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Abstract

We introduce a general framework for treating channels with memory and feedback.
First, we generalize Massey’s concept of directed information [23] and use it to characterize
the feedback capacity of general channels. Second, we present coding results for Markov
channels. This requires determining appropriate sufficient statistics at the encoder and
decoder. Third, a dynamic programming framework for computing the capacity of Markov
channels is presented. Fourth, it is shown that the average cost optimality equation (ACOE)
can be viewed as an implicit single-letter characterization of the capacity. Fifth, scenarios
with simple sufficient statistics are described.
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A Sound Channel
anagram of Claude Shannon

1 Introduction

This paper presents a general framework for proving coding theorems for channels with
memory and feedback. The problem of optimal channel coding goes back to Shannon’s
original work [26]. The channel coding problem with feedback goes back to early work by
Shannon, Dobrushin, Wolfowitz, and others [27], [11], [37]. Because of increased demand for
wireless communication and networked systems there is a renewed interest in this problem.
Feedback can increase the capacity of a noisy channel, decrease the complexity of the encoder
and decoder, and reduce latency.

Recently Verdú and Han presented a very general formulation of the channel coding
problem without feedback [33]. Specifically they provided a coding theorem for finite al-
phabet channels with arbitrary memory. They worked directly with the information density
and provided a Feinstein-like lemma for the converse result. Here we generalize that formu-
lation to the case of channels with feedback. In this case we require the use of code-functions
as opposed to codewords. A code-function maps a message and the channel feedback infor-
mation into a channel input symbol. Shannon introduced the use of code-functions, which
he called strategies, in his work on transmitter side information [28]. Code-functions are
also sometimes called codetrees [20].

We convert the channel coding problem with feedback into a new channel coding prob-
lem without feedback. The channel inputs in this new channel are code-functions. Un-
fortunately the space of code-functions can be quite complicated to work with. We show
that we can work directly with the original space of channel inputs by making explicit
the relationship between code-function distributions and channel input distributions. This
relationship allows us to convert a mutual information optimization problem over code-
function distributions into a directed information optimization problem over channel input
distributions.

The concept of directed information was introduced by Massey who attributes it to
Marko [23], [22]. Our work, in part, builds on the work of Kramer [19], [20]. He used the
concept of directed information to prove capacity theorems for general discrete memoryless
networks. These networks include the memoryless two-way channel and the memoryless
multiple access channel. Here we examine single-user channels with memory and feedback.

There is a long history of work regarding Markov channels and feedback. Here we
describe a few connections to that literature. Mushkin and Bar-David [24] examined the
Gilbert-Elliot channel. Goldsmith and Variaya [15] examine non-ISI Markov channels with-
out feedback. For the case of IID inputs and symmetric channels they introduce sufficient
statistics that lead to a single-letter formula. We identify the appropriate sufficient statis-
tics when feedback is available. In some sense the Markov channel with feedback problem is
easier than the Markov channel without feedback problem because in the feedback case the
decoder’s information pattern is nested in the encoder’s information pattern [35]. In this
paper we do not treat noisy feedback. Viswanathan [34], Caire and Shamai [6], and Das and
Narayan [9] all examine different classes of channels with memory and side-information at
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the transmitter and receiver. We present a general framework for treating Markov channels
with ISI and feedback.

Many authors consider conditions that insure the Markov channel is information sta-
ble [25]. For example Cover and Pombra [7] show that Gaussian channels with feedback
are always information stable. In addition some authors consider conditions that insure
the Markov channel is indecomposable [14], [5]. In our work it is shown that solutions to
the associated average cost optimality equation (ACOE) imply information stability. In
addition the sufficient condition provided here for the existence of a solution to the ACOE
implies a strong mixing property of the underlying Markov channel in the same way that
indecomposability does.

We consider Markov channels with finite state, channel input, and channel output alpha-
bets. But with the introduction of appropriate sufficient statistics we quickly find ourselves
working with Markov channels over general alphabets and states. As shown by Csiszár [8],
for example, treating general alphabets involve many technical issues that do not arise in
the finite alphabet case.

Tatikonda first introduced the dynamic programming approach to computing directed
information in his PhD thesis [29]. Yang, Kavcic, and Tatikonda have examined the case
of finite state machine Markov channels in [38], [39]. Here we present a general framework
that treats many Markov channels including finite state machine Markov channels.

In summary, the main contributions of this paper are:

(1) We generalize Massey’s concept of directed information [23] and use it to characterize
the feedback capacity of general channels.

(2) We present coding results for Markov channels. This requires determining appropriate
sufficient statistics at the encoder and decoder.

(3) A dynamic programming framework for computing the capacity of Markov channels
is presented.

(4) It is shown that the average cost optimality equation (ACOE) can be viewed as an
implicit single-letter characterization of the capacity.

(5) Scenarios with simple sufficient statistics are described.

Preliminary versions of this work have appeared in [29], [30], [31], [32].

2 Feedback and Causality

Here we discuss some of the subtleties of feedback and causality inherent in the feedback
capacity problem. The channel at time t is modelled as a stochastic kernel p(dbt | at, bt−1).
Where at = (a1, ..., at) and a0 = ∅. See figure one. The channel output is fed back to
the encoder with delay one. At time t the encoder takes the message and the past channel
output symbols B1, ..., Bt−1 and produces a channel input symbol At. At time T the decoder
takes all the channel output symbols, B1, ..., BT , and produces the decoded message. Hence
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p(dbt | a
t, bt−1)

bt−1

Time 0 Time T + 1

Time 1, ..., T

at bt
Ŵ = g(bT )

Functions
Code-
fT

W Encoder

Delay

at = ft(b
t−1)

Channel

ft
ŴDecoder

Figure 1: Interconnection

the time ordering of the variables is

Message, A1, B1, A2, B2, ..., AT , BT , Decoded Message. (1)

When there is no feedback, under suitable conditions, supP (daT ) I(A
T ;BT ) characterizes

the maximum number of messages one can send with small probability of decoding error.
Our goal in this paper is to generalize this to the case of feedback. To that end we now
mention some subtleties that will guide our approach.

One should not supremize the mutual information I(AT , BT ) over the stochastic kernel
p(daT | bT ). We can factor p(daT | bT ) = ⊗T

t=1p(dat | a
t−1, bT ). This states that at time

t the channel input symbol At is allowed to depend on the future channel output symbols
BT

t . This violates the causality implicit in our encoder description. In fact p(daT | bT ) is
the posterior probability used by the decoder to decode the message at time T . Instead,
as we will show, one should supremize the mutual information over the directed stochastic
kernel: ~p(daT | bT ) = ⊗T

t=1p(dat | a
t−1, bt−1). See definition 4.1.

One should not use the stochastic kernel p(dbT | aT ) as a model of the channel when
there is feedback. To compute the mutual information we need to work with the joint
measure P (daT , dbT ). In general it is not possible to find a joint measure consistent with
the stochastic kernels: ~p(daT | bT ) and p(dbT | aT ). Instead, as we will show, the appro-
priate model for the channel when there is feedback is a sequence of stochastic kernels:
{p(dbt | a

t, bt−1)}Tt=1. See section 3.
One should not use the mutual information I(AT ;BT ) when there is feedback. When

there is feedback the conditional probabilities P (dbt | a
T , bt−1) 6= P (dbt | at, bt−1) almost

surely under P (daT , dbT ). Even though At+1 occurs after Bt it still has a probabilistic
influence on it. This is because under feedback At+1 is influenced by the past channel
output Bt. To quote Massey [23], “statistical dependence, unlike causality, has no inherent
directivity.” The mutual information I(AT ;BT ) =

∑T
t=1 I(A

T ;Bt | B
t−1). The information

transmitted to the receiver at time t, given by I(AT ;Bt | Bt−1), depends on the future
AT

t+1. Instead, as we will show, we should use the directed information: I(AT → BT ). See
definition 4.2.
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3 Channels with Feedback

In this section we formulate the feedback channel coding problem. We first introduce some
notation. Let p(dy | x) represent a stochastic kernel from the measurable spaces X to Y.
We say a stochastic kernel is continuous if for all continuous bounded functions v on Y
the function

∫
v(y)p(dy | x) is a continuous and bounded function on X . See appendix for

definitions and properties of stochastic kernels.
Given a joint measure P (dx, dy) we will use P (Y = y | X = x) (or just P (y | x))

to represent the conditional probability (when it exists.) In general, lower case letters
p, q, r, ... will be used for stochastic kernels and upper case letter P,Q,R, ... will be used for
joint measures or conditional probabilities. Let P(X ) represent the space of all probability
measures on X endowed with the topology of weak convergence.

Capital letters, A,B,X, Y, Z, ..., will represent random variables and lower case letters,
a, b, x, y, z, ..., will represent particular realizations. For the stochastic kernel p(dy | x) we
have p(y | x) is a number. Given a joint measure PX,Y (dx, dy) = PX(dx) ⊗ p(dy | x) we
have p(y | X) is a random variable taking value p(y | x) with probability PX(x), p(Y | X)
is a random variable taking value p(y | x) with probability PX,Y (x, y), and p(dy | X) is a
random measure-valued element taking value p(dy | x) with probability PX(x). Finally let
the notation X − Y − Z denote that the random elements X,Y,Z form a Markov chain.

We are now ready to formulate the feedback channel coding problem. Let {At}
T
t=1 be

random elements in the finite1 set A with the power-set σ-algebra. These represent the
channel inputs. Similarly let {Bt}

T
t=1 be random elements in the finite set B with the

power-set σ-algebra. These represent the channel outputs. Let AT and BT represent the
T -fold product spaces with appropriate product σ-algebras (where T may be infinity.) We
use “log” to represent logarithm base 2.

A channel is a family of stochastic kernels {p(dbt | at, bt−1)}Tt=1. These channels are
nonanticipative with respect to time-ordering (1) because the conditioning includes only
at, bt−1.

Let Ft be the set of all measurable maps ft : Bt−1 → A taking bt−1 7→ at. Endow
Ft with the power-set σ-algebra. Let FT =

∏T
t=1 Ft denote the Cartesian product en-

dowed with the product σ-algebra. Note that since A and B are finite the space FT is at
most countable. A channel code-function is an element fT = (f1, ..., fT ) ∈ FT . A distri-
bution on FT is given by a specification of a sequence of code-function stochastic kernels
{p(dft | f t−1)}Tt=1. Specifically PFT (dfT ) = ⊗T

t=1p(dft | f t−1). We will use the notation
f t(bt−1) = (f1, f2(b1), ..., ft(b

t−1)).
A message set is a set W = {1, ...,M}. Let the distribution PW on the message set W

be the uniform distribution. A channel code, is a set of M channel code-functions denoted
by fT [w], w ∈ W. For message w at time t with channel feedback bt−1 the channel encoder
outputs ft[w](b

t−1). A channel code without feedback, is a set of M channel codewords
denoted by aT [w], w ∈ W. For message w at time t the channel encoder outputs at[w]
independent of the past channel outputs bt−1.

1The methods in this paper can be generalized to channels with abstract alphabets.
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A channel decoder is a map g : BT → W taking bT 7→ w. The decoder waits till it
observes all the channel outputs before reconstructing the input message. The order of
events is shown in figure one.

Definition 3.1 A (T,M, ǫ) channel code over time horizon T consists ofM code-functions,
a channel decoder g, and an error probability satisfying: 1

M

∑M
w=1 Pr(w 6= g(bT ) | w) ≤ ǫ.

A (T,M, ǫ) channel code without feedback is defined similarly with the restriction that we
use M codewords.

In what follows the superscript “o” and “nfb” represent the words “operational” and “no
feedback.” Following [33] we define:

Definition 3.2 R is an ǫ-achievable rate if, for every δ > 0 there exists, for all sufficiently
large T , (T,M, ǫ) channel codes with rate logM

T
> R− δ. The maximum ǫ− achievable rate

is the called the ǫ−capacity and denoted Co
ǫ . The operational channel capacity is defined

as the maximal rate that is ǫ-achievable for all 0 < ǫ < 1 and is denoted Co. Analogous

definitions for C
o,nfb
ǫ and Co,nfb hold for the case without feedback.

Before continuing we quickly remark on some other formulations in the literature. Some
authors work with different sets of channels for each blocklength T . See for example Do-
brushin [12] and Verdú and Han [33]. In our context this would correspond to a different
sequence of channels for each T : {pT (dbt | a

t, bt−1)}Tt=1. Theorem 5.1 below will continue to
hold if we use channels of this form. But we do not need this level of generality to proceed
with the Markov channels described in section 6.

Note that in definition 3.2 we are seeking a single number Co that is an achievable
capacity for all sufficiently large T . Some authors instead, see [7] for example, seek a

sequence of numbers {Co
T } such that there exists a sequence of channel codes {(T, 2TCoT , ǫT )}

with ǫT → 0. It will turn out that for the time-invariant Markov channels described in section
6 the notion of capacity described in definition 3.2 is the appropriate one. We will further
elaborate on this point in section 4.1 after we have reviewed the concept of information
stability.

3.1 Interconnection of Code-Functions to the Channel

Now we are ready to interconnect the pieces: channel, code-functions, encoder, and decoder.
We follow Dobrushin’s program and define a joint measure over the variables of interest
that is consistent with the different components [12]. We will define a new channel without
feedback that connects the code-functions to the channel outputs. Corollary 3.1 below
shows that we can connect the messages directly to the channel output symbols.

Let {p(dft | f
t−1)}Tt=1 be a sequence of code-function stochastic kernels with joint mea-

sure is PFT (dfT ) = ⊗T
t=1p(dft | f

t−1) on FT . For example PFT may be a distribution that
places mass 1/M on each of M different code-functions. Given a sequence of code-function
stochastic kernels {p(dft | f

t−1)}Tt=1 and a channel {p(dbt | a
t, bt−1)}Tt=1 we want to construct

a new channel that interconnects the random variables F T to the random variables BT . We
use “Q” to denote the new joint measure Q(dfT , daT , dbT ) that we will construct.

The following three reasonable properties should hold for our new channel.
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Definition 3.3 A measure Q(dfT , daT , dbT ) is said to be consistent with the code-function
stochastic kernels {p(dft | f

t−1)}Tt=1 and the channel {p(dbt | a
t, bt−1)}Tt=1 if for each t:

(1) There is no feedback to the code-functions in the new channel: The measure on FT

is chosen at time 0. Thus it cannot causally depend on the At’s and Bt’s. Thus for
each t and all ft, we have

Q(ft | F
t−1 = f t−1, At−1 = at−1, Bt−1 = bt−1) = p(ft | f

t−1)

for Q almost all f t−1, at−1, bt−1.

(2) The channel input is a function of the past outputs: For each t, At = Ft(B
t−1) Q−a.s.

Said another way, for each t and all at, we have

Q(at | F
t = f t, At−1 = at−1, Bt−1 = bt−1) = δ{ft(bt−1)}(at)

for Q almost all f t, at−1, bt−1. Here δ is the Dirac measure.

(3) The new channel preserves the properties of the underlying channel: For each t, and
all bt, we have

Q(bt | F
t = f t, At = at, Bt−1 = bt−1) = p(bt | a

t, bt−1)

for Q almost all f t, at, bt−1.

The following lemma shows that there exists a unique consistent measure Q and provides
the channel from FT to BT .

Lemma 3.1 Given a sequence of code-function stochastic kernels {p(dft | f
t−1)}Tt=1 and a

channel {p(dbt | a
t, bt−1)}Tt=1 there exists a unique consistent measure Q(dfT , daT , dbT ) on

FT ×AT × BT . Furthermore the channel from FT to BT for each t and all bt is given by

Q(bt | F
t = f t, Bt−1 = bt−1) = p(bt | f

t(bt−1), bt−1) (2)

for Q almost all f t, bt−1.

