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Codeword Stabilized Quantum Codes
Andrew Cross, Graeme Smith, John A. Smolin and Bei Zeng

Abstract— We present a unifying approach to quantum error
correcting code design that encompasses additive (stabilizer)
codes, as well as all known examples of nonadditive codes with
good parameters. We use this framework to generate new codes
with superior parameters to any previously known. In particular,
we find ((10, 18, 3)), ((10, 20, 3)) and ((11, 48, 3)) codes.

Index Terms— quantum error correction, nonadditive codes,
stabilizer codes

I. I NTRODUCTION

Quantum computers hold the promise of the efficient so-
lution of problems, such as factoring [1] and simulation of
quantum systems [2], [3], [4] that are generally believed to
be intractable on a classical computer. Furthermore, as the
processor size in state-of-the-art computers continues toscale
down and performance begins to be limited by dissipative
effects in logical processing, it has become increasingly clear
that considering the quantum nature of the components of
a classical computer will be essential in the not-too-distant-
future. In both of these scenarios—constructing a working
quantum computer, or simply continuing to improve the per-
formance of classical computers—quantum error correcting
codes and ideas from quantum fault-tolerance [5] will be
essential elements in the future computer engineer’s toolbox.

Stabilizer codes are an important class of quantum codes
developed in [6], [7], and are the quantum analogues of
classical additive codes. An[n, k] stabilizer code encodesk
logical qubits inton physical qubits, and is described by an
abelian subgroup,S, of the Pauli group with size|S| = 2n−k.
The codespace is the set of simultaneous eigenvectors ofS
with eigenvalue1. There is a rich theory of stabilizer codes,
and a thorough understanding of their properties.

Nevertheless, such codes are strictly suboptimal in some
settings—there existnonadditive codeswhich encode a larger
logical space than possible with a stabilizer code of the same
length and capable of tolerating the same number of errors.
There are only a handful of such examples [8], [9], [10], and
their constructions have proceeded in an ad hoc fashion, each
code working for seemingly different reasons.

In the following we present a framework for code design
that includes as special cases stabilizer codes as well as all
known nonadditive codes with good parameters. Our codes
are fully described by two objects: a single stabilizer state
|S〉, and a classical code that generates the basis vectors of
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our code from|S〉. The stabilizer is chosen such that it maps all
Pauli errors onto onlyZ errors, though this may increase their
weight. In this way we map the problem of finding a quantum
code to that of finding a classical code that corrects an unusual
error model. We have thus unified stabilizer and nonadditive
codes and rendered both in a form that gives insight into the
classical nature of quantum error-correction.

Our approach is related to the description of nonadditive
codes given in [11] in terms of Boolean functions, and in
particular our codeword operators, codeword stabilizer, and
effective classical errors correspond, respectively, to aBoolean
function f , a matrixAf , and the “Zset” in the language of
that work. Their approach is essentially dual to ours—in the
language we use here it amounts to first choosing a classical
code and trying to design a stabilizer state whose induced error
model is corrected by the chosen code. From this perspective,
the approach of [11] seems somewhat unnatural, which is
perhaps the reason it has not proved useful for finding new
codes. Both approaches are closely related to the work of [12].

We describe codes onn qubits that encodeK dimensions
with distanced (traditionally written ((n,K, d))). In this
framework we find the original nonadditive((5, 6, 2)) code of
[8] and the family it generates, the simple family of distance
2 codes found in [9], the((9, 12, 3)) code of [10], as well as
new ((10, 18, 3)), ((10, 20, 3)) and ((11, 48, 3)) codes.

