n[d]‖2 . (7)

Now consider a subset of time indices Dx
d ⊆ [0, N). Let {x̃[d]|d ∈ Dx

d} be a partial message defined

only at time indices in Dx
d . Denote by {x̃(Dx

d)} the set of messages satisfying

{x̃(Dx
d)} = {x0(D)|x0[d] = x̃[d], ∀d ∈ Dx

d ,x0(D) 6= x(D)}. (8)

Suppose the decoder wants to test whether it can disprove the optimality of {x̃(Dx
d)}, i.e., whether

xML(D) 6∈ {x̃(Dx
d)}. A common practice [7][11][12] is to find a lower bound, denoted by SL

x (x̃(D
x
d)),

of the negative SLLs of the messages in {x̃(Dx
d)}.

Sx(x0(D)) ≥ SL
x (x̃(D

x
d)), ∀x0(D) ∈ {x̃(Dx

d)}. (9)

If the lower bound SL
x (x̃(D

x
d)) is larger than Sx(x(D)) obtained in (7), then we have Sx(x0(D)) ≥

SL
x (x̃(D

x
d)) > Sx(x(D)) for all x0(D) ∈ {x̃(Dx

d)}, which means the ML message is not in {x̃(Dx
d)}.

3Note that the decoder still needs to testify whether the guessed message is indeed the ML solution. If it is not, then a search

for the ML message must be carried out.

5

In Appendix B, we show that the SLL lower bounds appeared in the literature satisfy the following

assumption.

Assumption 1: Given {x̃(Dx
d)}, let D

y
d ⊆ [0, N + ν) be the maximum time index set, over which

we can find a partial codeword ỹ(Dy
d) such that for all x0(D) ∈ {x̃(Dx

d)} with y0(D) = x0(D)G(D),

we have y0[d] = ỹ[d] for all d ∈ D
y
d. Note that Dy

d and ỹ(Dy
d) are uniquely determined by {x̃(Dx

d)}.

We also have |Dy
d| ≤ |Dx

d |+ ν.

We assume the existence of a positive constant ǫ ∈ (0, 1], whose value does not depend on N , such

that

SL
x (x̃(D

x
d)) ≤

∑

d∈Dy

d

‖r[d]− gq (ỹ[d])‖
2 + (N + ν − |Dy

d|)(1− ǫ)nσ2. (10)

As demonstrated in [11][7], if we fix N , using SL
x (x̃(D

x
d)) > Sx(x(D)) as the OTC to disprove

the optimality of message set {x̃(Dx
d)} can bring significant complexity reduction to ML decoding,

especially under high SNR. However, if we define De ⊆ D
y
d as the subset of time indices corresponding

to the erroneous codeword symbols, i.e.,

De = {d|d ∈ D
y
d, ỹ(d) 6= y(d)}, (11)

the following proposition shows that SLL-based optimality tests become inefficient if N − |Dx
d | is

taken to infinity while |De| is kept finite.

Lemma 1: Assume the generater matrix G(D) is fixed, and therefore the constraint length ν is

fixed. Consider message sets characterized by {x̃(Dx
d)} for arbitrary Dx

d but under the constraint of

a fixed De, where De ⊆ D
y
d is defined in (11) and the derivation of Dy

d is specified in Assumption 1.

If we fix SNR and take N − |Dx
d | to infinity, we have

lim
N−|Dx

d
|→∞

P{SL
x (x̃(D

x
d)) > Sx(x(D))} = 0. (12)

If we first take N − |Dx
d | to infinity and then take SNR to infinity, we have

lim
SNR→∞

lim
N−|Dx

d
|→∞

P{SL
x (x̃(D

x
d)) > Sx(x(D))} = 0. (13)

Proof: Since |Dy
d| ≤ |Dx

d |+ ν, taking N − |Dx
d | to infinity implies taking N − |Dy

d| to infinity.

According to Assumption 1, we have

SL
x (x̃(D

x
d))− Sx(x(D))

N + ν − |Dy
d|

≤
1

N + ν − |Dy
d|





∑

d∈De

‖r[d]− gq (ỹ[d])‖
2



+ (1− ǫ)nσ2

−
1

N + ν − |Dy
d|





∑

d∈De

‖n[d]‖2



−
1

N + ν − |Dy
d|

∑

d6∈Dy

d

‖n[d]‖2. (14)

6

Since n[d] are i.i.d. Gaussian with covariance matrix σ2I, ‖n[d]‖2 are i.i.d. χ2 with mean nσ2 and

variance 2nσ4. Therefore 1
N+ν−|Dy

d
|

∑

d6∈Dy
d
‖n[d]‖2 → nσ2, 1

N+ν−|Dy
d
|

(

∑

d∈De
‖r[d]− gq (ỹ[d])‖

2
)

→ 0,

and 1
N+ν−|Dy

d
|

∑

d∈De
‖n[d]‖2 → 0 with probability one as N − |Dy

d| → ∞. Consequently, denote the

right hand side of (14) by U0, we have with probability one,

lim
N−|Dy

d
|→∞

U0 = −ǫnσ2 < 0. (15)

This yields

lim
N−|Dx

d
|→∞

P
{

SL
x (x̃(D

x
d)) > Sx(x(D))

}

= lim
N−|Dy

d
|→∞

P

{

SL
x (x̃(D

x
d))− Sx(x(D))

N + ν − |Dy
d|

> 0

}

≤ lim
N−|Dy

d
|→∞

P {U0 > 0} = 0. (16)

Since (16) holds for all SNR, the conclusion remains true if we take SNR to infinity after N −|Dx
d |

is taken to infinity4.

With the help of Lemma 1, inefficiency of SLL-based optimality tests is characterized by the

following lemma.