Proof: Let Q(dfT , daT , dbT ) =
⊗T

t=1 p(dft | f
t−1) ⊗ δ{ft(bt−1)}(dat) ⊗ p(dbt | a

t, bt−1). For
finite T this measure exists (see Appendix A.1). An application of the Ionescu-Tulcea
theorem shows that this measure exists for the T = ∞ case. Clearly this Q is consistent
and by construction it is unique.

Note that for each (f t, bt) the joint measure can be decomposed as

Q(f t, bt) =
∑

at

Q(f t, at, bt)

=
∑

at

t∏

i=1

p(fi | f
i−1) δ{fi(bi−1)}(ai) p(bi | a

i, bi−1)

= p(bt | f
t(bt−1), bt−1)

∑

at−1

p(ft | f
t−1)

t−1∏

i=1

p(fi | f
i−1) δ{fi(bi−1)}(ai) p(bi | a

i, bi−1)

= p(bt | f
t(bt−1), bt−1) Q(f t, bt−1)

Thus we have shown equation (2). �
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Hence for any sequence of code-function stochastic kernels {p(dft | f
t−1)}Tt=1 the stochas-

tic kernel p(dbt | f
t(bt−1), bt−1) can be chosen as a version of the regular conditional distribu-

tion Q(dbt | F
t = f t, Bt−1 = bt−1). Thus the stochastic kernels {p(dbt | f

t(bt−1), bt−1)}Tt=1

can be viewed as the channel from FT to BT . Note that the dependence is on f t(bt−1) and
not f t. We will see in section 5 that this observation will greatly simplify computation.

The almost sure qualifier in equation (2) comes from the fact that Q(f t, bt−1) may equal
zero for some f t, bt−1. This can happen, for example, if either f t has zero probability
of appearing under PFT (dfT ) or bt−1 has zero probability of appearing under the channel
{p(dbt | a

t, bt−1)}.
A distribution PW on W induces a measure PFT on FT . Hence:

Corollary 3.1 A distribution PW on W, a channel code {fT [w]}Mw=1, and the channel
{p(dbt|a

t, bt−1)}Tt=1 uniquely define a measure Q(dw, daT , dbT ) on W ×AT × BT . Further-
more the channel from W to BT for each t and all bt is given by

Q(bt | W = w, Bt−1 = bt−1) = p(bt | f
t[w](bt−1), bt−1)

for Q almost all w, bt−1.

4 Directed Information

As discussed in section 2 the traditional mutual information is insufficient for dealing with
channels with feedback. Here we generalize Massey’s notion of directed information to take
into account any time-ordering of the random variables of interest.

Definition 4.1 We are given a sequence of stochastic kernels {p(dai | a
i−1)}Ni=1. Let I =

{i1, ..., iK} ⊆ {1, ..., N} where 1 ≤ i1 < i2 < ... < iK ≤ N . Let Ic = {1, ..., N} \ I. Let
AI = (Ai1 , ..., AiK ). Define AIc similarly. Then the directed stochastic kernel of AI with
respect to AIc is

~pAI |AIc (daI | aI
c

) =
K⊗

k=1

pAik
|Aik−1(daik | aik−1).

For each aI
c
the directed stochastic kernel ~pAI |AIc (dAI | aI

c
) is a well defined measure.

For example:

∫

f(a1, ..., aN )~pAI |AIc (daI | aI
c

)

=

∫

p(dai1 | ai1−1)

∫

p(dai2 | ai2−1) · · ·

∫

p(daik | aik−1)f(a1, ..., aN )

for all bounded functions f measurable with respect to the product σ-algebra on AN . Note
that this integral is a measurable function of aI

c
.

One needs to be careful when computing the marginals of a directed stochastic kernel.
For example, if we are given p(da1), p(da2 | a1), and p(da3 | a1, a2) with the resulting joint
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measure P (da1, da2, da3) then with the obvious time ordering:

∑

a1∈A

~p(a1, a3 | a2) =
∑

a1∈A

(p(a3 | a1, a2)p(a1)) 6= P (a3 | a2) P − almost all a1, a2, a3

unless A1 − A2 − A3 forms a Markov chain under P . Here P (a3 | a2) corresponds to the
conditional probability under P .

Definition 4.2 Given a sequence of stochastic kernels {p(dai | a
i−1)}Ni=1 and I ⊆ {1, ..., N},

the directed information is defined as

I(AI → AIc) = D(PAI ,AIc | ~PAI |AIcPAIc ) (3)

where D(· | ·) is the divergence, PAI ,AIc (daI , daI
c
) = ~pAIc |AI (daI

c
| aI)⊗ ~pAI |AIc (daI | aI

c
),

and ~PAI |AIcPAIc (daI , daI
c
) = ~pAI |AIc (daI | aI

c
)⊗PAIc (daI

c
) (here PAIc (daI

c
) is the marginal

of PAI ,AIc (daI , daI
c
).)

We can recover Massey’s definition of directed information [23] by applying definition
4.2 to AI = AT and AIc = BT with the time-ordering given in (1): I(AT → BT ) =
∑T

t=1 I(A
t; Bt | B

t−1). Unlike the chain rule for mutual information the superscript on A
in the summation is “t” and not “T”. From definition 4.2 one can easily show:

I(AT → BT ) = E

[

log
~pBT |AT (BT | AT )

PBT (BT )

]

= E

[

log
pAT |BT (AT | BT )

~pAT |BT (AT | BT )

]

where the stochastic kernel pAT |BT (daT | bT ) is a version of the conditional distribution

P (daT | bT ). The second equality shows that the directed information is the ratio between
the posterior distribution and a “causal” prior distribution.

Note that I(AT ;BT ) = E
[

log ~p(BT | AT )~p(AT | BT )
P (BT )P (AT )

]

= I(AT → BT ) + I(BT → AT ).

By definition 4.2 and time-ordering (1) we have I(BT → AT ) =
∑T

t=1 I(At;B
t−1 | At−1).

There is no feedback if and only if At−At−1−Bt−1 forms a Markov chain under P . Hence
I(BT → AT ) = 0. There is no “information” flowing from the receiver to the transmitter.
Because divergence is nonnegative we can conclude that I(AT ;BT ) ≥ I(AT → BT ) with
equality if and only if there is no feedback [23], [19].

4.1 Information Density, Directed Information, and Capacity

When computing the capacity of a channel it will turn out that we will need to know

the convergence properties of the random variables 1
T
log

P
AT ,BT (AT ,BT )

~P
AT |BT P

BT (AT ,BT )
. This is the

normalized information density discussed in [33] suitably generalized to treat feedback. If
there are reasonable regularity properties, like information stability (see below), then these
random variables will converge in probability to a deterministic limit. In the absence of
any such structure we are forced to follow Verdú and Han’s lead and define the following
“floor” and “ceiling” limits [33].
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The limsup in probability of a sequence of random variables {Xt} is defined as the
smallest extended real number α such that ∀ǫ > 0 limt→∞ Pr[Xt ≥ α + ǫ] = 0. The liminf
in probability of a sequence of random variables {Xt} is defined as the largest extended real
number α such that ∀ǫ > 0 limt→∞Pr[Xt ≤ α− ǫ] = 0.

Let ~i(aT ; bT ) = log
P
AT ,BT (aT ,bT )

~P
AT |BT P

BT (aT ,bT )
. For a sequence of joint measures {PAT ,BT }∞T=1 let

I(A→ B) = lim inf
in prob

1

T
~i(AT ;BT ) and I(A→ B) = lim sup

in prob

1

T
~i(AT ;BT ).

Lemma 4.1 For any sequence of joint measures {PAT ,BT }∞T=1 we have

I(A→ B) ≤ lim inf
T→∞

1

T
I(AT → BT ) ≤ lim sup

T→∞

1

T
I(AT → BT ) ≤ I(A→ B)

Proof: See the appendix A.2. �
We now extend Pinsker’s [25] notion of information stability. A given sequence of joint

measures {PAT ,BT }∞T=1 is directed information stable if limT→∞ P
(∣
∣
∣
~i(AT ;BT )
I(AT→BT )

− 1
∣
∣
∣ > ǫ

)

=

0 ∀ǫ > 0. The following lemma shows that directed information stability implies 1
T
~i(aT ; bT )

concentrates around its mean 1
T
I(AT → BT ). Note that this mean need not necessarily

converge.

Lemma 4.2 If the sequence of joint measures {PAT ,BT }∞T=1 is directed information stable

then I(A→ B) = lim infT→∞
1
T
I(AT → BT ) ≤ lim supT→∞

1
T
I(AT → BT ) = I(A→ B).

Proof: Directed information stability implies

lim
T→∞

P

(∣
∣
∣
∣

1

T
~i(AT ;BT )−

1

T
I(AT → BT )

∣
∣
∣
∣
>

1

T
I(AT → BT )ǫ

)

= 0 ∀ǫ > 0.

Because B is finite we know 1
T
I(AT → BT ) ≤ log |B| hence

lim
T→∞

P

(∣
∣
∣
∣

1

T
~i(AT ;BT )−

1

T
I(AT → BT )

∣
∣
∣
∣
> ǫ

)

= 0 ∀ǫ > 0.

This observation along with lemma 4.1 proves the lemma. �
To compute the different “information” measures we need to determine the joint measure

PAT ,BT (daT , dbT ). This can be done if we are given a channel {p(dbt | a
t, bt−1)}Tt=1 and we

specify a sequence of kernels {p(dat | a
t−1, bt−1)}Tt=1.

Definition 4.3 A channel input distribution is a sequence of kernels {p(dat | a
t−1, bt−1)}Tt=1.

A channel input distribution without feedback is a channel input distribution with the fur-
ther condition that for each t the kernel p(dat | a

t−1, bt−1) is independent of bt−1. (Specifi-
cally p(dat | a

t−1, bt−1) = p(dat | a
t−1, b̃t−1) ∀bt−1, b̃t−1.)

Let DT = {{p(dat | at−1, bt−1)}Tt=1} be the set of all channel input distributions. Let

Dnfb
T ⊂ DT be the set of channel input distributions without feedback. We now define the
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directed information optimization problems. Fix a channel {p(dbt | a
t, bt−1)}. For finite T

let

CT = sup
DT

1

T
I(AT → BT ) and Cnfb

T = sup

DnfbT

1

T
I(AT → BT ) = sup

DnfbT

1

T
I(AT ;BT ).

For the infinite horizon case let

C = sup
{DT }∞T=1

I(A→ B) and Cnfb = sup

{DnfbT }∞T=1

I(A→ B) = sup

{DnfbT }∞T=1

I(A;B) (4)

Verdú and Han proved the following theorem for the case without feedback [33].

Theorem 4.1 For channels without feedback Co,nfb = Cnfb.

In a certain sense we already have the solution to the coding problem for channels with
feedback. Specifically lemma 3.1 tells us that the feedback channel problem is equivalent
to a new channel coding problem without feedback. This new channel is from FT to BT

and has channel kernels defined by equation (2). Thus we can directly apply theorem 4.1
to this new channel.

This can be a very complicated problem to solve. We would have to optimize the mutual
information over distributions on code functions. The directed information optimization
problem can often be simpler. One reason is that we can work directly on the original
AT × BT space and not on the FT × BT space. The second half of this paper describes a
stochastic control approach to solving this optimization. In the next section, though, we
present the feedback coding theorem.

5 Coding Theorem for Channels with Feedback

In this section we prove the following theorem:

Theorem 5.1 For channels with feedback Co = C.

We first give a high-level summary of the issues involved. The converse part is straight-
forward. For any channel code and channel we know by lemma 3.1 that there exists a unique
consistent measure Q(dfT , daT , dbT ). From this measure we can compute the induced chan-
nel input distribution {q(dat | a

t−1, bt−1)}Tt=1. (These stochastic kernels are a version of the
appropriate conditional probabilities.) Now {q(dat | at−1, bt−1)}Tt=1 ∈ DT but it need not
be the supremizing channel input distribution. Thus the directed information under the
induced channel input distribution may be less than the directed information under the
supremizing channel input distribution. This is how we will show Co ≤ C.

The direct part is the interesting part of the theorem 5.1. Here we take the optimizing
channel input distribution {p(dat | a

t−1, bt−1)}Tt=1 and construct a sequence of code-function
stochastic kernels {p(dft | f

t−1)}Tt=1. We then prove the direct part of the coding theorem
for the channel from FT to BT by the usual techniques for channels without feedback. By
a suitable construction of PFT it can be shown that the induced channel input distribution
equals the original channel input distribution.

12



In section 5.1 we provide the necessary technical lemmas to characterize the relationship
between code-function distributions and channel input distributions, in section 5.2 we prove
theorem 5.1, and in section 5.3 we generalize the theorem to more general information
patterns at the encoder.

5.1 Main Technical Lemmas

We first discuss the channel input distribution induced by a given code-function distribu-
tion. Define the graph(ft) = {(bt−1, at) : ft(b

t−1) = at} ⊂ Bt−1 × A. Let Υt(b
t−1, at) =

{
ft : (b

t−1, at) ∈ graph(ft)
}
and Υt(bt−1, at) =

{
f t : (bj−1, aj) ∈ graph(fj), j = 1, ..., t

}
.

In lemma 3.1 we showed the channel from FT to BT depends only on the channel from
AT to BT . Hence for each t and all bt, we have

Q(bt | F
t = f t, Bt−1 = bt−1) = p(bt | f

t(bt−1), bt−1) Q− almost all f t, bt−1

= p(bt | f̃
t(bt−1), bt−1) ∀f̃ t ∈ Υt(bt−1, f t(bt−1))

We now show that the induced channel input distribution only depends on the sequence
of code-function stochastic kernels {p(dft | f

t−1)}Tt=1.

Lemma 5.1 We are given a sequence of code-function stochastic kernels {p(dft | f
t−1)}Tt=1,

a channel {p(dbt | a
t, bt−1)}Tt=1, and a consistent joint measure Q(dfT , daT , dbT ). Then the

induced channel input distribution is, for each t and all at, given by

Q(at | a
t−1, bt−1) = PFT

(
Υt(b

t−1, at) | Υ
t−1(bt−2, at−1)

)
(5)

for Q almost all at−1, bt−1. Where PFT (dfT ) = ⊗T
t=1p(dft | f

t−1).

Proof: Note PFT (Υt−1(bt−2, at−1)) = Q(Υt−1(bt−2, at−1)) ≥ Q(Υt−1(bt−2, at−1), at−1, bt−1)
= Q(at−1, bt−1). Thus Q(at−1, bt−1) > 0 implies PFT (Υt−1(bt−2, at−1)) > 0. Hence the right
hand side of equation (5) exists Q-almost surely.

We now prove the correctness of equation (5). For each t and (at−1, bt−1) such that
Q(at−1, bt−1) > 0 we have

Q(at, bt−1)

=
∑

f t

(
t∏

i=1

p(fi | f
i−1)δ{fi(bi−1)}(ai)

)

~p(bt−1 | at−1)

(a)
=

∑

f t∈Υt(bt−1,at)

(
t−1∏

i=1

p(fi | f
i−1)

)

~p(bt−1 | at−1)

(b)
= PFT (Υt(b

t−1, at) | Υ
t−1(bt−2, at−1))PFT (Υt−1(bt−2, at−1))~p(bt−1 | at−1)

= PFT (Υt(b
t−1, at) | Υ

t−1(bt−2, at−1))
∑

f t−1

(
t−1∏

i=1

p(fi | f
i−1)δ{fi(bi−1)}(ai)

)

~p(bt−1 | at−1)

= PFT (Υt(b
t−1, at) | Υ

t−1(bt−2, at−1))Q(at−1, bt−1)

where (a) follows because ~p(bt−1 | at−1) does not depend on f t−1 and the delta functions
{δfi(bi−1)(ai)} restrict the sum over f t−1. Line (b) follows because Q(at−1, bt−1) > 0 and
hence the conditional probability exists. �
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The almost sure qualifier in equation (5) comes from fact that Q(at−1, bt−1) may equal
zero for some at−1, bt−1. This can happen, for example, if PFT (dfT ) puts zero mass on
those f t−1 that produce at−1 from bt−1 or if bt−1 has zero probability of appearing under
the channel {p(dbt | a

t, bt−1)}.
We now show the equivalence of the directed information measures for both the “FT −

BT ” and the “AT − BT” channels.

