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Robust hypothesis testing with a relative
entropy tolerance

Bernard C. Levy

Abstract

This paper considers the design of a minimax test for two hypotheses where the actual
probability densities of the observations are located in neighborhoods obtained by placing a
bound on the relative entropy between actual and nominal densities. The minimax problem
admits a saddle point which is characterized. The robust test applies a nonlinear transformation
which flattens the nominal likelihood ratio in the vicinity of one. Results are illustrated by
considering the transmission of binary data in the presenceof additive noise.

Index Terms

Robust hypothesis testing, Kullback-Leibler divergence,min-max problem, saddle point,
least favorable densities.

I. INTRODUCTION

Robust hypothesis testing and signal detection problems have been examined in detail over
the last 40 years [1], [2]. The purpose of such studies is to design tests or detectors which are
insensitive to modelling errors. Specifically, whereas standard Bayesian or Neyman-Pearson tests
are designed for nominal observation probability distributions, their performance may degrade
rapidly when the actual model deviates only moderately fromthe nominal model. To guard against
modelling errors, a minimax framework is usually adopted for selecting tests or detectors. In this
context, the goal is to design a test that minimizes the worst-case performance for all observation
models in a properly specified neighborhood of the nominal model. For robust hypothesis testing,
when the neighborhood of the nominal model under each hypothesis corresponds either to
a contamination model or a proximity model based on the Kolmogorov metric or a variant
thereof, Huber [2]–[4] showed that the minimax detector applies a clipping transformation to the
nominal likelihood ratio function. The clipping effect is achieved by shifting small portions of
the probability mass under each hypothesis to the tail sections where errors occur. This relatively
minute shift of probability mass can result in a significant degradation in test performance.

We adopt here a minimax formulation of the robust hypothesistesting problem of the same
type as [2]–[4]. The only difference is that the neighborhood where the actual observation
probability density is located under each hypothesis is formed by placing an upper bound on
the relative entropy of the actual density with respect to the nominal density. To justify the
choice of the relative entropy as a measure of proximity between statistical models, observe that
Huber’s work addresses primarily situations where statistical models are obtained directly from
imperfect data, possibly contaminated by outliers. However there exists also situations where the
densities employed in hypothesis testing are model based, arising from physical considerations,
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possibly with a few unknown parameters which are estimated from the data. In this context, the
relative entropy is a natural metric for model mismatch, since it provides the underlying metric
for establishing the convergence of the expectation-maximization method [5] of mathematical
statistics. In fact from a differential geometric viewpoint, it is argued in [6] that the relative entropy
forms a natural ‘distance’ between statistical models. More recently, in the context of estimation
and filtering it was shown in [7], [8] that minimax filters based on a relative entropy tolerance take
the form or risk-sensitive Wiener or Kalman filters, which have well known robustness properties.
By selecting the relative entropy as a measure of model mismatch, a risk-sensitive viewpoint was
also adopted recenty in [9] for developing robust macroeconomic policies. Given relative entropy
neighborhoods of the nominal densities for the two hypotheses, it is easy to verify that a saddle
point exists for the resulting minimax hypothesis testing problem. To identify the saddle point, two
assumptions are made. First as in [3], it is assumed that the nominal likelihood ratio function
(LR) is monotone increasing. Second, it is required that thenominal densities under the two
hypotheses should be symmetric with respect to each other. This allows the parametrization of
the robust test and least-favorable densities in terms of a single parameter which can be selected
uniquely so that the relative entropy tolerance is satisfied. The least-favorable LR is expressed
as a nonlinear transformation of the nominal LR. But, unlike[2]–[4], the transformation is not a
clipping transformation. Instead, it attempts to drive theLR to a value as close one as possible.
The least-favorable densities are divided into three segments. The extreme segments are scaled
versions of the nominal densities, where the scaling aims atshifting some probability mass to
tails where errors occur. But the middle segment is a sectionof the “mid-way density” on the
geodesic linking the two nominal densities, where the mid-way density is characterized by the
property that it has the same relative entropy with respect to each of the nominal densities.