Lemma 2: Let Csll be the complexity of an ML decoder that only uses PCC- and SLL-based

optimality tests for complexity reduction. Let Cva be the complexity of the Viterbi decoder, in which,

only PCC-based optimality test is used. For any δ > 0, we have,

lim
N→∞

P{Csll ≥ (1− δ)Cva} = 1

lim
SNR→∞

lim
N→∞

P{Csll ≥ (1− δ)Cva} = 1. (17)

The proof of Lemma 2 is given in Appendix C.

IV. Neighboring Log Likelihood-based Optimality Test

We propose in Theorem 1 a class of NLL-based optimality tests, whose efficiency does not depend on

the codeword length N . We show in Section V that these NLL-based optimality tests can significantly

reduce the average complexity of ML decoding under high SNR. This is in contrast to the inefficiency

of SLL-based optimality tests which are not able to bring meaningful complexity reduction if N is

taken to infinity first.

Theorem 1: Define d2min, d
2
max by

d2min = min
y1 6=y2

‖gq(y1)− gq(y2)‖
2, d2max = max

y1 6=y2

‖gq(y1)− gq(y2)‖
2, (18)

4Note that the order in which limits are taken in (13) is important. If we fix N and take SNR to infinity first, we can get

limN−|Dx

d
|→∞ limSNR→∞ P{SL

x (x̃(D
x
d)) > Sx(x(D))} = 1.

7

where y1, y2 are n-dimensional row vectors over GF (q). Let ξ be an arbitrary constant, M be an

arbitrary integer, satisfying

0 < ξ <
d2min

2
, M >

νd2max

3ξ
. (19)

Let x0(D) be a source message whose corresponding codeword is y0(D). For any time index m, if

the following inequality is satisfied for all d ∈ [m− 2Mν,m+ 2Mν),

‖r[d]− gq(y0[d])‖ <
d2min

2
− ξ, (20)

and the following inequalities hold,

m+(2M+1)ν−1
∑

d=m+2Mν

‖r[d]− gq(y0[d])‖
2 ≤ Mξ − νd2max

m−2Mν−1
∑

d=m−(2M+1)ν

‖r[d]− gq(y0[d])‖
2 ≤ Mξ − νd2max, (21)

then we must have x0[m̃] = xML[m̃], ∀m̃ ∈ [m,m+ ν).

We skip the proof of Theorem 1 since the result is implied by Theorem 3 presented in Section VI.

Note that the values of dmin and dmax only depend on the gq() function. Hence, as long as gq()

and ν are given, the values of ξ and M can be fixed, e.g., ξ =
d2
min

4
and M =

⌈

4νd2max

3d2
min

⌉

. Given M , the

optimality test presented in Theorem 1 testifies the optimality of {x[m̃]|m̃ ∈ [m,m+ν)} using the log

likelihood of channel output symbols within a fixed-sized time interval [m−(2M+1)ν,m+(2M+1)ν).

It is quite intuitive to see, efficiency of the test does not depend on the codeword length if all other

parameters are fixed.

Efficiency of the OTC proposed in Theorem 1 is characterized by the following lemma.

Lemma 3: Assume ξ and M are chosen to satisfy (19). Let m be an arbitrary time index. Let

y0(D) equal the transmitted codeword within time interval [m− (2M + 1)ν,m+ (2M +1)ν). Define

OPTm as the event that (21) is satisfied and (20) is satisfied for all d ∈ [m− 2Mν,m+ 2Mν).

Fix all other parameters and take SNR to infinity, we have

lim
SNR→∞

P {OPTm} = 1. (22)

The same conclusion holds if we first take N to infinity, then take SNR to infinity.

lim
SNR→∞

lim
N→∞

P {OPTm} = 1. (23)

Proof: If y0(D) equals the transmitted codeword within time interval [m − (2M + 1)ν,m +

(2M + 1)ν), for d ∈ [m− (2M + 1)ν,m+ (2M + 1)ν), we have

r[d]− gq(y0[d]) = n[d]. (24)

8

Consequently, (22) and (23) hold because ‖n[d]‖2 are i.i.d. χ2, whose mean, n
SNR

, and variance, 2n
SNR2 ,

converge to 0 as SNR goes to infinity.

Lemma 3 implies, if there is a suboptimal decoder whose probability of symbol detection error (as

opposed to sequence detection error) is low under high SNR, then NLL-based optimality tests can

help transforming the suboptimal detector to an ML detector with only marginal increase in average

decoding complexity. An example of such transformation is presented in the following section.

V. A Three-step ML Decoding Framework

The communication system given in Section II follows a discrete-time hidden Markov model [13],

where each Markov state at time index d corresponds to a possible combination of source symbols in

time interval (d−ν, d]. If a decoder obtains the ML codeword using the VA, all Markov states within

time interval [ν,N] have to be visited. Alternatively, if one can use a low complexity algorithm to

disprove the optimality of most of the Markov states, then the VA can limit its search by visiting

only a small subset of Markov states.

Following this idea, the three-step ML decoding framework is given as follows.

• Step 1: The decoder uses a suboptimal algorithm (denoted by Φsub) to obtain a quick guess of

the codeword ỹ(D) and its corresponding source message x̃(D).

• Step 2: An NLL-based optimality test (specified in Theorem 1) is applied to each of the source

symbols of x̃(D). The decoder maintains a source symbol set sequence X(D), with X [d] being

the source symbol set of time index d. If x̃[d] = xML[d] can be confirmed by the optimality test,

we let X [d] = {x̃[d]}; otherwise, we let X [d] be the set of all possible source symbol vectors at

time index d.

• Step 3: The decoder uses a modified VA to search for the ML source message. The only difference

between the modified VA and the conventional VA is that, the modified VA visits a Markov state

only if all source symbols corresponding to the Markov state belong to the source symbol sets

X [d] of the corresponding time indices.