Lemma 5.2 For each finite T and every consistent joint measure Q(dfT , daT , dbT ) we have

QFT ,BT (F T , BT )

QFTQBT (F T , BT )
=

QAT ,BT (AT , BT )

~QAT |BTQBT (AT , BT )
Q− a.s. (6)

hence I(F T ;BT ) = I(AT → BT ). Furthermore, if given a sequence of consistent measures
{Q(dfT , daT , dbT )}∞T=1, then I(F ;B) = I(A→ B).

Proof: Fix T finite. Then for every (fT , aT , bT ) such that Q(fT , aT , bT ) > 0 we have

QFT ,BT (fT , bT )

QFTQBT (fT , bT )
=

∑

ãT Q(fT , ãT , bT )

QBT (bT )QFT (fT )

=

∑

ãT
∏T

t=1 p(ft | f
t−1)δ{ft(bt−1)}(ãt)p(bt | ã

t, bt−1)

QBT (bT )QFT (fT )

=
PFT (fT )~pBT |AT (bT | aT )

QBT (bT )QFT (fT )

(a)
=

~pBT |AT (bT | aT )PFT (Υ(bT−1, aT ))

QBT (bT )~qAT |BT (aT | bT )

=
~pBT |AT (bT | aT )

∑

f̃T

∏T
t=1 p(f̃t | f̃

t−1)δ{f̃t(bt−1)}(at)

QBT (bT )~qAT |BT (aT |bT )

=

∑

f̃T

∏T
t=1 p(f̃t | f̃

t−1)δ{f̃t(bt−1)}(at)p(bt | a
t, bt−1)

QBT (bT )~qAT |BT (aT |bT )

=

∑

f̃T Q(f̃T , aT , bT )

QBT (bT )~qAT |BT (aT |bT )

=
QAT ,BT (aT , bT )

~QAT |BTQBT (aT , bT )

where (a) follows because the Q marginal Q(dfT ) = PFT (dfT ) and for Q(fT , aT , bT ) > 0
lemma 5.1 shows PFT (Υ(bT−1, aT )) = ~qAT |BT (aT | bT ).

Furthermore, if given a sequence of consistent measures {Q(dfT , daT , dbT )}∞T=1, equation
(6) states that for each T the random variables on the left hand side and right hand side
are almost surely equal. Hence I(F ;B) = I(A→ B). �

We have shown how a code-function distribution induces a channel input distribution.
As we discussed in the introduction to this section, we would like to choose a channel input
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distribution, {p(dat | at−1, bt−1)}Tt=1, and construct a sequence of code-function stochas-
tic kernels, {p(dft | f

t−1)}Tt=1, such that the resulting induced channel input distribution,
{q(dat | a

t−1, bt−1)}Tt=1, equals the chosen channel input distribution. This is shown picto-
rially:

{p(dat | a
t−1, bt−1)}Tt=1 −→ {p(dft | f

t−1)}Tt=1 −→ {q(dat | a
t−1, bt−1)}Tt=1

The first arrow represents the construction of the code-function distribution from the cho-
sen channel input distribution. The second arrow is described by the result in lemma 5.1.
Lemma 5.2 states that IQ(F ;B) = IQ(A → B). Let P correspond to the joint measure
determined by the left channel input distribution in the diagram. If we can find condi-
tions such that the induced channel input distribution equals the chosen channel input
distribution then IQ(A→ B) = IP (A→ B). Consequently IQ(F ;B) = IP (A→ B).

Definition 5.1 We call a sequence of code-function stochastic kernels {p(dft | f t−1)}Tt=1,
with resulting joint measure PFT (dfT ), good with respect to the channel input distribution
{p(dat|a

t−1, bt−1)}Tt=1 if for each t and all at, bt−1 we have

PFT (Υt(bt−1, at)) = ~p(at | bt−1).

Lemma 5.4 below shows good code-function distributions exists. Before proving that we
show the equivalence of the chosen and induced channel input distributions when a good
code-function distribution is used.

Lemma 5.3 We are given a sequence of code-function stochastic kernels {p(dft | f
t−1)}Tt=1,

a channel {p(dbt | at, bt−1)}Tt=1, and a consistent joint measure Q(dfT , daT , dbT ). We are
also given a channel input distribution {r(dat | a

t−1, bt−1)}Tt=1. The induced channel input
distribution satisfies for each t and all at

Q(at | a
t−1, bt−1) = r(at | a

t−1, bt−1) for Q almost all at−1, bt−1 (7)

if and only if the sequence of code-function stochastic kernels {p(dft | f
t−1)}Tt=1 is good with

respect to {r(dat | a
t−1, bt−1)}Tt=1.

Proof: Note that for each t and all at:

Q(at | a
t−1, bt−1)

(a)
= PFT (Υt(b

t−1, at) | Υ
t−1(bt−2, at−1)) Q− almost all at−1, bt−1

(b)
=

~r(at | bt−1)

~r(at−1 | bt−2)
Q− almost all at−1, bt−1

= r(at | a
t−1, bt−1) Q− almost all at−1, bt−1

where (a) follows from lemma 5.1 and (b) follows from definition 5.1. �

Lemma 5.4 For any channel input distribution {p(dat|a
t−1, bt−1)}Tt=1 there exists a se-

quence of code-functions stochastic kernels that are good with respect to it.
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Proof: For all f t define p(ft | f
t−1) as follows

p(ft | f
t−1) =

∏

bt−1

p(ft(b
t−1) | f t−1(bt−2), bt−1) (8)

We first show that p(ft | f
t−1) defined in equation (8) is a stochastic kernel. Note that for

each t and all f t−1 we have
∑

ft

p(ft | f
t−1)

=
∑

ft

∏

bt−1

p(ft(b
t−1) | f t−1(bt−2), bt−1)

=
∑

at

∑

ft∈Υt(b̄t−1,at)

∏

bt−1

p(ft(b
t−1) | f t−1(bt−2), bt−1)

=
∑

at

∑

ft∈Υt(b̄t−1,at)

p(ft(b̄
t−1) | f t−1(b̄t−2), b̄t−1)

∏

bt−1 6=b̄t−1

p(ft(b
t−1) | f t−1(bt−2), bt−1)

=
∑

at

p(at | f
t−1(b̄t−2), b̄t−1)

∑

ft∈Υt(b̄t−1,at)

∏

bt−1 6=b̄t−1

p(ft(b
t−1) | f t−1(bt−2), bt−1)

(a)
=

∏

bt−1

∑

at

p(at | f
t−1(bt−2), bt−1)

= 1

where (a) follows by repeating the previous step for each bt−1. In short, the sum is over all
functions ft : B

t−1 → A. Hence the sum over ft can be viewed as a sum over all assignments
of at’s to each choice of bt−1. Then the sum of products can be written as a product of
sums.

We now show by induction that for each t and all at, bt−1 we have PFT (Υt(bt−1, at)) =
~p(at | bt−1). For t = 1 we have PFT (Υ1(a1)) =

∑

f1∈Υ1(a1)
p(f1) = p(a1). For t+ 1 we have

PFT (Υt+1(bt, at+1))

=
∑

f t∈Υt(bt−1,at)

t∏

i=1

p(fi | f
i−1)

∑

ft+1∈Υt+1(bt,at+1)

p(ft+1 | f t)

=
∑

f t∈Υt(bt−1,at)

t∏

i=1

p(fi | f
i−1)

∑

ft+1∈Υt+1(bt,at+1)

∏

b̃t

p(ft+1(b̃
t) | f t(b̃t−1), b̃t)

=
∑

f t∈Υt(bt−1,at)

t∏

i=1

p(fi | f
i−1)

∑

ft+1∈Υt+1(bt,at+1)

p(ft+1(b
t) | f t(bt−1), bt)

∏

b̃t 6=bt

p(ft+1(b̃
t) | f t(b̃t−1), b̃t)

(a)
=

∑

f t∈Υt(bt−1,at)

t∏

i=1

p(fi | f
i−1)p(at+1 | at, bt)

∑

ft+1∈Υt+1(bt,at+1)

∏

b̃t 6=bt

p(ft+1(b̃
t) | f t(b̃t−1), b̃t)

(b)
=

∑

f t∈Υt(bt−1,at)

t∏

i=1

p(fi | f
i−1)p(at+1 | at, bt)

∏

b̃t 6=bt

∑

at+1

p(at+1 | f t(b̃t−1), b̃t)
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=
∑

f t∈Υt(bt−1,at)

t∏

i=1

p(fi | f
i−1)p(at+1 | at, bt)

= PFT (Υt(bt−1, at))p(at+1 | at, bt)
(c)
= ~p(at | bt−1)p(at+1 | at, bt)

= ~p(at+1 | bt)

where (a) follows because f t+1 ∈ Υt+1(bt, at+1), (b) follows from an argument similar to
that given above, and (c) follows from the induction hypothesis. �

A function ft is defined by its graph. In the above construction, equation (8), we have
enforced independence across the different bt−1. Specifically for bt−1 6= b̄t−1 we have

PFT (Υ(bt−1, at) ∩Υ(b̄t−1, āt) | f
t−1) = PFT (Υ(bt−1, at) | f

t−1)× PFT (Υ(b̄t−1, āt) | f
t−1).

We do not need to assume this independence. For example it is known that Gaussian
(linear) channel input distributions are optimal for Gaussian channels. For more details
see [7], [29], [40], [41]. When dealing with more complicated alphabets one may want the
functions ft to be continuous with respect to the topologies of A and B. Continuity is
trivially satisfied in the finite alphabet case.

Note that it is possible for distinct code-function stochastic kernels to induce the same
channel input distribution (almost surely.) In addition, there may be many code-functions
stochastic kernels that are good with respect to a given channel input distribution. As
an example consider the case when the channel input distribution does not depend on the
channel output: {p(dat | a

t−1)}Tt=1. One choice of PFT is given in equation (8):

p(ft | f
t−1) =

∏

bt−1

p(ft(b
t−1) | f t−1(bt−2))

Another choice would be to put zero mass on code-functions that depend on feedback (i.e.
only use codewords):

PFT (fT ) =

{ ∏T
t=1 p(at | a

t−1) if ft(b
t−1) = at ∀b

t−1, ∀t
0 else

One can show that this PFT (dfT ) is good with respect to {q(dat | a
t−1)} by checking for

each t: PFT (Υt(bt−1, at)) =
∏t

i=1 p(at | a
i−1).

For memoryless channels we know the optimal channel input distribution is {p(dat)}
T
t=1.

Feedback in this case cannot increase capacity but that does not preclude us from using
feedback. For example, feedback is known to decrease latency.

5.2 Feedback Channel Coding Theorem

Now we can prove the feedback channel coding theorem 5.1. We start with the converse
part and then prove the direct part.
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Converse Theorem: Choose a (T,M, ǫ) channel code {fT [w]}Mw=1. Place a prior proba-
bility 1

M
on each code-function fT [w]. By lemma 3.1 and corollary 3.1 this defines consistent

measures Q(dfT , daT , dbT ) and Q(dw, daT , dbT ). The following is a generalization of the
Verdú-Han converse [33].

Lemma 5.5 Every (T,M, ǫ) channel code satisfies

ǫ ≥ Q

(

1

T
log

QAT ,BT (AT , BT )

~QAT |BTQBT (AT , BT )
≤

1

T
logM − γ

)

− 2−γT ∀γ > 0

Proof: Choose a γ > 0. Let Dw ⊂ BT be the decoding region for message w. The only
restriction we place on the decoding regions is that they do not intersect: Dw ∩ Dw̃ =
∅ ∀w̃ 6= w. (This is always true when using a channel decoder: Dw = {w : g(bT ) = w}.)

Under this restriction on the decoder Verdú and Han show in theorem 4 of [33] that
any (T,M, ǫ) channel code for the channel {p(dbt | f

t, bt−1)} without feedback (see equation
(2)) satisfies

ǫ ≥ Q

(

1

T
log

QFT ,BT (F T , BT )

QFTQBT (F T , BT )
≤

1

T
logM − γ

)

− 2−γT ∀γ > 0

By lemma 5.2 we know that
Q

FT ,BT (FT ,BT )

Q
FT Q

BT (FT ,BT )
=

Q
AT ,BT (AT ,BT )

~Q
AT |BT Q

BT (AT ,BT )
holds Q− a.s. �

Note that in the proof of lemma 5.5 the only property of the decoder we used is the
restriction that the decoding regions not overlap. Thus the lemma holds independently of
the decoder that one uses.

Theorem 5.2 The channel capacity Co ≤ C.

Proof: Assume towards a contradiction that Co > C. Specifically, assume there exists
a sequence of (T,MT , ǫT ) channel codes with limT→∞ ǫT = 0 and lim infT→∞

1
T
logMT >

C + 2γ for some γ > 0. Then

ǫT ≥ Q

(

1

T
log

QAT ,BT (AT , BT )

~QAT |BTQBT (AT , BT )
≤

1

T
logMT − γ

)

− 2γT

≥ Q

(

1

T
log

QAT ,BT (AT , BT )

~QAT |BTQBT (AT , BT )
≤ C + γ

)

− 2γT

where the line follows from lemma 5.5 and the second line holds for all sufficiently large T .
By the definition of C and for all sufficiently large T the mass below C + γ has nonzero
probability. Therefore the right hand side in the last inequality is greater than zero. Thus
contradicting ǫT → 0. �

Direct Theorem: We will prove the direct theorem via a random coding argument. The
following is a generalization of Feinstein’s lemma [13], [33].
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Lemma 5.6 Fix a time T , an 0 < ǫ < 1, and a channel {p(dbt | bt−1, at)}Tt=1. Then for
all γ > 0 and any channel input distribution {r(dat | a

t−1, bt−1)}Tt=1 there exists a (T,M, ǫ)
channel code that satisfies

ǫ ≤ RAT ,BT

(

1

T
log

RAT ,BT (AT , BT )

~RAT |BTRBT (AT , BT )
≤

1

T
logM + γ

)

+ 2−γT

where RAT ,BT (daT , dbT ) =
⊗T

t=1 p(dbt | b
t−1, at)⊗ r(dat | a

t−1, bt−1).

Proof: Let {p(dft | f
t−1)}Tt=1 be any sequence of code-function stochastic kernels good with

respect to the channel input distribution {r(dat | a
t−1, bt−1)}Tt=1. Let Q(dfT , daT , dbT ) be

the consistent joint measure determined by this {p(dft | f
t−1)}Tt=1 and the channel.

Verdú and Han, theorem 2 of [33], show that for the channel {p(dbt | f
t, bt−1)}Tt=1 without

feedback and for every γ > 0 there exists a channel code (T,M, ǫ) that satisfies:

ǫ ≤ Q

(

1

T
log

QFT ,BT (F T , BT )

QFTQBT (F T , BT )
≤

1

T
logM + γ

)

+ 2−γT .

