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Robust hypothesis testing with a relative
entropy tolerance

Bernard C. Levy

Abstract

This paper considers the design of a minimax test for two thgses where the actual
probability densities of the observations are located imghi®orhoods obtained by placing a
bound on the relative entropy between actual and nominasitien The minimax problem
admits a saddle point which is characterized. The robustfgsies a nonlinear transformation
which flattens the nominal likelihood ratio in the vicinityf one. Results are illustrated by
considering the transmission of binary data in the presefi@aditive noise.

Index Terms

Robust hypothesis testing, Kullback-Leibler divergentin-max problem, saddle point,
least favorable densities.

. INTRODUCTION

Robust hypothesis testing and signal detection problerae baen examined in detail over
the last 40 years [1], [2]. The purpose of such studies is gigdetests or detectors which are
insensitive to modelling errors. Specifically, whereasidtad Bayesian or Neyman-Pearson tests
are designed for nominal observation probability distiiins, their performance may degrade
rapidly when the actual model deviates only moderately filoennominal model. To guard against
modelling errors, a minimax framework is usually adoptedsfelecting tests or detectors. In this
context, the goal is to design a test that minimizes the waase performance for all observation
models in a properly specified neighborhood of the nominadehd-or robust hypothesis testing,
when the neighborhood of the nominal model under each hgg@thcorresponds either to
a contamination model or a proximity model based on the Kglonov metric or a variant
thereof, Huber [2]-[4] showed that the minimax detectorligspa clipping transformation to the
nominal likelihood ratio function. The clipping effect icl@eved by shifting small portions of
the probability mass under each hypothesis to the tail@estivhere errors occur. This relatively
minute shift of probability mass can result in a significaagdhdation in test performance.

We adopt here a minimax formulation of the robust hypothesising problem of the same
type as [2]-[4]. The only difference is that the neighborthoshere the actual observation
probability density is located under each hypothesis isnéat by placing an upper bound on
the relative entropy of the actual density with respect te tilominal density. To justify the
choice of the relative entropy as a measure of proximity betwstatistical models, observe that
Huber’s work addresses primarily situations where staéismodels are obtained directly from
imperfect data, possibly contaminated by outliers. Howdvere exists also situations where the
densities employed in hypothesis testing are model basisithg@from physical considerations,
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possibly with a few unknown parameters which are estimataah fthe data. In this context, the
relative entropy is a natural metric for model mismatchgsiit provides the underlying metric
for establishing the convergence of the expectation-mizgtion method [5] of mathematical
statistics. In fact from a differential geometric viewppiihis argued in [6] that the relative entropy
forms a natural ‘distance’ between statistical models. évi@cently, in the context of estimation
and filtering it was shown in [7], [8] that minimax filters baisen a relative entropy tolerance take
the form or risk-sensitive Wiener or Kalman filters, whictvbavell known robustness properties.
By selecting the relative entropy as a measure of model midma risk-sensitive viewpoint was
also adopted recenty in [9] for developing robust macroenua policies. Given relative entropy
neighborhoods of the nominal densities for the two hypahei is easy to verify that a saddle
point exists for the resulting minimax hypothesis testingipem. To identify the saddle point, two
assumptions are made. First as in [3], it is assumed that ah@imal likelihood ratio function
(LR) is monotone increasing. Second, it is required thatrtbeminal densities under the two
hypotheses should be symmetric with respect to each otlhés. allows the parametrization of
the robust test and least-favorable densities in terms gfglesparameter which can be selected
uniquely so that the relative entropy tolerance is satisfidte least-favorable LR is expressed
as a nonlinear transformation of the nominal LR. But, un[®e-[4], the transformation is not a
clipping transformation. Instead, it attempts to drive e to a value as close one as possible.
The least-favorable densities are divided into three se¢ggndhe extreme segments are scaled
versions of the nominal densities, where the scaling ainshiiting some probability mass to
tails where errors occur. But the middle segment is a secfdihe “mid-way density” on the
geodesic linking the two nominal densities, where the mé&rwensity is characterized by the
property that it has the same relative entropy with respeeaich of the nominal densities.