The robust hypothesis testing problem we consider is also related to the worst-case noise
detection problem examined in [10], [11], where given a binary communication system with
additive noise, with the actual noise density located within a prespecified relative entropy bound
of the nominal noise density, it is required to find the ML detector for the worst-case noise in the
neighborhood of the nominal noise. Thus the difference between the problem we consider and
[11] is that we allow the additive noise statistics to be different under each hypothesis, instead of
forcing them to be the same. Finally, it is worth noting that [12] also examines robust hypothesis
testing by using the relative entropy as a mismatch metric between actual and nominal densities,
but it does so asymptotically as the number of measurements becomes infinite, so its results take
a very different form.

The paper is organized as follows. Section II describes the minimax hypothesis problem with
a relative entropy constraint. The saddle point of the problem is characterized in Section III, and
examples are presented in Section IV. Finally, Section V gives some conclusions.

II. PROBLEM FORMULATION

Consider a binary hypothesis testing problem where under hypothesisHj, with j = 0, 1, the
random observationY ∈ R admitsfj(y) as nominal probability density. The actual densitygj(y)
of Y underHj is not known exactly and belongs to the neighborhood

Fj = {gj : D(gj |fj) ≤ ǫj} , (2.1)

where

D(g|f) =

∫

∞

−∞

ln
( g(y)

f(y)

)

g(y)dy (2.2)
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denotes the Kullback-Leibler (KL) divergence or relative entropy of probability densitiesg(y)
and f(y). Note that the KL divergence is not a true distance since it isnot symmetric, i.e.,
D(g|f) 6= D(f |g), it does not satisfy the triangle inequality, butD(g|f) ≥ 0 with equality if and
only if g = f . Also, sincex ln(x) is a convex function forx ≥ 0, D(g|f) is convex ing, which
implies that neighborhoodFj is convex forj = 0, 1.

Let D denote the class of pointwise randomized decision rulesδ(y) such that ifY = y, we
selectH1 with probability δ(y) andH0 with probability 1 − δ, where0 ≤ δ(y) ≤ 1. ClearlyD
is convex, since ifδ1(y) andδ2(y) are two decision rules ofD, then for0 ≤ α ≤ 1,

δ(y) = αδ1(y) + (1− α)δ2(y)

also belongs toD.
Let

PF (δ, g0) =

∫

∞

−∞

δ(y)g0(y)dy (2.3)

PM (δ, g1) =

∫

∞

−∞

(1− δ(y))g1(y)dy (2.4)

denote respectively the probability of false alarm and the probablity of a miss for decision rule
δ ∈ D when the densities ofY underH0 andH1 areg0 andg1, respectively. Note thatPF (δ, g0)
is separately linear inδ andg0. Similarly PM (δ, g1) is separately linear inδ andg1. If we assume
that the two hypotheses are equally likely, the probabilityof error of δ ∈ D is given by

PE(δ, g0, g1) =
1

2
[PF (δ, g0) + PM (δ, g1)] . (2.5)

We seek to solve the minimax problem

min
δ∈D

max
(g0,g1)∈F0×F1

PE(δ, g0, g1) (2.6)

Note thatPE(δ, g0, g1) is linear and thus convex inδ. Similarly, it is linear and thus concave in
g0 andg1. The setF0 ×F1 is convex and compact,D is convex and since

||δ||∞ = max
y∈R

δ(y)

for all δ ∈ D, D is compact with respect to the infinity norm. So according to the Von Neumann
minimax theorem [13, p. 319], there exists a saddle point(δR, (g

L
0 , g

L
1 )) for the minimax problem

(2.6). HereδR is the robust/minimax test, whereasgL0 andgL1 are the least favorable densities in
F0 ×F1. The saddle point is characterized by the property

PE(δ, g
L
0 , g

L
1 ) ≥ PE(δR, g

L
0 , g

L
1 ) ≥ PE(δR, g0, g1) (2.7)

for all δ ∈ D, g0 ∈ F0 andg1 ∈ F1.
While it is nice to know that a saddle point exists, exhibiting a testδR and least favorable

densitiesgLj , j = 0, 1 satisfying (2.7) is a nontrivial task. Before doing so, it isworth pointing
out that the minimax problem (2.6) is of the same type as considered by Huber in [2]–[4]. The
only difference is that the neighborhoodsFj differ from those considered in [2] which included
contamination models or proximity models based on the Kolmogorov metric as special cases.
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The problem (2.6) is also closely related to the worst-case noise detection problem considered
in [11], where for hypotheses