Lemma 5.2 shows
Q

FT ,BT (FT ,BT )

Q
FT Q

BT (FT ,BT )
=

Q
AT ,BT (AT ,BT )

~Q
AT |BT Q

BT (AT ,BT )
holds Q−almost surely. Lemma

5.3 shows Q(at | at−1, bt−1) = r(at | at−1, bt−1) Q−almost surely. Hence Q(daT , dbT ) =
RAT ,BT (daT , dbT ). �

Recall that the random coding argument underlying this result requires a distribution
on channel codes given by randomly drawing M code-functions uniformly from Q(dfT ).

Theorem 5.3 The channel capacity Co ≥ C.

Proof: We follow [33]. Fix an ǫ > 0. We will show that C is an ǫ−achievable rate
by demonstrating for every δ > 0 and all sufficiently large T there exists a sequence of

(T,M, 2−
Tδ
4 + ǫ

2 ) codes with rate C−δ ≤ logM
T

≤ C− δ
2 . If in the previous lemma we choose

γ = δ
4 , then we get

RAT ,BT

(

1

T
log

RAT ,BT (AT , BT )

~RAT |BTRBT (AT , BT )
≤

1

T
logM +

δ

4

)

≤

(

1

T
log

RAT ,BT (AT , BT )

~RAT |BTRBT (AT , BT )
≤ C −

δ

4

)

≤
ǫ

2

where the second inequality holds for all sufficiently large T . To see this note that by the
definition of C and T large enough the mass below C − δ

4 has probability zero. �
By combining theorems 5.2 and 5.3 we can conclude theorem 5.1. Specifically C is

the feedback channel capacity. It should be clear that if we restrict ourselves to channels
without feedback then we recover the original coding theorem by Verdú and Han [33].
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Definition 5.2 A channel with capacity Co has a strong converse if for all δ > 0 and
every sequence of channel codes, {(T,MT , ǫT )}, for which lim inf logMT

T
> Co + δ satisfies

limT→∞ ǫT = 1.

Following theorem 7 of [33] we have:

Proposition 5.1 A channel has a strong converse if and only if sup{DT }∞T=1
I(A → B) =

sup{DT }∞
T=1

I(A→ B) and hence Co = limT→∞
1
T
I(AT → BT ).

The latter part follows from theorem 5.1, lemma 4.1, and the finiteness of B.

Error Exponents: We can generalize Gallager’s [14] error exponent to feedback channels.
Specifically, the error exponent for rate R and blocklength T is given by

sup
DT

max
0≤ρ≤1



−ρR−
1

T
ln
∑

bT

[
∑

aT

~p(aT |bT )
{
~p(bT |aT )

} 1
1+ρ

]1+ρ


 .

For full details see [29].

5.3 General Information Pattern

So far we have assumed that the encoder has access to all the channel outputs Bt−1. There
are many situations, though, where the information pattern [35] at the encoder may be
restricted. Let E be a finite set and let Et = ψt(B

t). Here the measurable functions
ψt : Bt → E determine the information fed back from the decoder to the encoder. Let
ΨT = {ψt}

T
t=1. In the case of ∆-delayed feedback we have Et = ψt(B

t) = Bt−∆+1. If ∆ = 1
then Et = ψt(B

t) = Bt and we are in the situation discussed above. Quantized channel
output feedback can be handled by letting the {ψt} be quantizers. The time ordering is
A1, B1, E1, A2, B2, E2, ..., AT , BT , ET .

A channel code-function with information pattern ΨT is a sequence of T deterministic
measurable maps {ft}

T
t=1 such that ft : E t−1 → A taking et−1 7→ at. Denote the set of

all code-functions with restricted information pattern ΨT by FT,Ψ ⊆ FT . The operational
capacity with information pattern Ψ∞, denoted by Co,Ψ, is defined similarly to definition
3.2.

Just as in section 3.1 we can define a joint measure P (dfT , daT , dbT , deT ) as the inter-
connection of the code-functions and the channel {p(dbt | a

t, bt−1)}. Lemma 3.1 follows as
before except that now condition two of consistency requires both At = F t(Et−1), Et =
Ψ(Bt) Q− a.s.

Define the channel input distribution with information pattern Ψ to be a sequence of
stochastic kernels {p(dat | a

t−1, bt−1)} with the further condition that for each t the kernel
p(dat | at−1, bt−1) = p(dat | at−1, ψt−1(bt−1)). Let DΨ

T = {{p(dat | at−1, bt−1)}Tt=1} be the
set of all channel input distributions with information pattern Ψ. Let

CΨ
T = sup

DΨ
T

1

T
I(AT → BT ) for finite T and CΨ = sup

{DΨ
t }∞t=1

I(A→ B).

For the general information pattern, lemmas 5.1-5.4 and theorems 5.1-5.6 continue to hold
with obvious modifications. Hence
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Figure 2: Markov Channel

Theorem 5.4 For channels with information pattern Ψ we have Co,Ψ = CΨ.

This result holds because the feedback is a causal, deterministic function of the channel
outputs. It would be more interesting and practical if the feedback were noisy. This is
a more complicated problem as it is related to the problem of channel coding with side-
information at the encoder.

6 Markov Channels

In this section we formulate the Markov channel feedback capacity problem. As before let
A,B be spaces with a finite number of elements representing the channel input and channel
output, respectively. Furthermore let S be a state space with a finite number of elements
with the counting σ-algebra. Let St, At, Bt be measurable random elements taking values in
S,A,B respectively. See figure 2. There is a natural time-ordering on the random variables
of interest:

W, S1, A1, B1, S2, . . . , St,

t−th epoch
︷ ︸︸ ︷

At, Bt, St+1,

t+1−st epoch
︷ ︸︸ ︷

At+1, Bt+1, St+2, . . . , ST , AT , BT , Ŵ (9)

First, at time 0 a message W is produced and the initial state S1 drawn. The order of
events in each of the T epochs is described in (9). At beginning of t-th epoch the channel
input symbol At is placed on the channel by the transmitter, then Bt is observed by the
receiver, then the state of the system evolves to St+1, and then finally the receiver feeds
back information to the transmitter. At the beginning of the t + 1 epoch the transmitter
uses the feedback information to produce the next channel input symbol At+1. Finally at
time T , after observing BT , the decoder outputs the reconstructed message Ŵ .

Definition 6.1 A Markov channel consists of an initial state distribution p(ds1), the state
transition stochastic kernels {p(dst+1 | st, at, bt)}

T−1
t=1 , and the channel output stochastic

kernels {p(dbt | st, at)}
T
t=1. If the stochastic kernel p(dst+1 | st, at, bt) is independent of

at, bt for each t = 1, ..., T − 1 then we say the channel is a Markov channel without ISI
(intersymbol interference.)

Note that we are assuming the kernels {p(dst+1 | st, at, bt)} and {p(dbt | st, at)} are stationary
(independent of time.)
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As before a channel code-function is a sequence of T deterministic measurable maps
{ft}

T
t=1 such that ft : B

t−1 → A which takes bt−1 7→ at. We do not assume, for now, that
the state of the channel is observable to the encoder. This will have the effect of restricting
ourselves to channel input distributions of the form {p(dat | at−1, bt−1)} as opposed to
{p(dat | s

t, at−1, bt−1)}. We do assume that both the encoder and the decoder know p(ds1).
In section 8.1 we show how to introduce state feedback.

6.1 The Sufficient Statistic {Πt}

Given a sequence of code-function distributions {p(dft | f
t−1)}Tt=1 we can interconnect the

Markov channel to the source. Via a straightforward generalization of definition 3.3 and
lemma 3.1 one can show there exists a unique consistent measure: Q(dfT , dsT , daT , dbT ) =
⊗T

t=1 p(dft | f
t−1)⊗p(dst | st−1, at−1, bt−1)⊗δ{ft(bt−1)}(dat)⊗p(dbt | st, at). Unlike in lemma

3.1 determining the channel without feedback from FT to BT takes a bit more work. To
that end we introduce the sufficient statistics {Πt}.

Let Π(ds) ∈ P(S) be an element in the space of probability measures on S. Define a
stochastic kernel from P(S) ×A to S × B:

r(ds, db | π, a) = p(db | s, a)⊗ π(ds) (10)

The following lemma follows from theorem A.3 in the appendix.

Lemma 6.1 There exists a stochastic kernel r(ds | π, a, b) from P(S) × A × B to S such
that

r(ds, db | π, a) = r(ds | π, a, b)⊗ r(db | π, a)

where r(db | π, a) is the marginal of r(ds, db | π, a). Specifically, for each b:

r(b | π, a) =
∑

s̃

p(b | s̃, a)π(s̃) (11)

The statistic π(ds) is often called the a priori distribution of the state and r(ds | π, a, b)
the a posteriori distribution of the state after observing a, b. We recursively define the
sufficient statistics {Πt}

T
t=1. Specifically Πt : A

t−1 × Bt−1 → P(S) defined as follows:

π1(ds1) = p(ds1) (12)

(where p(ds1) is given in definition 6.1) and for each at, bt and all st+1:

πt+1[a
t, bt](st+1) =

∑

st

p(st+1 | st, at, bt)r
(
st | πt[a

t−1, bt−1](dst), at, bt
)

(13)

Equations (12) and (13) are the so-called filtering equations for the state of the channel
based on the channel inputs and outputs. Note that equation (13) implies there exists a
deterministic, stationary, measurable function ΦΠ such that πt+1 = ΦΠ(πt, at, bt) for all
t = 1, ..., T − 1. Note the statistic Πt depends on information from both the transmitter and
the receiver. It can be viewed as the complete system’s estimate of the state.

We will now show that the {Πt} defined in equations (12) and (13) are consistent with
the conditional probabilities {Q(dst | f

t, at−1, bt−1)}.
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Lemma 6.2 We are given a sequence of code-function stochastic kernels {p(dft | f
t−1)}, a

Markov channel p(ds1), {p(dst+1 | st, at)}, {p(dbt | st, at)}, and a consistent joint measure
Q(dfT , dsT , daT , dbT ). Then for each t and all st we have

Q(st | f
t, at, bt−1) = πt[a

t−1, bt−1](st) (14)

for Q almost all f t, at, bt−1.

Proof: We will prove equation (14) by induction. For t = 1 and all s1 we have π1(s1)Q(f1, a1)
= p(s1)p(f1)δ{f1}(a1) = Q(f1, s1, a1). Now for t+ 1 and all st+1 we have

πt+1[a
t, bt](st+1) Q(f t+1, at+1, bt)

= πt+1[a
t, bt](st+1)

∑

st

Q(f t+1, st, a
t+1, bt)

(a)
=

(
∑

s̃t

p(st+1 | s̃t, at, bt)r
(
s̃t | πt[a

t−1, bt−1](dst), at, bt
)

)

×

(
∑

st

δ{ft+1(bt)}(at+1) p(ft+1 | f t) p(bt | st, at) δ{ft(bt−1)}(at)π[a
t−1, bt−1](st) Q(f t, at−1, bt−1)

)

=
∑

s̃t

p(st+1 | s̃t, at, bt)

(

r
(
s̃t | πt[a

t−1, bt−1](dst), at, bt
)∑

st

p(bt | st, at) π[a
t−1, bt−1](st)

)

×δ{ft+1(bt)}(at+1)p(ft+1 | f t)δ{ft(bt−1)}(at) Q(f t, at−1, bt−1)

(b)
=

∑

s̃t

p(st+1 | s̃t, at, bt)
(
p(bt | s̃t, at) π[a

t−1, bt−1](s̃t)
)

×δft+1(bt)(at+1)p(ft+1 | f t) δ{ft(bt−1)}(at) Q(f t, at−1, bt−1)

(c)
=

∑

s̃t

δ{ft+1(bt)}(at+1) p(st+1 | s̃t, at, bt) p(ft+1 | f t) p(bt | s̃t, at) δ{ft(bt−1)}(at) Q(f t, s̃t, a
t−1, bt−1)

=
∑

s̃t

Q(f t+1, s̃t, st+1, a
t+1, bt)

= Q(f t+1, st+1, a
t+1, bt)

where (a) follows from the definition of Πt and the induction hypothesis. Line (b) follows
from lemma 6.1 and (c) is another application of the induction hypothesis. �

Note that equation (14) states that the conditional probability Q(dst | f
t, at, bt−1) does

not depend on f t almost surely. In addition the filtering equations (12) and (13) are
defined independently of the code-function distributions (or equivalently the channel input
distributions). This is related to Witsenhausen’s work on policy independence [36]. Finally
observe that equation (14) and the fact that Πt is a function of At−1, Bt−1 imply that
St −Πt − (F t, At, Bt−1) forms a Markov chain under any consistent measure Q.

6.2 Markov Channel Coding Theorem

We are now in a position to describe the “FT − BT” channel in terms of the underlying
Markov channel. We then prove the Markov channel coding theorem.
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Lemma 6.3 We are given a sequence of code-function stochastic kernels {p(dft | f
t−1)}; a

Markov channel p(ds1), {p(dst+1 | st, at, bt)}, {p(dbt | st, at)}; and a consistent joint measure
Q(dfT , dsT , daT , dbT ). Then for each t and all bt we have

Q(bt | f
t, at, bt−1) = r

(
bt | πt[a

t−1, bt−1](dst), at
)

(15)

for Q almost all f t, at, bt−1. Where r(db | π, a) was defined in equation (11).

Proof: For each t note that

Q(f t, at, bt) =
∑

st

Q(f t, st, a
t, bt)

=
∑

st

p(bt | st, at) Q(f t, st, a
t, bt−1)

(a)
=

∑

st

p(bt | st, at) πt[a
t−1, bt−1](st) Q(f t, at, bt−1)

= r(bt | πt[a
t−1, bt−1](dst), at) Q(f t, at, bt−1)

where (a) follows from lemma 6.2. �
The previous lemma shows that B − (Πt, At) − (F t, At−1, Bt−1) forms a Markov chain

under Q.

Corollary 6.1 We are given a sequence of code-function stochastic kernels {p(dft | f
t−1)};

a Markov channel p(ds1), {p(dst+1 | st, at, bt)}, {p(dbt | st, at)}; and a consistent joint mea-
sure Q(dfT , dsT , daT , dbT ). Then for each t and all bt we have

Q(bt | f
t, bt−1) = r

(
bt | πt[f

t−1(bt−2), bt−1](dst), ft(b
t−1)

)
(16)

for Q almost all f t, bt−1.

Proof: For each t note that

Q(f t, bt) =
∑

at

Q(f t, at, bt)

=
∑

at

r(bt | πt[a
t−1, bt−1](dst), at) Q(f t, at, bt−1)

= r(bt | πt[f
t−1(bt−2), bt−1](dst), ft(b

t−1)) Q(f t, bt−1)

where the second line follows from lemma 6.3. �
The corollary shows that we can convert a Markov channel into a channel of the general

form considered in sections 3-5. Hence we can define the operational channel capacity, Co,
for the Markov channel with feedback in exactly the same way we did in definition 4.3.
We can also use the same definitions of capacity, C, as before. Thus we can directly apply
theorem 5.1 and its generalization, theorem 5.4, to prove:

Theorem 6.1 For Markov channels we have Co = C. For Markov channels with informa-
tion pattern Ψ we have Co,Ψ = CΨ.
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We end this section by noting that the use of {Πt} can simplify the form of the directed
information and the choice of the channel input distribution.

Lemma 6.4 For a Markov channel I(F T → BT ) = I(AT → BT ) =
∑T

t=1 I(At,Πt;Bt | B
t−1).