The robust hypothesis testing problem we consider is alkdek to the worst-case noise
detection problem examined in [10], [11], where given a bjneommunication system with
additive noise, with the actual noise density located withiprespecified relative entropy bound
of the nominal noise density, it is required to find the ML dtte for the worst-case noise in the
neighborhood of the nominal noise. Thus the difference betwthe problem we consider and
[11] is that we allow the additive noise statistics to beati#int under each hypothesis, instead of
forcing them to be the same. Finally, it is worth noting thH2][also examines robust hypothesis
testing by using the relative entropy as a mismatch metriwédxen actual and nominal densities,
but it does so asymptotically as the number of measuremectanes infinite, so its results take
a very different form.

The paper is organized as follows. Sectidn Il describes timnmax hypothesis problem with
a relative entropy constraint. The saddle point of the mbis characterized in Sectiénllll, and
examples are presented in Secfion IV. Finally, Sediibn \égisome conclusions.

[I. PROBLEM FORMULATION

Consider a binary hypothesis testing problem where undpotinesisH;, with j = 0, 1, the
random observatiolr € R admits f;(y) as nominal probability density. The actual densifyy)
of Y underH; is not known exactly and belongs to the neighborhood

Fi={g; : D(gjlf;) < &}, (2.1)
where . W
D(g|f) =/_ In (%)g(y)dy (2.2)



denotes the Kullback-Leibler (KL) divergence or relativatrepy of probability densitieg(y)
and f(y). Note that the KL divergence is not a true distance since ids symmetric, i.e.,
D(glf) # D(flg), it does not satisfy the triangle inequality, bD{g|f) > 0 with equality if and
only if g = f. Also, sincexIn(z) is a convex function for: > 0, D(g|f) is convex ing, which
implies that neighborhood; is convex forj =0, 1.

Let D denote the class of pointwise randomized decision réfg$ such that ifY = y, we
selectH; with probability 6(y) and Hy with probability 1 — §, where0 < §(y) < 1. Clearly D
is convex, since ib;(y) anddz(y) are two decision rules dP, then for0 < o <1,

6(y) = adi(y) + (1 — a)d2(y)

also belongs td.
Let

Pr(6,90) = /

h 8(y)go(y)dy (2.3)

Pu(b.g1) = /_ (1— (1)1 (v)dy (2.4)

denote respectively the probability of false alarm and thabablity of a miss for decision rule
0 € D when the densities df underH, and H; aregy andg;, respectively. Note thaPr (9, go)
is separately linear in andgg. Similarly Py (0, g1) is separately linear in andg; . If we assume
that the two hypotheses are equally likely, the probabdityerror of § € D is given by

1
Pp(8,90,91) = 5[Pr (0, 90) + Prr (0, 91)] - (2.5)
We seek to solve the minimax problem

min max Pr(4, go, 2.6

€D (go,91)EFoxF1 E( 90 gl) ( )
Note thatPg (4, go, g1) is linear and thus convex if. Similarly, it is linear and thus concave in
go andg;. The setFy x F1 is convex and compacl) is convex and since

0lle = maxd
[19]]o = maxd(y)

for all § € D, D is compact with respect to the infinity norm. So accordingi® Yon Neumann
minimax theorem [13, p. 319], there exists a saddle p@int (g5, g-)) for the minimax problem
([2.8). Heredy, is the robust/minimax test, wheregs and ¢t are the least favorable densities in
Fo x Fi. The saddle point is characterized by the property

PE(57 g(%’g%) > PE(éngg’g%) > PE(5R790791) (27)

forall 6 € D, g9 € Fy andg; € Fi.

While it is nice to know that a saddle point exists, exhilgtia testir and least favorable
densitiengL, j =0, 1 satisfying [2.¥) is a nontrivial task. Before doing so, itwerth pointing
out that the minimax probleni (2.6) is of the same type as demnsd by Huber in [2]-[4]. The
only difference is that the neighborhoods differ from those considered in [2] which included
contamination models or proximity models based on the Kglonov metric as special cases.



The problem[(2)6) is also closely related to the worst-cassendetection problem considered
in [11], where for hypotheses

Hy : Y=—-1+N

H, : Y=1+N, (2.8)
and a nominal probability densityy(n) for noise N, it was desired to construct a minimum
probability of error detector for the least-favorable mogensitygy (n) located in the KL ball
specified byD(gn|fn) < e. Thus the probleni(26) differs from the one examined in [1D]]

by the fact that we allow the least-favorable noise distitbuto be different under hypotheses
H, and Hy, instead of insisting they should be the same.