II. GENERAL CONSTRUCTION ANDPROPERTIES

An ((n,K)) code will be described by two objects—S, a
2n element abelian subgroup of the Pauli group not containing
minus the identity, which we call theword stabilizer, together
with a family of K n-qubit Pauli elements,W = {wl}Kl=1,
which we call theword operators. There is a unique state|S〉
stabilized byS, i.e. |S〉 satisfiess|S〉 = |S〉 for all s ∈ S. Our
code will be spanned by basis vectors of the form

|wl〉 ≡ wl|S〉. (1)

Since the code vectors should all be different, at most onewl

can be inS. Typically we will choosew1 = I and later we will
prove this can be done without loss of generality. Note that
|wl〉 is an eigenvector of alls ∈ S with eigenvalueλs = ±1,
but |wl〉 is not stabilized byS unlesswl ∈ S. Each |wl〉 is
stabilized by a different stabilizerwlSw

†
l .

We would now like to understand the error correction
capabilities of such acodeword stabilized(CWS) code. An
((n,K, d)) code is an((n,K)) code capable of detecting Pauli
errors of weight up tod − 1, but notd, and is said to have
minimum distanced. A distanced code can also be used to
correct errors up to weight⌊(d − 1)/2⌋. The conditions for
error correction were found in [13], [14]. The error correction
conditions for a general code with basis vectors|wl〉 are that,
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in order to detect errors from a setE , it is necessary and
sufficient to have

〈ci|E|cj〉 = cEδij (2)

for all E ∈ E . For a code of the form described above, this
becomes

〈S|w†
iEwj |S〉 = cEδij . (3)

This leads to thenecessary and sufficient conditionfor
detecting errors fromE that for allE ∈ E

∀i 6= j w†
iEwj 6∈ ±S (4)

and
(

∀i w†
iEwi 6∈ ±S

)

or (5)
(

∀i w†
iEwi ∈ S

)

or (6)
(

∀i w†
iEwi ∈ −S

)

(7)

Eq. (4) is the condition that two codewords should not be
confused after an error, while the final three conditions express
that each error must either be detected (Eq. (5)), or the code
must be “immune” to it–i.e. the code isdegenerate.

Theorem 1 An ((n,K)) codeword stabilized code with word
operatorsW = {wl}Kl=1 and codeword stabilizerS is locally
Clifford-equivalent to a codeword stabilized code with word
operatorsw′

l = Zcl and codeword stabilizerS′ generated by

S′
l = XlZ

rl . (8)

In other words, any CWS code is locally equivalent to a
CWS code with a graph-state stabilizer and word operators
consisting only ofZs. The set ofrls form the adjacency matrix
of the graph. Moreover, the word operators can always be
chosen to include the identity. We call thisstandard form.

Proof: First note thatS is local-Clifford equivalent to
a graph state due to [15], [16], [17]so there is some local-
Clifford unitary C =

⊗n

l=1 Cl that mapsS to S′ of the
form (8). In the new basis the word operators areCwlC

† =
±ZalXbl , and we have

CwlC
†
∏

i

(S′
i)

(bl)i = ±Zcl , (9)

so that, lettingw′
l = Zcl , we have

Zcl |S′〉 = ±CwlC
†s′|S′〉 (10)

= ±CwlC
†|S′〉 (11)

= ±Cwl|S〉. (12)

SinceC consists of local Clifford elements, we see that the
CWS code defined byS′ andw′ is locally Clifford equivalent
to the original code.

Finally, to ensure the codeword operators include the iden-
tity we can chooseW̃ = {w̃l=w′

lw
′
1} which always has

w̃1 = Identity. This can be seen by commuting thew′
1

through theE in the error-correction conditions which can at
worst pick up a sign depending only onE. The two conditions
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Fig. 1. Example of the induced error on a graph state: The state has stabilizer
generatorsXZIIIZZ, ZXZIIII, IZXZIIZ, IIZXZII, IIZZXZZ,
ZIIIZXI, andZIZIZIX. An X error applied to node 5 in the lower-left
is translated by multiplying with the stabilizer elementIIZZXZZ and turns
into Z errors on the nodes indicated.

with ±S on the right are insensitive to this and the other two
conditions at most change places.