H0 : Y = −1 +N

H1 : Y = 1 +N , (2.8)

and a nominal probability densityfN(n) for noiseN , it was desired to construct a minimum
probability of error detector for the least-favorable noise densitygN (n) located in the KL ball
specified byD(gN |fN ) ≤ ǫ. Thus the problem (2.6) differs from the one examined in [10], [11]
by the fact that we allow the least-favorable noise distribution to be different under hypotheses
H0 andH1, instead of insisting they should be the same.

III. SADDLE POINT SPECIFICATION

The first inequality of the saddle point characterization (2.7) indicates that the robust testδR
must be the optimum Bayesian test for the least-favorable pair (gL0 , g

L
1 ). So if

LL(y) =
gL1 (y)

gL0 (y)
(3.1)

denotes the LR function for the pair(gL0 , g
L
1 ), we need to have

δR(y) =







1 for LL(y) > 1
arbitrary for LL(y) = 1

0 for LL(y) < 1 .
(3.2)

Consider now the second inequality of (2.7). Because of the form (2.5) ofPE(δ, g0, g1), it is
equivalent to

PF (δR, g
L
0 ) ≥ PF (δR, g0)

PM (δR, g
L
1 ) ≥ PM (δR, g1)

for all g0 andg1 in F0 andF1, respectively.
So, givenδR, the least-favorable densitygL0 is obtained by maximizingPF (δR, g0) for all

functionsg0 ∈ F0 such that

I(g0) =

∫

∞

−∞

g0(y)dy = 1 . (3.3)

Since PF (δR, g0) is concave ing0 and the domainF0 is convex, the maximization can be
accomplished by using the method of Lagrange multipliers [14, Chap. 5]. Consider the Lagrangian

L(g0, λ, µ) = PF (δR, g0) + λ(ǫ0 −D(g0|f0)) + µ(1− I(g0))

=

∫

∞

−∞

[

δR(y)− µ− λ ln
(g0
f0

(y)
)]

g0(y)dy + λǫ0 + µ , (3.4)

where Lagrange multiplierλ ≥ 0 is associated to the inequality constraintD(g0|f0) ≤ ǫ0, whereas
multiplier µ corresponds to equality constraint (3.3). Note that the non-negativity constraint
g0(y) ≥ 0 for the density functiong0 is not introduced explicitly, since the solution obtained
below by maximizingL satisfies this constraint automatically.
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The Gateaux derivative [14, p. 17] ofL with respect tog0 in the direction of an arbitrary
function z is given by

∇g0,zL(g0, λ, µ) = lim
h→0

1

h

[

L(g0 + hz, λ, µ)− L(g0, λ, µ)
]

=

∫

∞

−∞

[

δR − (λ+ µ)− λ ln
(g0
f0

)]

zdy , (3.5)

and sincez(y) is arbitrary, this implies

δR(y)− (λ+ µ)− λ ln
(g0
f0

)

(y) = 0 . (3.6)

In addition, the Karush-Kuhn-Tucker (KKT) condition

λ(ǫ0 −D(g0|f0)) = 0 (3.7)

needs to be satisfied. Assumeλ > 0, soD(g0|f0) = ǫ0, i.e., g0 is on the boundary ofF0. Then
(3.6) implies

gL0 (y) =
1

Z0
exp(α0δR(y))f0(y) (3.8)

with
Z0

△
= exp(1 +

µ

λ
) , α0

△
=

1

λ
.

Note that since the nominal densityf0(y) ≥ 0 for all y, the least-favorable densitygL0 (y) specified
by (3.8) is also non-negative, so that the non-negativity constraint ong0 is satisfied automatically.
Proceeding in a similar manner, we find that the least-favorable density underH1 can be expressed
as

gL1 (y) =
1

Z1
exp(α1(1− δR(y)))f1(y) (3.9)

with Z1 > 0.
Together, the expressions (3.2) forδR and (3.8)–(3.9) for(gL0 , g

L
1 ) provide some guidelines for

guessing a saddle point satisfying inequalities (2.7). We exhibit below a saddle point with the
desired structure under the following assumptions.