I1l. SADDLE POINT SPECIFICATION

The first inequality of the saddle point characterizatiorny(2ndicates that the robust teft
must be the optimum Bayesian test for the least-favorakile(pg, g7'). So if

L
97 (y)
Ly(y) = (3.1)
95 ()
denotes the LR function for the paigy, ¢i*), we need to have

{ 1 for Li(y) >1

or(y) = ¢ arbitrary for Lp(y) =1 (3.2)

0 for Ly(y)<1.
Consider now the second inequality bf (2.7). Because of the f{2.5) of P (4, g0, ¢1), it is
equivalent to
Pp(dr, g5)
Prr(0r, g7)
for all go andg; in Fy and Fy, respectively.

So, givendr, the least-favorable densityy is obtained by maximizingPr(dr, go) for all
functionsgg € Fy such that

PF(5R790)

>
> Puy(0r,91)

I(go) = / T goly)dy = 1. (3.3)

—00

Since Pr(dr, go) is concave ing, and the domainF, is convex, the maximization can be
accomplished by using the method of Lagrange multiplieds {Thap. 5]. Consider the Lagrangian

L(go, A, ) = Pr(0r, g0) + A€o — D(golfo)) + 1(1 — 1(g0))

= /_OO [0r(y) —u—Mn(%(y))]go(y)derAeoJru, (3.4)

where Lagrange multipliek > 0 is associated to the inequality constraintg,|fo) < €y, whereas
multiplier ;. corresponds to equality constraimf (3.3). Note that the-megativity constraint
go(y) > 0 for the density functiorny, is not introduced explicitly, since the solution obtained
below by maximizingL satisfies this constraint automatically.



The Gateaux derivative [14, p. 17] df with respect togy in the direction of an arbitrary
function z is given by

1
Voo L(go, A ) = Jim = [L(go + hz, A\, 1) — L(go, A\, )]

~ /_Z [5R—()\+,u)—)\ln(%)]zdy, (3.5)
and sincez(y) is arbitrary, this implies
dn(y) = O p) = A (3) () =0 (36)
In addition, the Karush-Kuhn-Tucker (KKT) condition
Aleo — D(golfo)) =0 (3.7)

needs to be satisfied. Assume> 0, so D(go|fo) = €o, i.€., go IS on the boundary ofr,. Then

(3.8) implies

a(y) = Zio exp(a0dr (1)) fo(v) (3.8)
with . Al
Zozexp(l%—%) , Q0=

Note that since the nominal density(y) > 0 for all y, the least-favorable density (y) specified
by (3.8) is also non-negative, so that the non-negativityst@int ong, is satisfied automatically.
Proceeding in a similar manner, we find that the least-falerdensity undef{; can be expressed
as

gh(y) = Zil explon (1 — r (1)) f1(y) (3.9)

with Z; > 0.

Together, the expressioris(8.2) fay and [3.8)-4(3.9) foKgl, g) provide some guidelines for
guessing a saddle point satisfying inequalities](2.7). Wabit below a saddle point with the
desired structure under the following assumptions.

Assumptions:
i) The nominal likelihood ratio
L(y) = f1ly) (3.10)
fo(y)
is @ monotone increasing function @f This implies that = L(y) admits an inverse function
y=L71(0).
i) fo(y) and f1(y) admit the symmetry
fi(y) = fo(—y). (3.11)

This assumption implies

and thusL(0) = 1.



Remarks:

a)

b)

The motonicity assumption fdr(y) appears also in [2]. The symmetry conditibn (3.11) has
the effect of symmetrizing the KL divergence ¢f and f1, since it ensures

D(f1lfo) = D(folf1) -
Furthermore, foil0 < u < 1, if we consider the geodesic
_frw)fe ")

linking nominal densitiesf, and f;, where

2 = [ ) )y,

the assumption ii) ensures that the dengity, is located mid-way betweeyfy and f; in
terms of the KL divergence, since

D(f1/2’f0) = D(f1/2‘f1) :

We refer the reader to [15, Chap. 4.] and [6] for a detailedwdision of the differential
geometric structure of statistical models.