Implementing the modified VA is quite straightforward. Hence its further description is skipped.

Comparing to the three-step decoding algorithm studied in [7], the key advantage of using an NLL-

based optimality test is that the test can be applied to an individual source symbol rather than the

whole source message.

Theorem 2: Let Pe{Φsub} be the probability of symbol detection error of Φsub. Assume, while

fixing all other parameters,

lim
SNR→∞

Pe{Φsub} = 0, lim
SNR→∞

lim
N→∞

Pe{Φsub} = 0. (25)

9

Let Cmva be the average number of Markov states per time unit visited by the modified VA in the

third step of the ML decoder. For any δ > 0, we have

lim
SNR→∞

P{Cmva ≤ 1 + δ} = 1, lim
SNR→∞

lim
N→∞

P{Cmva ≤ 1 + δ} = 1. (26)

Proof: Let x(D), y(D) be the actual source message and the transmitted codeword, respectively.

Let x̃(D), ỹ(D) be the source message and the codeword output by Φsub. According to (25), for any

time index m, we have

lim
SNR→∞

P











ỹ[d] = y[d],

∀d ∈ [m− 2(M − 1)ν,m+ (2M + 1)ν)











= 1. (27)

where M is the parameter of the NLL-based optimality test, specified in Theorem 1. According to

(27), Lemma 2, and Theorem 1, for any m, if ỹ[d] = y[d], ∀d ∈ [m − 2(M − 1)ν,m + (2M + 1)ν),

then the probability that the NLL-based optimality test can confirm x̃[d] = xML[d], ∀d ∈ [m,m+ ν)

converges to one as SNR → ∞. Consequently, letting X [d] be the source symbol set maintained by

the ML decoder in the second step, we have

lim
SNR→∞

P {|X [d]| = 1, ∀d ∈ [m,m+ ν)} = 1, ∀m (28)

Since the worst case complexity of the modified VA is bounded, (28) implies, for any δ > 0,

limSNR→∞ P{Cmva ≤ 1 + δ} = 1.

Since all derivations hold if we first take N to infinity, we also have limSNR→∞ limN→∞ P{Cmva ≤

1 + δ} = 1.

By sharing computations among optimality tests, it is easy to see that the complexity of the second

step of the ML decoder is equivalent, in order, to visiting one Markov state per time unit. Therefore,

if Φsub satisfies (25), as SNR → ∞, the complexity of the three-step ML decoder converges to the

complexity of Φsub, which can be significantly lower than the complexity of the VA. Moreover, the

three steps of the ML decoder can be implemented in a parallelized manner in the sense that each

step can process some of the source symbols without waiting for the previous step to completely finish

its work. An example of such parallelized implementation can be found in [15, The Simple MLSD

Algorithm].

VI. Maximum Likelihood Sequence Detection in A Class of Hidden Markov Systems

In this section, we generalize the results of Section IV to ML sequence detection (MLSD) in a class

of first order discrete-time hidden Markov systems [13]. We demonstrate in Appendix D that the

communication system presented in Section II satisfies the model and the key assumptions given in

this section.

10

Let u(D) = u[d]Dd + u[d + 1]Dd+1 + ... be a first order Markov sequence, where d is the time

index, possibly negative; u[d] represents the Markov state (at time d), which is a kν-dimensional row

vector defined over GF (q). We assume u[d] = 0 for d < 0 and d ≥ N , with N being the sequence

length. Define y[d] = y(u[d]) as the “processed state”, which is a deterministic function of u[d]. y[d]

is a n-dimensional row vector defined over GF (q). We term y(D) = y[d]Dd + y[d+ 1]Dd+1 + ... the

processed state sequence. Let r(D) = r[d]Dd+ r[d+1]Dd+1+ ... be the observation sequence, where

r[d] is a n-dimensional row vector with real-valued elements.

Denote the state transition probability of the hidden Markov system by

Pt(u1|u2) = P{u[d+ 1] = u1|u[d] = u2}. (29)

Define the transition probability ratio bound ptr by

ptr = min
u1,u2, Pt(u1|u2) > 0

u3,u4, Pt(u3|u4) > 0

Pt(u1|u2)

Pt(u3|u4)
. (30)

We assume the Markov chain is ergodic and homogeneous. Therefore, there exists a positive integer

ν, such that

P{u[d+ ν] = u1|u[d] = u2} 6= 0, ∀u1,u2. (31)

Denote the observation distribution function by

Fo(r|y1) = P{r[d] ≤ r|y[d] = y1}. (32)

Let the corresponding probability density function (or probability mass function) be fo(r|y1).

We also make the following two key assumptions.

Assumption 2: We assume state processing y[d] = y(u[d]) does not compromise the observability

of the Markov states in the sense that there exists a positive integer ν satisfying the following property.

Given two Markov state sequences u(D) and ũ(D). For any time index d, if u[d] 6= ũ[d], then we

can find a time index m ∈ (d− ν, d+ ν), such that y(u[m]) 6= y(ũ[m]).

Note that we used the same constant ν in (31) and in Assumption 2. This is valid because if (31)

is satisfied for ν = ν0, then it is also satisfied for all ν ≥ ν0; similar property applies to Assumption

2. Consequently, if Assumption 2 holds, a common integer ν satisfying both (31) and Assumption 2

can always be found.

Assumption 3: Assume the existence of two functions: Ll(r,y1) and Lu(r,y1), both are functions

of the channel output symbol r and the processed state y1. Assume Ll(r,y1) and Lu(r,y1) have the

following two properties.

11

First, the following inequalities hold for all r and y1.