Assumptions:

i) The nominal likelihood ratio

L(y) =
f1(y)

f0(y)
(3.10)

is a monotone increasing function ofy. This implies thatℓ = L(y) admits an inverse function
y = L−1(ℓ).

ii) f0(y) andf1(y) admit the symmetry

f1(y) = f0(−y) . (3.11)

This assumption implies

L(−y) =
f1(−y)

f0(−y)
=

f0(y)

f1(y)
=

1

L(y)
,

and thusL(0) = 1.
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Remarks:

a) The motonicity assumption forL(y) appears also in [2]. The symmetry condition (3.11) has
the effect of symmetrizing the KL divergence off0 andf1, since it ensures

D(f1|f0) = D(f0|f1) .

Furthermore, for0 ≤ u ≤ 1, if we consider the geodesic

fu(y) =
fu
1 (y)f

1−u
0 (y)

Z(u)

linking nominal densitiesf0 andf1, where

Z(u) =

∫

∞

−∞

fu
1 (y)f

1−u
0 (y)dy ,

the assumption ii) ensures that the densityf1/2 is located mid-way betweenf0 and f1 in
terms of the KL divergence, since

D(f1/2|f0) = D(f1/2|f1) .

We refer the reader to [15, Chap. 4.] and [6] for a detailed discussion of the differential
geometric structure of statistical models.

b) For model (2.8), the above assumptions are satisfied if under both hypothesesN admits a
generalized Gaussian density

fN (n) = a exp(−|n/b|α)

with α > 1, where the constantsa andb are adjusted to fix the variance of the distribution
and normalize its total probability mass. The caseα = 2 corresponds to a standard Gaussian
distribution. On the other hand, ifN is Cauchy distributed, it is easy to verify that

L(y) =
fN (y − 1)

fN (y + 1)

is not monotone increasing so Assumption i) is not satisfied.
c) The assumptions allow the consideration of nonsymmetricnoise distributions. For example,

consider model (2.8) where underH1, N admits the asymmetric Laplace density

fL(n) =

{

c exp(−an) n ≥ 0
c exp(bn) n ≤ 0

(3.12)

with b > a > 0 andc = (a−1+b−1)−1, and underH0, N admits the flipped densityfL(−n).
Then

f1(y) = fL(y − 1) and f0(y) = fL(−(y + 1))

satisfy the symmetry condition (3.11) and the log-likelihood ratio

lnL(y) = ln(f1(y)/f0(y)) =







(b− a)y + (b+ a) y ≥ 1
2by −1 ≤ y ≤ 1

(b− a)y − (b+ a) y ≤ −1
(3.13)

is monotone increasing. Note that this property requiresb > a, which ensures that the fat
tails of f1(y) and f0(y) are located on the opposite side of the location parameter ofthe
competing hypothesis. For example underH1, the location parameter (the constant additive
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term in (2.8)) is1 so the fat tail extends over[1,∞), which is on the opposite side of the
location parameter−1 of the competing hypothesisH0.

We can now prove the following result.

Theorem 1: Assume that constantsǫj specifying neighborhoodsFj with j = 0, 1 are such
that ǫ0 = ǫ1 = ǫ, where

0 < ǫ < D(f1/2|f0) . (3.14)

This requirement ensures thatF0 andF1 do not intersect. Then under assumptions i)-ii) consider
the decision rule

δR(y) =















1 y > yU

1

2

[

1 +
lnL(y)

ln ℓU

]

−yU ≤ y ≤ yU

0 y < −yU ,

(3.15)

and the least-favorable pair

gL0 (y) =







ℓUf0(y)/Z(yU ) y > yU

ℓ
1/2
U f

1/2
1 (y)f

1/2
0 (y)/Z(yU ) −yU ≤ y ≤ yU

f0(y)/Z(yU ) y < −yU

(3.16)

gL1 (y) =







f1(y)/Z(yU ) y > yU

ℓ
1/2
U f

1/2
1 (y)f

1/2
0 (y)/Z(yU ) −yU ≤ y ≤ yU

ℓUf1(y)/Z(yU ) y < −yU

(3.17)

which are parametrized byyU > 0 andℓU = L(yU ) > 1. Here the normalizing constantZ(yU )
is selected such that

I(gL0 ) = I(gL1 ) = 1 . (3.18)

There exists a uniqueyU > 0 such that

D(gL0 |f0) = D(gL1 |f1) = ǫ , (3.19)

and the correspondingδR and densities(gL0 , g
L
1 ) form a saddle point of minimax problem (2.6).