Proof: The first equality follows from lemma 5.2. The second equality follows from noting
that I(AT → BT ) =

∑T
t=1 I(A

t;Bt | B
t−1). For t = 1 we know Π1(ds1) = p(ds1) is a fixed,

non-random, measure known to both the transmitter and receiver. Hence I(A1;B1) =
I(A1,Π1;B1). For t > 1 we have

I(At;Bt | B
t−1) = I(At,Πt;Bt | B

t−1) + I(At−1;Bt | Πt, At, B
t−1)− I(Πt;Bt | A

t, Bt−1)

= I(At,Πt;Bt | B
t−1)

where I(Πt;Bt | A
t, Bt−1) = 0 because Πt is a function of At−1, Bt−1. Lemma 6.3 implies

(At−1, Bt−1)− (Πt, At)−Bt is a Markov chain hence I(At−1;Bt | Πt, At, B
t−1) = 0. �

Note that we can view both (At,Πt) as the input to the channel. This makes sense
because the decoder needs information about the encoder’s estimate of the state given by
Πt. The next lemma shows us that we simplify the form of the channel input distribution.

Lemma 6.5 Given a Markov channel p(ds1), {p(dst+1 | st, at, bt)}, {p(dbt | st, at)}, and a
channel input distribution {q(dat | a

t−1, bt−1} with resulting joint measure Q(dsT , daT , dbT )
there exists another channel input distribution of the form {r(dat | πt, b

t−1)} with resulting
joint measure R(dsT , daT , dbT ) such that for each t we have2

R(dπt, dat, db
t) = Q(dπt, dat, db

t)

and hence IR(At,Πt;Bt | B
t−1) = IQ(At,Πt;Bt | B

t−1).

Proof: From lemmas 6.2 and 6.3 and equation (13) we know

Q(dπT , daT , dbT ) =
T⊗

t=1

r(dbt | πt, at)⊗ q(dat | a
t−1, bt−1)⊗ δ{ΦΠ(πt−1,at−1,bt−1)}(dπt) (17)

where, as an abuse of notation, let δ{ΦΠ(π0,a0,b0)}(dπ1) = δ{p(ds1)}(dπ1). For each t de-
fine the stochastic kernel r(dat | πt, b

t−1) to be a version of the conditional distribution
Q(dat | πt, b

t−1) (see theorem A.3 in the appendix.)
We proceed by induction. For t = 1 we know π1(ds1) = p(ds1). For any Borel measurable

set Ω ⊂ P(S), a1, b1 we have

R(Ω, a1, b1) =

∫

Ω
r(b1 | π1, a1)r(a1 | π1)δ{p(ds1)}(dπ1) =

∫

Ω
r(b1 | π1, a1)Q(dπ1, a1) = Q(Ω, a1, b1).

2For any Borel measurable Ω ⊂ P(S) let Q(πt ∈ Ω, at = āt, bt = b̄t) =
Q
(
{(at, bt) : at = āt, bt = b̄t, πt[a

t−1, bt−1] ∈ Ω}
)
.
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Now for t+ 1 and any Borel measurable set Ω ⊂ P(S), at+1, b
t+1 we have

R(πt+1 ∈ Ω, at+1, b
t+1)

=
∑

at

∫

Ω

∫

P(S)
R(dπt, dπt+1, at, at+1, b

t+1)

=
∑

at

∫

Ω

∫

P(S)
r(bt+1 | πt+1, at+1)r(at+1 | πt+1, b

t)δ{ΦΠ(πt,at,bt)}(dπt+1)R(dπt, at, b
t)

(a)
=

∑

at

∫

Ω

∫

P(S)
r(bt+1 | πt+1, at+1)r(at+1 | πt+1, b

t)δ{ΦΠ(πt,at,bt)}(dπt+1)Q(dπt, at, b
t)

=
∑

at

∫

Ω

∫

P(S)
r(bt+1 | πt+1, at+1)r(at+1 | πt+1, b

t)Q(dπt, dπt+1, at, b
t)

=

∫

Ω
r(bt+1 | πt+1, at+1)r(at+1 | πt+1, b

t)Q(dπt+1, b
t)

(b)
=

∫

Ω
r(bt+1 | πt+1, at+1)Q(dπt+1, at+1, b

t)

= Q(πt+1 ∈ Ω, at+1, b
t+1)

where (a) follows from the induction hypothesis and (b) follows by the construction of
r(dat+1 | πt+1, b

t). �
The lemma states that we can without loss of generality restrict ourselves to channel

input distributions of the form {q(dat | πt, b
t−1)}. Note that the dependence on at−1 ap-

pears only through πt[a
t−1, bt−1](dst). If πt[a

t−1, bt−1] is not a function of at−1 then the
distribution of at will depend only on the feedback bt−1. We discuss when this happens in
section 8.

In summary, we have shown that any Markov channel, p(ds1), {p(dst+1 | st, at, bt)},
{p(dbt | st, at)} can be converted into another Markov channel with initial state Π1(dπ1) =
δ{p(ds1)}(dπ1), deterministic state transitions Πt+1 = ΦΠ(Πt, At, Bt), and channel output
stochastic kernels {r(dbt | πt, at)}. We call this the canonical Markov channel associated
with the original Markov channel. Thus the problem of determining the capacity of a
Markov channel with state space S has been reduced to determining the capacity of the
canonical Markov channel. The latter Markov channel has state space P(S) and state
computable from the channel inputs and outputs.

Note that even if the original Markov channel does not have ISI it is typically the case
that the canonical Markov channel will have ISI. This is because the choice of channel
input can help the decoder identify the channel. This property is called dual control in the
stochastic control literature [3].
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7 The MDP Formulation

Our goal in this section is to formulate the following optimization problem for Markov
channels with feedback as an infinite horizon average cost problem:

sup
D∞

lim inf
T→∞

1

T
I(AT → BT ) = sup

D∞

lim inf
T→∞

1

T

T∑

t=1

I(At,Πt;Bt | B
t−1). (18)

We first give a high-level discussion of the issues, then we formulate the optimization prob-
lem in equation (18) as a partially observed Markov decision problem (POMDP), convert
the POMDP to a fully observed MDP, and provide the average cost optimality equation
(ACOE).

Before proceeding the reader may notice that the optimization in equation (18) is differ-
ent than the one given after definition 4.4: C = sup{DT }∞T=1

I(A→ B). In the course of this
section it will be shown that the two optimizations are equivalent. That one can without
loss of generality restrict the optimization to D∞ instead of {DT }

∞
T=1 is a consequence of

Bellman’s principle of optimality. In addition conditions will be given such that under the
optimal channel input distribution we have lim infT→∞

1
T
I(AT → BT ) = I(A→ B).

To compute I(At,Πt;Bt | B
t−1) we need to know the measure:

Q(dπt, dat, db
t) = r(dbt | πt, at)⊗ q(dat | πt, b

t−1)⊗Q(dπt, db
t−1). (19)

By lemma 6.5 we know that we can without loss of generality restrict ourselves to channel
input distributions of the form {q(dat | πt, b

t−1)}.
To formulate the optimization in (18) as a stochastic control problem we need to specify

the state space, the control actions, and the running cost. On first glance it may appear
that the encoder should choose control actions of the form ut(dat) based on the information
(πt[a

t−1, bt−1], bt−1). Unfortunately one cannot write the running cost in terms of ut(dat).
To see this observe that the argument under the expectation in I(At,Πt;Bt | Bt−1) =

E
[

log r(Bt | Πt,At)
Q(Bt | Bt−1)

]

can be written as

log
r(bt | at, πt)

Q(bt | bt−1)
= log

r(bt | at, πt)
∫ ∫

r(bt | π̃t, ãt)Q(dπ̃t, dãt | bt−1)
Q− almost all πt, at, b

t (20)

This depends on Q(dπt, dat | b
t−1) and not Q(dat | πt, b

t−1).
This suggests that the control actions should be stochastic kernels of the form ut(dat | πt).

This too is problematic. Note that we are interested in an optimization given in equation
(18) and hence would like for there to be a topology on the space of stochastic kernels of
the form ut(dat | πt). In some cases there is a natural parameterization of this space. For
example, for Gaussian channels it is known that the optimal input distribution is linear
and can be parameterized by its coefficients [7], [29], [40], [41]. But in general there is
no, at least to the author’s knowledge, natural topology on the space of stochastic kernels.
Hence we will choose control actions of the form ut(dπt, dat). The next section formalizes
the stochastic control problem with this choice of control action.
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7.1 Partially Observed Markov Decision Problem

Here we first describe the components of the POMDP formulation. In the next section we
show the equivalence of the POMDP formulation to the optimization (18).

Consider the control action u(dπ, da) in the control space U = P(P(S)×A). The space
U is a Polish space (i.e. a complete, separable metric space) equipped with the topology of
weak convergence.

The state at time t > 1 is Xt = (Πt−1, At−1, Bt−1) ∈ P(S) × A × B and X1 = ∅. The
dynamics are given as:

r(dxt+1 | xt, ut) = r(dbt | πt, at)⊗ ut(dπt, dat) (21)

Note that they dynamics depend only on ut. The observation at time t > 1 is given by
Yt = Bt−1 and Y1 = ∅. Note that Yt is a deterministic function of Xt.

As discussed, one of the main difficulties in formulating (18) as a POMDP has to do
with the form of the cost (20). The cost at time t is given as

c(xt, ut, xt+1) =

{

log r(bt | πt,at)∫
r(bt | π̃t,ãt)ut(dπ̃t,dãt)

if
∫
r(bt | π̃t, ãt)ut(dπ̃t, dãt) > 0

0 else
(22)

Note that the cost is just a function of ut, xt+1.
The information pattern at the controller at time t is (Y t, U t−1) = (Bt−1, U t−1) ∈

Bt−1×U t−1. The policy at time t is a stochastic kernel µt(dut | b
t−1, ut−1) from Bt−1×U t−1

to U . A policy {µt} is said to be a deterministic policy if for each t and all (bt−1, ut−1) the
stochastic kernel µt(dut | b

t−1, ut−1) assigns mass one to only one point in U . In this case we
will abuse notation and write ut = µt[b

t−1]. Technically, we should explicitly include p(ds1)
and the other channel parameters in the information pattern. But because the channel
parameters are fixed throughout and to reduce notation we shall not explicitly mention the
control policy’s dependence on them.

The time-order of events is the usual one for POMDPs: X1, Y1, U1, X2, Y2, U2.... For a
given policy {µt} the resulting joint measure is

Rµ(duT , dπT , daT , dbT ) =

T⊗

t=1

r(dbt | πt, at)⊗ ut(dπt, dat)⊗ µt(dut | u
t−1, bt−1) (23)

where we have used equation (21). Note that this R measure is not the same as the one
used in equation (17) of lemma 6.5. Compare the differences between the R measure given
in (23) and the Q measure given in equation (17). The next two sections discuss the relation
between these two different measures.

7.2 The Sufficient Statistic {Γt} and the Control Constraints

The dynamics given in equation (21), the control policy {µt}, and the running cost given in
equation (22) are not enough to specify the optimization in equation (18). In particular, in
the original optimization {Πt} is determined by (13). Whereas in the POMDP optimization
the {Πt} are determined by the policy {µt}. We need to insure that the {Πt} play similar
roles in both cases. To this end we we will next define appropriate control constraints.
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Equation (21) states r(dπ, da, db | u) = r(db | π, a) ⊗ u(dπ, da). The following lemma
follows from theorem A.3 in the appendix.

Lemma 7.1 There exists a stochastic kernel r(dπ, da | u, b) from U × B to P(S) × A
such that r(dπ, da, db | u) = r(dπ, da | u, b) ⊗ r(db | u) where r(db | u) is the marginal of
r(dπ, da, db | u).

We now define the statistics {Γt} ∈ P(P(S)). This is the space of probability measures
on probability measures on S. Specifically Γt : U

t−1×Bt−1 → P(P(S)) is defined as follows.
For t = 1 let

γ1(dπ1) = δ{p(ds1)}(dπ1) (24)

and for t > 1 and each ut−1, bt−1 and all Borel measurable Ω ⊂ P(S):

γt[u
t−1, bt−1](Ω) =

∫ ∫

{ΦΠ(πt−1, at−1, bt−1) ∈ Ω}r (dπt−1, dat−1 | ut−1, bt−1) . (25)

Here {·} corresponds to the indicator function. Note that for t > 1, γt[u
t−1, bt−1](dπt)

depends only on ut−1, bt−1. Sometimes, for t > 1, we will just write γt[ut−1, bt−1](dπt).
Equation (25) implies there exists a deterministic, stationary, measurable function ΦΓ

such that γt+1 = ΦΓ(ut, bt) for all t = 1, ..., T − 1. Note that because of feedback the
statistic Γt can be computed at both the transmitter and the receiver. It can be viewed as
the receiver’s estimate of the transmitter’s estimate of the state of the channel.

We now define the control constraints. Let

U(γ) = {u(dπ, da) : u(dπ, da) ∈ U , u(dπ) = γ(dπ)} . (26)

Note that for each γ ∈ P(P(S)) the set U(γ) is compact. For each t and (ut−1, bt−1) the
control constraint Ut(·) ⊂ U is defined as:

Ut(u
t−1, bt−1) = U(γt[u

t−1, bt−1]). (27)

For each t the policy µt will enforce the control constraint. Specifically for all (ut−1, bt−1)

µt
({
ut ∈ Ut

(
γt[u

t−1, bt−1]
)}

| ut−1, bt−1
)
= 1. (28)

The next lemma shows that the {Γt} are consistent with the conditional probabilities
Rµ(dπt | u

t−1, bt−1).

Lemma 7.2 We are given p(ds1), the dynamics (21), and a policy {µt} satisfying the
control constraint (28) with resulting measure Rµ(duT , dπT , daT , dbT ). Then for each t we
have:

Rµ(dπt | u
t−1, bt−1) = γt[u

t−1, bt−1](dπt) (29)

for Rµ almost all ut−1, bt−1.
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Proof: Fix a Borel measurable set Ω ⊂ P(S). For any t, any Borel measurable sets
Θk ⊂ U , k = 1, ..., t − 1 and any bt−1 we have

Rµ(Ω,Θt−1, bt−1) =

∫

U

∫

Θt−1

∫

Ω
Rµ(dπt, du

t−1, dut, b
t−1)

=

∫

U

∫

Θt−1

ut(Ω,A)µt(dut | u
t−1, bt−1)Rµ(dut−1, bt−1)

=

∫

Θt−1

(∫

U
ut(Ω,A)µt(dut | u

t−1, bt−1)

)

Rµ(dut−1, bt−1)

=

∫

Θt−1

γt[u
t−1, bt−1](Ω)Rµ(dut−1, bt−1)

where the last equality follows because the control policy µt satisfies the control constraint
given in equation (28). �

Equations (29) and (25) show the conditional probability Rµ(dπt | u
t−1, bt−1) does not

depend on the policy µ and ut−2, bt−2 almost surely. See comments after lemma 6.2.
We can simplify the form of the cost, in the standard way, by computing the expectation

over the next state. For each t define:

c̄(ut) = ERµ [c(Xt, Ut,Xt+1) | ut]

(a)
=

∫

r(dbt | πt, at)ut(dπt, dat) log
r(bt | πt, at)

∫
r(bt | π̃t, ãt)ut(dπ̃t, dãt)

(30)

where (a) follows from equation (22) and the fact that ct does not depend on xt.
In summary, we have formulated an average cost, infinite horizon, POMDP:

sup
{µt}

lim inf
T→∞

1

T

T∑

t=1

ERµ [c(Xt, Ut,Xt+1)] = sup
{µt}

lim inf
T→∞

1

T

T∑

t=1

ERµ [c̄(Ut)] (31)

with dynamics given by (21) and costs given by (22). The supremization is over all policies
that satisfy the control constraint (28). In the next section we show that the optimization
in (31) is equivalent to the optimization in (18).