Ll(r,y1) ≤ min
y2,y2 6=y1

[− log(fo(r|y2)) + log(fo(r|y1))]

Lu(r,y1) ≥ max
y2 6=y3

[− log(fo(r|y2)) + log(fo(r|y3))] . (33)

Second, the complexity of evaluating Ll(r,y1) and Lu(r,y1) is low in the sense that they do not

require the search of any processed state other than y1.

Note that validity of the results presented in this section does not depend on the second property

imposed in Assumption 3. However, we still include the property in the assumption since the key

motivation of posing Assumption 3 is to use the two functions Ll(r,y1) and Lu(r,y1) as tools to

avoid exhaustive Markov state search and hence to reduce the complexity of ML decoding. Also note

that the right hand side of the second inequality in (33) is not a function of y1. However, the upper

bound on the left hand side is a function of a processed state y1 since one often needs a “reference

state” in order to upper bound the right hand side of (33). Further explanation is given in Appendix

D.

Given the observation sequence r(D), the negative SLL of a state sequence u(D) is obtained by

Su(u(D)) = −
N
∑

d=0

log(fo(r[d]|y[d])Pt(u[d]|u[d− 1])). (34)

The objective of MLSD is to find the ML sequence that minimizes the negative SLL,

uML(D) = argmin
u[d],0≤d<N

Su(u(D)). (35)

The following theorem gives a class of NLL-based optimality tests.

Theorem 3: Assume the discrete-time Markov system satisfies Assumptions 2 and 3.

Let ρ > 0 be a positive constant. Given a Markov state sequence u(D) and the corresponding

processed states y(D). Let ptr be defined by (30). For any time index m, if there is an integer M > 0

such that for all d ∈ [m− 2Mν,m+ 2Mν)

Ll(r[d],y[d]) > 3ν(ρ− log ptr), (36)

and
m+(2M+1)ν−1

∑

d=m+2Mν

Lu(r,y[d]) ≤ 3Mνρ+ (ν + 1) log ptr

m−2Mν−1
∑

d=m−(2M+1)ν

Lu(r,y[d]) ≤ 3Mνρ+ ν log ptr, (37)

then u[m+ ν − 1] = uML[m+ ν − 1] must be true.

The proof of Theorem 3 is given in Appendix E. Note that Theorem 3 implies Theorem 1 if we set

the parameters in Theorem 1 at the corresponding values given in Appendix D.

12

For communication systems following a discrete-time hidden Markov model, fo(r|y1) often belongs

to an ensemble of density (or probability) functions, with the actual realization determined by the

SNR. In other words, we can write the observation density (or probability) fo(r|y1, SNR) as a function

of the SNR. Assume the discrete-time Markov system satisfies Assumption 3, where both functions

Ll(r,y1) and Lu(r,y1) can be functions of the SNR. We make the following assumption.

Assumption 4: Assume the observation density (or probability) fo(r|y1, SNR) is a function of the

SNR. Assume the discrete-time Markov system satisfies Assumption 3. Let the actual state sequence

and the processed state sequence be u(D) and y(D), respectively. Define two positive numbers d2min

and d2max as follows

d2min

2
= sup

{

γ ≥ 0; lim
SNR→∞

P{Ll(r[d],y[d]) ≥ γSNR} = 1
}

,

d2max = inf
{

γ ≥ 0; lim
SNR→∞

P{Lu(r[d],y[d]) ≤ γSNR} = 1
}

. (38)

We assume

d2min > 0, d2max < ∞. (39)

The following lemma characterizes the efficiency of the OTC proposed in Theorem 3.

Lemma 4: Assume the discrete-time Markov system satisfies Assumptions 2 and 4. Let the state

sequence be u(D). Let ξ be an arbitrary constant, M be an arbitrary integer, satisfying

0 < ξ <
d2min

2
, M >

νd2max

ξ
. (40)

Let ρ = ξSNR
3ν

. Given an arbitrary time index m, define OPTm as the event that (37) is satisfied and

(36) is satisfied for all d ∈ [m− 2Mν,m+ 2Mν). If we fix all other parameters except the SNR, we

have

lim
SNR→∞

P{OPTm} = 1. (41)

If we fix all other parameters except the SNR and the sequence length N , we have

lim
SNR→∞

lim
N→∞

P{OPTm} = 1. (42)

We skip the proof of Lemma 4 since it is quite straightforward.

Note that in Lemma 4, when we take N and SNR to infinity, M can be fixed at a constant. This

indicates that, when testing the optimality of a Markov state at a given time index, the NLL-based

optimality test only uses observation symbols in a fixed-sized time neighborhood. Based on Theorem

3 and Lemma 3, a three-step ML sequence detector similar to the one presented in Section V can be

developed to transform a suboptimal sequence detector to a low complexity ML sequence detector.

The detailed discussion is skipped since it does not essentially differ from the one presented in Section

V.

13

VII. Further Discussions

In a practical system, suboptimal decoders such as the belief-propagation-based iterative decoders

[5][6] can achieve near optimal error performance with low complexity. It is natural to ask: if subop-

timal decoding only causes a negligible performance loss, why one should even bother with enforcing

the ML solution? Note that this question does not suggest a default answer since the argument can

also be presented in the opposite direction, i.e., if ML decoding only causes a negligible complexity

increase, why one should not use an ML decoder? Nevertheless, the purpose of our work is not to

participate in the debate whether ML decoding is practically useful. Rather, one should interpret

Theorem 2 as, for convolutional codes, the existence of a well-performed low complexity suboptimal

algorithm implies that ML decoding can be carried out with a similar complexity under high SNR.

More importantly, such conclusion holds irrespective of the codeword length.