For model [(2.B), the above assumptions are satisfied iéubdth hypothesed admits a
generalized Gaussian density

fn(n) = aexp(—[n/b|*)
with « > 1, where the constanis andb are adjusted to fix the variance of the distribution
and normalize its total probability mass. The case 2 corresponds to a standard Gaussian
distribution. On the other hand, i¥ is Cauchy distributed, it is easy to verify that

L(y) = In(y —1)

In(y+1)
is not monotone increasing so Assumption i) is not satisfied.
The assumptions allow the consideration of nonsymmatise distributions. For example,
consider model(2]8) where undéf,, N admits the asymmetric Laplace density

fr(n) = {

with b > a > 0 andc = (a=*+b71)~1, and undeil,, N admits the flipped densitf, (—n).
Then

cexp(—an) n >0

cexp(bn) n <0 (3.12)

fily) = fely—1) and fo(y) = frL(—(y +1))
satisfy the symmetry conditioh (3]11) and the log-likebloratio

(b—a)y+ (b+a) y>1
In L(y) = In(f1(y)/ fo(y)) = 2by -1<y<1 (3.13)
b—a)y—(b+a) y<-1
is monotone increasing. Note that this property requires a, which ensures that the fat

tails of f1(y) and fy(y) are located on the opposite side of the location parameténeof
competing hypothesis. For example undgy, the location parameter (the constant additive
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term in (2.8)) is1 so the fat tail extends oveét, co), which is on the opposite side of the
location parameter1 of the competing hypothesiH|.

We can now prove the following result.

Theorem 1: Assume that constants specifying neighborhood%; with j = 0, 1 are such
thatey = €1 = ¢, where
0 < e < D(fiyalfo) - (3.14)

This requirement ensures thay and.F; do not intersect. Then under assumptions i)-ii) consider
the decision rule

1 y>yu
Or(y) = %[1 + hllnLg(y) | ~w<y<w (3.15)
0 y<-yu,
and the least-favorable pair
Cu fo(y)/Z(yu) Y >yu
%y = { ol ”2< V2 W)/Z )~y <y <o (3.16)
foy)/Z(yu) y<-—yu
H1(W)/Z(yu) y>yu
gy = { SR W)/ 20) <y <y (3.17)
tu f1(y)/Z(yu) y<-—yu

which are parametrized by, > 0 and/y = L(yy) > 1. Here the normalizing constatt(y)
is selected such that

1(90) 1(91) L. (3.18)
There exists a uniqugy > 0 such that
D(gi|fo) = D(gy1f1) = (3.19)

and the correspondingz and densitieggy, gi') form a saddle point of minimax problef(2.6).

Before proving the result, it is worth noting that the lefasterable LR

L(y)
_ ly
Li(y) = 1 —yu <y<yu

luL(y) <1 y < —yu

can be viewed as obtained by applying a nonlineagity to the nominal likelihood ratial.
Specifically, we have

> 1 Y > Yy
(3.20)

L/@U L>/y

Ly =q(L) = 1 i <L<y (3.21)
wL  L<iy!

where the nonlinearity)(-) is sketched in Figll1l below. This nonlinearity is differemrh the

clipping transformation obtained by Huber [2]-[4] whiclurticates high and low values of the
nominal likelihood ratio. Instead, the transformatigin) attempts to force the transformed values



L;, to be as close td as possible, where a LR valug, = 1 corresponds to a situation where
observationY” = y is uninformative in terms of making a decision betwdénand Hy.

s 9(L)
Lty

lyL

0 1/EU Ly

Fig. 1. Nonlinearityg(-) relating the nominal and least-favorable likelihood rstio

Proof: Observe first that since the least-favorable LR is given[b208 the decision rulég
specified by[(3.15) has the form (B.2). Note that siﬁg;bg L(y) <ty for —yy <y < yy, we

have
In L(y)

In KU

-1< <1

for —yy <y < yy, which ensure$ < ig(y) <1 for —yy <y < yy.
Next, with §r given by [3.I5). it is easy to verify that the least favoratimsitiess) and g+

given by [3.16) and (3.17) admit the fornis (3.8) and](3.9nhwdy = Z; = Z(yy) and
ap = 1] = IHEU .