This structure theorem gives rise to the following lemma,
which is at the heart of our construction:

Lemma 2 A single qubit Pauli errorZ, X or Y = ZX
acting on a codewordw|S〉 of a CWS code in standard form is
equivalent up to a sign to another (possibly multi-qubit) error
consisting only ofZs.

Proof: Let the errorEi act only on theith qubit. If it
is a Z error the result is immediate. Otherwise use the fact
that Eiw|S〉 = ±EiSiw|S〉, and takeSi to be the generator
havingX on bit i. Then sinceEi = Z

{0,1}
i Xi the X in Ei

cancels with theX from Si and we are left with theZs from
Si as well as aZi if Ei wasZiXi.

Lemma 2 allows us to construct CWS codes with a sat-
isfying interpretation:X errors on any qubit are “pushed”
outwards along the edges of the graph and transformed into
Zs. This is illustrated in figure 1. SimilarlyY errors are pushed
along the edges, but also leave aZ behind at their original
locations. Since all errors becomeZs, we can think of the
error model as classical, albeit consisting of strange multi-
bit errors. We define this translation to classical errors bythe
functionClS(E ∈ E) → {0, 1}n:

ClS(E = ±ZvXu) = v ⊕
n

⊕

l=1

(u)lrl (13)

where rl is the lth row of the stabilizer’s adjacency matrix
(recall from Eq. (8)Sl = XlZ

rl definesrl). The codeword
operatorswl = Zcl will be chosen to so that thecls are a
classical code for this error model.

Theorem 3 A CWS code in standard form with stabilizerS
and codeword operators{Zc}c∈C detects errors fromE if and
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only if C detects errors fromClS(E) and in addition we have
for eachE,

ClS(E) 6= 0 (14)

or ∀i ZciE = EZci (15)

or ∀i ZciE = −EZci (16)

Proof: When i 6= j, w†
iEwj 6∈ ±S is satisfied ex-

actly whenZciEZcj 6∈ ±S, which is in turn equivalent to
ZciZClS(E)Zcj 6∈ ±S. In standard form, the only element of
S without anyX is the identity, so that this is satisfied exactly
whenci ⊕ClS(E) 6= cj . This is explicitly the classical error-
detection condition.

Similarly, wheni = j, we must satisfy Eqs. (5), (6) and (7),
whose three possibilities translate directly to

∀c ZcEZc 6∈ ±S (17)

or ∀c ZcEZc ∈ S (18)

or ∀c ZcEZc ∈ −S, (19)

SinceZc = I for the c = 0 codeword Eq. (17) is equivalent
to E 6∈ ±S which gives (14). For the final two equations (18)
and (19) we knowE ∈ ±S which which readily implies the
conditions (15) and (16).
Remark A classical code expressed in quantum terms would
traditionally comprise computational basis vectors that are
eigenstates ofZ, and therefore the operators mapping one
codeword to another would be of the formXc as these are
the only errors that have any effect. It then might seem odd
that standard form for CWS codes, the intuition of which is to
make everything classical, would employ word operators and
effective errors consisting only ofZs. This choice is arbitrary
(one could exchangeZ andX and nothing in the formalism
would be affected) and is made since the usual form of a
graph state stabilizer is to have oneX and some number of
Zs rather than the reverse. We hope this historical accident
does not cause too much confusion going forward. ⊓⊔

A. Relation to Stabilizer codes

The CWS framework includes stabilizer codes, and allows
them to be understood in a new way. We now show that
any stabilizer code is a CWS code, and give a method for
determining if a CWS code is also a stabilizer code.

Theorem 4 An [n, k] stabilizer code with stabilizer gener-
ators S1, . . . , Sn−k and logical operationsX̄1 . . . X̄k and
Z̄1 . . . Z̄k, is equivalent to the CWS code defined by

S =
〈

S1 . . . Sn−k, Z̄1 . . . Z̄k

〉

(20)

and word operators

wv = X̄
(v)1
1 ⊗ . . .⊗ X̄

(v)k
k (21)

wherev is a k-bit string.