Although the efficiency of SLL-based optimality tests does not depend on the codeword length,

NLL-based optimality tests are inefficient only when the codeword length is large. Lemma 1 and

Theorem 2 suggest that complexity reduction brought by NLL-based optimality tests can be superior

to SLL-based optimality tests even for moderate SNR if the codeword length is large enough.

Appendix

A. The Path Covering Criterion

Assume the discrete-time hidden Markov model given in Section VI5. Given the observation se-

quence r(D). Let ũ(D) and u(D) be two Markov state sequences whose corresponding processed

state sequences are ỹ(D) and y(D), respectively. If we can find two time indices d1 < d2, such that

ũ[d1] = u[d1], ũ[d2] = u[d2], and
d2
∑

d=d1+1

log
fo(r[d]|ỹ[d− 1])Pt(ũ[d]|ũ[d− 1])

fo(r[d]|y[d− 1]))Pt(u[d]|u[d− 1])
< 0, (43)

we say u(D) “covers” ũ(D).

Path Covering Criterion: Markov state sequence ũ(D) cannot be the ML sequence if we can

find another state sequence u(D) that covers ũ(D).

The proof of the PCC is skipped since it is quite well known [8].

We say u(D) is a “cover” path with respect to Markov states u[d1] and u[d2] at time indices

d1 < d2 if, among all Markov paths passing u[d1] and u[d2], u(D) maximizes
∑d2

d=d1+1 log(fo(r[d]|y[d−

1])Pt(u[d]|u[d−1])). Assume all Markov paths start from u[−1] = 0. We say u(D) is a “cover” path

with respect to Markov state u[d1] at time index d1 > 0 if, among all Markov paths passing u[d1],

u(D) maximizes
∑d1

d=1 log(fo(r[d]|y[d− 1])Pt(u[d]|u[d− 1])).

5It is shown in Appendix D that the model is satisfied by the communication system given in Section II.

14

B. Examples of SLL-based Optimality Tests Satisfying Assumption 1

In [12][11], when the decoder branches a Markov path at time index m < N , the branch is

characterized by a partial message {x̃[0], x̃[1], . . . , x̃[m]}. For any codeword ỹ(D) associated to the

branch, we have

ỹ[d] =
ν−1
∑

l=0

x̃[d− l]G[l]. (44)

In other words, Dd = [0, m]. The negative SLL lower bound is given by

Sy(ỹ(D)) =
N+ν−1
∑

d=0

‖r[d]− gq (ỹ[d])‖
2 ≥

m
∑

d=0

∥

∥

∥

∥

∥

r[d]− gq

(

ν−1
∑

l=0

x̃[d− l]G[l]

)∥

∥

∥

∥

∥

2

, (45)

which satisfies Assumption 1 with ǫ = 1.

In [7], several SLL-based OTCs were presented for decoding block codes. The decoder obtains a

first guess y(D) of the codeword. A negative SLL lower bound SL
y ≤ Sy(ỹ(D) 6= y(D)) is then

developed for the codeword set {ỹ(D) 6= y(D)}, which corresponds to the case of Dd being an empty

set in the context of Section III. y(D) is optimal if the optimality test SL
y > Sy(y(D)) gives a positive

answer [7].

The lower bounds SL
y presented in [7, Section III] satisfy the following inequality,

SL
y ≤ min

ỹ(D)6=y(D)

N+ν−1
∑

d=0

‖gq (ỹ[d])− gq (y[d])‖
2 (46)

Since the coding constraint is ν, we can always find a codeword ỹ(D) 6= y(D) with ỹ(D) differing

from y(D) at no more than ν codeword symbols. This implies that the right hand side of (46) can

be upper bounded by a constant, denoted by U1, which is not a function of N .

SL
y ≤ min

ỹ(D)6=y(D)

N+ν−1
∑

d=0

‖gq (ỹ[d])− gq (y[d])‖
2 ≤ U1 (47)

Consequently, given SNR > 0 and 0 < ǫ < 1, there exists a constant N0 such that Assumption 1 is

satisfied for N > N0.

C. Proof of Lemma 2

Proof: Assume, in searching the ML codeword, the decoder successfully avoided visiting a Markov

state specified by {x0[d − ν + 1], . . . ,x0[d]}. This implies that we can find two time index sets,

Dx
0 ⊂ [d − ν + 1, d] and Dx

d , D
x
d ∩ [d − ν + 1, d] = φ, such that the optimality of all message sets

{x̃(Dx
0 ∪Dx

d)} with x̃[d̃] = x0[d̃], ∀d̃ ∈ Dx
0 is disproved. We choose Dx

d with the maximum cardinality

while make sure that, in disproving the optimality of {x0[d− ν + 1], . . . ,x0[d]}, the detector visited

all the Markov states {x̃[d̃− ν + 1], . . . , x̃[d̃]} satisfying [d̃− ν + 1, d̃] ⊆ Dx
d .

According to the definitions of Dx
0 and Dx

d , the decoder needs to disprove the optimality of a

special message set {x0(D
x
0 ∪ Dx

d)} defined by x0[d̃] = x0[d̃], ∀d̃ ∈ Dx
0 and x0[d̃] = x[d̃], ∀d̃ ∈ Dx

d .

15

The definition of Dx
d also implies that the decoder needs to obtain a lower bound SL

x (x̃(D
x
0 ∪Dx

d))

of the negative SLLs of the messages in {x̃(Dx
0 ∪ Dx

d)}. The lower bound SL
x (x̃(D

x
0 ∪ Dx

d)) should

only be a function of the partial message x̃(Dx
0 ∪Dx

d), but should not depend on any source message

symbol whose time index is outside Dx
0 ∪Dx

d . However, since the corresponding De (defined in (11)) of

{x0(D
x
0∪D

x
d)} satisfies |De| ≤ 2ν, according to Lemma 1, the probability of disproving the optimality

of {x0(D
x
0 ∪Dx

d)} (using SLL-based optimality test) is low if N − |Dx
0 ∪Dx

d | ≫ 2ν.