To ensure that the normalization condition (3.18) holds wk meed to select

—Yu Yyu o]
2) = [ pwivs gl [T AP0R v+ [ oy
—00 —Yu Yyu
Then if g&(-|yr) represents the function (3]16), where the parametrizdtjop, > 0 is written
explicitly, let
A
D(yv) = D(g5(-lyv)lfo)

= —InZ(yy) +

1 o0
Z00) [EU In 4y /yU fo(y)dy

ey [ 1200 1w (3.22)

denote its KL divergence with respect to the nominal dengjtyor y; = 0, we havegy(-|0) =

fo, 0 D(0) = 0. Furthermore foryy = +oco, we havegf(:| + c0) = fi/9, S0 D(+00) =
D(f1/21f0), where as noted earlier the densfty, represents the mid-way point on the geodesic
linking fo to f;.



Taking the derivative oD (y;r) with respect toy; gives

dD dz
= - _gz-1 -
e (yU)dyU
_ dz o yu
2 [ty [ fody + 1t [ 1P 0)8 )]
dyu Yo vy
_ d d
27 ) [ te) [ ooy + @ k) [ P08 0]
dyu - dyu
N(yv) dL
- i 3.23
Z2(yu) dyu (3:23)
where

Niyw) = hwU/oof( )dy/oofl( )y
_|_ l o 1/2/ f1/2 1/2 )dy+/°° (fo(y)+f1(y))dy] >0

Yyu gU
for yy > 0. SinceL(y) is monotone increasing, we haié /dyy > 0 in (3.23), sodD/dyy > 0.
ConsequentlyD(y;) is monotone increasing fron(0) = 0 for yy = 0 to D(fy/2/fo) for
yu = oo. Accordingly, givene satisfying [(3.14), there exists a uniqyge such thatD(yy) = e.
For this choice ofy, the least favorable densitigg and ¢gi* satisfy KKT condition [3.D), so
the second inequality of (2.8) is satisfied, afidtogether with(gy, gt') form the desired saddle
point. O

Worst case test performance: By taking into account the symmetries
1-6r(y) = Or(-y)
gry) = g5(-y) (3.24)

of the robust test and least favorable densities, which amresequence of the symmetry
assumption[(3.11), we find that the worst-case probalsilite false alarm and of a miss for
testor satisfy

PF@RyQ&) = PJ\/I(éRvg{J) = PE(éRvg(%J’g%) ;
where

Pr(dn.gk) = / " S )k ) dy + 27 () / ~ foly)dy
Yu Yyu
— 7Y 1/2/ f1/2 1/2 ()dy + (o ‘X’fo(y)dy} . (3.25)

Yu

IV. EXAMPLES
Example 1: Consider the case where undéy and Hy, Y admits the nominal distributions

2
foly) = WGXP(_@;?)
132

fily) = mem(—@za;) ). (4.1)



This corresponds to a model of the forin {2.8) where the additioise N has aN(0,0?)
nominal distribution. The signal to noise ratio (SNR) foistdetection problem iSNR = 1/02.
The likelihood ratio

f1(y) 2y
L(y) = =exp(—
) fo(y) P (02)
is clearly monotone increasing, and the nominal densifi¢g), j = 0, 1 admit the symmetry
(3.11), so the assumptions of Theorem 1 are satisfied. Incdss, it is interesting to note that
the mid-way density

1/2 1/2 1 2
f1/2(2/) = ézé)lj;%) W) = (2770—2)1/2 exp ( - ;7) )

is NV (0, 02) distributed, which makes sense sinfgeand f; have opposite meansl but the same
varianceo?.

If we consider the parametrization (3116) of the least fabte densityg) (y), we find that it
is continuous and formed by three segments. Qveso, —yr/), g5 is an attenuated version of
the nominalN(—1,02) density. Overl—yy, yu], it is a scaled version of the mid-way (0, o2)
density, and for(yy, o) it is an amplified version of the nomina¥(—1,0?) density. Thusgy
can be viewed as obtained from the nominal dengjtypy shifting a portion of its probability
mass to the middle segment wheyle and gi are equal, and to the right tail where hypothesis
H, is selected, which has the effect of increasing the proipalif false alarm.

0.16

0.141

0.121

0.1f

D(yu)

0.08

0.06 -

0.04r

0.02-

T . . . . . .
0 01 02 0.3 04 05 0.6 0.7 0.8
yu

Fig. 2. Plot of functionD(yv ) for 0dB SNR.

To illustrate the construction ofy(y), let the relative entropy tolerance ke= 0.1. Then
for a nominal SNR equal t0dB (o = 1), the function D(yy;) measuring the KL divergence
of g5 (‘lyy) with respect tof, is plotted in Fig[2. As expected, it is monotone increasing a
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attains the desired tolerance vakie- 0.1 for y;; = 0.6080. The least-favorable densig} (y) is
plotted together with the nominal densify(y) in part a) of Fig[B.