Proof: To see that this CWS code describes the original
code, note that the stabilizer state associated withS is |0̄ . . . 0̄〉,
while the codeword generated byWv acting on |0̄ . . . 0̄〉 is
|(v̄)1 . . . (v̄)k〉.

Theorem 5 If the word operators of an((n,K)) CWS code
are an abelian groupW (not containing−I), then the code
is an [n, k = log2 K] stabilizer code.

Proof: The stabilizerS of the CWS code is a maximal
abelian subgroup of the Paulis (not containing−I) therefore it
is isomorphic to the groupS′ = 〈X1 . . .Xn〉 and the mapping
from S to S′ is a Clifford operationC (not necessarily local).
This follows from the definition of the Clifford group as the
automorphisms of the Pauli group. Because the automorphism
group allows one to achieve any mapping that preserves
commutation relations, the map can further be chosen to map
W to W ′ = 〈Z1 . . . Zk〉. Here we have made use of the facts
that all w ∈ W anticommute with at least ones ∈ S (which
implesS ∩W = {I}) and thatS′ is maximal, which allows
us to choose forW ′ any orderK group made only ofZs we
like (sinceall products ofX ’s are inS′). Note this nonlocal
Clifford mapping is not the same as the conversion toZs used
in Theorem 1.

We can now chooseT ′, X̄ ′ and Z̄ ′ as follows:

X̄ ′ = W ′ = 〈Z1 . . . Zk〉 (22)

Z̄ ′ = 〈X1 . . .Xk〉 (23)

T ′ = 〈Xk+1 . . . Xn〉 (24)

The inverse Clifford operationC† maps these to our stabilizer
code with stabilizerT , and logical operations̄X = W andZ̄.

It remains to show this is the same as the CWS code we
started with.T is by construction a subgroup ofS (T ′ is
explicitly generated by a subset of the generators ofS′) and
therefore stabilizes|S〉. T also stabilizes all̄x|S〉, x̄ ∈ X̄,
sinceT and X̄ commute. UsingX̄ = W we see these states
are exactly the basis states of the CWS code.

III. K NOWN EXAMPLES

We now show that our construction encompasses stabilizer
codes and all known nonadditive codes with good parameters.

A. The[5, 1, 3] code

The celebrated[5, 1, 3] quantum code [13], [14] can be writ-
ten as a CWS code using Eqs. (20) and (21) but another way
of writing it demonstrates the power of the CWS framework.
Take generators corresponding to a ring graph:

Si = ZXZII and cyclic shifts. (25)

This induces effective errors as follows. Letting|R5〉 be the
graph state corresponding to the unique simultaneous+1
eigenvector of these generators, we have

Zi|R5〉 = Zi|R5〉
Xi|R5〉 = Zi−1Zi+1|R5〉
Yi|R5〉 = Zi−1ZiZi+1|R5〉, (26)

where all additions and subtractions are taken modulo 5. The
corresponding 15 classical errors are:

Z : 10000 01000 00100 00010 00001
X : 01001 10100 01010 00101 10010
Y : 11001 11100 01110 00111 10011

(27)
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We then must choosewl = Zcl where thecls form a classical
code capable of detecting pairs of these errors. Since no pair
of these errors produces11111 the codewordsc0 = 00000 and
c1 = 11111 will serve, and together with the stabilizer (25)
completely define the code. Since the((5, 2, 3)) code is known
to be unique we need not otherwise check that our construction
is equivalent to the traditional presentation of this code.We
note also that forn ≥ 7 a ring code with codeword operators
I and⊗n

l=1Zl gives a[n, 2, 3] code.