To make the argument explicit, the fact that the decoder visits all Markov states {x̃[d̃ − ν +

1], . . . , x̃[d̃]} with [d̃− ν + 1, d̃] ⊆ Dx
d implies

Csll ≥
|Dx

d | − ν

N + ν
Cva. (48)

According to Lemma 1, for any positive constant δ > 0, if we fix all other parameters and take N to

infinity, we have6

lim
N→∞

P

{

N − |Dx
d | − |Dx

0 |

2ν
<

δ

2ν
N

}

= 1. (49)

Combining (48) and (49), we get

lim
N→∞

P {Csll ≥ (1− δ)Cva} = 1. (50)

Since (50) holds for any fixed SNR, it still holds if we take SNR to infinity after taking N to

infinity, i.e.,

lim
SNR→∞

lim
N→∞

P {Csll ≥ (1− δ)Cva} = 1. (51)

D. The Hidden Markov Model and Its Key Assumptions

In this section, we show the communication system presented in Section II satisfies the discrete-time

hidden Markov model and the key assumptions given in Section VI.

Consider a communication system modeled in Section II. Define u[d] = [x[d− ν + 1], . . . ,x[d]]. It

is easy to see u(D) is a Markov sequence. The processed state y[d] = y(u[d]) is only a function of

the corresponding Markov state. If two Markov states in successive time indices take the form

u[d] = [x̃[d− ν + 1], . . . , x̃[d]]

u[d+ 1] = [x̃[d− ν + 2], . . . , x̃[d+ 1]], (52)

for some x̃(D), then we have

Pt(u[d+ 1]|u[d]) =
1

qk
. (53)

6An equivalent statement of (49) is, if
N−|Dx

d
|−|Dx

0
|

2ν
< δ

2ν
N , as N → ∞, the probability of disproving the optimality of all

message sets {x̃(Dx
0 ∪Dx

d)} with x̃[d̃] = x0[d̃], ∀d̃ ∈ Dx
0 , using SLL-based optimality test goes to zero.

16

Otherwise Pt(u[d+ 1]|u[d]) = 0. According to (30), we have ptr = 1.

Since u[d] = [x[d− ν +1], . . . ,x[d]] does not depend on source symbols at time indices m ≤ d− ν,

we know

Pt(u[d]|u[d− ν]) 6= 0, ∀u[d],u[d− ν]. (54)

The observation density is given by

fo(r|y) =
(

SNR

2π

)n
2

exp
(

−
SNR

2
‖r − gq(y)‖

2
)

. (55)

Next, we show Assumption 2 is satisfied. Let u(D) and ũ(D) be two Markov state sequences. Let

x(D) and y(D) be the source message and the codeword corresponding to u(D). Let x̃(D) and ỹ(D)

be the source message and the codeword corresponding to ũ(D). For a time index d, if u[d] 6= ũ[d], we

can find a time index m ∈ (d−ν, d] such that x[m] 6= x̃[m]. Consequently, according to [14, Corollary

2], we can find a time index m̃ ∈ [m,m+ ν), such that y[m̃] 6= ỹ[m̃]. Therefore, Assumption 2 holds

because m̃ ∈ (d− ν, d+ ν).

Let d2min and d2max be defined in Theorem 1. Let y1 6= y2 be two arbitrary codeword symbols. We

have the following triangle inequalities,

‖r − gq(y2)‖ ≥ ‖gq(y2)− gq(y1)‖ − ‖r − gq(y1)‖

‖r − gq(y2)‖ ≤ ‖gq(y2)− gq(y1)‖+ ‖r − gq(y1)‖. (56)

The first inequality in (56) implies

min
y2,y2 6=y1

[− log(fo(r|y2))] + log(fo(r|y1)) = min
y2,y2 6=y1

[

SNR

2
(‖r − gq(y2)‖

2 − ‖r − gq(y1)‖
2)
]

≥
SNR

2
dmin(dmin − 2‖r − gq(y1)‖). (57)

The second inequality in (56) implies

max
y2 6=y3

[− log(fo(r|y2)) + log(fo(r|y3))] = max
y2 6=y3

[

SNR

2
(‖r − gq(y2)‖

2 − ‖r − gq(y3)‖
2)
]

≤ max
y2

[

SNR

2
‖r − gq(y2)‖

2
]

≤ max
y2

[

SNR(‖r − gq(y1)‖
2 + ‖gq(y2)− gq(y1)‖

2)
]

≤ SNR(‖r − gq(y1)‖
2 + d2max). (58)

Therefore, Assumption 3 is satisfied by defining

Ll(r,y1) =
SNR

2
dmin(dmin − 2‖r − gq(y1)‖)

Lu(r,y1) = SNR(‖r − gq(y1)‖
2 + d2max). (59)

Note that evaluating Ll(r,y1) and Lu(r,y1) does not involve visiting any processed state other than

y1.

17

If y[d] and r[d] are the actual codeword symbol and the channel output at time index d, ‖r[d]−

gq(y[d])‖ = ‖n[d]‖ is a χ2 random variable with mean n
SNR

and variance 2n
SNR2 . From (59), it is easily

seen that Assumption 4 is satisfied with d2min > 0 and d2max < ∞.

E. Proof of Theorem 3

Proof: Let ũ(D) be an arbitrary Markov state sequence with corresponding processed state

sequence being ỹ(D). Assume

ũ[m+ ν − 1] 6= u[m+ ν − 1] (60)

Theorem 3 holds if we can prove that any ũ(D) satisfying (60) cannot be the ML state sequence.