04 T T
nominal
— — - least favorable

14 T T
nominal
— — -least favorable

12

0.8

go

0.6F

0.4}

021

(b)

Fig. 3. Least favorable density (y) for a tolerance: = 0.1 and a) SNR =0dB, b) SNR = 10dB.

The three segments of the density described earlier arelclieaevidence in this plot. Note
however that as the SNR increases, the middle segment shiink example, the least-favorable
density for a SNR value of0dB is shown in part b) of Fig.|3. Although the KL tolerance- 0.1

11



is the same as in part a), the deviationg§faway from f; is much smaller than for a SNR value
of 0dB. Note also thag}' is not symmetric about 1 since a fraction of the probability mass has
been transferred from the left tail to the right tail in theedition of the location parametérof
the competing hypothesi;. Similarly the least favorable distributiar}'(y) = gf'(—y) transfers

a portion of its probability mass from its right tail to itsfidail. In terms of model[(218), this
means that the least favorable densities of the ndisare different under{, and H;, since
one tilts rightward while the other tilts leftward. In coast, [11] requires that the least-favorable
noise should be the same under both hypotheses. For the akaw®le withe = 0.1 and 10dB
SNR, the least favorable noise density is plotted in the I8&@st corner of Figure 3 of [11]. It
is symmetric and thus differs from the least-favorable dissobtained here.

Finally, for e = 0.01 and 0.1, and for SNR values betweeh and 15dB, the worst-case
performance of the robust teét given by [3.2b) is compared in Figl 4 with the probability
of error Py = Q(SNR'/?) of the maximum likelihood detector for nominal densitiésTj4
As indicated by the figure, the loss of performance is ratipectcular. Of course, since this
performance represents a worst case situation, it is nigtitrdicative of the degradation incurred
for more benign choices of densitigs in F; with j =0, 1.

10°

10°

107 |

PE

10

10° f

nominal
— — -eps=0.01
—— eps=0.1

10

SNR

Fig. 4. Comparison of the worst case probability of erroresitdr for e = 0.01 ande = 0.1 with the ML probability
of error for the nominal model.

Example 2: Consider model[(2]8) where undéf; N admits the asymmetric Laplace density
fr(n) given by [3.12) withb > a and underH,, N admits the flipped density;(—n). Then
the densities

) =fuly—-1) , foly) = fu(=(y+1))
satisfy the symmetry condition (3111), and as indicated®{¥3), the likelihood ratial(y) is
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monotone increasing. In this case, the half-way density

)

f1/2(y) = Z(1/2)
_ { cexp(—b)/Z(1/2) “lsysl
| cen (- Pyl +5h)/20/2) =1
with 2
Z(1/2) = 2cexp(=b)(1 + a—+b)

is constant for-1 < y < 1 and has a symmetrized exponential decay rate for its tws. thdr
yu < 1, the parametrizatiod (3.16) of the least favorable dengjtyndicates that over segments
(—o0, —yu) and (yy, co) it is proportional tofo, but over[—yy, yu] it is constant since, /, is
constant.

To illustrate this feature the nominal and least favoraldesities are plotted in Fid.l 5 for
a=2,b=4, ande = 0.1. For this choice of parameterg = 0.3640.

14

T
nominal
— — -least favorable

Fig. 5. Nominal asymmetric Laplace densify and least favorable densigf for « = 2, b = 4 and tolerance
e=0.1.

V. CONCLUSION

A minimax hypothesis testing procedure has been derived finary hypothesis testing prob-
lem where the actual observation density under each hygistierequired to be within a fixed
KL ball centered about the nominal density. The robust tpslies a nonlinear transformation
which flattens the nominal LR in the vicinity df = 1. The least-favorable densities include three
segments where, quite interestingly, the middle segmefdrined by a section of the density
located mid-way on the geodesic linking the nominal deesitinder the two hypotheses.
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The results were derived under a motonicity condition fog ttR as well as a symmetry
condition for the two hypotheses. While the first conditi@nbienign and appears in Huber’s
work [2]-[4], it would be desirable to remove the symmetnndition (3.11), since this would
open the way to the study of more general robust signal deteptoblems of the type discussed
in [1].
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