Before proving the result, it is worth noting that the least-favorable LR

LL(y) =















L(y)

ℓU
> 1 y > yU

1 −yU ≤ y ≤ yU
ℓUL(y) < 1 y < −yU

(3.20)

can be viewed as obtained by applying a nonlinearityq(·) to the nominal likelihood ratioL.
Specifically, we have

LL = q(L) =







L/ℓU L > ℓU
1 ℓ−1

U ≤ L ≤ ℓU
ℓUL L < ℓ−1

U

(3.21)

where the nonlinearityq(·) is sketched in Fig. 1 below. This nonlinearity is different from the
clipping transformation obtained by Huber [2]–[4] which truncates high and low values of the
nominal likelihood ratio. Instead, the transformationq(·) attempts to force the transformed values
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LL to be as close to1 as possible, where a LR valueLL = 1 corresponds to a situation where
observationY = y is uninformative in terms of making a decision betweenH1 andH0.

L

q(L)

1

1/ℓU ℓU0

L/ℓU

ℓUL

Fig. 1. Nonlinearityq(·) relating the nominal and least-favorable likelihood ratios.

Proof: Observe first that since the least-favorable LR is given by (3.20), the decision ruleδR
specified by (3.15) has the form (3.2). Note that sinceℓ−1

U ≤ L(y) ≤ ℓU for −yU ≤ y ≤ yU , we
have

−1 ≤
lnL(y)

ln ℓU
≤ 1

for −yU ≤ y ≤ yU , which ensures0 ≤ δR(y) ≤ 1 for −yU ≤ y ≤ yU .
Next, with δR given by (3.15). it is easy to verify that the least favorabledensitiesgL0 andgL1

given by (3.16) and (3.17) admit the forms (3.8) and (3.9) with Z0 = Z1 = Z(yU) and

α0 = α1 = ln ℓU .

To ensure that the normalization condition (3.18) holds we only need to select

Z(yU) =

∫

−yU

−∞

f0(y)dy + ℓ
1/2
U

∫ yU

−yU

f
1/2
1 (y)f

1/2
0 (y)dy + ℓU

∫

∞

yU

f0(y)dy .

Then if gL0 (·|yU ) represents the function (3.16), where the parametrizationby yU ≥ 0 is written
explicitly, let

D(yU )
△
= D(gL0 (·|yU )|f0)

= − lnZ(yU ) +
1

Z(yU )

[

ℓU ln ℓU

∫

∞

yU

f0(y)dy

+ℓ
1/2
U ln ℓU

∫ yU

0
f
1/2
1 (y)f

1/2
0 (y)dy

]

(3.22)

denote its KL divergence with respect to the nominal densityf0. For yU = 0, we havegL0 (·|0) =
f0, so D(0) = 0. Furthermore foryU = +∞, we havegL0 (·| + ∞) = f1/2, so D(+∞) =
D(f1/2|f0), where as noted earlier the densityf1/2 represents the mid-way point on the geodesic
linking f0 to f1.
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Taking the derivative ofD(yU ) with respect toyU gives

dD

dyU
= −Z−1(yU )

dZ

dyU

−Z−2(yU )
dZ

dyU

[

ℓU ln ℓU

∫

∞

yU

f0(y)dy + l
1/2
U ln ℓU

∫ yU

−yU

f
1/2
1 (y)f

1/2
0 (y)dy

]

+Z−1(yU )
[ d

dyU
(ℓU ln ℓU )

∫

∞

yU

f0(y)dy +
d

dyU
(ℓ

1/2
U ln ℓU )

∫ yU

0
f
1/2
1 (y)f

1/2
0 (y)dy

]

=
N(yU )