Let k denote a positive integer. Define two integers Kl and Kr as follows.

Kl = argmin
k>0

{ũ[m+ ν − 1− kν] = u[m+ ν − 1− kν]}

Kr = argmin
k>0

{ũ[m+ ν − 1 + kν] = u[m+ ν − 1 + kν]}. (61)

We consider respectively the following four cases based on the values of Kl and Kr. In all the four

cases, we show ũ(D) cannot be the ML sequence.

Case 1: Kl ≤ 2M + 1, Kr ≤ 2M − 1.

Since ũ[m+ν−1+kν] 6= u[m+ν−1+kν] for all −K1 < k < Kr, according to Assumption 2, ỹ(D)

and y(D) differ at no less than
⌊

Kl+Kr

2

⌋

time indices in the time interval [m+ ν−Klν,m+ ν+Krν),

where ⌊x⌋ denotes the maximum integer no larger than x. According to (33) and (36), for d ∈

[m− 2Mν,m+ 2Mν), if ỹ[d] 6= y[d], we have

− log
fo(r[d]|ỹ[d])

fo(r[d]|y[d])
≥ Ll(r[d],y[d]) > 3ν(ρ− log ptr). (62)

Consequently, we get

−
m+ν−1+Krν

∑

d=m+ν−Klν

log
fo(r[d]|ỹ[d])Pt(ũ[d]|ũ[d− 1])

fo(r[d]|y[d])Pt(u[d]|u[d− 1])

≥
⌊

Kl +Kr

2

⌋

3ν(ρ− log ptr) + (Kr +Kl)ν log ptr ≥
⌊

Kl +Kr

2

⌋

3νρ > 0 (63)

According to the PCC presented in Appendix A, (63) implies that u(D) “covers”7 ũ(D). Hence

ũ(D) cannot be the ML sequence.

Case 2: Kl ≤ 2M + 1, Kr > 2M − 1.

In this case, we will construct a Markov sequence uc(D) and show that uc(D) covers ũ(D).

7See definition in Appendix A.

18

uc(D) is constructed as follows.

uc[d] = u[d], for d < m+ 2Mν

uc[d] = ũ[d], for d ≥ m+ (2M + 1)ν. (64)

According to (31), we can always construct uc[d] for d ∈ [m+ 2Mν,m+ (2M + 1)ν) so that (64) is

satisfied. Let yc(D) be the processed state sequence corresponding to uc(D).

From (33) and the first inequality in (37), we get

−
m+(2M+1)ν

∑

d=m+2Mν

log
fo(r[d]|ỹ[d])Pt(ũ[d]|ũ[d− 1])

fo(r[d]|yc[d])Pt(uc[d]|uc[d− 1])

≥ −
m+(2M+1)ν−1

∑

d=m+2Mν

Lu(r[d],y[d]) + (ν + 1) log ptr ≥ −3Mνρ (65)

Since ũ[m+ν−1+kν] 6= uc[m+ν−1+kν] for all −Kl < k ≤ 2M−1, according to Assumption 2,

ỹ(D) and y(D) differ at no less than
⌊

Kl+2M−1
2

⌋

time indices in the time interval [m+ ν −Klν,m+

2Mν). According to (33) and (36), we have

−
m+2Mν−1
∑

d=m+ν−Klν

log
fo(r[d]|ỹ[d])Pt(ũ[d]|ũ[d− 1])

fo(r[d]|yc[d])Pt(uc[d]|uc[d− 1])

>

⌊

Kl + 2M − 1

2

⌋

3ν(ρ− log ptr) + (Kl + 2M − 1)ν log ptr

≥ 3Mν(ρ − log ptr) + 2Mν log ptr ≥ 3Mνρ (66)

Combining (65) and (66), we obtain

−
m+(2M+1)ν

∑

d=m+ν−Klν

log
fo(r[d]|ỹ[d])Pt(ũ[d]|ũ[d− 1])

fo(r[d]|yc[d])Pt(uc[d]|uc[d− 1])
> 0 (67)

(67) implies that uc(D) covers ũ(D). Hence according to the PCC, ũ(D) cannot be the ML sequence.

Case 3: Kl > 2M + 1, Kr ≤ 2M − 1.

Similar to Case 2, we will construct a Markov sequence uc(D) and show that uc(D) covers ũ(D).

uc(D) is constructed as follows.

uc[d] = u[d], for d ≥ m− 2Mν

uc[d] = ũ[d], for d < m− (2M + 1)ν. (68)

According to (31), we can always construct uc[d] for d ∈ [m− (2M + 1)ν,m− 2Mν) so that (68) is

satisfied. Let yc(D) be the processed state sequence corresponding to uc(D).

From (33) and the second inequality in (37), we get

−
m−2Mν−1
∑

d=m−(2M+1)ν

log
fo(r[d]|ỹ[d])Pt(ũ[d]|ũ[d− 1])

fo(r[d]|yc[d])Pt(uc[d]|uc[d− 1])

≥ −
m−2Mν−1
∑

d=m−(2M+1)ν

Lu(r[d],y[d]) + ν log ptr ≥ −3Mνρ. (69)

19

Since ũ[m+ ν− 1+ kν] 6= uc[m+ ν− 1+ kν] for all −2M − 1 ≤ k < Kr, according to Assumption

2, ỹ(D) and y(D) differ at no less than
⌊

2M+1+Kr

2

⌋

time indices in the time interval [m− 2Mν,m+

ν +Krν). According to (33) and (36), we have

−
m+ν+Krν−1

∑

d=m−2Mν

log
fo(r[d]|ỹ[d])Pt(ũ[d]|ũ[d− 1])

fo(r[d]|yc[d])Pt(uc[d]|uc[d− 1])

>

⌊

2M + 1 +Kr

2

⌋

3ν(ρ− log ptr) + (2M + 1 +Kr)ν log ptr ≥ 3(M + 1)νρ. (70)

Combining (69) and (70), we obtain

m+ν+Krν−1
∑

d=m−(2M+1)ν

log
fo(r[d]|ỹ[d])Pt(ũ[d]|ũ[d− 1])

fo(r[d]|yc[d])Pt(uc[d]|uc[d− 1])
< 0 (71)

(71) implies that uc(D) covers ũ(D). Hence according to the PCC, ũ(D) cannot be the ML sequence.