B. The((5, 6, 2)) code

The first nonadditive quantum code was found in [8],
and encodes a six-dimensional space into five qubits with a
minimum distance of two. This outperforms the best additive
five qubit distance two code, which can have an encoded
dimension of at most four. The code was originally found
as follows: It was known that the linear programming upper
bound was exactly6 for a blocklength5 distance2 code,
and in fact it was possible to completely determine what the
weight enumerator [18] of a code meeting this bound must
be. The authors of [8] then performed a numerical search for
such a code, and managed to find one. The structure of the
resulting code was mysterious, and generating larger codesin
a similar fashion seemed intractable (though [19] showed how
to construct a((5 + 2l, 22l+13, 2)) code from this code).

As a CWS code the((5, 6, 2)) code of [8] becomes simple.
We again use the ring stabilizer (25) and will have to detect
the induced errors (27), but since we are seeking a distance-2
code we need only consider single errors rather than pairs.
The classical codewordscl, l = 0 . . . 5, are

00000 11010 01101 10110 01011 10101 (28)

and the code generated by|cR5〉 and Wl = Zcl is locally
Clifford equivalent to the((5, 6, 2)) code of [8]. The((5 +
2l, 22l+13, 2)) codes of [19] are also CWS codes whose graph
state is the union of the ring graph andl Bell pair graphs, and
whose classical codewords can be derived straightforwardly
from the ((5, 6, 2)) classical codewords.

C. The SSW codes

A family of distance two codes was found in [9], which
outperforms the family of [19] for odd blocklengths of eleven
or larger. The codes were originally described in terms of their
codewords as follows. Ifn = 1 mod 4, a basis of our code
consists of vectors of the form

|x〉+ |x̄〉, (29)

wherex ranges over all n-bit vectors of odd weight less than
(n − 1)/2 and x̄ is the complement ofx, while if n = 3
mod 4, we let x range over even weight vectors of weight
less than(n − 1)/2, leading to an encoded dimension of

2n−2

(

1− ( n−1
(n−1)/2)
2n−1

)

.

We now show that these are actually CWS codes. Indeed,
the codeword stabilizer of this code will be generated by

〈X1Z2 . . . Zn, Z1X2, Z1X3, . . . , Z1Xn〉 , (30)

with the corresponding stabilizer state being equivalent to a
GHZ state,(|0〉|+〉⊗n−1 + |1〉|−〉⊗n−1)/

√
2. The codeword

operators are simplyWx = X(x)1Z((x)2,...(x)n) for each
allowed x, which can immediately be seen to generate, up
to local unitaries, the same codewords as Eq. (29). Putting the
stabilizer into standard form, we find that the graph state it
describes corresponds to a star graph.

D. The((9, 12, 3)) code

The ((9, 12, 3)) code of [10] was presented explicitly in the
form of a CWS code and, indeed, served as motivation for
our studies of the generality of such a construction. Like the
((5, 6, 2)) code, the codeword stabilizer is of the form

Si = ZXZIIIIII and cyclic shifts (31)

so that the effective classical error model we must be able to
correct are given by Eq. (26). We do this by choosing the the
codeword operators to bewl = Zcl , where thecls are:

000000000 100100100 010001100 110101000
000110001 100010101 011001010 111101110
001010011 101110111 011111111 111011011.

(32)

IV. N EW CODES

A. Ring codes:((10, 18, 3)) and ((11, 48, 3))

In light of the excellent performance of ring-stabilizers for
CWS codes—the((5, 6, 2)) and ((9, 12, 3)) are both of this
form—we have studied larger blocklength codes based on this
stabilizer. This leads to two further codes which outperform
stabilizer codes for blocklengths of10 and11.

The blocklength ten code has a codeword stabilizer gener-
ated by〈Zi−1XiZi+1〉 and has18 word operators of the form
Zcl , with cl taken from the list

0000000000 1101001100 0011001010
0000011111 0010001001 1111100000
1000111110 1100100101 0101101101
0001000110 1010010010 0100110100
1001011011 1011010001 0110111000
0110110010 1110100011 0111111011.