Z2(yU )

dL

dyU
, (3.23)

where

N(yU ) = ln ℓU

∫

∞

yU

f0(y)dy

∫

∞

yU

f1(y)dy

+
1

2
ln ℓU

[

ℓ
1/2
U

∫ yU

0
f
1/2
1 (y)f

1/2
0 (y)dy +

∫

∞

yU

(

f0(y) +
f1(y)

ℓU

)

dy
]

> 0

for yU > 0. SinceL(y) is monotone increasing, we havedL/dyU > 0 in (3.23), sodD/dyU > 0.
Consequently,D(yU ) is monotone increasing fromD(0) = 0 for yU = 0 to D(f1/2|f0) for
yU = ∞. Accordingly, givenǫ satisfying (3.14), there exists a uniqueyU such thatD(yU) = ǫ.
For this choice ofyU , the least favorable densitiesgL0 and gL1 satisfy KKT condition (3.9), so
the second inequality of (2.8) is satisfied, andδR together with(gL0 , g

L
1 ) form the desired saddle

point. �

Worst case test performance: By taking into account the symmetries

1− δR(y) = δR(−y)

gL1 (y) = gL0 (−y) (3.24)

of the robust test and least favorable densities, which are aconsequence of the symmetry
assumption (3.11), we find that the worst-case probabilities of false alarm and of a miss for
testδR satisfy

PF (δR, g
L
0 ) = PM (δR, g

L
1 ) = PE(δR, g

L
0 , g

L
1 ) ,

where

PF (δR, g
L
0 ) =

∫ yU

−yU

δR(y)g
L
0 (y)dy + Z−1(yU )ℓU

∫

∞

yU

f0(y)dy

= Z−1(yU)
[

ℓ
1/2
U

∫ yU

0
f
1/2
1 (y)f

1/2
0 (y)dy + ℓU

∫

∞

yU

f0(y)dy
]

. (3.25)

IV. EXAMPLES

Example 1: Consider the case where underH0 andH1, Y admits the nominal distributions

f0(y) =
1

(2πσ2)1/2
exp

(

−
(y + 1)2

2σ2

)

f1(y) =
1

(2πσ2)1/2
exp

(

−
(y − 1)2

2σ2

)

. (4.1)
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This corresponds to a model of the form (2.8) where the additive noiseN has aN(0, σ2)
nominal distribution. The signal to noise ratio (SNR) for this detection problem isSNR = 1/σ2.
The likelihood ratio

L(y) =
f1(y)

f0(y)
= exp

(2y

σ2

)

is clearly monotone increasing, and the nominal densitiesfj(y), j = 0, 1 admit the symmetry
(3.11), so the assumptions of Theorem 1 are satisfied. In thiscase, it is interesting to note that
the mid-way density

f1/2(y) =
f
1/2
1 (y)f

1/2
0 (y)

Z(1/2)
=

1

(2πσ2)1/2
exp

(

−
y2

2σ2

)

,

is N(0, σ2) distributed, which makes sense sincef0 andf1 have opposite means∓1 but the same
varianceσ2.

If we consider the parametrization (3.16) of the least favorable densitygL0 (y), we find that it
is continuous and formed by three segments. Over(−∞,−yU ), gL0 is an attenuated version of
the nominalN(−1, σ2) density. Over[−yU , yU ], it is a scaled version of the mid-wayN(0, σ2)
density, and for(yU ,∞) it is an amplified version of the nominalN(−1, σ2) density. ThusgL0
can be viewed as obtained from the nominal densityf0 by shifting a portion of its probability
mass to the middle segment wheregL0 and gL1 are equal, and to the right tail where hypothesis
H1 is selected, which has the effect of increasing the probability of false alarm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

yu

D
(y

u
)

Fig. 2. Plot of functionD(yU ) for 0dB SNR.

To illustrate the construction ofgL0 (y), let the relative entropy tolerance beǫ = 0.1. Then
for a nominal SNR equal to0dB (σ = 1), the functionD(yU) measuring the KL divergence
of gL0 (·|yU ) with respect tof0 is plotted in Fig. 2. As expected, it is monotone increasing and
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attains the desired tolerance valueǫ = 0.1 for yU = 0.6080. The least-favorable densitygL0 (y) is
plotted together with the nominal densityf0(y) in part a) of Fig. 3.
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Fig. 3. Least favorable densitygL0 (y) for a toleranceǫ = 0.1 and a) SNR =0dB, b) SNR = 10dB.