Case 4: Kl > 2M + 1, Kr > 2M − 1.

We construct a Markov state sequence uc(D) as follows.

uc[d] = u[d], for m− 2Mν ≤ d < m+ 2Mν

uc[d] = ũ[d], for d ≥ m+ (2M + 1)ν

uc[d] = ũ[d], for d < m− (2M + 1)ν. (72)

Let the processed state sequence corresponding to uc(D) be yc(D).

Since ũ[m+ν−1+kν] 6= uc[m+ν−1+kν] for all −2M−1 ≤ k ≤ 2M−1, according to Assumption

2, ỹ(D) and y(D) differ at no less than
⌊

4M+1
2

⌋

time indices in the time interval [m−2Mν,m+2Mν).

According to (33) and (36), we have

−
m+2Mν−1
∑

d=m−2Mν

log
fo(r[d]|ỹ[d])Pt(ũ[d]|ũ[d− 1])

fo(r[d]|yc[d])Pt(uc[d]|uc[d− 1])
>

⌊

4M + 1

2

⌋

3ν(ρ− log ptr) + 4Mν log ptr ≥ 6Mνρ.

(73)

Meanwhile, it is easily seen that (65) and (69) hold. Combine (65), (69) and (73), we obtain

−
m+(2M+1)ν

∑

d=m−(2M+1)ν

log
fo(r[d]|ỹ[d]))Pt(ũ[d]|ũ[d− 1])

fo(r[d]|yc[d])Pt(uc[d]|uc[d− 1])
> −3Mνρ − 3Mνρ+ 6Mνρ = 0. (74)

(74) implies that uc(D) covers ũ(D). Hence according to the PCC, ũ(D) cannot be the ML sequence.

Overall, we showed that ũ(D) cannot be the ML sequence irrespective of the values of Kl and Kr.

Therefore, ũ[m+ ν − 1] = u[m+ ν − 1] must be true.

References

[1] G. Forney, The Viterbi Algorithm, Proc. of The IEEE, Vol. 61, No. 3, pp. 268-278, Mar. 1973.

[2] A. Viterbi, Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm, IEEE Trans. Inform.

Theory, Vol. IT-13, No. 2, pp. 260-269, Apr. 1967.

20

[3] K. Zigangirov and H. Osthoff, List Decoding of Trellis Codes, Problems of Control and Information Theory, pp. 347-364,

1980.

[4] R. Fano, A Heuristic Discussion of Probabilistic Decoding, IEEE Trans. Inform. Theory, Vol. IT-9, pp. 64-74, Apr. 1963.

[5] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate, IEEE

Trans. Inform. Theory, Vol. IT-20, pp. 284-287, Mar. 1974.

[6] R. Johannesson and K. Zigangirov, Fundamentals of Convolutional Coding, IEEE Press, 1999.

[7] P. Swaszek and W. Jones, How Often Is Hard-Decision Decoding Enough?, IEEE Trans. Inform. Theory, Vol. 44, pp. 1187-

1193, May 1998.

[8] M. Ariel and J. Snyders, Error-Trellises for Convolutional Codes-Part II: Decoding Methods, IEEE Trans. Commun., Vol. 47,

pp. 1015-1024, July 1999.

[9] B. Hassibi and H. Vikalo, On The Sphere Decoding Algorithm I. Expected Complexity, IEEE Trans. Sig. Proc., Vol. 53, No.

8, pp. 2806-2818, Aug. 2005.

[10] U. Fincke and M. Pohst, Improved Methods for Calculating Vectors of Short Length in A Lattice, Including A Complexity

Analysis, Math. Comput., Vol. 44, pp. 463-471, Apr. 1985.

[11] H. Vikalo and B. Hassibi, Maximum-Likelihood Sequence Detection of Multiple Antenna Systems over Dispersive Channels

via Sphere Decoding, EURASIP J. Appl. Sig. Proc., No. 1, pp. 525-531, Jan. 2002.

[12] H. Vikalo, Sphere Decoding Algorithms for Digital Communications, Ph.D. Thesis, Stanford Univ., 2003.

[13] L. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proc. of IEEE, Vol. 77,

No. 2, pp. 257-286, Feb. 1989.

[14] G. Forney, Structural Analysis of Convolutional Codes via Dual Codes, IEEE Trans. Inform. Theory, Vol. IT-19, pp. 512-518,

Jul. 1973.

[15] J. Luo, Fast Maximum Likelihood Sequence Detection over Vector Intersymbol Interference Channels, IEEE ICASSP,

Honolulu, Hawaii, Apr. 2007.

	Introduction
	Problem Formulation
	Inefficiency of Sum Log Likelihood-based Optimality Test
	Neighboring Log Likelihood-based Optimality Test
	A Three-step ML Decoding Framework
	Maximum Likelihood Sequence Detection in A Class of Hidden Markov Systems
	Further Discussions
	Appendix
	The Path Covering Criterion
	Examples of SLL-based Optimality Tests Satisfying Assumption ??
	Proof of Lemma ??
	The Hidden Markov Model and Its Key Assumptions
	Proof of Theorem ??

	References