(33)

Similarly, our blocklength11 code has the analogous stabi-
lizer, but now word operators of the formZdl with dl taken
from the list
00000000000 11111011101 11100011000 00101001001
11011110111 10001100101 00100110011 01011110001
01001001110 10000011111 11110100111 00110010101
00100101010 00001100011 10110010011 00101010000
11010001101 10011000011 10111110000 01110100001
01011101000 10100110101 00010100110 00111110110
10001111100 10010100000 01100000111 01100011110
01101111101 11010010100 11000110010 01110111000
10010111001 10101010110 11110111110 01000101101
00001111010 10000001010 11111000100 01000110100
10100101001 11100000001 00011000101 01010001011
11000101011 00000011001 00011011100 01010010010.

That both of these codes satisfy the required error correction
conditions can be shown by the straightforward (if tedious)
technique of verifying that the associated classical codes
correct the classical noise model induced by the ring stabilizer.
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B. A ((10, 20, 3)) Double Ring Code

We now consider a CWS code with a codeword stabilizer
that is not of the ring form. In particular, our stabilizer will
correspond to the double ring, with generators

S1 = XZIIZZIIII S6 = ZIIIIXZIIZ
S2 = ZXZIIIZIII S7 = IZIIIZXZII
S3 = IZXZIIIZII S8 = IIZIIIZXZI
S4 = IIZXZIIIZI S9 = IIIZIIIZXZ
S5 = ZIIZXIIIIZ S10 = IIIIZZIIZX.

(34)

This leads to a|S〉 that is a [10, 0, 4] stabilizer state. Our
codewords are then of the formZcl |S〉 with cl drawn from
the following ten-bit strings:

0000000000 1100101101 1100000100 0010010010
1001100100 0111011011 1101111110 0010111011
1001101111 0110110000 1111000101 1011010100
0101100000 1011011111 0101101011 0011000001
0000101001 1110010110 0001111010 1110111111

n\d 2 3 4 5
4 4 - - -
5 6 2 - -
6 16 2 1 -
7 24-26 2-3 0-1 -
8 32 8-9 1 -
9 96-112 12-13 1 -
10 256 20-24 4-5 1
11 386-460 48-53 4-7 2
12 210 64-89 16-20 2

Fig. 2. Upper and lower bounds on the optimalK for a nonadditive
((n,K, d)) code. The lower bounds are drawn from [7], [8], [9], [10], [19] as
well as the new constructions presented here. The upper bounds are obtained
from the linear program of [18], and for distance 2 its improvement in [19].
The new lower bounds from [10] and this work are in bold.

V. DISCUSSION

We have presented a new framework for quantum codes
and shown how it encompasses stabilizer codes, elucidates
the structure of the known nonadditive codes, as well as
generates new nonadditive codes with excellent performance.
Our codeword stabilized codes are described by two objects:
First, the codeword stabilizer that without loss of generality
can be taken to describe a graph state, and which transforms
the quantum errors to be corrected into effectively classical
errors. And second, a classical code capable of correcting the
induced classical error model. With a fixed stabilizer state,
finding a quantum code is reduced to finding a classical code
that corrects the (perhaps rather exotic) induced error model.
Our new codes help further fill in the the table of lower
bounds on known codes (see Fig. 2). We also show that CWS
codes include all stabilizer codes. This new way of thinking
of stabilizer codes may help to find new codes with good
properties.

In a future work we hope to expand our work in several
new areas. We will give algorithms for finding codes (some of
which were employed to find the new codes presented here)

as well as bounds on the computational complexity of the
algorithms. We also will study the circuits for implementing
CWS codes and their transversal properties which need to be
understood if they are to be useful for fault-tolerant quantum
computation. Finally, we hope to find more new codes, espe-
cially of distance higher than three.
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