The three segments of the density described earlier are clearly in evidence in this plot. Note
however that as the SNR increases, the middle segment shrinks. For example, the least-favorable
density for a SNR value of10dB is shown in part b) of Fig. 3. Although the KL toleranceǫ = 0.1
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is the same as in part a), the deviation ofgL0 away fromf0 is much smaller than for a SNR value
of 0dB. Note also thatgL0 is not symmetric about−1 since a fraction of the probability mass has
been transferred from the left tail to the right tail in the direction of the location parameter1 of
the competing hypothesisH1. Similarly the least favorable distributiongL1 (y) = gL0 (−y) transfers
a portion of its probability mass from its right tail to its left tail. In terms of model (2.8), this
means that the least favorable densities of the noiseN are different underH0 and H1, since
one tilts rightward while the other tilts leftward. In contrast, [11] requires that the least-favorable
noise should be the same under both hypotheses. For the aboveexample withǫ = 0.1 and10dB
SNR, the least favorable noise density is plotted in the SouthWest corner of Figure 3 of [11]. It
is symmetric and thus differs from the least-favorable densities obtained here.

Finally, for ǫ = 0.01 and 0.1, and for SNR values between0 and 15dB, the worst-case
performance of the robust testδR given by (3.25) is compared in Fig. 4 with the probability
of error PE = Q(SNR1/2) of the maximum likelihood detector for nominal densities (4.1).
As indicated by the figure, the loss of performance is rather spectacular. Of course, since this
performance represents a worst case situation, it is not truly indicative of the degradation incurred
for more benign choices of densitiesgj in Fj with j = 0, 1.
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Fig. 4. Comparison of the worst case probability of error of testδR for ǫ = 0.01 andǫ = 0.1 with the ML probability
of error for the nominal model.

Example 2: Consider model (2.8) where underH1 N admits the asymmetric Laplace density
fL(n) given by (3.12) withb > a and underH0, N admits the flipped densityfL(−n). Then
the densities

f1(y) = fL(y − 1) , f0(y) = fL(−(y + 1))

satisfy the symmetry condition (3.11), and as indicated by (3.13), the likelihood ratioL(y) is
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monotone increasing. In this case, the half-way density

f1/2(y) =
f
1/2
0 (y)f

1/2
1 (y)

Z(1/2)

=

{

c exp(−b)/Z(1/2) −1 ≤ y ≤ 1

c exp
(

− a+b
2 |y|+ a−b

2

)

/Z(1/2) |y| ≥ 1

with
Z(1/2) = 2c exp(−b)

(

1 +
2

a+ b

)

is constant for−1 ≤ y ≤ 1 and has a symmetrized exponential decay rate for its two tails. For
yU < 1, the parametrization (3.16) of the least favorable densitygL0 indicates that over segments
(−∞,−yU ) and (yU ,∞) it is proportional tof0, but over[−yU , yU ] it is constant sincef1/2 is
constant.

To illustrate this feature the nominal and least favorable densities are plotted in Fig. 5 for
a = 2, b = 4, andǫ = 0.1. For this choice of parametersyU = 0.3640.
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Fig. 5. Nominal asymmetric Laplace densityf0 and least favorable densitygL0 for a = 2, b = 4 and tolerance
ǫ = 0.1.

V. CONCLUSION

A minimax hypothesis testing procedure has been derived fora binary hypothesis testing prob-
lem where the actual observation density under each hypothesis is required to be within a fixed
KL ball centered about the nominal density. The robust test applies a nonlinear transformation
which flattens the nominal LR in the vicinity ofL = 1. The least-favorable densities include three
segments where, quite interestingly, the middle segment isformed by a section of the density
located mid-way on the geodesic linking the nominal densities under the two hypotheses.
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The results were derived under a motonicity condition for the LR as well as a symmetry
condition for the two hypotheses. While the first condition is benign and appears in Huber’s
work [2]–[4], it would be desirable to remove the symmetry condition (3.11), since this would
open the way to the study of more general robust signal detection problems of the type discussed
in [1].
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