7.3 Equivalence of the Optimization Problems

We now show the equivalence of the optimization problem posed in equation (18) and that
posed in (31). As discussed at the end of section 7.1 the measures Q and Rµ can be different.
By equivalence we mean that for any choice of channel input distribution {q(dat | πt, b

t−1)}
with resulting joint measure Q(dsT , daT , dbT ) we can find a control policy {µt} satisfying
(28) with resulting joint measure Rµ(duT , dπT , daT , dbT ) such that for each t:

Q(dπt, dat, db
t) = Rµ(dπt, dat, db

t). (32)

Vice-versa, given any policy {µt} satisfying (28) we can find a channel input distribution
{q(dat | πt, b

t−1)} such that the above marginals are equal. This equivalence will imply
that the optimal costs for the two problems are the same and the optimal channel input
distribution is related to the optimal policy.
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Lemma 7.3 For every channel input distribution {q(dat | πt, b
t−1)} with resulting joint

measure Q(dsT , daT , dbT ) there exists a deterministic policy {µt} satisfying (28) with result-
ing joint measure Rµ(dut, dπ

T , daT , dbT ) such that for each t: Rµ(dπt, dat, db
t) = Q(dπt, dat, db

t).

Proof: For each t choose a deterministic policy that satisfies:

µt[b
t−1](dπt, dat) = Q(dπt, dat | b

t−1)

for Q almost all bt−1. We proceed by induction. For t = 1 we have Rµ(dπ1, da1, db1) =
r(b1 | π1, a1)⊗ µ1[p(ds1)](dπ1, da1) = r(b1 | π1, a1)⊗Q(dπ1, da1) = Q(dπ1, a1, b1). For t+1
we have for any Borel measurable Ω ⊂ P(S) and all at+1, b

t+1:

Rµ(Ω, at+1, b
t+1) =

∫

Ω
r(bt+1 | πt+1, at+1)µt+1[b

t](dπt+1, at+1) R
µ(bt)

(a)
=

∫

Ω
r(bt+1 | πt+1, at+1)Q(dπt+1, dat+1 | bt)Q(bt)

= Q(Ω, at+1, b
t+1)

where (a) follows from the induction hypothesis and the our choice of µt+1.
Now we show the policy {µt} satisfies the control constraint (28). For t = 1 we have

µ1(dπ1) = Q(dπ1) = γ1(dπ1). For t > 1 we have for any Borel measurable Ω ⊂ P(S) and
all bt−1:

µt[b
t−1](Ω)Rµ(bt−1)

(a)
= Q(Ω, bt−1)

(b)
=

∫∫

{ΦΠ(πt−1, at−1, bt−1) ∈ Ω} r(bt−1 | πt−1, at−1) µt[b
t−2](dπt−1, dat−1) Q(bt−2)

(c)
=

∫∫

{ΦΠ(πt−1, at−1, bt−1) ∈ Ω} r(dπt−1, dat−1 | µt[b
t−2], bt−1) r(bt−1 | µt[b

t−2]) Rµ(bt−2)

(d)
= γt[µt−1[b

t−2], bt−1](Ω) R
µ(bt−1)

where (a) follows from the first part and the choice of control; (b) follows from our choice of
control; (c) follows from the first part and lemma 7.1; and (d) follows from equation (25).
Finally, altering µt on a set of measure zero if necessary we can insure that for each t the
deterministic policy µt will enforce the control constraint. Specifically for each bt−1 we have
µt[b

t−1] ∈ U(γt[µt−1[b
t−2], bt−1]). �

Lemma 7.4 For every policy {µt} satisfying (28) with resulting joint measure Rµ(duT , dπT , daT , dbT )
there exists a channel input distribution {q(dat | πt, b

t−1)} with resulting joint measure
Q(dsT , daT , dbT ) such that for each t: Q(dπt, dat, db

t) = Rµ(dπt, dat, db
t).

Proof: For each t choose a channel input distribution that satisfies:

q(dat | πt, b
t−1) = Rµ(dat | πt, b

t−1)

for Rµ almost all πt, b
t−1. We proceed by induction. For t = 1 we have Q(dπ1, da1, db1) =

r(db1 | π1, a1) ⊗ q(da1 | π1) ⊗ δ{p(ds1)}(dπ1) = Rµ(dπ1, da1, db1). For t+ 1 we have for any
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Borel measurable Ω ⊂ P(S) and all at+1, b
t+1:

Q(Ω, at+1, b
t+1)

=

∫

A

∫

P(S)

∫

Ω
r(bt+1 | πt+1, at+1) q(at+1 | πt+1, b

t) δ{ΦΠ(πt,at,bt)}(dπt+1) Q(dπt, dat, b
t)

(a)
=

∫

A

∫

P(S)

∫

Ω
r(bt+1 | πt+1, at+1) q(at+1 | πt+1, b

t) δ{ΦΠ(πt,at,bt)}(dπt+1) R
µ(dπt, dat, b

t)

=

∫

A

∫

P(S)

∫

Ω
r(bt+1 | πt+1, at+1) q(at+1 | πt+1, b

t) δ{ΦΠ(πt,at,bt)}(dπt+1)

×

(∫

U
r(bt | πt, at)ut(dπt, dat) R

µ(dut, b
t−1)

)

(b)
=

∫

Ω
r(bt+1 | πt+1, at+1) q(at+1 | πt+1, b

t)

×

(
∫

U

∫

A

∫

P(S)
δ{ΦΠ(πt,at,bt)}(dπt+1) r(dπt, dat | ut, bt) r(bt | ut)R

µ(dut, b
t−1)

)

(c)
=

∫

Ω
r(bt+1 | πt+1, at+1) q(at+1 | πt+1, b

t)

∫

U
γt+1[ut, bt](dπt+1)R

µ(dut, b
t)

(d)
=

∫

Ω
r(bt+1 | πt+1, at+1) q(at+1 | πt+1, b

t) Rµ(dπt+1, b
t)

(e)
= Rµ(Ω, at+1, b

t+1)

where (a) follows from the induction hypothesis, (b) follows from lemma 7.1, (c) follows
from equation (25), (d) follows from lemma 7.2, and (e) follows from the choice of channel
input distribution. �

Lemma 7.5 For every policy {µt} satisfying (28) with resulting joint measure Rµ there
exists a deterministic policy {µ̄t} satisfying (28) with resulting joint measure Rµ̄ such that
for each t: ERµ [c̄(Ut)] ≤ ERµ̄ [c̄(Ut)] .

Proof: Fix {µt}. By lemma 7.4 we know there is a channel input distribution {q(dat | πt, b
t−1)}

such that for each t: Q(dπt, dat, db
t) = Rµ(dπt, dat, db

t). By lemma 7.3 we know there is a
deterministic policy {µ̄t} such that for each t: Rµ̄(dπt, dat, db

t) = Q(dπt, dat, db
t). Hence,

for this {µ̄t}, we have Rµ̄(dπt, dat, db
t) = Rµ(dπt, dat, db

t).
First note that for each t, any Borel measurable Ω ∈ P(S), and all at, b

t−1:

µ̄[bt−1](Ω, at) R
µ(bt−1) = µ̄[bt−1](Ω, at) R

µ̄(bt−1)

= Rµ̄(Ω, at, b
t−1)

= Rµ(Ω, at, b
t−1)

=

∫

U
ut(Ω, at) R

µ(dut, b
t−1)

This implies µ̄[bt−1](dπt, dat) =
∫

U ut(dπt, dat)R
µ(dut | b

t−1) for Rµ almost all bt−1.
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Now for each t:

ERµ [c̄(Ut)]

=

∫

U×Bt−1

Rµ(dut, db
t−1)

∫

B

∫

A

∫

P(S)
r(dbt | πt, at)ut(dπt, dat) log

r(bt | πt, at)
∫

A

∫

P(S) r(bt | π̃t, ãt)ut(dπ̃t, dãt)

(a)

≤

∫

Bt−1

Rµ(dbt−1)

∫ ∫ ∫

r(bt | πt, at)

(∫

U
ut(dπt, dat)R

µ(dut | b
t−1)

)

× log
r(bt | πt, at)

∫ ∫
r(bt | π̃t, ãt)

(∫

U u(dπ̃t, dãt)R
µ(dut | bt−1)

)

(b)
=

∫

Bt−1

Rµ(dbt−1)

∫ ∫ ∫

r(bt | πt, at)µ̄[b
t−1](dπt, dat)

× log
r(bt | πt, at)

∫ ∫
r(bt | π̃t, ãt)µ̄t[bt−1](dπ̃t, dãt)

(c)
=

∫

Rµ̄(dut, db
t−1)

∫ ∫ ∫

r(bt | πt, at)ut(dπt, dat) log
r(bt | πt, at)

∫ ∫
r(bt | π̃t, ãt)ut(dπ̃t, dãt)

= ERµ̄ [c̄(Ut)]

where (a) follows from the conditional Jensen’s inequality; (b) follows from above; and (c)
follows because Rµ(dbt−1) = Rµ̄(dbt−1) and µ̄t is a deterministic policy. �

Thus without loss of generality the policies in the POMDP described in equation (31)
can be restricted to be deterministic policies.

Theorem 7.1 The two optimization problems given by (18) and (31) have the same optimal
cost.

Proof: First note that for any deterministic policy {µt} satisfying (28) with resulting
joint measure Rµ and, as given in lemma 7.4, an associated channel input distribution
{q(dat | πt, b

t−1} with associated joint measure Q the following holds for each t:

ERµ [c̄(Ut)]

=

∫

U×Bt−1

Rµ(dut, db
t−1)

∫ ∫ ∫

r(dbt | πt, at)ut(dπt, dat) log
r(bt | πt, at)

∫ ∫
r(bt | π̃t, ãt)ut(dπ̃t, dãt)

(a)
=

∫

Bt−1

Rµ(dbt−1)

∫ ∫ ∫

r(dbt | πt, at)µt[p(ds1), b
t−1](dπt, dat)

× log
r(bt | πt, at)

∫ ∫
r(bt | π̃t, ãt)µt[bt−1](dπ̃t, dãt)

(b)
=

∫

Bt−1

Rµ(dbt−1)

∫ ∫ ∫

r(dbt | πt, at)R
µ(dπt, dat | b

t−1) log
r(bt | πt, at)

∫ ∫
r(bt | π̃t, ãt)Rµ(dπ̃t, dãt | bt−1)

(c)
=

∫

Bt−1

Q(dbt−1)

∫ ∫ ∫

r(dbt | πt, at)Q(dπt, dat | b
t−1) log

r(bt | πt, at)
∫ ∫

r(bt | π̃t, ãt)Q(dπ̃t, dãt | bt−1)

= IQ(At,Πt;Bt | B
t−1)

(d)
= IRµ(At,Πt;Bt | B

t−1)
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where (a) and (b) follow because µt is a deterministic policy and hence: Rµ(dπt, dat | b
t−1)

= µt[b
t−1](dπt, dat). Lines (c) and (d) follow because Q(dπt, dat, db

t) = Rµ(dπt, dat, db
t).

The theorem then follows from this observation and lemmas 7.3-7.5. �

7.4 Fully Observed Markov Decision Problem

In this section we make one final simplification. We will convert the POMDP into a fully
observed MDP on a suitably defined state space.

Note that the cost, c̄(u) given in equation (30), at time t only depends on ut. The
control constraints, U(γ) given in equation (26), at time t only depends on γt. The statistics
γt[u

t−1, bt−1] only depend on p(ds1) in the case t = 1 and only depends on ut−1, bt−1 in the
case t > 1.

This suggests that Γt ∈ P(P(S)) could be a suitable fully observed state. The dynamics
are given as: γ1(dπ1) = δ{p(ds1)}(dπ1) and for t > 1:

r(dγt+1 | γt, ut) =

∫

P(S)

∫

A

∫

B
δ{ΦΓ(ut,bt)}(dγt+1) r(dbt | πt, at) ut(dπt, dat) (33)

Lemma 7.6 For every policy {µt} satisfying (28) with resulting joint measure Rµ we have
for each t > 1:

Rµ(dγt | γt−1, ut−1) = r(dγt | γt−1, ut−1) (34)

for Rµ almost all γt−1, ut−1.

Proof: For each t > 1 and for any Borel measurable sets Ωt−1,Ωt ⊂ P(P(S)) and any
Borel measurable set Θ ⊂ U we have:

Rµ(Ωt,Ωt−1,Θ)

=

∫

Θ

∫

Ωt−1

∫

B

∫

A

∫

P(S)
Rµ(Ωt, dγt−1, dut−1, dπt−1, dat−1, dbt−1)

=

∫ ∫ ∫ ∫ ∫

{ΦΓ(ut−1, bt−1) ∈ Ωt}r(dbt−1 | πt−1, at−1)ut−1(dπt−1, dat−1)R
µ(dγt−1, dut−1)

=

∫

Θ

∫

Ωt−1

r(Ωt | γt−1, ut−1)R
µ(dγt−1, dut−1)

where the last line follows from equation (33). �
Note that the dynamics given in equation (33), r(dγt+1 | γt, ut) depend only on ut. This

along with the fact that the cost at time t only depends on ut and the control constraint at
time t only depends on γt suggests that we can simplify the form of the control policy from
µt(dut | u

t−1, bt−1) to µt(dut | γt).

Theorem 7.2 Without loss of generality, the optimization given in equation (31) can be
modelled as a fully observed MDP with

(1) State space P(P(S)) and dynamics given by (33)

(2) Compact control constraints U(γ) given by (26)
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(3) Running cost c̄(u) given by (30).

Proof: See section 10.2 of Bertsekas and Schreve [4]. In particular proposition 10.5. �
Theorem 7.1 shows that for any deterministic policy {µt[b

t−1]} with resulting joint mea-
sure Rµ there is a corresponding channel input distribution q(dat | πt, b

t−1) with resulting
joint measureQ such that for all t: Q(dπt, dat, db

t) = Rµ(dπt, dat, db
t). HenceQ(dat | πt, b

t−1)
= Rµ(dat | πt, b

t−1) for Rµ almost surely all πt, b
t−1. Theorem 7.1 also shows c̄(µt[b

t−1]) =
IQ(At,Πt;Bt | b

t−1) Rµ−almost all bt−1.
By theorem 7.2. we know we can, without loss of generality, restrict ourselves to deter-

ministic policies of the form: {µt[γt]}. Under such a policy we have:

Q(dat | πt, b
t−1) = Rµ(dat | πt, b

t−1) = Rµ(dat | πt, γt)

for Rµ almost surely all πt, b
t−1, γt. For a fixed deterministic policy γt is a function of bt−1.

Thus the optimal channel input distribution takes the form {q(dat | πt, γt)} and

c̄(µt[γt]) = IQ(At,Πt;Bt | γt) Rµ − almost all γt (35)

Recall that in equation (18) we started with terms of the form I(At;Bt | B
t−1) and have

now simplified it to terms of the form I(At,Πt;Bt | Γt).

7.5 ACOE and Information Stability

In this section we present the ACOE for the fully observed MDP corresponding to the
equivalent optimizations in (18) and (31). We then show that the process is information
stable under the optimal input distribution. Finally we relate the equivalent optimizations
in (18) and (31) to the optimization given in (4): sup{DT }∞T=1

I(A→ B).
The following technical lemma is required to insure the existence of a measurable selector

in the ACOE given in (36) below. The proof is straightforward but tedious and can be found
in the appendix.

Lemma 7.7 For |B| finite we have

(1) The cost is bounded and continuous. Specifically, 0 ≤ c̄ (u) ≤ log |B|, ∀u ∈ U .

(2) The control constraint function U(γ) is a continuous set-valued map between P(P(S))
and U .

(3) The dynamics r(dγt+1 | γt, ut) are continuous.

We now present the infinite horizon average cost verification theorem.

Theorem 7.3 If there exists a V ∗ ∈ IR, a bounded function w : γ 7→ w(γ) ∈ IR, and
a policy µ∗ achieving the supremum for each γ in the following average cost optimality
equation (ACOE):

V ∗ + w(γ) = sup
u∈U(γ)

(

c̄(u) +

∫

w(γ̃)r(dγ̃|γ, u)

)

(36)

then
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(1) V ∗ is the optimal value of the optimization in (31). The optimal policy is the station-
ary, deterministic policy given by µ∗.

(2) Under this µ∗ we have

V ∗ = lim inf
T→∞

1

T
ERµ∗

[
T∑

t=1

c̄(Ut)

]

= lim sup
T→∞

1

T
ERµ∗

[
T∑

t=1

c̄(Ut)

]

and

lim
T→∞

1

T

T∑

t=1

c̄(Ut) = V ∗ Rµ∗
− a.s.

Proof: Follows from lemma 7.7 and theorems 6.2 and 6.3 of [1]. �
For a measure Q(dπt, dat, db

t) define

iQ(at, πt; bt | b
t−1) = log

r(bt | πt, at)
∫
r(bt | π̃t, ãt)Q(dπ̃t, dãt | bt−1)

Q− almost all at, πt, b
t (37)

The following theorem will allow us to view the ACOE, equation (36), as an implicit single-
letter characterization of the capacity of the Markov channel.

Theorem 7.4 Assume there exists a V ∗ ∈ IR, a bounded function w : γ 7→ w(γ) ∈ IR, and
a policy µ∗ achieving the supremum for each γ in ACOE (36). For µ∗ and resulting joint
measure Rµ∗

let {q∗(dat | πt, b
t−1)} be the corresponding optimal channel input distribution

and Q∗ be the corresponding measure.

(1) limT→∞
1
T

∑t
t=1 iQ∗(At,Πt;Bt | B

t−1) = V ∗ Q∗ − a.s.

(2) The channel is directed information stable and has a strong converse under the optimal
channel input distribution {q∗(dat | πt, b

t−1)}.

(3) V ∗ = C = sup{DT }∞T=1
I(A→ B) is the capacity of the channel.

Proof: We first prove part (2) and (3) assuming part (1) is true. Part (2) follows from part
(1) and proposition 5.1. To prove part (3) note:

C = sup
{DT }∞T=1

IQ(A→ B)

(a)

≤ sup
{DT }∞T=1

lim inf
T→∞

1

T
IQ(A

T → BT )

(b)
= sup

{{µt}Tt=1}
∞
T=1

lim inf
T→∞

1

T

T∑

t=1

ERc̄(Ut)

(c)
= sup

{µt}∞t=1

lim inf
T→∞

1

T

T∑

t=1

ERc̄(Ut)

= V ∗

where (a) follows from lemma 4.1; (b) follows from theorems 7.1 and 7.2; and (c) follows
from Bellman’s principle of optimality. Note the supremizations in (b) and (c) are over
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policies that satisfy the control constraint (28). Now by part (1) we see that (a) holds with
equality. Hence part (3) follows.

We need only prove part (1). Note that theorem 7.3(2) implies:

V ∗ = lim
T→∞

1

T

T∑

t=1

c̄(Ut) Rµ∗
− a.s.

(a)
= lim

T→∞

1

T

T∑

t=1

IQ∗(At,Πt;Bt | b
t−1) Rµ∗

− almost all b∞

(b)
= lim

T→∞

1

T

T∑

t=1

IQ∗(At,Πt;Bt | b
t−1) Q∗ − almost all b∞

where (a) follows from (35) and (b) follows because for each t: Q∗(dbt) = Rµ∗
(dbt). Hence

Q∗(db∞) = Rµ∗
(db∞).

Define the nested family of sigma-fields: Ft = σ(Πt, At, Bt). Let

Zt(πt, at, b
t) = iQ∗(at, πt; bt | b

t−1)− IQ∗(At,Πt;Bt | b
t−1)

Clearly Zt is Ft-measurable and EQ∗(Zt | Ft−1) = 0 Q∗ − a.s. Hence Zt is a martingale
difference sequence. The martingale stability theorem states if

lim
T→∞

T∑

t=1

EQ∗ [Z2
t | Ft−1]

t2
<∞ Q∗ − a.s. (38)

then limT→∞
1
T

∑t
t=1 Zt = 0 Q∗ − a.s. This in turn would imply

lim
T→∞

1

T

t∑

t=1

iQ∗(at, πt; bt | b
t−1) = lim

T→∞

1

T

t∑

t=1

IQ∗(At,Πt;Bt | b
t−1) = V ∗

for Q∗ − almost all π∞, a∞, b∞.
To show that (38) holds note that for any t and Q∗-almost all bt−1 we have:

EQ∗(Z2
t | bt−1)

≤ EQ∗[i2Q∗(At,Πt;Bt | B
t−1) | bt−1]

= EQ∗

[

log2 r(Bt | Πt, At) + log2
(∫

r(Bt | π̃t, ãt)Q
∗(dπ̃t, dãt | B

t−1)

)

−2 log r(Bt | Πt, At) log

(∫

r(Bt | π̃t, ãt)Q
∗(dπ̃t, dãt | B

t−1)

)

| bt−1

]

≤ EQ∗

[
log2 r(Bt | Πt, At) | b

t−1
]
+ EQ∗

[

log2
(∫

r(Bt | π̃t, ãt)Q
∗(dπ̃t, dãt | B

t−1)

)

| bt−1

]

≤ 2|B|

The last inequality follows because the function x log2 x achieves a maximum value of 1 over
the domain 0 ≤ x ≤ 1. Since

∑

t
2|B|
t2

is summable we see that (38) holds. �
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There remains the question of when a solution to the ACOE exists. There exist many
sufficient conditions for the existence of a solution. See [1], [17] for a representative sample.
Most of these conditions require the process be recurrent under the optimal policy. The
following theorem describes one such sufficient condition:

Theorem 7.5 If there exists an α < 1 such that

sup
γt,γ̃t,ut∈U(γt),ũt∈U(γ̃t)

‖r(dγt+1 | γt, ut)− r(dγt+1 | γ̃t, ũt)‖TV ≤ α (39)

then the ACOE (36) has a bounded solution. Here ‖ · ‖TV denotes the total variation norm.

Proof: See corollary 6.1 of [1].�
Condition (39) insures that for any stationary policy there exists a stationary distribu-

tion. Specifically:

Proposition 7.1 If (39) holds then for all stationary policies of the form, µ : γ → u(dπ, da),
there exists a probably measure λµ on P(S) such that for any ǫ > 0 there exists a T large
enough such that ∀t > T :

‖rtµ(dγt | γ1)− λµ(dγt)‖TV ≤ ǫ (40)

where rtµ(dγt | γ1) is the t−step transition stochastic kernel under the stationary policy µ.

Furthermore limT→∞
1
T
ERµ

[
∑T

t=1 c̄ (µ(Γt))
]

=
∫
c̄ (µ(γ))λµ(dγ) independent of the choice

of p(ds1).

Proof: See lemma 3.3 of [17]. �
We have until this point assumed that the Markov channel parameters are fixed. The

last part of proposition 7.1 shows that the capacity C is the same no matter which choice
of p(ds1) is chosen.

In the case that one chooses a policy without feedback equation (40) essentially reduces
to the definition of indecomposability found in Gallager [14], equation 4.6.26.

Finding conditions that imply (39) or (40) directly in terms of the Markov channel,
{p(ds1), p(dst+1 | st, at, bt), p(dbt | st, at)}, is challenging. This is essentially the problem of
determining conditions for the ergodicity of the underlying hidden Markov model under the
optimal stationary policy. See [18], [2], [21], [10] for some representative conditions.

8 Cases with Simple Sufficient Statistics

As we have already seen the sufficient statistics Πt ∈ P(S) and Γt ∈ P(P(S)) can be
quite complicated in general. There are, though, many situations where they become much
simpler.

8.1 S Computable from the Channel Input and Output

Recall that Πt is a function of (At−1, Bt−1) and satisfies the recursion: πt+1 = ΦΠ(πt, at, bt).
In many scenarios the state St is computable from (At−1, Bt−1). Here we assume that
p(ds1) = δ{s1}(ds1) for some fixed state s1 and for t > 1: Πt(dst) = δ{St}(dst) Q − a.s.
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This in turn implies there exists a function ΦS such that st+1 = ΦS(st, at, bt). To see
this recall equation (13). Because Πt,Πt+1 are Diracs Q-almost surely it must be the case
that St+1 is a function of St, At, Bt Q − a.s. One example of such a channel would be:
{p(dbt | at, at−1, bt−1)}. Here one could choose the state: St = (At−1, Bt−1).

We can directly associate Π with S. In addition Γ can be viewed as a conditional
probability of the state S. Hence we can restrict ourselves to control policies of the form:
µ : P(S) → U = P(S ×A) taking γ 7→ u(ds, da). Now the control constraints take the form
U(γ) = {u(ds, da) : u(ds, da) ∈ U , u(ds) = γ(ds)} . The dynamics of Γt given in equations
(24), (25) simplify to: γ1(ds1) = δ{s1}(ds1) and for t > 1 and all st:

γt[u
t−1, bt−1](st) =

∑

st−1,at−1

δ{ΦS(st−1,at−1,bt−1)}(st) r(dst−1, at−1 | ut−1, bt−1) (41)

Hence equation (33) simplifies to:

r(dγt+1 | γt, ut) =
∑

st,at,bt

δ{ΦΓ(ut,bt)}(dγt+1) p(bt | st, at) ut(st, at) (42)

where ΦΓ(u, b) comes from (41). The cost in equation (30) simplifies as well:

c̄(u) =
∑

s,a,b

p(b | s, a)u(s, a) log
p(b | s, a)

∑

s̃,ã p(b | s̃, ã)u(s̃, ã)
(43)

In addition
I(At,Πt;Bt | Γt) = I(At;Bt | St,Γt) + I(St;Bt | Γt) (44)

Finally the ACOE equation (36) in theorem 7.3 simplifies to an equation where w(γ) is now
a function over P(S):

V ∗ + w(γ) = sup
u∈U(γ)

(

c̄(u) +

∫

w(γ̃)r(dγ̃|γ, u)

)

(45)

The sufficient condition, equation (39), given in theorem 7.5 continues to hold with dynamics
given by (42).

We now examine two cases where the computations simplify further: S is either com-
putable from the channel output or channel input only.

8.1.1 Case 1: S Computable from the Channel Input Only

Here we assume St is computable from only At−1 and hence S is known to the transmitter.
Hence Πt is a function of At−1 and satisfies the recursion: πt+1 = ΦΠ(πt, at). This in
turn implies there exists a function ΦS such that st+1 = ΦS(st, at). These channels are
often called finite state machine Markov channels. Note that any general channel of the
form {p(dbt | at, a

t−1
t−∆)}, for a finite ∆, can be converted into a Markov channel with state,

St = At−1
t−∆, computable from the channel input.

As before we can directly associate Π with S and Γ can be viewed as a conditional
probability of the state S. Equations (41)-(45) continue to hold with obvious modifications.
See [38], [39] for more details. For Gaussian finite state machine Markov channels the
estimate Γt can be easily computed by using a Kalman filter [40], [41].
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8.1.2 Case 2: S Computable from the Channel Output Only

Here we assume St is computable from only Bt−1. Thus S is known to the receiver, and
via feedback, is known to the transmitter. Then Πt is a function of Bt−1 and satisfies the
recursion: πt+1 = ΦΠ(πt, bt). This in turn implies there exists a function ΦS such that
st+1 = ΦS(st, bt). Note that any general channel of the form {p(dbt | at, b

t−1
t−∆)}, for a finite

∆, can be converted into a Markov channel with state, St = Bt−1
t−∆, computable from the

channel output.
As before we can directly associate Π with S. In addition, because Π is computable

from the channel outputs we can directly associate Γ with Π and hence with S. We can
then restrict ourselves to control policies of the form: µ : S → U = P(A) taking γ 7→ u(da).
To see this note that the control constraints become trivial and hence we can use control
actions of the form u(da) as opposed to u(ds, da). In this case the dynamics in (33) simplify
quite a bit: γ1 = s1 and for t > 1:

r(dγt+1 | γt, ut) =
∑

at,bt

δ{ΦS(γt,bt)}(dγt+1) p(bt | γt, at) ut(at) (46)

The cost in equation (30) simplifies as well:

c̄(s, u) =
∑

a,b

p(b | s, a)u(a) log
p(b | s, a)

∑

ã p(b | s, ã)u(ã)

In addition I(At,Πt;Bt | Γt) = I(At, St;Bt | St) = I(At;Bt | St). Finally the ACOE equation
(36) in theorem 7.3 simplifies to an equation where w(γ) is now a function over S:

V ∗ + w(γ) = sup
u∈U

(

c̄(γ, u) +

∫

w(γ̃)r(dγ̃|γ, u)

)

(47)

Markov Channels with State Observable to the Receiver: An important scenario
that falls under the case just described is that of a Markov channel, p(ds1), {p(dst+1 | st, at, bt)},
{p(dbt | st, at)} with state observable to the receiver. Specifically at time t we assume that
along with Bt, the state St+1 is observable to the receiver. The standard technique for
dealing with this setting is to define a new channel output as follows: B̄t = (Bt, St+1).
The new Markov channel has the same state transition kernel but the channel output is:
p(db̄t | st, at) = p(dst+1 | st, at, bt) ⊗ p(dbt | st, at). We also assume that S1 is observable
to the transmitter. (This can be achieved by assuming that B̄0 = S1 is transmitted during
epoch 0.) Thus the dynamics in (46) can be written as: γ1 = s1 and for t > 1:

r(γt+1 | γt, ut) =
∑

at,bt

p(γt+1 | γt, at, bt) p(bt | γt, at) ut(at) (48)

Also, I(At,Πt; B̄t | Γt) = I(At;Bt | St) + I(At;St+1 | St, Bt). The second addend is zero if
there is no ISI.

The sufficient condition, equation (39), given in theorem 7.5 continues to hold with
dynamics given by (48). If there is no ISI then equation (48) reduces to: r(dγt+1 | γt, ut) =
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p(dγt+1 | γt). If p(dst+1 | st) is an ergodic transition kernel with stationary distribution
ν then there exists a bounded solution to the ACOE [1]. The ACOE reduces to: V ∗ =
∑

s ν(s)maxu c̄(s, u). Thus we recover the well known formula for the capacity of a non-ISI
ergodic Markov channel with state available to both the transmitter and receiver.

8.2 Π Computable from the Channel Output

Here we assume that Πt is a function of Bt−1 only and thus satisfies the recursion: πt+1 =
ΦΠ(πt, bt). Hence Γt(dπt) = δ{Πt}(dπt) Q − a.s.. We can thus directly associate Γ with
Π. Now Γ can be viewed as a conditional probability of the state S. One can view the
associated canonical Markov channel as a Markov channel with state Π computable from
the channel output only (as discussed in the previous section.)

We can then restrict ourselves to control policies of the form: µ : P(S) → U = P(A)
taking γ 7→ u(da). To see this note that the control constraints become trivial and hence we
can use control actions of the form u(da) as opposed to u(dπ, da). In this case the dynamics
in (33): γ1(dπ1) = δ{p(ds1)}(dπ1) and for t > 1:

r(dγt+1 | γt, ut) =
∑

st,at,bt

δ{ΦΠ(γt,bt)}(dγt+1) p(bt | st, at) γt(st) ut(at) (49)

The cost in equation (30) simplifies as well:

c̄(π, u) =
∑

s,a,b

p(b | s, a) π(s) u(a) log

∑

s̃ p(b | s̃, a) π(s̃)∑

s̃,ã p(b | s̃, ã) π(s̃) u(ã)

In addition I(At,Πt;Bt | Γt) = I(At;Bt | Πt). Finally the ACOE equation (36) in theorem
7.3 simplifies to an equation where w(γ) is now a function over P(S):

V ∗ + w(γ) = sup
u∈U

(

c̄(γ, u) +

∫

w(γ̃)r(dγ̃|γ, u)

)

(50)

In this case the optimal channel input distribution q(dat | πt, γt) can be written in the
form q(dat | b

t−1). Furthermore the code-function distribution can be taken to be a product
distribution. Choose for each t and ft:

p(ft) =
∏

bt−1

q(ft(b
t−1) | bt−1).

Then PFT (dfT ) = ⊗T
t=1p(dft). One can easily verify for each t that PFT (Υt(bt−1, at)) =

~q(at | bt−1) and hence is good with respect to {q(dat | b
t−1)}.

In summary, if the sufficient statistic Π is computable from the channel output then the
optimal code-function distribution can be taken to be a product measure. If Πt depends on
At−1 then the optimal code-function, in general, will not be a product measure.

In this section we discussed scenarios where the sufficient statistics had special structure.
One open question is to determine whether the sufficient statistics will simplify if we restrict
ourselves to special classes of code-functions. As an example, it was shown in [15] that for
non-ISI Markov channels with no feedback one can find a single-letter formula when the
channel inputs are independent and identically distributed.
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9 Maximum Likelihood Decoding

We now consider the problem of maximum-likelihood decoding. For a given message set W
fix a channel code {fT [w] w ∈ W}. Assume the messages are chosen uniformly. Hence each
channel code-function is chosen with probability PFT (fT [w]) = 1

|W| . For a consistent joint

measureQ(dfT , daT , dbT ) our task is to simplify the computation of argmaxw∈W Q(fT [w] | bT ).
First consider the general channels described in section 5. Note

Q(fT , bT ) = Q(fT , aT = fT (bT−1), bT )

= Q(fT | aT = fT (bT−1), bT ) Q(aT = fT (bT−1), bT ) (40)

Also, if Q(aT , bT ) > 0 then

Q(fT | aT , bT ) =
Q(fT , aT , bT )

Q(aT , bT )

=
PFT (fT )~p(bT | aT )

∏T
t=1 δ{ft(bt−1)}(at)

~p(bT | aT )
∏T

t=1Q(at | at−1, bt−1)

(a)
=

PFT (fT )

PFT (ΥT (bT−1, aT ))

=
1

|ΥT (bT−1, aT )|
(41)

where (a) follows by lemma 5.1. Note this implies that F T − AT − BT is not a Markov
chain under Q.

Due to the feedback we effectively have a different channel code without feedback for
each bT−1. Specifically, for each bT−1 define

Λ(bT−1) = {aT : aT = fT [w](bT−1) for some w ∈ W}.

From equations (40) and (41) we see that computing argmaxw∈W Q(fT [w] | bT ) is equivalent
to computing:

argmax
aT∈Λ(bT−1)

1

|ΥT (bT−1, aT )|

T∏

t=1

p(bt | a
t, bt−1) Q(at | a

t−1, bt−1) (42)

where {Q(dat | a
t−1, bt−1)} is the induced channel input distribution for PFT (fT [w]).

For the Markov channel case we may replace p(dbt | at, bt−1) with p(dbt | πt, at) in
equation (42). If in addition, the channel code is chosen such that the induced channel
input distribution has the form {q(dat | πt, γt)} then:

argmax
aT∈Λ(bT−1)

1

|ΥT (bT−1, aT )|

T∏

t=1

p(bt | πt, at) q(at | πt, γt) (43)

In the case where |ΥT (bT−1, aT )| = 1, ∀aT ∈ Λ(bT−1) the optimization in (43) can be
treated as a deterministic longest path problem.
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10 Conclusion

We have presented a general framework for treating channels with memory and feedback.
We first proved a general coding theorem based on Massey’s concept of directed information
and Dobrushin’s program of communication as interconnection. We then specialized this
result to the case of Markov channels. To compute the capacity of these Markov channels
we converted the directed information optimization problem into a partially observed MDP.
This required identifying appropriate sufficient statistics at the encoder and decoder. The
ACOE verification theorem was presented and sufficient conditions for the existence of a
solution were provided. The complexity of many feedback problems can now be understood
by examining the complexity of the associated ACOE.

The framework developed herein leaves open the possibility of using approximate dy-
namic programming techniques, like value and policy iteration and reinforcement learning,
for computing the capacity. In addition the framework allows one to compute the capacity
under restricted policies. This is useful if one is willing to sacrifice capacity for the benefit
of a simpler policy.

Acknowledgements: The authors would like to thank Vivek Borkar for many helpful
discussions.

A Appendix

A.1 Review of Stochastic Kernels

The following results are standard and can be found in, for example, [4]. Let (V,A) be
a Borel space and let (X ,BX ) and (Y,BY) be Polish spaces equipped with their Borel
σ-algebras.

Definition A.1 Let τ(dx | v) be a family of probability measures on X parameterized by
v ∈ V. We say that τ is a stochastic kernel from V to X if for every Borel set B ∈ BX , the
function v 7→ τ(B | v) ∈ [0, 1] is measurable.

Lemma A.1 For B ∈ BX , define fB : P(X ) → [0, 1] by fB : µ 7→ µ(B) for µ ∈ P(PX ).
Then

BP(X ) = σ[∪B∈BX
f−1
B (BIR)]

Theorem A.1 Let τ(dx | v) be a family of probability measures on X given V. Then
τ(dx | v) is a stochastic kernel if and only if v ∈ V ∈ P(X ) is measurable. That is if and
only if τ(· | v) is a random variable from V into P(X ).

Since τ(· | v) is a random variable from V into P(X ) it follows that the class of stochastic
kernels is closed under weak limits (weak topology on the space of probability measures.)

We now discuss interconnections of stochastic kernels. Let τ1(dx | v) be a stochastic
kernel from V to X and τ2(dy | v, x) be a stochastic kernel from V ×X to Y. Then the joint
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stochastic kernel τ1 ⊗ τ2 from V to X × Y is for all v ∈ V, A ∈ BX , and B ∈ BY we have

τ1 ⊗ τ2(A×B | v) =

∫

A×B

τ2(dy | v, x)τ1(dx | v) =

∫

A

τ2(B | v, x)τ2(dx | v).

Via the Ionescu-Tulcea theorem this can be generalized to interconnections of countable
number of stochastic kernels.

We now discuss the decompositions of measures.

Theorem A.2 Let λ(dx⊗ dy) be a probability measure on (X ×Y,BX ⊗BY). Let λ1(A) =
λ(A,Y), A ∈ BX be the first marginal. Then there exists a stochastic kernel λ(dy | x) on Y
given X such that for all A ∈ BX and B ∈ BY we have

λ(A×B) =

∫

A×B

λ1(dx)λ(dy | x) =

∫

A

λ(B | x)λ1(dx)

This can be generalized to a parametric dependence:

Theorem A.3 Let λ(dx⊗ dy | v) be a stochastic kernel on X × Y given V. Let λ1(A | v)
be the first marginal which is a stochastic kernel on X given V defined by

λ1(A | v) = λ(A,Y | v), A ∈ BX , v ∈ V.

Then there exists a stochastic kernel λ(dy | v, x) on Y given V × X such that ∀v ∈ V,
A ∈ BX , and B ∈ BY we have

λ(A×B | v) =

∫

A×B

λ1(dx | v)λ(dy | v, x) =

∫

A

λ(B | v, x)λ1(dx | v)

Let λ(dx⊗ dy | v) be a stochastic kernel on X × Y given V and suppose the stochastic
kernel τ(dy | v, x) on Y given V × X satisfies:

∀v ∈ V,∀ B ∈ BY we have λ(B | v, x) = τ(B | v, x) for λ1(dx | v) almost all x.

Then for any measurable function g : V × X × Y → IR and all v ∈ V we have

E(g(V,X, Y ) | v) =

∫

X×Y
g(v, x, y)τ(dy | v, x)λ1(dx | v)

whenever the conditional expectation on the left hand side exists.
Finally, recall that a stochastic kernel τ(dy | x) on Y given X is continuous if for all

continuous bounded functions v on Y the function
∫
v(y)p(dy | x) is a continuous and

bounded function on X .

Theorem A.4 If τ(dy | x) is a continuous stochastic kernel on Y given X and v(x, y) is
a continuous bounded function on X × Y then

∫
v(x, y)τ(dy | x) is a continuous bounded

function on X .
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A.2 Lemma 4.1

The proof of lemma 4.1 below is adapted from lemma A1 of [16] and theorem 8 of [33]. We
need the following three lemmas. Combined they state that the mass of ~i(AT ;BT ) at the
tails is small. Recall that |B| <∞.

Lemma A.2 Let L > log |B|. For any sequence of measures {PBT }Tt=1 we have

lim
T→∞

E

[
1

T
log

1

P (BT )
1{ 1

T
log 1

P (BT )
≥L
}

]

= 0.

Proof: Let Ω = {bT : P (bT ) ≤ 2−TL}. Now

E

[
1

T
log

1

P (BT )
1{ 1

T
log 1

P (BT )
≥L
}

]

=
1

T

∑

bT∈Ω

P (bT ) log
1

P (bT )

=
1

T
P (Ω)

∑

bT∈Ω

P (bT )

P (Ω)
log

1
P (bT )
P (Ω)

−
1

T
P (Ω) log P (Ω)

≤
1

T
P (Ω) log |BT | −

1

T
P (Ω) log P (Ω)

≤
1

T
P (Ω) log |BT |+

1

2T

where the first inequality follows because entropy is maximized by the uniform distribution
and the second inequality follows because −x log x ≤ 1

2 , 0 ≤ x ≤ 1. Now P (Ω) ≤ |Ω|2−TL ≤

|BT |2−TL. Thus E

[

1
T
log 1

P (BT )
1{ 1

T
log 1

P (BT )
≥L
}

]

≤ log |B|2−T (L−log |B|) + 1
2T . This upper

bound goes to zero as T → ∞. �

Lemma A.3 For any sequence of joint measures {PAT ,BT }∞T=1 we have

lim
T→∞

E

[
1

T
~i(AT ;BT ) 1{ 1

T
~i(AT ;BT ) ≤ 0}

]

= 0

Proof: Follows from page 10 of Pinsker [25].

Lemma A.4 Let L > log |A|. For any sequence of joint measures {PAT ,BT }∞T=1 we have

lim
T→∞

E

[
1

T
~i(AT ;BT ) 1{ 1

T
~i(AT ;BT ) ≥ L}

]

= 0.

Proof: Let Ω = {bT : P (bT ) ≤ 2−TL}. Note that 1
P (BT )

≥ ~p(BT | AT )
P (BT )

PAT ,BT − a.s. Now

E

[
1

T
~i(AT , BT ) 1{ 1

T
~i(AT ;BT ) ≥ L}

]

= E

[

1

T
log

~p(BT | AT )

P (BT )
1{ 1

T
log ~p(BT | AT )

P (BT )
≥ L

}

]

≤ E

[
1

T
log

1

P (BT )
1{ 1

T
log 1

P (BT )
≥ L

}

]

≤

(

log |B|2−T (L−log |B|) +
1

2T

)

The last inequality follows from lemma A.2. This upper bound goes to zero as T → ∞. �
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Proof of Lemma 4.2: The second inequality is obvious. To prove the first inequality note
∀ǫ > 0 we have

1

T
I(AT → BT ) ≥ E

[

1

T
log

~p(BT | AT )

P (BT )
1{ 1

T
log ~p(BT | AT )

P (BT )
≤0
}

]

+ 0× P

[

0 ≤
1

T
log

~p(BT | AT )

P (BT )
≤ I(A→ B)− ǫ

]

+ (I(A→ B))P

[
1

T
log

~p(BT | AT )

P (BT )
≥ I(A→ B)− ǫ

]

The first addend goes to zero by lemma A.3, the second addend equals zero, and the
probability in the last addend goes to 1. Thus for T large enough 1

T
I(AT → BT ) ≥ I − 2ǫ.

Since ǫ is arbitrary we see that I(A→ B) ≤ lim infT→∞
1
T
I(AT → BT ).

Now we treat the last inequality. For any ǫ > 0 we have

1

T
I(AT → BT ) ≤ E

[

1

T
log

~p(BT | AT )

P (BT )
1{ 1

T
log

~p(BT | AT )

P (BT )
≥L
}

]

+ LP

[

L ≥
1

T
log

~p(BT | AT )

P (BT )
≥ Ī(A→ B) + ǫ

]

+ (Ī(A→ B) + ǫ)P

[
1

T
log

~p(BT | AT )

P (BT )
≤ Ī(A→ B) + ǫ

]

The first addend goes to zero by lemma A.4, the second addend goes to zero by definition of
Ī, and the probability in the last addend goes to 1. Thus for T large enough 1

T
I(AT → BT )

≤ Ī + 2ǫ. Since ǫ is arbitrary we see that lim supT→∞
1
T
I(AT → BT ) ≤ I(A→ B). �

A.3 Lemma 7.7

We repeat the statement of lemma 7.7 for convenience.
Lemma 7.7 For |B| finite we have

(1) The cost is bounded and continuous. Specifically, 0 ≤ c̄ (u) ≤ log |B|, ∀u ∈ U .

(2) The control constraint function U(γ) is a continuous set-valued map between P(P(S))
and U .

(3) The dynamics r(dγt+1 | γt, ut) are continuous.

Proof: To prove part (1) recall c̄(u) =
∫
r(db | π, a)u(dπ, da) log r(b | π,a)

∫
r(b | π̃,ã)u(dπ̃,dã)

. This

c̄(u) corresponds to a mutual information with input distribution u(dπ, da) and an output
B in a finite alphabet B. Hence c̄(u) ≤ log |B| ∀u ∈ U . The cost is clearly continuous in
u ∈ U .

To prove part (2) recall U(γ) = {u(dπ, da) : u(dπ, da) ∈ U , u(dπ) = γ(dπ)}. The set
U(γ) is compact for each γ ∈ P(P(S)). For any set H ⊂ U denote U−1(H) = {γ :
U(γ) ∩H 6= ∅}. The set-valued map U(γ) is continuous if it is both
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(1) Upper semicontinuous (usc): U−1(F ) is closed in P(P(S)) for every closed set F ⊂ U .

(2) Lower semicontinuous (usc): U−1(G) is open in P(P(S)) for every open set G ⊂ U .

The control constraint U(γ) is clearly both usc and lsc and hence is continuous.
To prove part (3) recall equation (33):

r(dγt+1 | γt, ut) =

∫

U

∫

A

∫

B
δ{ΦΓ(ut,bt)}(dγt+1) r(dbt | πt, at) ut(dπt, dat).

Since this stochastic kernel does not depend on γt we only need to show that it is continuous
in ut. Specifically, let v be any continuous bounded function on P(P(S)). We need to show

∫ ∫ ∫

v (ΦΓ(u, b)) r(db | π, a) u(dπ, da) (A1)

is a continuous function of ut.
By equation (25) we know for all Borel measurable Ω ⊂ P(S):

γ[u, b](Ω) =

∫ ∫

{ΦΠ(π, a, b) ∈ Ω}r (dπ, da | u, b) . (A2)

By lemma 7.1 we know for any Borel measurable Θ ⊂ P(S), a, b, and u we have

r (Θ, a | u, b) =

∫

Θ r (b | π̃, a) u(dπ̃, a)∫ ∫
r (b | π̃, ã) u(dπ̃, dã)

(A3)

when the denominator does not equal zero. Because B is finite and by repeated use of
Theorem A.4 we see that (A3) is continuous in u, b for all Θ. This implies (A2) is continuous
in u, b for all Ω. Thus implying (A1) is continuous in u. �
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